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Motivation (1)

High Dynamic Range (HDR) Imaging
(e.g. Debevec and Malik, SIGGRAPH 1997)

three images of an exposure series tone mapped HDR result
(courtesy of Paul Debevec)

� Given: exposure series (set of images with varying exposure times)

� Wanted: scene radiances (HDR image)

• overcome low dynamic range of sensor ⇒ details in dark and bright regions
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Motivation (2)

HDR Imaging in Practice

� Problem: HDR methods require aligned (registered) exposure series

• often violated in practice : camera shake, moving objects

freehand
exposure series

tone mapped HDR result

⇒ Need for alignment strategies
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Motivation (2)

HDR Imaging in Practice

� Problem: HDR methods require aligned (registered) exposure series

• often violated in practice : camera shake, moving objects

freehand
exposure series

tone mapped HDR result after alignment

⇒ Need for alignment strategies
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Overview

Structure

� Existing Alignment Strategies

� PART I : Optic Flow-based Alignment

� PART II : Joint Super-resolution and HDR Reconstruction

� Conclusions and Outlook
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Existing Alignment Strategies

Existing Alignment Strategies

� Alignment requires to find displacements between images

� Common matching criteria fail due to varying exposures

� Different strategies have been proposed:

• global transformation from mean threshold bitmaps (Ward, JGT 2003)

• homography from feature matches (Tomaszewska and Mantiuk, WSCG 2007 / Hugin)

⇒ both cannot handle moving objects, arbitrary camera motions

• global alignment, refined by local optic flow (Kang et al., SIGGRAPH 2003)

⇒ heavily depends on global initialisation, no refinement in flat regions

• block matching with exposure-invariant score (Menzel and Guthe, VMV 2007)

⇒ suffers from artefacts due to missing smoothness assumption

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22



PART I

Optic Flow-based Alignment
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Optic Flow-based Alignment (1)

Optic Flow-based Alignment

� Idea: Adapt energy-based optic flow method for estimating displacements

� Many advantages:

• dense displacement fields (important for moving objects)

• highly accurate

• robust under outliers (noise, saturation, occlusions)

• explicit smoothness assumption (fill in information)

• efficient sequential and parallel implementations
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Optic Flow-based Alignment (2)

Energy-based Optic Flow

� Given: exposure series gk(i, j), with k = 1, . . . ,m for m exposures

� Wanted: displacement fields (uk, vk) between gk and reference image gr

� Strategy: Find displacements (uk, vk) by minimising the energy

E(uk, vk) =
∑

pixels

[
D(uk, vk) + α S(∇uk,∇vk)

]

• data term D(uk, vk) models constancy assumption on image features

• smoothness term S(∇uk,∇vk) penalises fluctuations in displacements
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Optic Flow-based Alignment (3)

Modelling the Data Term

� Idea: Handle varying exposure times by matching image edges

• gradient ∇g = (Dx g, Dy g)> should remain constant under displacements

• does not require to operate on radiances ⇒ no camera calibration needed

g1 (t = 1/30 s) g3 (t = 1/80 s) Dx g1 Dx g3

� Corresponding data term:

D(uk, vk) = Ψ
(∣∣∇gk(i+uk, j+vk)−∇gr(i, j)

∣∣2
)

• sub-quadratic penaliser Ψ(s2) =
√
s2 + ε2 reduces influence of outliers

� Extension: normalisation to prevent weighting by image gradients
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Optic Flow-based Alignment (4)

Modelling the Smoothness Term

� Smoothness term fills in displacements in flat regions, e.g. saturations

� Data term gives no information as image gradients vanish

� Also regularises the displacements by penalising large gradients:

S (∇uk,∇vk) = Ψ
(
|∇uk|2 + |∇vk|2

)

• sub-quadratic penaliser Ψ(s2) =
√
s2 + ε2 gives sharp displacement edges

g3 (reference) g4 dense flow from g3 to g4
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Optic Flow-based Alignment (5)

Comparison to Literature

� Real world, freehand exposure series (severe camera shake, moving clouds)

g1 g3 (reference) g5
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Optic Flow-based Alignment (6)

Comparison to Literature

� Tone mapped HDR reconstructions after alignment with different strategies

global (Ward, JGT 03) homography (Hugin)

NCC (Menzel and Guthe, VMV 07) our result
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Optic Flow-based Alignment (7)

More Results (using fixed parameters)

� Real world, freehand exposure series (Window)

g1 g4 (reference) g7

no alignment our result
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Optic Flow-based Alignment (8)

More Results (using fixed parameters)

� Real world, freehand exposure series (MPI)

g1 g3 (reference) g5

no alignment our result
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Optic Flow-based Alignment (9)

Limitations

� Minimisation of energy proceeds in a coarse-to-fine warping scheme

� Naturally yields problems with estimating large displacements of small objects

g1, g2, g4 result, insets show problems with small objects
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PART II

Joint Super-resolution
and HDR Reconstruction
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Joint Super-resolution and HDR Reconstruction (1)

Joint Super-resolution and HDR Reconstruction

� Optic flow-based alignment: dense displacements with subpixel precision

� Opens the door for super-resolution (SR) techniques

� Idea: Combine SR and HDR methods in a joint SR-HDR method

� Turns the problem of displacements in the exposure series into an advantage
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Joint Super-resolution and HDR Reconstruction (2)

Energy-based Joint SR-HDR Reconstruction

� Given: low-resolution exposure series gk and zoom factor z > 1

� Wanted: Super-resolved radiances F

� Strategy: Find F by minimising the energy

E(F ) =
∑

pixels

[
D(F ) + λ S(∇F )

]

• data term D(F ) combines SR and HDR observation models

• smoothness term S(∇F ) fills in information (saturation, no LR information)
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Joint Super-resolution and HDR Reconstruction (3)

Towards a Joint SR-HDR Data Term

� Super-resolution observation model:

RBWkG = gk

• Wk : warping by displacements

• B : blurring due to optical blur, motion blur, sensor PSF

• R : restriction (downsampling) to LR grid

� HDR observation model:

f =
I(gk)

tk

• I : inverse camera response function

• tk : exposure time
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Joint Super-resolution and HDR Reconstruction (4)

Joint SR-HDR Data Term

� Joint SR-HDR data term

D(F ) =
∑

exposures k

c(gk) Ψ

((
RBWk

︸ ︷︷ ︸
SR

F − I(gk)

tk︸ ︷︷ ︸
HDR

)2
)

• c(gk) : HDR weighting function reducing influence
of less reliable (dark and bright) pixels

• Ψ(s2) =
√
s2 + ε2 : sub-quadratic penaliser reducing influence of outliers

c
(g

k
)

gk
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Joint Super-resolution and HDR Reconstruction (5)

A Novel Anisotropic Smoothness Term

� Smoothness term is important to fill in missing information, e.g. at saturations

� Anisotropic smoothness term adapts smoothing direction to image structures

• strong smoothing along edges (quadratic penalisation)

• reduced smoothing across edges (sub-quadratic penalisation)

� Edge direction: consider upsampled HDR reconstruction of exposure series

• gives vector v1 pointing across edges, v2 pointing along edges

� Proposed smoothness term

S(∇F ) = Ψ
((

v>
1 ∇F

)2)

︸ ︷︷ ︸
across

+
(
v>
2 ∇F

)2
︸ ︷︷ ︸

along

with Charbonnier penaliser Ψ
(
s2
)

=2µ2
√

1 + (s2/µ2)
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Joint Super-resolution and HDR Reconstruction (6)

Results (using fixed parameters except for λ)

� Real world, freehand exposure series (Street)

g1 g6 (reference) g12

pure HDR joint SR-HDR
λ = 0.4, z = 2
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Joint Super-resolution and HDR Reconstruction (7)

Results (using fixed parameters except for λ)

� Real world, freehand exposure series (Flower)

g1 g4 (reference) g8

pure HDR joint SR-HDR
λ = 0.6, z = 2
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Conclusions and Outlook

Take Home Messages

� Modern optic flow methods are well-suited for aligning HDR exposure series

� Sub-pixel accuracy of displacement fields enables resolution enhancement

Future Work

� Address large displacements of small objects

� Port to mobile platforms (iPhone, Android phone)

Thank You!

� More information:

http://www.mia.uni-saarland.de/Research/SR-HDR
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