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What is this all about? (1) M I
A

� specialised lecture in image processing

� related to, but not dependent on

• Image Processing and Computer Vision (offered regularly in summer terms)

• Differential Equations in Image Processing and Computer Vision (offered
this semester by Prof. Dr. Joachim Weickert)

and further specialised courses.
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What is this all about? (2) M I
A

� applications of differential geometric ideas in image processing

� concepts of differential geometry often allow a particularly elegant formulation
and derivation of image processing methods

� variational and PDE (partial differential equation) formulations play an
important role

� wide range of applications:

• image denoising

• image enhancement

• detection of structures (e.g. shapes/contours)

• processing of shape information

• deblurring of images

� necessary mathematical instruments will be provided, focus is on application
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Introduction and Basic Concepts M I
A

The course does not follow a specific book. The following books cover many of its
topics:

� F. Cao, Geometric Curve Evolution and Image Processing. Lecture Notes in
Mathematics, vol. 1805, Springer, Berlin 2003

� R. Kimmel, Numerical Geometry of Images. Springer, Berlin 2004

� S. Osher, N. Paragios, eds., Geometric Level Set Methods in Imaging, Vision and
Graphics. Springer, Berlin 2003

� G. Sapiro, Geometric Partial Differential Equations and Image Analysis.
Cambridge University Press 2001.

Further references will be given where appropriate.
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Formalia (1) M I
A

General Schedule
� Workload: 4 hours per week, with exercises (1 hour approx.), 6 credit points

� Lectures on Tuesdays, 16–18, and Thursdays, 14–16.

� Building E1.3, Lecture Hall 003.

� First tutorial: October 24, 2019.

� Registration: you can and should register until next Monday (send a mail to
cardenas@mia.uni-saarland.de with your name and your course of studies)

� Slides will be available under
http://www.mia.uni-saarland.de/Teaching/dgip19.shtml for password-protected
download.
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Overview of Topics M I
A

Overview of Topics
� Basic differential geometric concepts

� Curves in plane, curve evolution, shapes evolution

� Level sets, level set formulations of PDE-based image filters

� Curves and surfaces in space

� Image filtering on surfaces

� Image domains with non-Euclidean metrics, and corresponding filters

� Variational problems, Euler-Lagrange equations and gradient descents

� Surface evolution

� Filtering of surfaces

� The Beltrami framework

� Geodesic active contours and regions, and related methods
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Images M I
A

Continuous-Scale Images
In most of this course, we think of images as functions between manifolds.
For now consider two important examples:

� grey-value image (one possibility): from a bounded domain (manifold with
boundary) in R2 to R

� colour image: from bounded domain in R2 to R3

� examples with more complicated manifolds later in this course

Discrete Images
� In practice, both the domain and the range of images are discretised.

• domain discretisation: sampling

• range discretisation: quantisation

� only partial coverage of numerical algorithms for discrete images in this course
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Introductory Examples (1) M I
A

Dilation

Left: MR image of a human head. Right: Processed by dilation, which can be
described as a curve evolution process and acts on the shapes of objects.
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Introductory Examples (2) M I
A

Mean Curvature Motion

Left to right: MR image of a human head; processed by curvature motion with two
different evolution times. Curvature motion is also a curve evolution process.
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Introductory Examples (3) M I
A

Geodesic Active Contours

Geodesic active contours (after Kichenassamy et al., 1996). Top left, bottom left:
Original images with initial contours. Right: Results of geodesic active contour
computation.
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Introductory Examples (4) M I
A

Image Segmentation

Object-background segmentation using a texture-controlled geodesic active region
model. (N. Paragios, R. Deriche 2002)
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Introductory Examples (5) M I
A

Surface Smoothing

A venus sculpture surface smoothed by anisotropic geometric diffusion. (T. Preuer,
M. Rumpf 2002)
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Introductory Examples (6) M I
A

Level Set Smoothing

Human heart ventricle extracted as a level set from an echocardiographic image,
smoothed successively by anisotropic geometric diffusion. (T. Preuer, M. Rumpf
2002)
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Introductory Examples (7) M I
A

Texture Surface Smoothing

Smoothing of a laser-scanned surface with onscribed texture. Left to right: Original
surface; contaminated with isotropic noise; the noisy surface smoothed by pure
geometric diffusion; same with combined geometry and texture evolution (Clarenz,
Diewald, Rumpf 2003).
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Basic Concepts (1) M I
A

Review of Basic Concepts
� Consider the Euclidean vector space Rd.

• If −→v ,−→w ∈ Rd and −→v = (v1, ..., vd)>,−→w = (w1, ..., wd)>, their scalar

product is 〈−→v ,−→w 〉 =
∑d

i=1 viwi.

• The Euclidean norm of −→v ∈ Rd is given by

||−→v || =
√
〈−→v ,−→v 〉 =

(∑d
i=1 v

2
i

)1/2
.

• −→v ,−→w ∈ Rd are called orthogonal if 〈−→v ,−→w 〉 = 0. In that case we write
−→v ⊥ −→w

• −→v1,−→v2, ...,−→vm ∈ Rd are linear independent if for any λ1, λ2, ..., λm ∈ R,∑m
i=1 λi

−→vi = 0 implies λi = 0 for all i

• linear transformations, orthogonal matrices, ...

• symmetric positive definite bilinear forms/matrices
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Basic Concepts (2) M I
A

Review of Basic Concepts
� Consider a function f : Ω ⊂ Rd → Rn with f = (f1, f2, ..., fn)>.

• f is smooth if all its components are smooth

• if f(x1, ..., xd) : Rd → R is a differentiable function we will denote its partial
derivatives ∂f

∂xi
also with fxi

• for n = 1, ∇f = ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xd

)> = (fx1, fx2, ..., fxd
)>
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Manifolds (1) M I
A

Intuitive definition of a general manifold
� any manifold M can be locally parameterised via continuous mappings (charts)

to open sets of Rd and d corresponds to its dimension

� for now we assume that M ⊂ Rm

� charts should be invertible

� different charts of the same manifold should be coherent (chart changes are
smooth functions)

� a set of coherent charts which cover all M is called atlas
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Manifolds (2) M I
A

Simple Examples of Manifold
� Rd

� smooth simple curve

� circle

� sphere

� torus

� etc...
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Manifolds (3) M I
A

Tangent Spaces
� Let c : I → Rd be a smooth function (chart of a curve/1-dimensional manifold)

defined on an interval I ∈ R.

� The vector dc
dt(p) is a vector with same direction as the tangent line touching the

curve given by the graph of c at point c(p).

� This tangent line is the tangent space of c at c(p), Tc(p)(c). We can identify it
with R.

The same concept can be generalised for a generic manifold, think of the tangent
plane of a surface.
The tangent space of a d-dimensional manifold can be identified with Rd.
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