
Lecture 3 M I
A

Lecture 3: Curve Evolutions in the Plane
� Curve Evolutions

� Morphological Operations

� Curvature Motion

� Level Sets in the Plane
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Curvature of Planar Curves M I
A

Curvature
� Let

−→
t (s),−→n (s) be unit vectors tangential and normal to c at c(s), resp., and

(
−→
t ,−→n ) positively oriented

� Then
cs(s) =

−→
t (s) css(s) = κ(s)−→n (s)

with a uniquely determined function κ(s)

� κ(s) is called curvature of c at c(s)

Figure: Curve c with tangent and normal vectors, first and second derivatives at
point x = c(s).
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Curve Evolutions in the Plane (1) M I
A

Curve Evolutions in Rd

� Consider curves parametrised by interval I ⊆ R
� Introduce additional time parameter t ∈ [0, T ], T ≥ 0

� Curve evolution: differentiable function c : I × [0, T ]→ Rd

• For each fixed t, c(·, t) is a curve

• Initial curve: c0(p) = c(p, 0)

• For fixed p, c(p, ·) is a trajectory of a curve point

• Time derivative ct is called curve flow

Figure: Curve evolution, t1 < t2 < t3 < t4
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Curve Evolutions in the Plane (2) M I
A

Decomposition of Planar Flows
Consider a curve evolution c : I × [0, T ]→ R2.

� Write time evolution of a curve point in terms of tangential and normal vectors

∂c(p, t)

∂t
= α(p, t)

−→
t (p, t) + β(p, t)−→n (p, t),

c(p, 0) = c0(p)

Figure: Decomposition of curve flow into tangential and normal components
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Curve Evolutions in the Plane (3) M I
A

Role of the Normal Flow
� Curve evolution c in R2

� Assume that the normal velocity β(p, t) = β̃(x, t) depends only on x = c(p, t)
and t

� Then the curve evolution c̃ given by

∂c̃(p, t)

∂t
= β(c̃(p, t), t)−→n (c̃, t)

describes the same family of curves, i.e. c̃(·, t) is a reparametrisation of c(·, t) for
each t

� Particularly: A flow ct = α
−→
t does not change the shape of a closed curve c.

The normal flow is what governs the shape evolution
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Continuous Morphological Operations (1) M I
A

Dilation of Curves
� Closed simple regular curve c with

∮
c
κ(s)ds = 2π (rotation number 1)

� Evolution
ct = −−→n (c, t) (i.e.β = −1)

moves all curve points at equal velocity in global outward direction

� If the initial curve (t = 0) has a lower bound −K < 0 for the curvature, this
yields a differentiable curve evolution for t ∈ [0, 1

K [. For larger t, singularities
(e.g. cusps) may occur. Self-intersections may even occur earlier!

� If the closed curve is considered as object shape, then this process describes a
dilation of this shape, uniformly enlarging the shape

� Problematic singularities: to continue the curve evolution, one might have to
consider segments of the curve, even admit changes of topology (e.g. splitting
into several connected components). Later we will discuss alternative
descriptions that allow an easier handling of these phenomena.
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Continuous Morphological Operations (2) M I
A

Dilation of Curves

Dilation. Black: original curve, green: three time steps of curve evolution

Dilation of a shape. Left to right: Original shape and two steps of dilation
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Continuous Morphological Operations (3) M I
A

Erosion of Curves
� Consider closed curve as before

� The evolution
ct = −→n (c, t) (i.e. β = +1)

moves all curve points in global inward direction

� If K > 0 is upper bound for the curvature at t = 0, a differentiable curve
evolution for t ∈ [0, 1

K [ results

� Process describes erosion of object shapes, which chips away uniformly from the
shape

� Problems with singularities similar as for dilation
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Continuous Morphological Operations (4) M I
A

Erosion. Black: original curve, red: three time steps of curve evolution

Erosion of a shape. Left to right: Original shape and two steps of erosion
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Curvature Flow (1) M I
A

Curvature Flow
� Consider a curve in R2 with continuous curvature

� Curvature flow
ct = κ(p, t)−→n (c, t)

moves curve in local inward direction at velocity given by the curvature

� Curvature flow is a shape-simplifying process

� Problems caused by singularities

� Other names: curvature motion, curve shortening flow, mean curvature
flow/motion, geometric heat flow, geometric diffusion. Reasons for some of these
names will become clear in later lectures
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Curvature Flow (2) M I
A

Curvature flow. Black: original curve, blue: three evolved curves at progressive times.

Curvature motion of the contour of a shape. Left to right: Original shape and
processed version.
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Curvature Flow (3) M I
A

Properties of Curvature Flow
� circles remain circles

� connected closed curves remain connected

� The total absolute curvature
∮
c
|κ|ds of the regular curve c decreases

monotonically under curvature motion.

• it is 2π for convex curves

• measures how far the curve is from being convex

� connected closed curves become convex after some time

� convex curves shrink to points in finite time

� curvature motion preserves the inclusion of curves

� The numbers of local maxima of κ and inflection points of c (where κ changes
sign) decrease monotonically under curvature motion.
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Curvature Flow (4) M I
A

Properties of Curvature Flow
� The length L(c) of a closed regular curve c decreases monotonically under

curvature motion,
d

dt
L(c) = −

∫
c

κ2 ds

� The area A(c) enclosed by a simple closed curve c decreases monotonically under
curvature motion,

d

dt
A(c) = −2π
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Level Sets in the Plane (1) M I
A

Level Sets
� consider smooth function u : Ω→ R,Ω ⊆ R2 open

� choose some value z ∈ R

� The set
Lz(u) := {(x, y) ∈ Ω : u(x, y) = z}

is called a level set of u.

� connected components of Lz(u) are isolated points or curves

Figure: Four level sets of a function in the plane (schematic).
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Level Sets in the Plane (2) M I
A

Figure: Level sets of a function over R2. In areas displayed in grey, function values
are larger than z, i.e., the boundary of the grey areas constitutes the level set as
defined here. Image: O. Alexandrov, from Wikipedia

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

http://www.mia.uni-saarland.de


Level Sets in the Plane (3) M I
A

Parametrised Level Lines
� consider u as before

� consider a curve c which is a connected component of a level set Lz(u)

� orientation convention: c is parametrised such that the smaller values of u lie on
the left-hand side of c

� equivalent:

• The normal vector −→n points to the smaller values of u.

• The normal vector −→n and the gradient of u point in opposite directions.

Figure: Orientation convention for level lines.
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Level Sets in the Plane (4) M I
A

Derivation of Curve Equations
� Level line in arc-length parametrisation:

c(s) = (x(s), y(s))>, u(c(s)) = z, ||cs(s)|| = 1.

� This implies
||cs(s)|| = x2s(s) + y2s(s) = 1,

du(c(s))

ds
= 〈∇u, cs〉 = uxxs + uyys = 0,

xs(s) =
−uy√
u2x + u2y

ys(s) =
ux√
u2x + u2y

� By integration, the curve equations can be obtained:

x(s) = x(0) +

∫ s

0

xs(σ) dσ y(s) = y(0) +

∫ s

0

ys(σ) dσ

where (x0, y0) is a starting point belonging to the level set
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Level Sets in the Plane (5) M I
A

Signed Distance Function
� Let a sufficiently smooth closed regular curve c be given

� c separates the plane into an inner and an outer region

� To each point (x, y) in the plane, assign as u(x, y)

• the distance of (x, y) to c if (x, y) is in the outer region

• (-1) times the distance of (x, y) to c if (x, y) is in the inner region

• 0 if (x, y) lies on c

� Then u is continuous, and u is differentiable within some band enclosing c

� u is called signed distance function of c

� c is the zero-level set L0(u)

Remark: The construction is equally possible if a set of closed regular curves is given,
with some compatibility condition on orientations, and allows then to construct a
function u for which the union of the curves is the zero-level set
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Level Sets in the Plane (6) M I
A

Curvature of a Level Line
� Consider function u and level line c in arc-length parametrisation

� tangent vector:
−→
t (s) = (xs, ys)

>

normal vector: −→n (s) =
−→
t (s)⊥ = (−ys, xs)>

� Curvature definition (xss, yss)
> = κ−→n implies

κ = −xss
ys

=
yss
xs
.

� Evaluation gives

κ(c(s)) =
u2yuxx − uxuyuxy + u2xuyy

(u2x + u2y)2/3
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Level Set Evolutions in the Plane (1) M I
A

Level Set Evolutions
� Consider curve evolution c(p, t) : S1 × [0, T )→ R2 of closed curve

� Let
−→
t tangent vector, −→n normal vector of c

� Consider smooth image evolution u(x, y, t) : Ω× [0, T )→ R

� Assume c(·, t) is a level set (component) of Lz(u(·, ·, t)) for each t, respecting
our orientation convention

� Then
−→n = − ∇u

||∇u||
.

� Then one speaks of a level set evolution
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Level Set Evolutions in the Plane (2) M I
A

Correspondence between Level Line and Image
Evolutions

� Characterisation of level line Lz(u(·, t)) at time t :

u(c(p, t), t) = z for all p

� Time derivative:

uxxt + uyyt + ut =0

〈∇u, ct〉+ ut =0
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Level Set Evolutions in the Plane (3) M I
A

Correspondence between Level Line and Image
Evolutions, cont.

� Curve evolution
∂c

∂t
= β(c(p, t), t)−→n (p, t)

equivalent to

0 =β 〈∇u,−→n 〉+ ut

=− β

||∇u||
〈∇u,∇u〉+ ut

=− β · ||∇u||+ ut

and thus
∂u

∂t
= β · ||∇u|| .

� Result. Relation between image evolution and level line evolution:

∂c

∂t
= β(c(p, t), t)−→n (p, t) ⇐⇒ ∂u

∂t
= β(x, y, t) · ||∇u|| .
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Level Set Evolutions in the Plane (4) M I
A

Correspondence between Level Line and Image
Evolutions, cont.

Figure: The relation between level line and image evolution.
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Level Set Evolutions in the Plane (5) M I
A

Special Case: Signed Distance Functions
� Assume u is signed distance function for c at time t (*)

� Then ||∇u|| = 1

� Thus
∂c

∂t
= β(c(p, t), t)−→n (p, t) ⇐⇒ ∂u

∂t
= β(x, y, t) .

� Caveat: The property (*) is not preserved by the evolution

� Consequence: In applications, the signed distance function needs to be restored
in each time step

Remark: Arc-Length Parametrisation
As with most curve flows, arc-length parametrisation is not preserved over time.
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