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Abstract There are different methods to compute the dis-
parity, which can basically be divided into four
Recent variational stereo approaches suffer fronglasses: (i)Feature-basedapproaches [9], which
at least one of the following drawbacks: Eithermatch characteristic points in the images, e.g., cor-
they use arisotropic disparity-drivensmoothness ners, (ii)area-basedpproaches [20], matching pix-
term that ignores the directional information of theels if patches around them exhibit a certain simi-
disparity field, or they applyanisotropic image- larity, (i) phase-basedpproaches [7], that use the
drivenregularisation that suffers from oversegmen-phase information in the Fourier domain, and finally
tation artifacts. As a remedy, we present a nove(iv) energy-basedpproaches [2, 12, 13, 14, 16, 20,
anisotropic disparity-driverapproach for stereo vi- 21], which find the disparity by minimising an en-
sion. Itis designed as a highly adaptive anisotropiergy functional that penalises deviations from data
diffusion-reaction equation that incorporates a dif-and smoothness assumptions. The latter class can
fusion process which has been used successfullye further divided intgrobabilisticandvariational
for image denoising and inpainting. Its directional approaches. The first type [12, 13, 20] models im-
adaptation allows to better control the smoothingages and disparity as Markov random fields and
w.r.t. the local structure of the disparity field. tries to find the most probable disparity, given the
Experiments that compare our model to a recentwo images. This comes down to the minimisation
isotropic variational method and a probabilistic of a discrete energy which is usually done by graph
graph cut approach demonstrate the superior qualityuts (GC) [13], belief propagation (BP) [12] or dy-
of our approach. Moreover, a multigrid algorithm namic programming (DP) [14] algorithms. These
allows for moderate run times that do not dependnethods are quite successful as they usually impose

on the disparity range. strict smoothness assumptions, modelling a piece-
. wise constant disparity. However, Li and Zucker
1 Introduction [15] have shown that such approaches may have

Stereo vision is an important and challenging part of€vere drawbacks if the assumption of a piecewise
computer vision research. Although first attemptsconstant disparity is violated. This can be the case
go back to Marr and Poggio [17] in 1976, qualita- if the depth is varying smoothly, for instance in the
tively good results are still hard to obtain. In the Presence of curved or slanted surfaces. Moreover,
usual binocular case, one is given two images 0pl’0babl|I§tIC approaches sgffer from thglr d|§crete
the same scene, captured from two different viewsPature, since they only assign integer disparity val-
which we denote by ’left’ and right’, respectively. Ues to the pixels.

In order to recover the missing depth information of These restrictions do not apply to the second type
the scene, one has to solve@respondence prob- of energy-based methodegariational approaches.
lem For each pixel in the left image one has to de-Here, the disparity is computed by the minimisa-
termine the correspondirdisparity, i.e., the change tion of a continuous energy functional which can be
of its position w.r.t. the right image. done by a gradient descent method. This requires
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to compute the steady-state of a partial differentiabnisotropic diffusion process within the diffusion-
equation (PDE), which is dfiffusion-reactiortype.  reaction equation. Since a corresponding energy
Variational approaches go back to the work of Hornformulation is no longer required, we can design
and Schunck [10], where they were first successmore powerful smoothing strategies that are based
fully introduced in optical flow computations. For on nonlinear anisotropic diffusion filters. These fil-
stereo, they were used, among others, in the worters have already shown their usefulness in the con-
of Slesarevaet al. [21], where the authors adapted text of image denoising [22] and PDE-based in-
the very accurate optical flow method of [3] to the painting [8]. In particular, our method will exhibit
weakly calibrated case. By exploiting the knowna distinct behaviour at corners, edges and homoge-
geometry of the two views, they restrict the searchmeous regions.

for correspondences along epipolar lines. In this Our paper is organised as follows: Section 2 in-
work we restrict ourselves to the scenario where théroduces basic concepts of variational stereo. After
two images have beanctifiedbeforehand and dis- discussing existing types of regularisers we present
placements only occur in horizontal direction. Thusour new anisotropic method in Section 3. Section 4
the disparity boils down to a pixelwise scalar value.shortly describes the solution of the arising PDE,
A recent variational stereo method for the rectifiedwhile Section 5 shows experiments that compare
case is proposed in [2], which additionally incorpo-our new anisotropic method with an isotropic one,
rates segmentation ideas and occlusion handling tas well as a GC method. Section 6 concludes the
further improve results at disparity boundaries. paper with a summary and gives an outlook to pos-

sible future work.
One important design aspect of variational meth-

ods is the choice of theegulariser modelling the L

smoothness assumptions. Recent variational stered Variational Stereo
approaches either use isotropic disparity-driven reg- )

ularisers [2, 21], which adapt the smoothing of the2-1 Basic Structure

disparity map w.r.t. the magnitude of the dispar-pqq me we are given the rectified image pair
ity gradient, or anisotropic image-driven regularis-fl f. : Q — R, denoting the left and the right
ers that try to preserve edges in accordance with tt\%éwr respectiveI;/. Her® C R? is a rectangular

image data [1, 16]. For most cases, aniso_tr(_)pic prcymage domain. We further assume that the images
cesses have shown to be superior to their isotropig, o presmoothed by a convolution with a Gaussian

counterparts, as thgy offer a highe_r accuracy aferne| of standard deviation,.. The unknown
image edges and thin structures. D'Spa”ty'd”Verhorizontal disparity component: © — R is found

methods generally have an advantage over imageyy minimising an energy functional of the form
driven ones that tend to give oversegmented results.

However, a method that combines these two advan-

tages, has not been proposed so far in a stereo con? (u) = /ﬂ [M(fi, fr,w) + 2 V(Vu)] dx, (1)
text. To fill the void in existing smoothing strate-

gies, this paper introduces an anisotropic disparitywherex := (z,y)" € Q andV := (9,,8,)"
driven stereo method, which takes into accountienotes the spatial gradient operator. Tdwa
directional information of the disparity field and term M(f;, f-,u) models how well the disparity
thus allows to distinguish between smoothing along: matches the given datg and f.. In general,
and across disparity edges. In [23], Weickert andhis is done by imposing one or several constancy
Schnorr present a theoretical framework for the deassumptions on image properties. Tmoothness
sign of regularisers in the context of optical flow term or regulariser V(Vu) enforces the disparity
computation, which also includes an anisotropicto be smoothly varying in space by penalising large
flow-driven smoothness term. We will show that it gradients ofu. Its influence on the overall energy is
is not possible to directly adopt this regularisationsteered by a smoothness weight> 0.

in the stereo case, as the resulting diffusion process We find a minimiser. of the energy functional
remains isotropic. As a remedy, we propose a dif{1) via a gradient descent method by introducing
ferent strategy: Instead of deriving a suitable energwn artificial evolution parameter In other words,
functional, we will directly model a highly adaptive we are looking for the steady state solution of the



diffusion-reactiorequation where the variable is used to emphasise the use of
1 temporal differences in contrast to temporal deriva-
U = (8TVuT + 8quy) — E OuM 5 (2) tives.

for t — oo, with homogeneous Neumann boundary,
conditionsonu = 0 on 9N2. Here the subscripts of
u denote partial derivatives andldenotes the nor- \We will now give a short overview of existing
mal vector of the image boundafif2. The term be-  spatial regularisers for rectified variational stereo.
tween brackets on the righthand side comprises thee will follow the taxonomy of Weickert and
diffusion part which results from the smoothnessschnorr [23], which gives a systematic classifica-
term of the energy functional. The last term con-tion of convex smoothness terms for optical flow
stitutes the reaction part of the equation and stemgomputation. Based on their connection with multi-
from the data term. channel diffusion filtering, this classification en-
For the choice of the data term of our method wecompasses data-driven and flow-driven as well as
will follow the approach in [21] and use a combi- jsotropic and anisotropic regularisers.
nation of the brightness and the gradient constanc
assumption:

2.2 Regularisation

?/. I sotropic image-driven regularisation.

This type of regularisation inhibits smoothing of the

M(fi, frou) = Un (Ifr(x +u) — fi(x)]? disparity field at image edges. A recent work in this
area was published by Kim and Sohn [11].

2
+y [V fr(x+w) = VAix)] ) Y I1. Anisotropicimage-driven regularisation.

This class of regularisers mainly became popular

In the above expressiam := 0)", and¥ 2
P (u,0) m(s) through the works of Mansoust al. [16] and Al-

is a differentiable and increasing function that is
convex ins. The brightness constancy constraintvarez_et a_I. [1]. The smoothness teranQmak_e > use
models the classical assumption that the grey valu8f adiffusion t.ensor[.)(Vfl,Vfr) eR . which, .
of a pixel does not change during its displacemenfompar?d t(_) |sotrpp|c processes, _can_mclude addi-
[10]. The gradient constancy assumption on thélonal directional information. This gives rise to

other hand renders the approach more robust und&foreé ﬂggrees of freechqu in ;hel a_ldap_tation of the
varying illumination conditions, a common prob- smoothing process to the un erlying image struc-
ture. The biggest drawback of image driven regu-

larisation lies in the fact that not every image edge
necessarily matches a disparity edge. Especially in

Note that we refrain from linearising the data term h ¢ h lting di ity field
to allow for a correct estimation of large dispar-t e presence of textures the resu ting disparity fie
can suffer from oversegmentation.

ities. As a robust penaliser function we choose
War(s®) = s> +&2, wheres > 0is a small |||, |sotropic disparity-driven regularisation.
regularisation parameter. This results in a modifiedy remedy for oversegmented solutions can come
L' penalisation, which helps us cope with outliersfrom the use of disparity-driven regularisers, which
caused by image noise or occlusions. The contriinhibit smoothing at edges of the evolving dispar-
bution of the data term (3) to equation (2) will be jty . Indeed, most recent successful variational
denoted bym(fi, fr,u) := 0. M and can be writ- approaches [2, 21] use a regulariser of this type.
ten as follows: The smoothness term takes on the fafmp (Vu) =
o 2 2 2 Uy (|Vu|?) for a non-quadratic penalis@ry (s
i frw) = War (£ 47 (fos + £y2)) whic(r|1 is |co)nvex ins. The corresponding diffElsic)m-

lem in real-world images. Its contribution to the
overall data term is steered by a parameter 0.

(fofe + 7 (fanfor + favfoz)) - (4)  reaction equation is then given by

In this equation we made, in accordance with [21], — div (U (IVul?) v

use of the following abbreviations: b Wl( v (IVul®) V)
fo = Ofo(x+u), ©) —o i, frou) - ®
fo= frlxtu) - filx), (6)  Because the scalar-valudffusivity ¥}, (|Vu|?) is

O« fr(x+u) —0.fi(x), (7) afunction of the unknownm, this PDE is nonlinear,

f* z



contrary to the linear PDEs that result from image-desired anisotropic behaviour is ensured because
driven methods. A prominent example of isotropicthe eigenvectors off are in general not parallel
disparity-driven regularisation iSotal Variation to the gradients of both flow components. In the

[19] regularisation, used in [2, 21], whekey =  stereo case, however, the eigenvalues and eigenvec-
Vs? +e2. tors of J are trivial: Ay = |Vu|?, X2 = 0 and
v = ‘V_IH‘VU,VQ = ﬁVuJ‘, whereVut :=

3 PDE-Based Anisotropic Disparity- (—uy,us) " is avector orthogonal t&'u. With this
Driven Stereo the diffusion part of equation (10) comes down to

. . . . div (D(J)Vu) (11)
In [23] an anisotropic flow-driven regulariser for
motion estimation was derived for the first time, but . , T
as we have seen, equivalent anisotropic disparity- = div (‘I’V(V“V“ )V“) (12)
driven ideas for variational stereo are still missing.
However, such a smoothing strategy would have the © .. U (|Vul?) T
favourable property that it allows smoothing along = div qu“v“
evolving disparity discontinuities, but not across. 0 | Lo
This can lead to the enhancement of meaningful + e Vu=(Vu™) }Vu) (13)

edges, thus improving the estimation of discontinu-
ities in the disparity field, without the problem of

!/ 2
oversegmentation. © gy <%|Vu|2Vu+O) (14)
3.1 Adapting Anisotropic Flow-Driven = div (W (|Vu?)Va) (15)

Regularisation

T _
Adapting the design ideas of Weickert and Schnbrwhere(*) makes use of the facts thatu  Vu =

2 1NT _
[23] directly to our stereo setting results in the fol—|vu| and (Vu™) Vu = 0. We conclude_
lowing regulariserVap (Vu) — tr Uy (.J), where that for the stereo case, the use of the regulariser

Wy is an increasing convex function and the ar-(‘_j/A.D(v.“)tylel.dsbﬂ;]e "?‘”ead]}’ prestc_anteg disparity-
gumentJ := VuVu' is a symmetric, positive riven isotropic behaviour of equation (8).

semidefinite2 x 2 matrix. If J has the orthonormal
eigenvectorsv; and v, with corresponding non- 3.2 True Anisotropic Disparity-Driven
negative eigenvalues; and\z, thenWy (J) is de- Stereo

fined as the matrix with the eigenvectars andv,

and the eigenvaluegy (\;) andy (\s): To finally model a highly adaptive anisotropic

smoothing process for rectified stereo we will re-
2 frain from the design of a regulariséhp (Vu). In
J = Z i ViV, fact, we will directly model in the diffusion part of
i=1 the diffusion-reaction equation (10).

2 In order to obtain truly anisotropic behaviour
= ¥(J):= Z‘I/V()\i) vivy . (99 we need a more sophisticated structure detector
i=1 thanJ. Inspired by the anisotropic diffusion filter
from [22], we consider thetructure tensotJ, [6]

Employing the regulariseVap(Vu) leads to the for stereo:

diffusion-reaction equation
1 Iy = J,(Vug) = K, * (VuaVu;r ) . (16)
us = div (D(J) Vu) — = m(f1, fr,u), (10)

@ whereu, := K, * u, K, denotes a Gaussian ker-
with the diffusion tensotD(J) := ¥%.(J). For nel of standard deviatiosm and: is the convolution
anisotropic flow-driven optical flow, the argument operator. We see thaf, extendsJ in two ways:

J includes a coupling between the two flow com-(i) It regularises the disparity by a Gaussian con-
ponents of the optical flow. In this manner thevolution of standard deviatioa and (ii) integrates



neighbourhood information by convolving the ten-4 Numerical Solution of the PDE
sor entries with a Gaussian kernel of standard devi-

ation p. Regularisation of the unknowmby Gaus-  What needs to be mentioned is how to solve the
sian convolution with aoise scaler was first pro-  diffusion-reaction equation (17) in its steady-state
posed in the context of nonlinear diffusion to reduceyherew, = 0. As is proposed in [3], we use a
staircaising artifacts and problems with noise, c.fcoarse-to-fine warping approach. This multiscale
[5]. Despite the fact tha¥u. is a useful edge de- approach is achieved by using a downsampling of
tector, the problem still remains that it is sensitivethe image pair by a facton € (0, 1), yielding
under noise for smaly, while an increased can [, ..., 0] warping level, depending on the image
lead to undesired cancellation effects. This can begize and;. On each level, we compute disparity
overcome by an additional convolution of the tensofincrements via a linearised approach that is applica-
entries with arintegration scalep. ble because the increments are usually small. This
The structure tensaf,, is a symmetric, positive  strategy allows to handle large disparities correctly.
semidefinite matrix with two orthonormal eigen- Moreover, due to the PDE-based nature of our ap-
vectorswi, wz, which give the directions of the proach, we can speed up the computation by fol-
local disparity structure. The corresponding non{owing the idea of [4] and using a nonlinear multi-
negative eigenvalues, w.l.o.gi1 > p2 > 0, give  grid scheme to solve the problem at each warping
the average contrast along these directions. So wevel. On each grid level, we apply a Gauss-Seidel
propose the following diffusion-reaction equationsolver with alternating line relaxation to the result-
which makes use of the structural information con-ing linear system of equations. Occurring spatial
tained inJ,: derivatives of the image data are approximated by
central finite differences of fourth order and spatial
uy = div (D (J,) Vu) — 1 m(fi, fr,u), (17) derivatives of the disparity by second order approx-
o imations.

with the diffusion tensor

2 .
D(Jy) = Wy (J,) = 3 Wy () wiw, . © EXperiments
i=1
(18) We evaluate our presented PDE-based
We further propose to make use of the Perona-Malilanisotropic ~ disparity-driven  stereo  method

[18] diffusivity with a contrast parameter> 0: against the graph cuts approach of Kolmogorov
and Zabih [13] (available for download at
\IJQ/(SQ) = % . (19)  www.cs.cornell.edu/"rdz/graphcuts.html )
L+ /e and the isotropic disparity-driven method of Sle-

This diffusivity is known to make backward diffu- sarevaet al. [21], adapted to the rectified stereo
ase. This is achieved by using the trivial funda-

sion possible and thereby enhance edges even more

With this choice we can now show that our method(rjnemf,1I ma't:rlx,thwhlch yields a F(ljorlzzgtilf fr?épr?::;-
exhibits the described anisotropic behaviour: irection. urinermore, we made u

tioned multigrid solver [4], i.e., our approach just

— In flat regions: replaces the isotropic disparity-driven regularisa-
1 R e~ 0= U (ur) =~ 1, U (ue) =1, tion of [21] by our new anisotropic disparity-driven
which leads to homogeneous smoothing in both method. However, we will see that this may give
directions. drastic improvements.

— At astraight edge inw»-direction: To reduce the amount of parameters to be esti-
w1 > pe = 0= Uy (1) =0, Uy (u2) =1, mated for our method, we choose some standard
which leads to anisotropic smoothing in edge  settings for our experiments: A coarsening factor
direction, but not across. n = 0.95 for the multiscale approaches and regu-

— At corners: larisation parameters = 0.001, & = 0.1. For our
1 > p2 > 0= Uy (1) =0, Uy (u2) =0, anisotropic method using the structure tensor, we

which prevents smoothing. estimate a value far and sep := 20.



For our first experiment, we tested the three apTable 1: Error measures (AADE, BPE) and com-
proaches on a grey value version of th#las-  putation times for experiments of Figures 1, 2 and
tic’ image pair from the Middlebury stereo pageothers. Experiments were conducted on a standard
(vision.middlebury.edu/stereo ), which is  PC (3.2 GHz Intel Pentium 4, 256 MB RAM). For
shown together with the grey value coded groundTeddy’ only the non-occluded regions were eval-
truth disparity in the top row of Figure 1. To make yated in the error measures, for the rest only the
a quantitative analysis of results possible, we emreliable regions.
ploy two different error measures. They reflect how
well a disparity estimatar = (u;) matches the
given ground truthus® = (u%"), for images with
i = 1,..., N pixels. The first measure is ttae- Plastic AADE 7.60 1.21 1.37

Pair GC | sotropic Our
Max. disp. [13] [21] method

erage absolute disparity errqiAADE) of [21] and 66 Tt B A el
the second one is th®d pixel error(BPE) of [20],

; ; ; ; ; Teddy AADE 1.49 0.64 0.61
which gives the percentage of pixels which deviate BPE 15.46 10.37 999

more than a thresholi; > 0 from the ground truth. Time[s] || 106.08 10.39 21.61
These measures are defined as follows:

Laundry AADE 6.19 3.22 2.95
78 BPE 35.48 37.18 34.25
1 X Time[s] || 133.59 11.34 21.69
AADE (u,u®) = — u; — ugt‘ 20
(u, u) N Z oy (20) Bowlingl | AADE 4.79 4.63 3.36
=1 77 BPE 53.41 30.35 24.41
100 & Time [s] 204.91 9.40 20.26
BPE (u,u®)=—= 3T (| = w5 >8a) . 22)
i=1

whereT(b) = 1if b = true, and0 else. As pro- field, as can be expected for our anisotropic method.
posed in [20], we sef; = 1. Regarding the BPE, our method gives an improve-
The achieved results and colour-coded erroment of abouR0% compared to the method of Sle-
maps (greer= error < §4, yellow = §; < error  sarevaet al. and even65% compared to the GC
< 364 and red= error > 34,4) for the three meth- approach. If we evaluate the given computation
ods can be found in the middle and lower row oftimes, we see that the more complex anisotropic
Figure 1. In Table 1, we collected the correspond-method leads to an average increase of abodf
ing error measures and computation times, also fopompared to the isotropic method with multigrid.
the ' Teddy’ pair that we will present in Figure 2 and However, the GC approach is still far behind, espe-
other Middlebury pairs. For the latter we do not cially for pairs with large disparities. For thelas-
give disparity estimates due to space limitations. tic’ pair the increase in computation time is about
Concerning the results for thBlastic’ pair, c.f., 800% compared to our approach and ex90%
Figure 1 and Table 1, one sees that due to the pieceéompared to the method of Slesar@taal., which
wise smooth ground truth the variational approactimpressively shows the efficiency of the employed
of Slesarevat al. and also our PDE-based method multigrid solver.
easily outperforms the GC approach. The men- As a second experiment, we compared our
tioned drawback of the strict regulariser used inresults forTeddy’, c.f., Figure 2 and Table 1, with
the GC approach becomes obvious: The smoothlthe official ranking of the Middlebury page for
varying disparity of the folder in the foreground is §; = 0.5. With the isotropic method of Slesarest
not recovered well, which one impressively seesl. one currently obtains rankl out of 46, which
in the corresponding error maps. In addition itwe can improve to rank with our new anisotropic
becomes clear that our new anisotropic disparitymethod. As can be seen in the error maps of Figure
driven method brings quite some benefits compare&, the main improvements of our method lie in the
to its isotropic counterpart. This can mainly be seerbetter estimation of the floor in the lower part of
in the much better estimation of the backgroundthe image. Small improvements are also visible
in the upper right part and the folder in the fore-at the right side of the teddy and at the back of
ground. The improvements are most striking in rethe stuffed animal on the floor. However, another
gions where there are strong edges in the disparitinsight of this experiment is that some very recent



Figure 1: First row, from left to right: Left image of'Plastic’ pair (423 x 370 pixels). Right image.
Ground truth disparity magnitude, non-reliable pixels ararked in black. Second row, from left to
right: Disparity magnitude for GC approach [13] & 10, automatically estimated). Same for rectified
stereo version of Slesareed al. [21] (&« = 7,0pre = 0.35,7 = 60,L = 93). Same for our method
(@ =90, 0pre = 0.45,7 = 100,0 = 4.5, p = 9, L = 93). Third row, from left to right: Error map for
GC approach. Same for rectified stereo version of Slesatesia[21]. Same for our method.

probabilistic approaches are still able to outperforndoor and on the arch. The estimated disparity mag-
variational or PDE-based approaches, even on tesitudes for the GC approach and for our method are
pairs with piecewise smooth ground truth. Thisalso given. They were used in the reconstructions
can be explained by the more sophisticated modeadepicted in the bottom row of Figure 3. One clearly
assumptions made in these approaches, like expliciiees that the reconstruction with the GC approach
occlusion handling [13]. is not satisfactory. All smoothly slanted surfaces
As a third experiment we reconstructedare estimated in a stair-like manner, originating
the 'Portal’ scene (available for download at from the strict regularisation. One furthermore
cmp.felk.cvut.cz/"cechj/GCS ), using the experiences unpleasant outliers at the right border.
estimated disparities as hightfields. The scene i®ur method solves these problems: We get a very
part of a larger set of rectified real-world scenesaccurate reconstruction, with sharp discontinuities
collected by Jan Cech and Radim Sara. Thisnd lots of fine details, e.g., the frets at the top of the
specific scene, c.f., top row of Figure 3, shows theportal and even the door handle are estimated well.
portal of a church with many details around theConcerning the computation time, the GC approach



Figure 2:First row, from left toright: Leftimage of Teddy’ pair (450 x 375 pixels). Disparity magnitude
for rectified stereo version of Slesaresgal. [21] (o« = 5.5, 0pre = 0.5,y = 7.5, L = 94). Same for
our method ¢ = 20, opre = 0.45,v = 5.5,0 = 2.5,p = 5, L = 94). Second row, from left to right:
Ground truth disparity magnitude, non-reliable pixels mx@ked in black. Error map for rectified stereo
version of Slesarevet al. [21]. Same for our method.

neededl99.96 s for the disparity estimation using application of highly efficient multigrid schemes [4]
35 discrete depth levels, whereas our method onlys still possible, resulting in moderate run times in
needed3.27 s. the order of a few seconds for standard test images.
This is in general much less than the computation
times for the tested GC approach [13].

Itis evident that our method still leaves space for
. ) . L some improvements. If one takes a closer look at
In this paper, we filled the gap in existing SmOOth'the error maps in Figures 1 and 2, one realizes that

ing strategi(_as for stereo vision. We have fir_st Shov_‘"brrors mostly occur at occluded regions, e.g., at the
that a straight-forward adaptation of anisotropiCiag horder of the folder in Figure 1 or at the left

ideas from optical flow compute_ltions 23] does NOtyorder of the house in Figure 2. In [2], the authors
yvork fqr sxereo, as tge smoothing p;ocess r?gg’gﬁresent a variational approach with explicit occlu-
Isotropic. AS aremedy, we pre_sente anove sion handling, which gives favourable results at oc-
based anisotropic disparity-driven method, base lusions. Incorporating such concepts, we aim to

on anisotropic diffusion filters. Our experiments develop a PDE-based approach of even better qual-
clearly show that such a method can help to con;

siderably improve the results compared to previ-ty'

ous isotropic approaches, such as [21]. This again

demonstrates that it pays off to replace existingdCknowledgements

isotropic approaches by the additional degrees of ) ) )
freedom that come from anisotropy. Comparing toH€nning Zimmer gratefully acknowledges funding
very recent probabilistic approaches, we have sefy the International Max-Planck Research School
that our method is indeed competitive as we ard/MPRS). Levi Valgaerts gratefully acknowledges
ranking among the be80% of all featured methods funding by the Deutsche Forschungsgemeinschaft
in the official Middlebury ranking. Furthermore, the (PFG) under the projedVE 2602/6-1

6 Conclusions and Outlook



Figure 3:First row, from left to right: Left image of théPortal’ image pair (greyscale version, cropped
and resized td35 x 615 pixels to remove a black border stemming from the rectifiegti Right image.
Disparity magnitude for GC approach [13] & 6, automatically estimated). Same for our methad=
40, 0pre = 0.5,y = 3,0 = 2.5, p = 5, L = 97). Second row, from left to right: Reconstruction using
GC approach. Same with texture mapping. Reconstructiomgusir method. Same with texture mapping.
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