Freehand HDR Imaging of Moving Scenes with Simultaneous Resolution Enhancement

Henning Zimmer1, Andrés Bruhn2, and Joachim Weickert1

1Mathematical Image Analysis Group, Saarland University, Saarbrücken, Germany
2Vision and Image Processing Group, Saarland University, Saarbrücken, Germany

\textit{Research partly funded by the IMPRS-CS and the Cluster of Excellence MMCI}

Motivation (1)

High Dynamic Range (HDR) Imaging
(e.g. Debevec and Malik, SIGGRAPH 1997)

\begin{itemize}
\item \textbf{Given:} exposure series (set of images with varying exposure times)
\item \textbf{Wanted:} scene radiances (HDR image)
\hfill \textbullet \ \text{overcome low dynamic range of sensor} \Rightarrow \text{details in dark and bright regions}
\end{itemize}

three images of an exposure series \hfill (courtesy of Paul Debevec) \hfill tone mapped HDR result
HDR Imaging in Practice

♦ Problem: HDR methods require **aligned** (registered) exposure series
 • often violated in practice: camera shake, moving objects

⇒ Need for alignment strategies
Overview

Structure

现有的对齐策略

PART I: Optic Flow-based Alignment

PART II: Joint Super-resolution and HDR Reconstruction

结论和展望

现有的对齐策略

对齐需要找到图像之间的位移

常见的匹配标准由于曝光差异而失效

已经提出了不同的策略:

- 全局变换，来自均值阈值位图 (Ward, JGT 2003)
- 从特征匹配的 homography (Tomaszewska and Mantiuk, WSCG 2007 / Hugin)
 ⇒ 不能处理移动对象，任意摄像头运动
- 全局对齐，用局部 optic flow 精化 (Kang et al., SIGGRAPH 2003)
 ⇒ 严重依赖于全局初始化，没有在平坦区域的精化
- block matching 使用曝光不变的分数 (Menzel and Guthe, VMV 2007)
 ⇒ 因缺乏平滑性假设而受到副作用
Optic Flow-based Alignment

Idea: Adapt energy-based optic flow method for estimating displacements

Many advantages:

- dense displacement fields (important for moving objects)
- highly accurate
- robust under outliers (noise, saturation, occlusions)
- explicit smoothness assumption (fill in information)
- efficient sequential and parallel implementations
Energy-based Optic Flow

- **Given**: exposure series $g_k(i, j)$, with $k = 1, \ldots, m$ for m exposures
- **Wanted**: displacement fields (u_k, v_k) between g_k and reference image g_r

Strategy: Find displacements (u_k, v_k) by minimising the energy

$$E(u_k, v_k) = \sum_{\text{pixels}} \left[D(u_k, v_k) + \alpha S(\nabla u_k, \nabla v_k) \right]$$

- data term $D(u_k, v_k)$ models constancy assumption on image features
- smoothness term $S(\nabla u_k, \nabla v_k)$ penalises fluctuations in displacements

Modelling the Data Term

- **Idea**: Handle varying exposure times by matching image edges
 - gradient $\nabla g = (D_x g, D_y g)^\top$ should remain constant under displacements
 - does not require to operate on radiances \Rightarrow no camera calibration needed

Corresponding data term:

$$D(u_k, v_k) = \Psi \left(\left| \nabla g_k(i + u_k, j + v_k) - \nabla g_r(i, j) \right|^2 \right)$$

- sub-quadratic penaliser $\Psi(s^2) = \sqrt{s^2 + \varepsilon^2}$ reduces influence of outliers

Extension: normalisation to prevent weighting by image gradients
Modelling the Smoothness Term

- Smoothness term fills in displacements in flat regions, e.g., saturations
- Data term gives no information as image gradients vanish
- Also regularises the displacements by penalising large gradients:

\[S(\nabla u_k, \nabla v_k) = \Psi(|\nabla u_k|^2 + |\nabla v_k|^2) \]

- sub-quadratic penaliser \(\Psi(s^2) = \sqrt{s^2 + \varepsilon^2} \) gives sharp displacement edges

\[g_3 \text{ (reference)} \] \[g_4 \] \[\text{dense flow from } g_3 \text{ to } g_4 \]

Comparison to Literature

- Real world, freehand exposure series (severe camera shake, moving clouds)

\[g_1 \] \[g_3 \text{ (reference)} \] \[g_5 \]
Comparison to Literature

- Tone mapped HDR reconstructions after alignment with different strategies

![Optic Flow-based Alignment (6)](image1)

![Optic Flow-based Alignment (7)](image2)

More Results *(using fixed parameters)*

- Real world, freehand exposure series *(Window)*

![Optic Flow-based Alignment (7)](image3)
More Results *(using fixed parameters)*

- Real world, freehand exposure series (*MPI*)

![Real world, freehand exposure series](image)

Optic Flow-based Alignment (9)

Limitations

- Minimisation of energy proceeds in a coarse-to-fine warping scheme
- Naturally yields problems with estimating large displacements of small objects
Joint Super-resolution and HDR Reconstruction

- Optic flow-based alignment: dense displacements with subpixel precision
- Opens the door for super-resolution (SR) techniques
- Idea: Combine SR and HDR methods in a joint SR-HDR method
- Turns the problem of displacements in the exposure series into an advantage
Energy-based Joint SR-HDR Reconstruction

- **Given:** low-resolution exposure series g_k and zoom factor $z > 1$
- **Wanted:** Super-resolved radiances F
- **Strategy:** Find F by minimising the energy

$$E(F) = \sum_{\text{pixels}} \left[D(F) + \lambda S(\nabla F) \right]$$

- data term $D(F)$ combines SR and HDR observation models
- smoothness term $S(\nabla F)$ fills in information (saturation, no LR information)

Towards a Joint SR-HDR Data Term

- **Super-resolution observation model:**

 $$RBW_k G = g_k$$

 - W_k: warping by displacements
 - B: blurring due to optical blur, motion blur, sensor PSF
 - R: restriction (downsampling) to LR grid

- **HDR observation model:**

 $$f = \frac{I(g_k)}{t_k}$$

 - I: inverse camera response function
 - t_k: exposure time
Joint SR-HDR Data Term

- Joint SR-HDR data term

\[D(F) = \sum_{\text{exposures } k} c(g_k) \Psi \left(\frac{\text{RBW}_k F - \frac{I(g_k)}{t_k}}{\text{SR}} \frac{t_k}{\text{HDR}} \right)^2 \]

- \(c(g_k) \): HDR weighting function reducing influence of less reliable (dark and bright) pixels

- \(\Psi(s^2) = \sqrt{s^2 + \epsilon^2} \): sub-quadratic penaliser reducing influence of outliers

A Novel Anisotropic Smoothness Term

- Smoothness term is important to fill in missing information, e.g. at saturations

- Anisotropic smoothness term adapts smoothing direction to image structures
 - strong smoothing along edges (quadratic penalisation)
 - reduced smoothing across edges (sub-quadratic penalisation)

- Edge direction: consider upsampled HDR reconstruction of exposure series
 - gives vector \(v_1 \) pointing across edges, \(v_2 \) pointing along edges

- Proposed smoothness term

\[S(\nabla F) = \Psi \left(\frac{(v_1^\top \nabla F)^2}{\text{across}} \right) + \left(\frac{(v_2^\top \nabla F)^2}{\text{along}} \right) \]

with Charbonnier penaliser \(\Psi(s^2) = 2 \mu^2 \sqrt{1 + (s^2/\mu^2)} \)
Results (using fixed parameters except for λ)

- Real world, freehand exposure series (Street)

 g_1 g_6 (reference) g_{12}

 pure HDR joint SR-HDR

 $\lambda = 0.4, z = 2$

Results (using fixed parameters except for λ)

- Real world, freehand exposure series (Flower)

 g_1 g_4 (reference) g_8

 pure HDR joint SR-HDR

 $\lambda = 0.6, z = 2$
Conclusions and Outlook

Take Home Messages

- Modern optic flow methods are well-suited for aligning HDR exposure series
- Sub-pixel accuracy of displacement fields enables resolution enhancement

Future Work

- Address large displacements of small objects
- Port to mobile platforms (iPhone, Android phone)

Thank You!

- More information:

 http://www.mia.uni-saarland.de/Research/SR-HDR