
Lecture 2 M I
A

Lecture 2
� Manifolds

� Curves in Rd

� Arc-Length

� Reparametrisation

� Curves in the Plane, Curvature

� Arc-Length with a Riemmanian Metric
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Manifolds (1) M I
A

Maps Between Manifolds
� consider manifolds M and N, and a mapping F :M → N.

� F is a differential mapping between M and N if it is a differentiable function
when restricted to charts

� If φ is a chart for M and ψ is a chart for N, then φ−1 ◦ F ◦ ψ is differentiable.

� F induces a linear transformation between tangent spaces
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Manifolds (2) M I
A

Related Concepts
� Manifold with boundary: similar to a manifold but maps neighbourhoods of

certain (boundary) points to patches of the half-space Rd−1 × [0,∞[.

� Submanifold: If M ⊂ N for manifolds M,N , and charts of M are restrictions of
charts of N , then M is submanifold of N

� 1-D submanifolds of a manifold are curves

� 2-D submanifolds are surfaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

http://www.mia.uni-saarland.de


Curves in Rd (1)
M I

A

Curves in Rd

� Curve in Rd: differentiable function c : I → Rd, I ⊆ R interval

� The set c(I) := {c(p) : p ∈ I} is the image or graph of c.

Remark: curves with identical graphs but different parametrisations are different
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Curves in Rd (2)
M I

A

Related Definitions
� Regular curve: cp(p) 6= 0 for all p ∈ I

� Closed curve: I = [a, b], c(a) = c(b), c′+(a) = c′−(b)

� Simple curve: for no p1, p2 ∈ I with p1 < p2 the equality c(p1) = c(p2) holds,
except if c is a closed curve, I = [a, b], and p1 = a, p2 = b

We assume always that curves are sufficiently often differentiable.

� k-regular curve: c differentiable k times, first k derivatives linearly independent
in I

Remark: cp(p) is tangential vector for c in x = c(p) (or, laxly speaking, in p), and
Tc(p)c ≡ R.
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Curves in Rd (3)
M I

A

Length of a Curve
� c : I → Rd curve parametrised with I = [a, b]

� Length of c:

L(c) :=

∫ b

a

||cp(p)|| dp

where

||cp(p)|| =

√(
dx1
dp

)2

+ ...+

(
dxd
dp

)2
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Curves in Rd (4)
M I

A

Reparametrisation
� transforms a curve into another curve with the same graph

� c : I → Rd curve

� Ĩ ⊂ R interval

� Reparametrisation: a differentiable mapping φ : Ĩ → I, invertible with
differentiable inverse

� Reparametrised curve: c̃ := c ◦ φ : Ĩ → Rd

� orientation-preserving if φ′(p̃) > 0 for all p̃ ∈ Ĩ
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Curves in Rd (5)
M I

A

Arc-Length Parametrisation
� curve c : I → Rd is given in arc-length parametrisation if I = [0, L], L := L(c),

and
||cs(s)|| = 1 for all s ∈ I

� For an arbitrarily parametrised regular curve c : [a, b]→ Rd the arc-length
parametrisation is obtained by the transformation φ : s→ p,

ds

dp
= ||cp(p)||,

(
s(p) =

∫ p

a

||cr(r)|| dr
)
.

Remarks:

� A curve in arc-length parametrisation is regular.

� We will use the parameter s (instead of p) for curves in arc-length
parametrisation.
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Curvature of Planar Curves (1) M I
A

Curvature
� Let c : I → R2 be arc-length parametrised.

� Then
< cs(s), cs(s) >= 1

� and by differentiation
< cs(s), css(s) >= 0

i.e.
css(s) ⊥ cs(s).

Remark: The arc-length parametrisation is essential for this orthogonality!
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Curvature of Planar Curves (2) M I
A

Curvature
� Let

−→
t (s),−→n (s) be unit vectors tangential and normal to c at c(s), resp., and

(
−→
t ,−→n ) positively oriented

� Then
cs(s) =

−→
t (s) css(s) = κ(s)−→n (s)

with a uniquely determined function κ(s)

� κ(s) is called curvature of c at c(s)

Figure: Curve c with tangent and normal vectors, first and second derivatives at
point x = c(s).
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Curvature of Planar Curves (3) M I
A

Curvature
� If ρ(s) is the radius of the osculating circle for c at c(s) (i.e. the circle that best

approximates the curve in c(s)), then ρ(s) = 1
|κ(s)|

Figure: Curve c with osculating circle k at point x = c(s)
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Curvature of Planar Curves (4) M I
A

Curvature
The osculating circle at c(p) is characterised by:

� passes through c(p)

� has a common tangent line at c(p)

� near c(p) distance between curve and circle when following the normal direction
of c decays rapidly

For an arc-parametrised curve the center of the the osculating circle Q is:

Q(s) = c(s) +
css(s)

||css(s)||2

For other parametrisations:

Q(p) = c(p)+
1

κ(p)||cp(p)||
(−x′2(p), x′1(p)), with κ(p) =

x′1(p)x
′′
2(p)− x′′1(p)x′2(p)

(x′1(p)
2 + x′2(p)

2)
3
2
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Curvature of Planar Curves (5) M I
A

Determination of Curves by Curvature
The function κ(s) determines the curve c(s) up to translations (initial point
(x1(0), x2(0))) and rotations (initial direction φ(0)):

φ(s) = φ(0) +

∫ s

0

κ(σ) dσ

x1(s) = x1(0) +

∫ s

0

cosφ(σ) dσ x2(s) = x2(0) +

∫ s

0

sinφ(σ) dσ
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Curvature of Planar Curves (6) M I
A

Special Properties of Planar Curves
The following hold for curves in the Euclidean plane.

� The only planar curves of constant curvature are straight lines and circles.

� The total curvature
∮
c
κ(s) ds of a closed planar curve is a multiple of 2π.

• For a simple curve, it is ±2π.

• The integer quantity 1
2π

∮
c
κ(s) ds is called rotation number.
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Riemmanian Metrics M I
A

Riemmanian Metrics
� The tangent spaces of a manifold can be complemented with a Riemmanian

metric: a positive bilinear form acting on the d-dimensional vector space
corresponding to the tangent space at each point of the manifold.

gφ(p) : Tφ(p)M × Tφ(p)M → R

� The bilinear form should variate smoothly over the manifold.

� In the case of a curve it is nothing else than a rescaling.
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Riemmanian Metrics: Curves in Rd M I
A

Length of a Curve with a Riemannian Metric
� M = Rd Riemannian manifold with metric g

� c : I →M curve parametrised with I = [a, b]

� Length of c :

Lg(c) :=

∫ b

a

||cp(p)||g dp

� cp(p) is a tangent vector in Tc(p)(c), and the norm || · ||g depends on the metric
g as follows

||cp(p)||g =
√
gc(p) (cp(p), cp(c))

� In Euclidean metric:

L(c) =

√(
dx1
dp

)2

+ ...+

(
dxd
dp

)2
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Riemmanian Metrics: Curves in Rd M I
A

Arc-Length Parametrisation with a Riemannian Metric
� M = Rd Riemannian manifold with metric g

� curve c : I → Rd is given in arc-length parametrisation if I = [0, L], Lg := Lg(c),
and

||cs(s)||g = 1 for all s ∈ I

� For an arbitrarily parametrised regular curve c : [a, b]→ Rd the arc-length
parametrisation is obtained by the transformation φ : s→ p,

ds

dp
= ||cp(p)||g,

(
s(p) =

∫ p

a

||cr(r)||g dr
)
.
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Riemmanian Metrics M I
A

Riemannian Manifold as Metric Space
� M = Rd Riemannian manifold with metric g

� Let two points x, y ∈M be given

� Define a distance function
d(x, y) := min{Lg(c)| c : [0, 1]→M curve, c(0) = x, c(1) = y} i.e. the shortest
length of a curve on M joining x and y

� (M,d) is a metric space

� Length-minimising curves as in the definition of d but in arc-length
parametrisation are geodesics on M

� Geodesics play an outstanding role in the structure of the Riemannian manifold.
More about geodesics on surfaces in a later lecture
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