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ALecture 7

Curves and Surfaces in Euclidean Space

p

p

p

Curves in IR3 and IRd, Frenet frames 

Surfaces in IR3, Gauss frames

First and second fundamental form 

Curvature of surfaces

©c 2003–2008 Martin Welk, 2015 Martin Schmidt, 2019 Marcelo Cárdenas



1 2

3 4

5 6

7 8

9 10

11 12

13 14

M I
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Reminder about Curves and Curvature in 2D

p In 2D, a regular curve is characterised up to Euclidean transformations by the
curvature κ (as function of the curve parameter)

p At each curve point, there are tangent and normal unit vectors ~t and ~n, such
that in arc-length parametrisation

cs = ~t , css = κ~n

c

css

n

cst =
x

Curve with tangent and normal vectors and first two derivatives at a point,
from Lecture 2
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Curvature Parameters of a Curve in 3D

p Consider regular curve in 3D Euclidean space, c : I → IR3, in arc-length
parametrisation

p At each curve point c(s), there are

a a unit tangent vector ~t(s), cs = ~t(s)

a a unit normal vector ~n(s), css = κ(s)~n(s)

a a unit binormal vector ~b(s), ~b(s) = ~t(s)× ~n(s)

(unique if c is 2-regular, i.e. css 6= 0)

p In contrast to the 2D case, κ(s) can
always be chosen nonnegative

p ~t(s), ~n(s), ~b(s) form an orthonormal
system, the Frenet frame of c

n

b

t

c  s(   )

c

Curve c in IR3 with Frenet frame at c(s)
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Curves in IR3 (3)

Curvature Parameters of a Curve in 3D, cont.

p the derivative of ~b is perpendicular to both ~t and ~b, i.e

~bs(s) = −τ(s)~n(s)

with a function τ(s), the torsion of c

p Curvature κ(s) and torsion τ(s) determine the curve c(s) up to rotations and
translations

p Frenet-Serret equations (or Frenet equations):

d

ds

~t~n
~b

 =

 0 κ 0
−κ 0 τ
0 −τ 0

~t~n
~b


p The torsion can also be defined by

csss(s) = −κ(s)2 ~t(s) + κs(s)~n(s) + κ(s)τ(s)~b(s)

p The torsion vanishes identically if and only if the curve is contained in a plane
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Frenet Frames in Higher Dimensions

p Consider a curve c in IRd in arc-length parametrisation

p For each curve point c(s), there is an orthonormal basis (~e1, . . . , ~ed) such that

cs(s) = ~e1 , css(s) ∈ Span (~e1, ~e2) ,

cs(k)(s) ∈ Span (~e1, . . . , ~ek) , k ≤ d

p (~e1, . . . , ~ed) is the Frenet frame of c.

p Frenet equations in d dimensions:

d

ds



~e1
~e2

...

~ed


=



0 κ1 0 . . . 0 0
−κ1 0 κ2 0 0
0 −κ2 0 0 0
...

. . .
...

0 0 0 0 κd−1

0 0 0 . . . −κd−1 0





~e1
~e2

...

~ed


p Curvature functions κi(s), i = 1, . . . , d− 1 (nonnegative for i ≤ d− 2)

determine c up to rotations and translations
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Surfaces

p Surface in IRd: Differentiable function σ : D → IRd, D ⊂ IR2 connected
domain

p Graph (image) of a surface σ: Set of points in IRd given by
{σ(u, v) | (u, v) ∈ D}

Remark: Similarly as for curves, surfaces with identical graphs but different
parametrisations are considered different.

Curves on a Surface

p σ : D → IR3 surface

p I ⊂ IR interval, mapping I 3 p 7→ (u(p), v(p)) ∈ D

p By c : I → σ(D) ⊂ IR3, p 7→ σ(u(p), v(p)), a curve on σ is given
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Related Definitions

p Regular surface: Surface σ : (u, v) 7→ IRd is regular if the (Jacobi) matrix

Dσ :=

σ
1
u σ1

v

...
...

σdu σdv


has rank 2 everywhere in D.

p k-regularity can be defined analogously using higher order derivatives. We will
always assume that surfaces are sufficiently many times differentiable.

p Tangent plane T(u,v)σ to σ at σ(u, v): image of

Dσ(u, v) : T(u,v)IR
2 → Tσ(u,v)IR

d
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Reparametrisation

p Transforms a surface into another one with the same graph

p σ : D → IRd surface

p D̃ ⊂ IR2 connected domain

p ϕ : D̃ → D differentiable mapping with rankDϕ = 2 everywhere

p σ̃ := σ ◦ ϕ : D̃ → IRd reparametrised surface

p orientation-preserving if detDϕ > 0
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Gauss Frame for Surfaces in 3D

Gauss Frame for Surfaces in 3D

p Restrict now to surfaces σ : D → IR3 in 3D Euclidean space

p Gauss frame (analog of Frenet frame for surfaces) consists of the three unit
vectors

~t1(u) :=
σu
‖σu‖

, ~t2(u) :=
σv
‖σv‖

, ~n :=
σu × σv
‖σu × σv‖

p First two vectors ~t1 and ~t2 of the frame lie in tangential direction, ~n
perpendicular to the surface

p In general, ~t1 and ~t2 are not orthogonal

p ~t1 and ~t2 depend on parametrisation

p Normal vector ~n does not change under
orientation-preserving reparametrisation,
is reverted by orientation-changing
reparametrisation

t2

t1

n
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First Fundamental Form for Surfaces in 3D

First Fundamental Form

p Consider regular surface σ : D → IR3

p Use boldface letters u,v, . . . for points and vectors in IR2

p Symmetric bilinear form

Iu(v,w) := 〈Dσ(u)v,Dσ(u)w〉 , v,w ∈ TuD

p

p

is called first fundamental form of σ at u

Regularity implies Iu(w, w) 6= 0, for nonzero w

In coordinates, Iu is described by a matrix which we will also denote by Iu
(u = (u, v)):

Iu = I(u,v) =

(
E F
F G

)
,

E = 〈σu, σu〉 , F = 〈σu, σv〉 , G = 〈σv, σv〉

p Map Dσ(u) : TuIR
2 → Tuσ ⊂ Tσ(u)IR

3 allows to transfer Iu also into a
bilinear form on Tuσ
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First Fundamental Form for Surfaces in 3D

Transformation Properties of the First Fundamental Form

p The first fundamental form is invariant under Euclidean transformations
(including reflections) of IR3:
For ψ : x 7→ Ax+ b, A ∈ O(3, IR), b ∈ IR3, and σ̃ := ψ ◦ σ one has

Ĩu(v,w) = Iu(v,w)

where Ĩu is first fundamental form of σ̃

p The first fundamental form transforms under reparametrisations as follows:
Let σ̃ := σ ◦ ϕ, ϕ : D̃ → D; then

Ĩu(v,w) = Iϕ(u)(Dϕ(v),Dϕ(w))

where Ĩu is first fundamental form of σ̃
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First Fundamental Form for Surfaces in 3D

Measurements Using the First Fundamental Form

p     Consider surface σ : D → IR3 and a curve c : [0, P ] → D) on σ. Then

I(u(p),v(p))(cp(p), cp(p)) = cTp I(u(p),v(p))cp = E u2
p + 2F upvp +Gv2p

Length of c:

L[c] =

P∫
0

‖cp(p)‖ dp =

P∫
0

√
E u2

p + 2F upvp +Gv2p dp

p Angle between vectors in a point (here for σu, σv)

cos <) (σu, σv) =
〈σu, σv〉
‖σu‖ ‖σv‖

=
F√
EG
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First Fundamental Form for Surfaces in 3D

Measurements Using the First Fundamental Form, cont.

p Area of surface σ(D):

A[σ] =

∫∫
D

√
det I(u,v) du dv =

∫∫
D

√
EG− F 2 du dv

p The bilinear form on T(u,v)σ defined by the first fundamental form is a
Riemannian metric on the surface (graph). It is obtained by restricting the
Euclidean metric of IR3 to the surface.
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Outlook and References
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