
Lecture 4 M I
A

Lecture 4
� Review of Level Sets

� Level Set Evolutions in the Plane

� Morphological Operations with Level Sets

� Algorithmic Aspects

� Curvature Motion on Level Sets
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Level Sets in the Plane (1) M I
A

Level Sets
� Consider smooth function u : Ω→ R,Ω ⊆ R2 open

� Choose some number z ∈ R

� The set
Lz(u) := {(x, y) ∈ Ω : u(x, y) = z}

is called a level set of u

� Connected components of Lz(u) are isolated points or curves

Figure: Four level sets of a function in the plane (schematic).
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Level Sets in the Plane (2) M I
A

Parametrised Level Lines
� Consider u as before

� Consider a curve c which is a connected component of a level set Lz(u)

� Orientation convention. Let c be parametrised such that the smaller values of u
lie on the left-hand side of c

� Equivalent:

• The normal vector −→n points to the smaller values of u

• The normal vector −→n and the gradient of u point in opposite directions

Figure: Orientation convention for level lines.
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Level Sets in the Plane (3) M I
A

Level Sets Curve Equations

Relation of arc-length parametrisation of a level line and the partial derivatives of u :

� Let c(s) = (x(s), y(s))>, u(c(s)) = z, with ||cs(s)|| = 1. Then

||cs(s)|| = x2s(s) + y2s(s) = 1,

du(c(s))

ds
= 〈∇u, cs〉 = uxxs + uyys = 0,

and

xs(s) =
−uy√
u2x + u2y

, ys(s) =
ux√
u2x + u2y

,

because of the orientation convention.

� By integration, the curve equations can be obtained:

x(s) = x(0) +

∫ s

0

xs(σ) dσ y(s) = y(0) +

∫ s

0

ys(σ) dσ

where (x0, y0) is a starting point belonging to the level set
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Level Sets in the Plane (4) M I
A

Signed Distance Function
� Let a sufficiently smooth closed regular curve c be given

� c separates the plane into an inner and an outer region

� To each point (x, y) in the plane, assign as u(x, y)

• the distance of (x, y) to c if (x, y) is in the outer region

• (-1) times the distance of (x, y) to c if (x, y) is in the inner region

• 0 if (x, y) lies on c

� Then u is continuous, and u is differentiable within some band enclosing c

� u is called signed distance function of c

� c is the zero-level set L0(u)

Remark: The construction is equally possible if a set of closed regular curves is given,
with some compatibility condition on orientations, and allows then to construct a
function u for which the union of the curves is the zero-level set
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Level Sets in the Plane (5) M I
A

Curvature of a Level Line
� Consider function u and level line c in arc-length parametrisation

� Tangent vector:
−→
t (s) = (xs, ys)

T

Normal vector: −→n (s) =
−→
t (s)⊥ = (−ys, xs)T

� Curvature definition (xss, yss)
T = κ−→n implies

κ = −xss
ys

=
yss
xs
.

� Evaluation gives

κ(c(s)) = −
u2yuxx − 2uxuyuxy + u2xuyy

(u2x + u2y)3/2

(derivation: next slide)
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Level Sets in the Plane (6) M I
A

Curvature of a Level Line, Cont.
Sketch of the derivation:
Since ∇u ⊥ cs we get that xs = − uy

||∇u||, ys = ux
||∇u||. Thus

xss(c(s)) = 〈∇xs(c(s)), cs(s)〉

=− uy
||∇u||

·
uxy(u2x + u2y)− uy(uxuxx + uyuxy)

||∇u||3

+
ux
||∇u||

·
uyy(u2x + u2y)− uy(uxuxy + uyuyy)

||∇u||3

=
1

||∇u||4
(−u2xuyuxy − u3yuxy + uxu

2
yuxx + u3yuxy

+u3xuyy + uxu
2
yuyy − u2xuyuxy − uxu2yuyy)

=
ux
||∇u||4

(u2yuxx − 2uxuyuxy + u2xuyy)

Finally, since css = κ−→n ,

κ =
xss
−ys

= −
ux(u2yuxx − 2uxuyuxy + u2xuyy)

||∇u||4
· ||∇u||
ux
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Supplement: Curvature M I
A

Supplement: Curvature in arbitrary parametrisation
Result. For a curve c(p) = (x(p), y(p)) we have that

k(p) =
xpypp − ypxpp
||x2p + y2p||3/2

Sketch of proof: Assume c̃ = c ◦ φ is parametrised by arc-length, then

φ′(s) = ||cp(φ(s))||−1, φ′′(s) = ||cp(φ(s))||−4 < cp(φ(s)), cpp(φ(s)) > .

It follows that

c̃p = cp(φ(s))||cp(φ(s))||−1

c̃pp(p) =
cpp(φ(s))

||cp(φ(s))||2
− < cpp(φ(s)), cp(φ(s)) >

||cp(φ(s))||4
cp(φ(s)).

Evaluating κ(s)2 = 〈c̃pp(s), c̃pp(s)〉 the result follows.
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Level Set Evolutions in the Plane (1) M I
A

Level Set Evolutions
� Consider curve evolution c(p, t) : I × [0, T )→ R2 of closed curve

� Let
−→
t tangent vector, −→n normal vector of c

� Consider smooth image evolution u(x, y, t) : Ω× [0, T )→ R

� Assume c(·, t) is a level set (component) of Lz(u(·, ·, t)) for each t, respecting
our orientation convention

� Then for any fixed t (slide 4)

xs(s, t) =
−uy√
u2x + u2y

, ys(s) =
ux√
u2x + u2y

,

thus
−→n = − ∇u

||∇u||
.

� Then one speaks of a level set evolution
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Level Set Evolutions in the Plane (2) M I
A

Correspondence between Level Line and Image
Evolutions
Result. The following relation between image evolution and level line evolution holds:

∂c

∂t
= β(c(p, t), t)−→n (p, t) ⇐⇒ ∂u

∂t
= β(x, y, t) · ||∇u|| .

Sketch of proof: For the level line Lz(u(·, t)) we have u(c(p, t), t) = z and time
derivative gives:

uxxt + uyyt + ut = 〈∇u, ct〉+ ut = 0

Thus, the scalar product of ∇u and the curve evolution gives〈
∇u, ∂c

∂t

〉
= −ut = β(c(p, t), t) 〈∇u,−→n (p, t)〉 .

Equivalently
0 = β 〈∇u,−→n 〉+ ut = β · ||∇u|| − ∂tu.
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Level Set Evolutions in the Plane (3) M I
A

Special Case: Signed Distance Functions
� Assume u is the signed distance function for c at time t (*)

� Then ||∇u|| = 1

� Thus
∂c

∂t
= β(c(p, t), t)−→n (p, t) ⇐⇒ ∂u

∂t
= β(x, y, t) .

� Caveat: The property (*) is not preserved by the evolution

� Consequence: In applications, the signed distance function needs to be restored
in each time step

Remark: Arc-Length Parametrisation
As with most curve flows, arc-length parametrisation is not preserved over time.
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Morphological Operators on Level Sets M I
A

Dilation and Erosion Flows
� Consider erosion

ct = −→n

� Assume c is level line of image u

� Evolution of u: dilation PDE:

ut = ||∇u|| .

� Similarly, one obtains the erosion PDE

ut = −||∇u|| .
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Morphological Operators on Level Sets M I
A

Application to a Shape
� Assume c is a curve representing a shape

� Make c into zero level set L0(u) of u by choosing u as signed distance function
of c

� Apply evolution equation
ut = ±||∇u||

to u

� Obtain evolved curve as zero level set of u(t)
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Morphological Operators on Level Sets M I
A

Advantages of the Level Set Formulation for Dilation
and Erosion

� Direct implementation of curve evolution is difficult:

• Requires curve representation, typically by sampled points

• Sampled points may be equally distributed at the begin, becomer thinner or
denser in different regions during evolution need for resampling procedure

• Topology changes due to singularities and self-intersections need to be
handled specially

Figure: Problems in direct implementations of curve evolutions. Left: Change in
sampling density requires re-sampling. Right: Topology changes may occur.
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Morphological Operators on Level Sets M I
A

Advantages of the Level Set Formulation for Dilation
and Erosion, cont.

� Level set formulation removes these problems

• No explicit curve representation necessary, thus also no resampling

• Topology changes are accounted for automatically
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Morphological Operators on Level Sets M I
A

Algorithmic Aspects
In the simplest case, an explicit time-stepping scheme is used to compute the
evolution

ut = ±||∇u|| = ±
√
u2x + u2y

� Discretise ut by forward differences

[ut]
k
i,j =

1

τ
(uk+1

i,j − u
k
i,j)

in pixel (i, j) and time step k, where τ is the time step size
(Notice: We use [·] to denote approximation)

� Discretise ux and uy on the right-hand side by central differences

[ux]ki,j =
1

2hx
(ui+1,j − ui−1,j)

[uy]ki,j =
1

2hy
(ui,j+1 − ui,j−1)

with spatial step sizes hx, hy
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Morphological Operators on Level Sets M I
A

Algorithmic Aspects, Cont.
Compute values of new time step:

uk+1
i,j = uki,j ± τ

√
([ux]ki,j)

2 + ([uy]ki,j)
2

However, in the case of dilation and erosion, this discretisation tends to be instable.
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Morphological Operators on Level Sets M I
A

Algorithmic Aspects, Cont.
To overcome numeric problems, an Upwind Scheme can be used.

� Discretise ut as before

� Discretise ux and uy by one-sided differences dependent on the direction of the
gradient. For dilation:

• If ux > 0, then use the forward difference approximation

[ux]ki,j =
1

hx
(uki+1,j − uki,j)

• If ux < 0, then use the forward difference approximation

[ux]ki,j =
1

hx
(uki,j − uki−1,j)

• Analogously for uy

� The explicit step to compute uk+1
i,j is as before, except that the new

approximations for ux, uy are used.
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Morphological Operators on Level Sets M I
A

Algorithmic Aspects, Cont.
Remarks.

� The upwind scheme is only useful for specific curve evolution processes (of
hyperbolic type); dilation and erosion are of this type, while curvature flow is not
of this type.

� The statements above describe just the idea. To make it precise, it is necessary
to cover the case when forward and backward difference have opposite signs. For
dilation this can be done, e.g., by

[|ux|]ki,j =
1

hx
(max{uki+1,j, u

k
i−1,j, u

k
i,j} − uki,j)

� For erosion, the roles of the two approximations are swapped.
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Morphological Operators on Level Sets M I
A

Application to Images
� Up to now, only the zero-level set of u was meaningful so we have used the

PDEs only to evolve the zero-level set

� In fact, the PDEs evolve all level sets simultaneously

� Can therefore evolve entire grey-level images

� Then all level sets are dilated/eroded simultaneously

� Inclusion of level sets is preserved

Figure: Left to right: Synthetic image, images after 10 and 40 iterations of dilation
ut = ||∇u||, after 10 iterations of erosion ut = −||∇u||; in all cases τ = 0.25
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Morphological Operators on Level Sets M I
A

Application to Images, cont.

Figure: Left to right: Original MR image, images after 1, 10, 40 iterations at
τ = 0.25 of dilation

Figure: Left to right: Original MR image, images after 1, 10, 40 iterations at
τ = 0.25 of erosion
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Curvature Motion on Level Sets M I
A

Curvature Motion
� Curve evolution

ct = κ−→n
corresponds to image evolution

ut = κ · ||∇u|| = −
u2xuyy − 2uxuyuxy + u2yuxx

u2x + u2y

Figure: Left to right: Original MR image, images at evolution times 8, 80 and 800
of curvature motion β = κ(τ = 0.08)

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23

http://www.mia.uni-saarland.de


Curvature Motion on Level Sets M I
A

Remarks on Curvature Motion
� Dilation, erosion and curvature motion of grey-value images share a remarkable

property:

Morphological Invariance. Dilation, erosion and curvature motion of grey-value
images are invariant under arbitrary strictly monotonic rescalings of grey-values.
The evolution of each level set does not depend on that of the other level sets.

� We will see a larger class of image filters sharing this property

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23

http://www.mia.uni-saarland.de















	First page
	Lecture 4
	Level Sets in the Plane (1)
	Level Sets in the Plane (2)
	Level Sets in the Plane (3)
	Level Sets in the Plane (4)
	Level Sets in the Plane (5)
	Level Sets in the Plane (6)
	Supplement: Curvature
	Level Set Evolutions in the Plane (1)
	Level Set Evolutions in the Plane (2)
	Level Set Evolutions in the Plane (3)
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Morphological Operators on Level Sets
	Curvature Motion on Level Sets
	Curvature Motion on Level Sets
	Last page

