

Freehand HDR Imaging of Moving Scenes with Simultaneous Resolution Enhancement

Henning Zimmer¹, Andrés Bruhn², and Joachim Weickert¹

¹Mathematical Image Analysis Group, Saarland University, Saarbrücken, Germany ²Vision and Image Processing Group, Saarland University, Saarbrücken, Germany

Research partly funded by the IMPRS-CS and the Cluster of Excellence MMCI

Motivation (1)

High Dynamic Range (HDR) Imaging

(e.g. Debevec and Malik, SIGGRAPH 1997)

tone mapped HDR result

• **Given:** exposure series (set of images with varying exposure times)

Wanted: scene radiances (HDR image)

 \bullet overcome low dynamic range of sensor \Rightarrow details in dark and bright regions

	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

M

VI	Ι Δ	
1	2	
3	4	
5	6	
7	8	
9	10	
1	12	
3	14	
5	16	
17	18	
9	20	
21	22	

HDR Imaging in Practice

- Problem: HDR methods require aligned (registered) exposure series
 - often violated in practice : camera shake, moving objects

tone mapped HDR result

\Rightarrow Need for alignment strategies

Motivation (2)

HDR Imaging in Practice

- Problem: HDR methods require aligned (registered) exposure series
 - often violated in practice : camera shake, moving objects

freehand exposure series

tone mapped HDR result after alignment

 \Rightarrow Need for alignment strategies

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

Overview	M	l A
Structure	1	2
 Existing Alignment Strategies 	3	4
PART I : Optic Flow-based Alignment	5	6
PART II : Joint Super-resolution and HDR Reconstruction	7	8
 Conclusions and Outlook 	9	10
	11	12
	13	14
	15	16
	17	18
	19	20
	21	22

Existing Alignment Strategies	M	l A
Existing Alignment Strategies	1	2
 Alignment requires to find displacements between images 	3	4
 Common matching criteria fail due to varying exposures 	5	6
 Different strategies have been proposed: 	7	8
• global transformation from mean threshold bitmaps (Ward, JGT 2003)	9	10
 homography from feature matches (Tomaszewska and Mantiuk, WSCG 2007 / Hugin) ⇒ both cannot handle moving objects, arbitrary camera motions 	11	12
• global alignment, refined by local optic flow (Kang et al., SIGGRAPH 2003)	13	14
\Rightarrow heavily depends on global initialisation, no refinement in flat regions	15	16
 block matching with exposure-invariant score (Menzel and Guthe, VMV 2007) → suffers from artefacts due to missing smoothness assumption 		
	19	20
	21	22

PART I Optic Flow-based Alignment

	Å
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

21 22

ΜI

Optic Flow-based Alignment (1)	M	 A
Optic Flow-based Alignment	1	2
Idea: Adapt energy-based optic flow method for estimating displacements	3	4
 Many advantages: 	5	6
 dense displacement fields (important for moving objects) 	7	8
 highly accurate 	9	10
 robust under outliers (noise, saturation, occlusions) 		
 explicit smoothness assumption (fill in information) 	11	12
 efficient sequential and parallel implementations 	13	14
	15	16
	17	18
	19	20

Energy-based Optic Flow

- Given: exposure series $g_k(i, j)$, with $k = 1, \ldots, m$ for m exposures
- Wanted: displacement fields (u_k, v_k) between g_k and reference image g_r

• Strategy: Find displacements (u_k, v_k) by minimising the energy

$$E(u_k, v_k) = \sum_{\text{pixels}} \left[D(u_k, v_k) + \alpha \ S(\nabla u_k, \nabla v_k) \right]$$

- data term $D(u_k, v_k)$ models constancy assumption on image features
- smoothness term $S(\nabla u_k, \nabla v_k)$ penalises fluctuations in displacements

Optic Flow-based Alignment (3)

Modelling the Data Term

- Idea: Handle varying exposure times by matching image edges
 - gradient $\nabla g = (\mathcal{D}_x g, \mathcal{D}_y g)^{\top}$ should remain constant under displacements
 - does not require to operate on radiances \Rightarrow no camera calibration needed

• Corresponding data term:

$$D(u_k, v_k) = \Psi\left(\left|\boldsymbol{\nabla}g_k(i+u_k, j+v_k) - \boldsymbol{\nabla}g_r(i, j)\right|^2\right)$$

- sub-quadratic penaliser $\Psi(s^2)=\sqrt{s^2+\varepsilon^2}$ reduces influence of outliers
- Extension: normalisation to prevent weighting by image gradients

1 | 2

3 4

5 | 6

7 8

9 10

11|12

13 14

15 16

17 18

Modelling the Smoothness Term

- Smoothness term fills in displacements in flat regions, e.g. saturations •
- Data term gives no information as image gradients vanish
- Also regularises the displacements by penalising large gradients:

$$S\left(\boldsymbol{\nabla} u_{k}, \boldsymbol{\nabla} v_{k}\right) = \Psi\left(\left|\boldsymbol{\nabla} u_{k}\right|^{2} + \left|\boldsymbol{\nabla} v_{k}\right|^{2}\right)$$

• sub-quadratic penaliser $\Psi(s^2) = \sqrt{s^2 + \varepsilon^2}$ gives sharp displacement edges

 g_3 (reference)

dense flow from g_3 to g_4

Optic Flow-based Alignment (5)

Comparison to Literature

Real world, freehand exposure series (severe camera shake, moving clouds)

 g_1

 g_5

Comparison to Literature

• Tone mapped HDR reconstructions after alignment with different strategies

homography (Hugin)

global (Ward, JGT 03)

NCC (Menzel and Guthe, VMV 07)

our result

Optic Flow-based Alignment (7)

More Results (using fixed parameters)

Real world, freehand exposure series (Window)

no alignment

our result

Ν./Ι	
IVI	і А
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
М	
	A
1	2
2	

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

 g_1 , g_2 , g_4

result, insets show problems with small objects

PART II

Joint Super-resolution and HDR Reconstruction

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

Joint Super-resolution and HDR Reconstruction (1)

Joint Super-resolution and HDR Reconstruction

- Optic flow-based alignment: dense displacements with subpixel precision
- Opens the door for **super-resolution** (SR) techniques
- Idea: Combine SR and HDR methods in a joint SR-HDR method
- Turns the problem of displacements in the exposure series into an advantage

21	22
M	l A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

Energy-based Joint SR-HDR Reconstruction

- Given: low-resolution exposure series g_k and zoom factor z > 1
- Wanted: Super-resolved radiances F
- **Strategy:** Find *F* by minimising the energy

$$E(F) = \sum_{\text{pixels}} \left[D(F) + \lambda \ S(\boldsymbol{\nabla} F) \right]$$

- data term D(F) combines SR and HDR observation models
- smoothness term $S(\nabla F)$ fills in information (saturation, no LR information)

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

2

4

l**6**

8

Joint Super-resolution and HDR Reconstruction (3)	M I
Towards a Joint SR-HDR Data Term	1 2
Super-resolution observation model:	3 4
$RBW_k G = g_k$	5 6
• W_k : warping by displacements	7 8
• B : blurring due to optical blur, motion blur, sensor PSF	9 10
• R : restriction (downsampling) to LR grid	11 12
• HDR observation model: $I(q_k)$	13 14
$f = \frac{-(3\kappa)}{t_k}$	15 16
 I : inverse camera response function t_k : exposure time 	17 18
	19 20

Joint SR-HDR Data Term

Joint SR-HDR data term

$$D(F) = \sum_{\text{exposures } k} c(g_k) \ \Psi \Biggl(\Biggl(\underbrace{RBW_k}_{\text{SR}} F - \underbrace{I(g_k)}_{\text{HDR}} \Biggr)^2 \Biggr)$$

• $c(g_k)$: HDR weighting function reducing influence of less reliable (dark and bright) pixels

• $\Psi(s^2) = \sqrt{s^2 + \varepsilon^2}$: sub-quadratic penaliser reducing influence of outliers

Joint Super-resolution and HDR Reconstruction (5)

A Novel Anisotropic Smoothness Term

- Smoothness term is important to fill in missing information, e.g. at saturations
- Anisotropic smoothness term adapts smoothing direction to image structures
 - strong smoothing along edges (quadratic penalisation)
 - reduced smoothing across edges (sub-quadratic penalisation)
- Edge direction: consider upsampled HDR reconstruction of exposure series
 - gives vector \mathbf{v}_1 pointing across edges, \mathbf{v}_2 pointing along edges
- Proposed smoothness term

$$S(\boldsymbol{\nabla}F) = \underbrace{\Psi\left(\left(\mathbf{v}_{1}^{\top} \boldsymbol{\nabla}F\right)^{2}\right)}_{\text{across}} + \underbrace{\left(\mathbf{v}_{2}^{\top} \boldsymbol{\nabla}F\right)^{2}}_{\text{along}}$$

with Charbonnier penaliser $\Psi\!\left(s^2\right)\!=\!2\,\mu^2\sqrt{1+(s^2/\mu^2)}$

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

Results (using fixed parameters except for λ)

Real world, freehand exposure series (*Street*) •

 g_1

pure HDR

 g_{12}

joint SR-HDR $\lambda = 0.4, z = 2$

Joint Super-resolution and HDR Reconstruction (7)

Results (using fixed parameters except for λ)

Real world, freehand exposure series (Flower) ٠

pure HDR

joint SR-HDR $\lambda = 0.6, z = 2$

17	18
19	20
21	22
M	l A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

2 1

3 4

5 6

7 8

9 10

11 12

13 14

Take Home Messages

- Modern optic flow methods are well-suited for aligning HDR exposure series
- Sub-pixel accuracy of displacement fields enables resolution enhancement

Future Work

- Address large displacements of small objects
- Port to mobile platforms (iPhone, Android phone)

Thank You!

• More information:

http://www.mia.uni-saarland.de/Research/SR-HDR

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22