Lecture 5

Lecture 5

@ Linear and Isotropic Nonlinear Diffusion

¢ Morphological Invariance and Curvature-Dependent Motion
® Variational Functionals

¢ Euler-Lagrange Equations and Gradient Descent Diffusion

¢ Processes as Gradient Descents

# Curvature Motion as Gradient Descent
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Diffusion Equations

Linear Diffusion, Motivation
Equilibration of quantity u

¢ Concentrations of substances
¢ Thermal energy (heat flow)

¢ Image processing: grey value




Diffusion Equations

Linear Diffusion

® Let u = u(z,t) be given in each point z of a domain D € R? and for each
t>0

¢ Assume that gradients of u generate a proportional mass/energy transport
(flux)
j=Vu

¢ Flux moves mass/energy from one place to another
Ou = div j

¢ Assume that no flux over the boundary of D takes place (Neumann
boundary condition)

¢ Initial condition: u(z,0) = f(z), where f is input image

¢ Resulting linear diffusion equation

uy = div(Vu) = Au

¢ Removes inhomogeneities efficiently — useful for denoising of images




Diffusion Equations

Linear Diffusion Example

Figure: Original image (top left) smoothed by linear diffusion, ¢t = 2.5, t = 10, t = 40.




Diffusion Equations

Nonlinear Isotropic Diffusion

¢ Assume the flux j is no longer strictly proportional to the gradient but
depends on it via a diffusivity function ¢ : R — R™T

i =e(IVul) Vu
¢ Typically, ¢ is decreasing and positive
¢ Then we have nonlinear isotropic diffusion

ue = div(p Vu)




Diffusion Equations

Isotropic Nonlinear Diffusion Example

Figure: Original image (top left) smoothed by isotropic nonlinear diffusion, ¢ = 2.5,
t =10, t = 40.




Diffusion Equations

Properties of Diffusion Processes
¢ The mass transport u; = div(j) ensures mass conservation

¢ For t — oo, u tends towards a constant (equilibrium)

J f(z,0)dz

lim u(a,t) = 2
S et ="
D

¢ Maximum-minimum principle
inf f(¢,0) < f(x,t) < sup f(£,0)
§eb ¢eD

forallz € D




Curvature-Dependent Motion (1)

Morphological Invariance and Curve Evolutions

¢ Every grey-value image evolution can be represented as level line evolution
using the equivalence

us = B || Vu|| = ¢ = Bl

# For example, for linear diffusion one has

Au
6 = —
IVl

¢ For which image evolutions does morphological invariance hold?

e Morphological invariance means that the evolution of each level line
depends only on the level line itself

e This is the case if and only if 8 is a function of the curvature x
¢ Consequently, one is especially interested in evolutions with 8 = 3(k)

¢ Obviously, this includes dilation and erosion (3 = const) as well as
curvature motion (8 = k)




Curvature-Dependent Motion (2)

Inverse Curvature Flow

¢ Consider the curve evolution
ct = Ecoy
for a strictly convex curve ¢ parametrised by direction angle 1%

¢ Note that ¥ =k where s is arc-length parameter

@ This evolution is related to inverse curvature flow

1

cr = +x N R Ut = :l:l"\?_l ||VUH

¢ In + direction, inverse curvature flow is instable and generates singularities

¢ In — direction, convex curves remain convex and are smoothed into circles




Curvature-Dependent Motion (3)

Inverse Curvature Flow, Example

Figure: Top, left to right: A synthetic test image, after 100, 200, 300, 500 iterations
of inverse Euclidean curvature flow (“+" direction, 7 = 0.02); bottom: same in “—"
direction




Variational Approaches (1)

Variational Problems
Formulation of image processing task as optimisation problem
¢ Givenimage f: D - R, D C R¢

@ Search for processed image u : D — R such that

E(u) ::/F(az,u,uzi)dm

D
is minimised
e E(u) is called functional, often also energy functional

e The integrand F depends on = € D, u and the derivatives of u w.r.t.
all variables z;

e I also depends on f, though we do not represent f as argument of F’
since it is considered fixed

¢ If f and F are sufficiently smooth, E convex, and wu is restricted to a
suitable space of functions, a unique minimising function u exists

¢ Under weaker conditions (e.g. if E is non-convex, but smoothness
conditions apply), there might be multiple local minima




Variational Approaches (2)

Variational Gradient

¢ We want to use steepest descent to find a minimum of E (global
minimum if E is convex, local minimum otherwise)

¢ In classical analysis, the direction of steepest descent is given by the
gradient

¢ Need therefore analog of the gradient for (infinite-dimensional) function
spaces




Variational Approaches (3)

Variational Gradient

¢ Functions f (images, e.g.) form some function space V' (similar to a
manifold but infinite-dimensional)

@ A direction vector in function space is given by a (sufficiently smooth)
function v on D. In each point u € V, these functions form a vector space
T.V (an infinite-dimensional tangent space)

¢ Directional derivative of E in the direction v:

d
B = —FEW"
) P (u™ + ev)

e=0
¢ Given a scalar product ( -, - ) for functions in T,,V, there is one function
g € T,V such that
5UE = <g7 U)
for all admissible functions v
¢ Define 5
—FE(u) :=
su W =g

as variational gradient of E w.r.t. u




Variational Approaches (4)

Variational Gradient Computation

Compute therefore (assuming sufficient smoothness)

E(u" +ev) = /F(az,u* + ev, O, u

D

:/(F(:v,u*,u;z)—i—sng(a: u”, uy,)
D

dzx

u=u* +a'u)

+Zevx18 (z,u” uz,) + O(e )) dz

= E(u” +E</ ™ (z,u” uz)da:—i—/( ) dx

oD

d OF % 2
_z;/vdmi Dur. (z,u ,uzj)dx) +0(e7)
=D




Variational Approaches (5)

Variational Gradient Computation, cont.
Thus we obtain

d * _ ai * o\ d OF k%
d€E(u +€U) E=O_/U (8'& (ZC,’LL aul'i) Z dil)’z auxl (m,u 7u39j)> dZC
D 7
+/()dx
oD

# The integral | integrates normal derivatives over the boundary of D and

oD
is responsible for the boundary conditions

@ It vanishes if only functions u, v with vanishing normal derivatives on the
boundary are considered (Neumann boundary conditions)

¢ We assume in the following that this is the case. Otherwise, the equations
remain valid for inner points of D




Variational Approaches (6)

Variational Gradient

@ Then we can rewrite (if [ ... vanishes) with some g = g(z)
oD

6UE = <U7 g>

@ g is the sought variational gradient of E w.r.t. u

Remarks

1. For the L? scalar product (v, w) := [vwdz one has §,FE = [ gvdz
D D

2. By Cauchy-Schwartz inequality, the unit vector

o 9
(9, 9)

maximises &, F among all v with |[v|| =1 (i.e., vectors on the unit
sphere). Thus, the gradient is the direction of largest directional derivative

3. Clearly, the scalar product ( -, - ) on T,V has the role of a Riemannian
metric on V




Variational Approaches (7)

Variational Gradient Descent

¢ Gradient descent. The steepest descent for w is given by

)
=—g=-—F.
ut g ou
Remarks
1. Equally, us = —Cyg is a steepest descent for u provided C is arbitrary
positive (may depend on ¢, but not on x and u). For example, us = —v*
works, too

2. For the minimiser u*, the variational gradient must vanish. Then one has
the well-known Euler-Lagrange equations




Gradient Descent Examples

Linear Diffusion as Gradient Descent

@ Consider the functional

B(u) = / IVl dz
with the standard L? scalar product

(v,w) = /v(x) cw(z)dx

D

& Then we have
1 2
F(z,u,ug,) = 3 ;umi

OF d OF .
v Z dz; Dus, = —divVu = -Au

¢ Gradient descent therefore
ur = Au

i.e. the linear diffusion equation




Gradient Descent Examples

Isotropic Nonlinear Diffusion as Gradient Descent
¢ Consider the functional

Blu) = %/@(HVuHQ)dx

D

with an increasing smooth function
®: Ry — Ry
and the standard L? scalar product

¢ Then we have

F(z,u,ug,) = %@ (Zui)
d ’ 2
e 2 (o))

— — div (' (||Vul?) V)




Gradient Descent Examples

Isotropic Nonlinear Diffusion as Gradient Descent,
cont.

¢ Gradient descent therefore
up = div (& (|| Vu[? ) Vu)

i.e. isotropic nonlinear diffusion with diffusivity p = &’




Variational Approaches (11)

Metric for Variational Gradient

Consider in more detail the scalar product (-, -) (expressing the metric on the
function space V):

¢ The function space under consideration consists of functions v on D such
that v(z) € Ty(oyR( = R) for each 2 € D

¢ The metric therefore depends on the metric of D and the metric of the
range of values of u. Both can be the standard metric, but also other
metrics!

¢ Typically,
(v,w) = /w(m,u(x))v(m)w(:r) dz

D

with some positive-valued function w

Remark. Changing metrics on the image range R. is essentially a rescaling of
R. This might appear trivial at first glance but can be useful in conjunction
with minimisation of energy functionals (see next slide).

Additional possibilities arise if higher-dimensional manifolds are used as image
range instead of R (examples in later lectures).




Gradient Descent Examples

Modified Metric on Image Range
¢ Consider again the functional

1

Bw) = [ @(I7ul?*)do
D

with ® as before

¢ Assume now that the metric on the range of u is given by
1
dpu == — deu
u

where deu denotes the standard (Euclidean) metric

¢ Then we have on the function space

= L’U"wa x
mw-!mw<>(m




Gradient Descent Examples

Modified Metric on Image Range, cont.
¢ Thus

F(z,u,uz,;) = %q) (Zui)
d OF
9(2) = (u(2))” ( 2 3u>

= —u? div(®' (|| Vul[*) Vu)

This is the gradient in the metric given by dyu, i.e.

OB _ 2 div(@'(|Vul*) V)
Ohu




Gradient Descent Examples

Modified Metric on Image Range, cont.

Transformation to standard (Euclidean) metric:

SE _ dwu OE

Seu  deu ' ohu

= —udiv(®' (|| Vul|*)Vu)

¢ Gradient descent finally

wy = _gi = udiv(®'(| Vu|*) V)

¢ An interesting application for this idea will be demonstrated in a later
lecture




Gradient Descent Examples

Modified Metric on Image Domain

¢ If the metric on the image domain is modified, the change also affects the
functional

¢ Assume we have on D C R? the metric

_ <x%+x§ 0
g 0 x3 + x2

. 2 2
l.e. dweightedaj = (ZE it x2) de

¢ Modified metric therefore

(v,w) = /v(m) w(w)(;v? —|—x§)dx

D




Gradient Descent Examples

Modified Metric on Image Domain, cont.

@ The variational functional of /inear diffusion then becomes

B = [ IVul® ds

D

_ l / ou 2 n ou ; + $2 de
2 86.’E1 8e-’r2 7 +x

D
_ l/ 1 ou ‘ -
= 5 ;(;% n x% aexl eCC2 welghted

D

¢ Gradient:
(0) =~ hu
g 22 + 232 >
gradient descent therefore
1
Ut = u




Curvature Motion as Gradient Descent

Curvature Motion as Gradient Descent

¢ Consider closed curve c in the plane, with variational functional

L(©) = § lex(w)] dp

(the arc-length of ¢)

¢ Consider curve flows c; = v7i with scalar-valued functions v and metric
ds
(v,w) = v(p)w(p)dfp dp = ¢ v(p)w(p) [lep(p)|| dp
¢ Assuming arc-length parametrisation at ¢t = 0, the variation is

ol = —%vnds

c

leading to gradient descent




Curvature Motion as Gradient Descent

Curvature Motion as Gradient Descent

¢ Curvature flow can be considered as gradient descent for the arc-length of
closed level lines

¢ Since there are no closed geodesics in the plane, curvature flow can't stop
before all closed curves have disappeared

@ In other geometries, however, nontrivial steady states may be possible (see
later lectures)




Curvature Motion as Gradient Descent

Different Descriptions of Curvature Motion

¢ Image evolution
e PDE in standard notation

Vu
ue = [|Vu|| div ———
[Vl

e PDE using local gradient/level line directions:
Curvature motion as smoothing along level lines

Ut = Uege
where in each point £ is a unit vector parallel to the local level line
(ie. € L Vu)
well-posed, satisfies maximum—minimum principle for u
¢ Curve evolution of level lines

e Curve evolution PDE

ct = KN

e Gradient descent for curve length of level lines
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