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What did we do last week?

What did we do last week?

p energy functionals

E(u) :=

∫
D

F (x, u, uxi) dx

p variational gradient δ
δu
E(u) := g with

δvE :=
d

dε
E(u∗ + εv)

∣∣∣∣
ε=0

= 〈v, g〉

p gradient descent

∂tu = −g = − δ

δu
E
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Transformations and Invariances

Motivation
p Lengths, angles and curvatures were the most important quantities in our

geometric considerations up to now.
What is special about lengths, angles and curvatures?

p Intuition: These quantities describe object properties which do not change
under some geometric transformations (and are therefore considered more
characteristic for the objects).

p Mathematical notion: These quantities are invariant under translations,
rotations (and in some cases also re-scalings).

p Idea: The essential geometric structure of a space (manifold, image
domain) is given by its “admissible” transformations.
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Transformations and Invariances

Transformation Groups
p Reasonable requirements for admissible transformations:

a Concatenation of admissible transformations is again an admissible
transformation, and follows the associative law

a There is a trivial transformation which changes nothing

a For each admissible transformation, there is an admissible
transformation that reverts its effect

⇒ Transformations must form a group.
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Transformations and Invariances

Euclidean Transformation Group
p Matrix group SO(d, IR):

a Consists of all real d× d matrices A with AAT = ATA = I (unit
matrix) and detA = 1

a Describes the (true, i.e. orientation-preserving) rotations around the
origin in IRd

p Euclidean transformation group: Formed by translations, rotations and
re-scalings

x̃ = kAx+ b , A ∈ SO(d, IR) , b ∈ IRd , k ∈ IR

p The differential geometry built on notions invariant under these
transformations is called Euclidean differential geometry
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Transformations and Invariances

Lie Groups
p As seen before, transformations of a geometric space need to form a group

p Typically, transformations also form a differentiable manifold, and group
operations (concatenation=group multiplication, inversion) are
differentiable
Example: Euclidean transformations of IRd,

x̃ = kAx+ b , A ∈ SO(d, IR) , b ∈ IRd , k ∈ IR ,

are parametrised by 1
2
(d2 + d+ 2) real parameters and form therefore a

1
2
(d2 + d+ 2)-dimensional differentiable manifold

p Lie group:

a Differentiable manifold L

a L is also a group

a Group operations of L are differentiable
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History

Sophus Lie

Sophus Lie (1842–1899), Norwegian mathematician. Studied the transformation groups
under which differential equations and their solutions are invariant, later named Lie
groups. (Image: public domain, source: Wikipedia)



1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

M I
A

Affine Differential Geometry

Can a “reasonable” differential geometry be developed with another Lie group
in place of the Euclidean transformation group?

The Affine Transformation Group
p Matrix group GL+(d, IR):

a Consists of all real d× d matrices A with detA > 0

a Describes all non-degenerate orientation-preserving transformations of
IRd which leave the origin fixed

p Affine transformation group: Formed by all affine transformations of IRd

(i.e. translations, rotations, re-scalings, shears),

x̃ = Ax+ b , A ∈ GL+(d, IR) , b ∈ IRd

p Differential geometry based on concepts invariant under this group is
called affine differential geometry
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Affine Differential Geometry

p Relation to Image Processing: Unlike the Euclidean transformation group,
the affine one can cope with the appearance changes of planar shapes
when they are seen from different (parallel) perspectives.
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Affine Differential Geometry

Planar Affine Curve Theory
p Let a curve c : I → IR2, p 7→ (x(p), y(p)) be given, I interval. Assume c is

strictly convex

p Euclidean geometry: Arc-length parametrisation gives a distinguished
description of the curve

p Affine geometry: Which parametrisation is advantageous?
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Affine Differential Geometry

Affine Metric and Arc Length
p Consider g(p) defined by

(g(p))3 := det(cp, cpp) = det

(
xp xpp
yp ypp

)
p g(p) is invariant under special affine transformations

x̃ = Ax+ b , detA = 1

p Choose therefore

c(p) = c̃(s) , det(c̃s, c̃ss) = 1

p New parameter

s(p) =

p∫
0

(g(τ)) dτ =

p∫
0

(det(cp(τ), cpp(τ)))1/3 dτ

p s is called affine invariant arc length

p g is called affine metric
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Affine Differential Geometry

Conversion Formulas
p Conversion between general parametrisation and affine arc-length

parametrisation

curve parameter ds = g dp ,

affine tangential vector ~t = cs = cp
dp

ds
= g−1cp ,

affine normal vector ~n = css = cpp

(
dp

ds

)2

+ cp
d2p

ds2

= g−2cpp − g−3g′cp

p Conversion between Euclidean and affine arc-length parameters

ds = κ1/3 dse ,

~t = κ−1/3~te ,

~n = κ1/3~ne + f(κ, κ′)~te

where se, ~te, ~ne denote Euclidean arc-length parameter, tangential and
normal vector, and f is some function of (Euclidean) curvature κ and its
derivative along the curve κ′
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Affine Differential Geometry

Affine Curvature
p Consider curve c in affine arc-length parametrisation

p Differentiation of
det(cs, css) = 1

w.r.t. s gives
det(cs, csss) = 0 .

p Thus
csss + µcs = 0

with
µ = det(css, csss) = −det(cs, cssss)

p µ is called affine curvature

p In general parametrisation

µ = g−5
(

det(cpp, cppp)− g−1g′det(cp, cppp) + g−1g′′det(cp, cpp)
)
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Affine Differential Geometry

Affine Invariance
p Under special affine transformations, ds and µ are absolutely invariant

p For general affine transformations x̃ = Ax+ b we have relative invariance

ds̃ = (detA)1/3 ds

c̃s̃ = A(detA)−1/3cs

c̃s̃s̃ = A(detA)−2/3css

µ̃ = (detA)−2/3µ
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Affine Differential Geometry

Curves of Constant Affine Curvature

Curves of constant affine curvature: conics

p Ellipse
x2

a2
+
y2

b2
= 1

affine arc-length parametrisation x = a cos
s

3
√
ab

, y = b sin
s

3
√
ab

affine curvature µ =
1

3
√
a2b2

p Parabola y =
1

2
x2

affine arc-length parametrisation x = s, y = s2/2
affine curvature µ = 0
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Affine Curvature Motion

Affine Curvature Motion
p Consider evolution of convex curves c

p With affine arc-length parameter s,

ct = css

describes affine curvature motion

p Rewrite using

p

p

p

where ~n, ~ne affine/Euclidean normal vectors

This gives
ct = κ1/3~ne

In this form, affine curvature flow can be applied even to non-convex 
curves

Note that affine curvature motion is here expressed in Euclidean terms, 
and that it is a curvature-dependent flow, thus morphologically invariant

~t~n = κ1/3~ne + f(κ, κ′) e
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Affine Curvature Motion

Properties of Affine Curvature Motion
p

p

p

Affine curvature motion is a gradient descent for affine arc-length

Each simple closed curve evolves into a convex curve and vanishes as an 

For affine metric and curvature

g =
(
det (cp, cpp)

)1/3
, µ = det (css, csss) ,

one has

gt = −2

3
gµ , µt =

4

3
µ2 +

1

3
µss

p

p

p

p

If µ(p, 0) > 0, then µ(p, t) > 0 for all t

Even curve segments with µ = 0 at t = 0, enclosed between segments 
with µ > 0, vanish instantaneously

Euclidean curvature κ evolves under affine curvature motion according to
κt = µκ

Euclidean length l of a closed curve decreases, lt < 0 if l > 0

p Ellipses remain ellipses
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Affine Curvature Motion

Affine Curvature Motion – Special Case
p Consider ellipse in affine arc-length parametrisation

c0 =

(
a cos(

√
µ s)

b sin(
√
µ s)

)
, µ = µ0 = (ab)−2/3 , a, b > 0

p In each point, µs = µss = 0 and

µt =
4

3
µ2 , µ(t) =

µ0

1− 4
3
µ0t

κt = µκ =
µ0κ

1− 4
3
µ0t

, κ(p, t) =
κ(p, 0)(

1− 4
3
µ0t
)3/4

p Consequently, the initial ellipse with semi-axes a, b and affine curvature
µ0 = (ab)−2/3 evolves into similar ellipses

p Similarity factor at time t:

α(t) =

(
1− 4

3
µ0t

)3/4
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Affine Curvature Motion

Example: Comparison to Euclidean Curvature Motion

Original curve and two progressive stages
of affine curvature motion.

Euclidean curvature motion. Straight
line segments are artifacts because no
resampling was implemented.

Affine curvature motion of a sheared ver-
sion of the original curve. Evolved curves
are (approx.) sheared versions of the
evolved curves in the top example.

Euclidean curvature motion of the
sheared curve. No shear invariance is ob-
served.
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Affine Curvature Motion

Image Evolution with Affine Curvature Motion

Top left to bottom right in rows: Original MR image and affine curvature motion at
evolution times t = 5, t = 10, t = 20, t = 40, t = 60, t = 80, and t = 100.
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Affine Curvature Motion

Image Evolution Example with Euclidean Curvature
Motion (for Comparison)

Top left to bottom right in rows: Original MR image and Euclidean curvature motion
at evolution times t = 5, t = 10, t = 20, t = 40, t = 60, t = 80, and t = 100. Compare
also Slide 3:30
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Affine Curvature Motion

Further Examples

Left to right in rows: Evolution of a star-shaped initial contour under affine curvature
flow. The shape becomes convex, shrinks and approaches an elliptic shape. (Sapiro and
Tannenbaum, 1993)
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Affine Curvature Motion

Further Examples

Top, left to right: Evolution of an initial contour under affine curvature flow. Bottom:
Same for an initial contour which results from the first by unimodular affine transform-
ation. The affine relation between the initial contours is preserved for all later times.
(Sapiro and Tannenbaum, 1993)
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Affine Curvature Motion

Further Examples

Left to right in rows: Evolution of five hand shapes related by affine transformations
under affine curvature flow. Again the affine relation is preserved during evolution.
(Sapiro and Tannenbaum, 1993)
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Sobolev Gradient Descent

Some Sobolev Spaces
Let I = [0, L] with identification of endpoints (circle line). Consider functions
I → IRd which are sufficiently smooth.

p scaled “Standard” inner product: scaled L2 product

〈u, v〉H0 =
1

L

L∫
0

u(x) · v(x) dx

a Function space consists of such functions u for which 〈u, u〉 <∞

a In this context, we call the resulting space H0(I)

p Define

〈u, v〉H1 := 〈u, v〉H0 + λL2〈u′, v′〉H0

〈u, v〉H̃1 := ū · v̄ + λL2〈u′, v′〉H0

with ū := 1
L

∫ L
0
u(x) dx

Function space H1(I), H̃1(I) consists of functions u for which
〈u, u〉H1 <∞, 〈u, u〉H̃1 <∞, resp.
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Sobolev Gradient Descent

Remarks
p By using higher derivatives, spaces Hn and H̃n can be defined in a similar

manner

p Similar definitions are possible without identification of endpoints or over
IR
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History

Sergey L. Sobolev

Sergey L’vovich Sobolev (1908–1989), studied function spaces and differential equations.
(Image: Russian Academy of Sciences, source: Wikipedia)
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Sobolev Gradient Descent

H1 Gradients
Assume an energy functional E is given.

p By partial integration,

〈u, v〉H1 = 〈u, v − λL2v′′〉H0

p Consequently, the H1 gradient v = ∇H1E = δ
δ
H1u

E can be obtained as
solution of the ODE

v − λL2v′′ = G

where G = ∇H0E = δ
δ
H0u

E is the standard gradient

p Solution by convolution on the circle:

∇H1E = (Kλ ∗ ∇H0E)(x) =

L∫
0

Kλ(y − x)∇H0E(y) dy

with kernel

Kλ(x) =
cosh x−L/2√

λL

2
√
λL sinh 1

2
√
λ

, x ∈ [0, L]

periodically extended to IR
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Sobolev Gradient Descent

H̃1 Gradients
p By partial integration,

〈u, v〉H̃1 = 〈u, v̄ − λL2v′′〉H0

p Consequently, the H̃1 gradient v = ∇H̃1E = δ
δ
H̃1u

E can be obtained as
solution of the ODE

Ḡ− λL2v′′ = G

with v̄ = Ḡ, where G is the standard gradient as before

p Solution by convolution on the circle:

∇H̃1E = (K̃λ ∗ ∇H0E)(x) =

L∫
0

K̃λ(y − x)∇H0E(y) dy

with kernel

K̃λ(x) =
1

L

(
1 +

(x/L)2 − x/L+ 1/6

2λ

)
, x ∈ [0, L]

periodically extended to IR
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Sobolev Gradient Descent

Application to Curves
p Consider curve flow ct

p The H0 norm for the curve flow ct penalises motion of curve points
essentially separately

p No penalty for direction changes is involved, even singularities are ignored

p The Sobolev (H1, H̃1) norms for curve flows penalise direction changes,
thereby favouring translational motion of c



1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

M I
A

Sobolev Gradient Descent

Gradient Flows for Curve Length
p Consider a smooth closed curve c : [0, L]→ IR2

p Compute H1 gradient descent for curve length energy

E[c] =

∮
c

ds

p The H0 gradient is conventional curvature motion

∇H0E = −Lκ~n
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Sobolev Gradient Descent

Gradient Flows for Curve Length, cont.
p Using

K′′λ (x) =
1

λL2
(Kλ − δ(x)) , K̃′′λ (x) =

1

λL2

(
1

L
− δ(x)

)
one computes

∇H1E =
1

λL
(c−Kλ ∗ c)

∇H̃1E =
c− c̄
λL

p Gradient flows prevent the generation of singularities and are stable for
gradient descent and even gradient ascent

p The H̃1 gradient descent preserves the shape – it simply rescales the curve
(c̄ is nothing but the centre of gravity of the curve)

p The H1 gradient descent simplifies the curve (note that the convolution
Kλ ∗ c smoothes the curve coordinates)
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Sobolev Gradient Descent

Gradient Flows for Curve Length, cont.

Top left and right: Initial curve. Bottom left: Curve modified by H1 gradient descent
and smoothed curveKλ∗c (schematic). Bottom right: Curve modified by H̃1 gradient
descent and centre point c̄ (schematic).
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