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Diffusion Equations

Linear Diffusion, Motivation
Equilibration of quantity u

p Concentrations of substances

p Thermal energy (heat flow)

p Image processing: grey value
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Diffusion Equations

Linear Diffusion
p Let u = u(x, t) be given in each point x of a domain D ∈ IRd and for each
t ≥ 0

p Assume that gradients of u generate a proportional mass/energy transport
(flux)

j = ∇u

p Flux moves mass/energy from one place to another

∂tu = div j

p Assume that no flux over the boundary of D takes place (Neumann
boundary condition)

p Initial condition: u(x, 0) = f(x), where f is input image

p Resulting linear diffusion equation

ut = div(∇u) = ∆u

p Removes inhomogeneities efficiently – useful for denoising of images
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Diffusion Equations

Linear Diffusion Example

Figure: Original image (top left) smoothed by linear diffusion, t = 2.5, t = 10, t = 40.
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Diffusion Equations

Nonlinear Isotropic Diffusion
p Assume the flux j is no longer strictly proportional to the gradient but

depends on it via a diffusivity function ϕ : IR+
0 → IR+

j = ϕ(‖∇u‖)∇u

p Typically, ϕ is decreasing and positive

p Then we have nonlinear isotropic diffusion

ut = div(ϕ∇u)
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Diffusion Equations

Isotropic Nonlinear Diffusion Example

Figure: Original image (top left) smoothed by isotropic nonlinear diffusion, t = 2.5,
t = 10, t = 40.
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Diffusion Equations

Properties of Diffusion Processes
p The mass transport ut = div(j) ensures mass conservation

p For t→∞, u tends towards a constant (equilibrium)

lim
t→∞

u(x, t) =

∫
D

f(x, 0) dx∫
D

dx

p Maximum–minimum principle

inf
ξ∈D

f(ξ, 0) ≤ f(x, t) ≤ sup
ξ∈D

f(ξ, 0)

for all x ∈ D
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Curvature-Dependent Motion (1)

Morphological Invariance and Curve Evolutions
p Every grey-value image evolution can be represented as level line evolution

using the equivalence

ut = β ‖∇u‖ ⇔ ct = β~n

p For example, for linear diffusion one has

β =
∆u

‖∇u‖

p For which image evolutions does morphological invariance hold?

a Morphological invariance means that the evolution of each level line
depends only on the level line itself

a This is the case if and only if β is a function of the curvature κ

p Consequently, one is especially interested in evolutions with β = β(κ)

p Obviously, this includes dilation and erosion (β = const) as well as
curvature motion (β = κ)
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Curvature-Dependent Motion (2)

Inverse Curvature Flow
p Consider the curve evolution

ct = ±cϑϑ

p

p

for a strictly convex curve c parametrised by direction angle ϑ 

Note that ϑs = κ w here s i s arc-length parameter

This evolution is related to inverse curvature flow

ct = ±κ−1~n , ut = ±κ−1 ‖∇u‖

p In + direction, inverse curvature flow is instable and generates singularities

p In − direction, convex curves remain convex and are smoothed into circles
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Curvature-Dependent Motion (3)

Inverse Curvature Flow, Example

Figure: Top, left to right: A synthetic test image, after 100, 200, 300, 500 iterations
of inverse Euclidean curvature flow (“+” direction, τ = 0.02); bottom: same in “−”
direction
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Variational Approaches (1)

Variational Problems
Formulation of image processing task as optimisation problem

p Given image f : D → IR, D ⊂ IRd

p Search for processed image u : D → IR such that

E(u) :=

∫
D

F (x, u, uxi) dx

is minimised

a E(u) is called functional, often also energy functional

a The integrand F depends on x ∈ D, u and the derivatives of u w.r.t.
all variables xi

a F also depends on f , though we do not represent f as argument of F
since it is considered fixed

p If f and F are sufficiently smooth, E convex, and u is restricted to a
suitable space of functions, a unique minimising function u exists

p Under weaker conditions (e.g. if E is non-convex, but smoothness
conditions apply), there might be multiple local minima

11
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Variational Approaches (2)

Variational Gradient
p We want to use steepest descent to find a minimum of E (global

minimum if E is convex, local minimum otherwise)

p In classical analysis, the direction of steepest descent is given by the
gradient

p Need therefore analog of the gradient for (infinite-dimensional) function
spaces
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Variational Approaches (3)

Variational Gradient
p Functions f (images, e.g.) form some function space V (similar to a

manifold but infinite-dimensional)

p A direction vector in function space is given by a (sufficiently smooth)
function v on D. In each point u ∈ V , these functions form a vector space
TuV (an infinite-dimensional tangent space)

p Directional derivative of E in the direction v:

δvE :=
d

dε
E(u∗ + εv)

∣∣∣∣
ε=0

p Given a scalar product 〈 · , · 〉 for functions in TuV , there is one function
g ∈ TuV such that

δvE = 〈g, v〉

for all admissible functions v

p Define
δ

δu
E(u) := g

as variational gradient of E w.r.t. u
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Variational Approaches (4)

Variational Gradient Computation
Compute therefore (assuming sufficient smoothness)

E(u∗ + εv) =

∫
D

F (x, u∗ + εv, ∂xiu
∣∣
u=u∗+εv

) dx

=

∫
D

(
F (x, u∗, u∗xi) + εv

∂F

∂u
(x, u∗, u∗xi)

+

d∑
i=1

εvxi
∂F

∂uxi
(x, u∗, u∗xj ) +O(ε2)

)
dx

= E(u∗) + ε

(∫
D

v
∂F

∂u
(x, u∗, u∗xi) dx+

∫
∂D

(. . .) dx

−
d∑
i=1

∫
D

v
d

dxi

∂F

∂uxi
(x, u∗, u∗xj ) dx

)
+O(ε2)
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Variational Approaches (5)

Variational Gradient Computation, cont.
Thus we obtain

d

dε
E(u∗ + εv)

∣∣∣∣
ε=0

=

∫
D

v

(
∂F

∂u
(x, u∗, u∗xi)−

∑
i

d

dxi

∂F

∂uxi
(x, u∗, u∗xj )

)
dx

+

∫
∂D

(. . .) dx

p The integral
∫
∂D

integrates normal derivatives over the boundary of D and

is responsible for the boundary conditions

p It vanishes if only functions u, v with vanishing normal derivatives on the
boundary are considered (Neumann boundary conditions)

p We assume in the following that this is the case. Otherwise, the equations
remain valid for inner points of D

15



1 2
3 4
5 6
7 8
9 10
11 12
13 14
15
17 18
19 20
21 22
23 24
25 26
27 28
29 30

M I
A

Variational Approaches (6)

Variational Gradient
p Then we can rewrite (if

∫
∂D

. . . vanishes) with some g = g(x)

δvE = 〈v, g〉

p g is the sought variational gradient of E w.r.t. u

Remarks
1. For the L2 scalar product 〈v, w〉 :=

∫
D

vw dx one has δvE =
∫
D

gv dx

2. By Cauchy-Schwartz inequality, the unit vector

v∗ =
g√
〈g, g〉

maximises δvE among all v with ‖v‖ = 1 (i.e., vectors on the unit
sphere). Thus, the gradient is the direction of largest directional derivative

3. Clearly, the scalar product 〈 · , · 〉 on TuV has the role of a Riemannian
metric on V
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Variational Approaches (7)

Variational Gradient Descent
p Gradient descent. The steepest descent for u is given by

ut = −g = − δ

δu
E .

Remarks
1. Equally, ut = −Cg is a steepest descent for u provided C is arbitrary

positive (may depend on t, but not on x and u). For example, ut = −v∗
works, too

2. For the minimiser u∗, the variational gradient must vanish. Then one has
the well-known Euler–Lagrange equations
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Gradient Descent Examples

Linear Diffusion as Gradient Descent
p Consider the functional

E(u) =
1

2

∫
D

‖∇u‖2 dx

with the standard L2 scalar product

〈v, w〉 =

∫
D

v(x) · w(x) dx

p Then we have

F (x, u, uxi) =
1

2

∑
i

u2
xi

g(x) =
∂F

∂u
−
∑
i

d

dxi

∂F

∂uxi
= −div∇u = −∆u

p Gradient descent therefore
ut = ∆u

i.e. the linear diffusion equation

18
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Gradient Descent Examples

Isotropic Nonlinear Diffusion as Gradient Descent
p Consider the functional

E(u) =
1

2

∫
D

Φ
(
‖∇u‖2

)
dx

with an increasing smooth function

Φ : IR+
0 → IR+

0

and the standard L2 scalar product

p Then we have

g(x) = −
∑
i

d

dxi
Φ′

∑
j

u2
xj

)
uxi

)
= − div

(
Φ′
(
‖∇u‖2

)
∇u
)

19
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Gradient Descent Examples

Isotropic Nonlinear Diffusion as Gradient Descent,
cont.
p Gradient descent therefore

ut = div
(
Φ′
(
‖∇u‖2

)
∇u
)

i.e. isotropic nonlinear diffusion with diffusivity ϕ ≡ Φ′

20
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Variational Approaches (11)

Metric for Variational Gradient
Consider in more detail the scalar product 〈·, ·〉 (expressing the metric on the
function space V ):

p The function space under consideration consists of functions v on D such
that v(x) ∈ Tu(x)IR( ≡ IR) for each x ∈ D

p The metric therefore depends on the metric of D and the metric of the
range of values of u. Both can be the standard metric, but also other
metrics!

p Typically,

〈v, w〉 =

∫
D

ω(x, u(x))v(x)w(x) dx

with some positive-valued function ω

Remark. Changing metrics on the image range IR is essentially a rescaling of
IR. This might appear trivial at first glance but can be useful in conjunction
with minimisation of energy functionals (see next slide).
Additional possibilities arise if higher-dimensional manifolds are used as image
range instead of IR (examples in later lectures).

21
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Gradient Descent Examples

Modified Metric on Image Range
p Consider again the functional

E(u) =
1

2

∫
D

Φ(‖∇u‖2) dx

with Φ as before

p Assume now that the metric on the range of u is given by

dhu :=
1

u
deu

where deu denotes the standard (Euclidean) metric

p Then we have on the function space

〈v, w〉 =

∫
D

1

u(x)2
v(x)w(x) dx

22
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Gradient Descent Examples

Modified Metric on Image Range, cont.
p Thus

g(x) = (u(x))2 ·

(
∂F

∂u
−
∑
i

d

dxi

∂F

∂uxi

)
= −u2 div(Φ′(‖∇u‖2)∇u)

This is the gradient in the metric given by dhu, i.e.

δE

δhu
= −u2 div(Φ′(‖∇u‖2)∇u)

23
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Gradient Descent Examples

Modified Metric on Image Range, cont.

p Gradient descent finally

ut = − δE
δeu

= u div(Φ′(‖∇u‖2)∇u)

p An interesting application for this idea will be demonstrated in a later
lecture

24

Transformation to standard (Euclidean) metric:

δE

δeu
=

dhu

deu
· δE
δhu

= −u div(Φ′(‖∇u‖2)∇u)



1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24

26
27 28
29 30

M I
A

Gradient Descent Examples

Modified Metric on Image Domain
p If the metric on the image domain is modified, the change also affects the

functional

p Assume we have on D ⊂ IR2 the metric

g =
x21 + x22 0

0 x21 + x22

)
2
1

2
2

p

i.e. dweightedx
  = (x + x ) dex

 

Modified metric therefore

〈v, w〉 =

∫
D

v(x) · w(x)(x21 + x22) dx
25
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Gradient Descent Examples

Modified Metric on Image Domain, cont.
p The variational functional of linear diffusion then becomes

E(u) =
1

2

∫
D

‖∇u‖2 dx

=
1

2

∫
D

((
∂u

∂ex1

)2

+

(
∂u

∂ex2

)2
)
x21 + x22
x21 + x22

dex

=
1

2

∫
D

1

x21 + x22

((
∂u

∂ex1

)2

+

(
∂u

∂ex2

)2
)

dweightedx

p Gradient:
g(x) = − 1

x21 + x22
∆u ,

gradient descent therefore

ut =
1

x21 + x22
∆u
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Curvature Motion as Gradient Descent

Curvature Motion as Gradient Descent
p Consider closed curve c in the plane, with variational functional

L(c) =

∮
c

‖cp(p)‖ dp

(the arc-length of c)

p Consider curve flows ct = v~n with scalar-valued functions v and metric

〈v, w〉 =

∮
c

v(p)w(p)
ds

dp
dp =

∮
c

v(p)w(p) ‖cp(p)‖ dp

p Assuming arc-length parametrisation at t = 0, the variation is

δv~nL = −
∮
c

vκds

leading to gradient descent
ct = κ~n
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Curvature Motion as Gradient Descent

Curvature Motion as Gradient Descent
p Curvature flow can be considered as gradient descent for the arc-length of

closed level lines

p Since there are no closed geodesics in the plane, curvature flow can’t stop
before all closed curves have disappeared

p In other geometries, however, nontrivial steady states may be possible (see
later lectures)

28



1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

30

M I
A

Curvature Motion as Gradient Descent

Different Descriptions of Curvature Motion
p Image evolution

a PDE in standard notation

ut = ‖∇u‖ div
∇u
‖∇u‖

a PDE using local gradient/level line directions:
Curvature motion as smoothing along level lines

ut = uξξ

where in each point ξ is a unit vector parallel to the local level line
(i.e. ξ ⊥ ∇u)

well-posed, satisfies maximum–minimum principle for u

p Curve evolution of level lines

a Curve evolution PDE
ct = κ~n

a Gradient descent for curve length of level lines

29



1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

M I
A

References

Diffusion in image processing
p T. Iijima: Theory of pattern recognition. Electronics and Communications in

Japan, 123–134, 1963 (Preceding papers in Japanese 1959, 1962)

p P. Perona, J. Malik: Scale space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Analysis and Machine Intelligence 12:629–639, 1990

p J. Weickert: A review of nonlinear diffusion filtering. In B. ter Haar Romeny,
L. Florack, J. Koenderink, M. Viergever, eds., Scale Space Theory in Computer
Vision, Lecture Notes in Computer Science, vol. 1252, 3–28. Springer, Berlin
1997

Variational formulations, gradient descents
p R. Kimmel: Numerical Geometry of Images. Springer, Berlin 2004

p G. Sapiro: Geometric Partial Differential Equations and Image Analysis.
Cambridge University Press 2001

29 30


	Supplement: Curves
	Morphological Operators on Level Sets
	Curvature-Dependent Motion
	Variational Approaches



