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Abstract. Variational approaches to correspondence problems such as
stereo or optic flow have now been studied for more than 20 years. Nev-
ertheless, only little attention has been paid to a subtle numerical ap-
proximation of derivatives. In the area of numerics for hyperbolic partial
differential equations (HDEs) it is, however, well-known that such issues
can be crucial for obtaining favourable results. In this paper we show that
the use of hyperbolic numerics for variational approaches can lead to a
significant quality gain in computational results. This improvement can
be of the same order as obtained by introducing better models. Applying
our novel scheme within existing variational models for stereo reconstruc-
tion and optic flow, we show that this approach can be beneficial for all
variational approaches to correspondence problems.

1 Introduction

Numerous tasks in the field of computer vision belong to the class of correspon-
dence problems, where one has to match pixels of two or more images. Popular
examples are stereo reconstruction and optic flow, that both amount to comput-
ing a displacement field between two images. In the stereo context, the absolute
value of this field is called disparity and is needed to recover the depth informa-
tion of a static scene. For optic flow, the displacement field is called optic flow
field and gives information about the dynamics of a moving scene.

A successful class of techniques for solving correspondence problems like stereo
or optic flow are the variational approaches that find the displacement field as the
minimiser of a continuous energy functional. Those methods have been studied
for more than two decades, starting from the optic flow approach of Horn and
Schunck [1]. During this period of time, lots of effort has been spent to improve
the quality of models [2, 3, 4, 5, 6, 7].

In order to apply those continuous models to sampled digital images and for
solving the minimisation problem on a computer, one certainly has to discretise
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occurring image derivatives. This task obviously offers a certain degree of free-
dom in choosing a well-suited derivative approximation. Surprisingly, this issue
has hardly been studied for variational approaches to correspondence problems.
If the discretisation is discussed at all, most approaches use “standard” central
finite difference approximations [3, 4, 5].

For variational approaches to image restoration, sophisticated approximation
schemes have already been considered for a long time [8, 9]. They also have
been thoroughly studied in the field of hyperbolic partial differential equations
(HDEs) [10,11], where one simulates the transport of liquids or gases, resulting
in a problem setting related to correspondence problems: Given an initial density
distribution (first image) and the velocity of transport (displacement), compute
the density distributions at later times (second image). One realises that the role
of known and unknown is switched compared to correspondence problems.

In this paper we make use of this relation between HDEs and correspondence
problems for the first time in the literature. In the style of numerical schemes
for HDEs, we develop an adaptive discretisation scheme that decides, based
on a smoothness measure, on a suitable approximation of image derivatives at
each point. This scheme is then used within variational frameworks for stereo
reconstruction and optic flow. Experiments show that this approach improves the
quality of results in the same order as can be achieved with model refinements.

This paper is organised as follows: In Sect. 2 we investigate the importance of
an appropriate approximation of image derivatives on the example of simple 1-D
correspondence problems. Based on this we develop the adaptive discretisation
scheme that is applied to stereo reconstruction and optic flow in Sect. 3 and
Sect. 4, respectively. There we also show corresponding experiments. The paper
is then concluded by a summary and an outlook on future work in Sect. 5.

2 Hyperbolic Numerics for 1-D Variational Approaches

2.1 A Variational Approach for 1-D Correspondence Problems

For simplicity, let us consider a 1-D signal sequence f(x, t) where x ∈ Ω denotes
the position in the signal domain Ω ⊂ IR and t ≥ 0 denotes time. In order to
compute the unknown displacement function u(x) that gives the displacements
from time t to t + 1, we minimise the energy functional

E(u) =
∫

Ω

[
(fx u + ft)2 + α u2

x

]
dx , (1)

where subscripts denote partial derivatives.
The term (fx u+ft)2 is called data term and models how well the displacement

u matches the signal sequence f . We impose that the signal values are invariant
under their displacement, i.e., f(x+u, t+1) = f(x, t). Assuming that u is small
and f sufficiently smooth, we can perform a linearisation that finally leads to the
presented data term. Note that in the 1-D setting, the data term alone allows to
compute a solution u = −ft/fx, if fx �= 0. However, in 2-D this will no longer
be the case.
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There, and also to obtain a solution in flat signal regions, the smoothness term
u2

x is needed. By penalising large derivatives of u, it allows to smoothly fill in
the displacement function where the data term is not sufficient. Its contribution
to the energy is steered by a smoothness weight α > 0.

In order to actually compute a minimiser u of the energy (1), the calculus of
variations states that u necessarily has to fulfil the Euler-Lagrange equation

fx (fx u + ft) − α uxx = 0 , (2)

with homogeneous Neumann boundary conditions.

2.2 A Closer Look into Discretisation Issues

For solving the Euler-Lagrange equation (2) on a computer, we have to discretise
the signal f , the displacement u and their derivatives fx, ft and uxx. Note that
the image derivatives that occur in the Euler-Lagrange equation (2) are in general
the same as in the linearised data term of the energy (1). Thus, the data term
suffices to find out which derivatives have to be approximated.

Let us start with the discretisation of the signals f and u. To this end we
sample them on a spatio-temporal discrete grid which yields the approximations
f(xi, tk) ≈ fk

i and u(xi) ≈ ui where xi := (i − 1
2 )h and tk = k τ for a spatial

grid size h and a time step size τ . In this paper we will only consider the two
frames fk

i and fk+1
i , assuming a temporal sampling of τ = 1.

Derivative Approximations. The discretisation of the occurring derivatives
can be done in different ways. We use the popular concept of finite differences,
as for example presented in [12]. As notation for the approximation of partial
derivatives we use fd(xi, tk) ≈ (fd)k

i to denote the corresponding finite difference
discretisation.

I. Temporal Discretisation. For the time derivative we use the forward difference

(ft)k
i :=

1
τ

(
fk+1

i − fk
i

)
, (3)

as this is the only reasonable choice, given fk
i and fk+1

i .

II. Spatial Discretisation of First Order. The approximation of fx offers different
possibilities for (fx)k

i . Basic choices are forward, backward and central differences:

D+
x fk

i :=
1
h

(
fk

i+1 − fk
i

)
, D+

x fk+1
i :=

1
h

(
fk+1

i+1 − fk+1
i

)
,

D−
x fk

i :=
1
h

(
fk

i − fk
i−1

)
, D−

x fk+1
i :=

1
h

(
fk+1

i − fk+1
i−1

)
, (4)

D0
xfk

i :=
1
2h

(
fk

i+1 − fk
i−1

)
, D0

xfk+1
i :=

1
2h

(
fk+1

i+1 − fk+1
i−1

)
,

where D+ denotes forward, D− backward and D0 central differences, respec-
tively, that can be computed at the time level k or k + 1.



Hyperbolic Numerics 639

Note that the approximation error of the one-sided differences (forward and
backward) is in O(h), whereas their central counterparts only involve an error of
O(h2). This, together with the unbiased stencil orientation, explains why they
are a popular “standard” choice in image processing applications. To further
reduce the approximation error one may consider averaged differences, taking
into account the time level k and k +1. In the remainder of this paper those will
be referred to as “standard” derivative approximation. They are given by

D0
xf

k+ 1
2

i :=
1
2

(D0
xfk

i + D0
xfk+1

i

)
=

1
4h

(
fk

i+1 − fk
i−1 + fk+1

i+1 − fk+1
i−1

)
. (5)

III. Spatial Discretisation of Second Order. Finally we have to approximate the
second order spatial derivative of the displacement function. As this choice is
not crucial we propose a simple central approximation

(uxx)i := D−
x

(D+
x ui

)
=

1
h2

(ui+1 − 2ui + ui−1) . (6)

Why the Discretisation of fx Matters. To show that an appropriate choice
of (fx)k

i is crucial for computing reasonable displacements u, we conduct a small
experiment: Consider the two frames of a signal sequence in Fig. 1 (a). Here,
the signal is displaced by one position to the right in its middle part and stays
unchanged otherwise, which is also indicated in the ground truth displacement
in Fig. 1 (b). Note that this example comprises smooth as well as discontinuous
signal and displacement regions which make it rather indicative.

In Fig. 1 (c)–(e) we depict computed displacements using different discretisa-
tions for fx. The displacements were obtained as the solution of a linear system
of equations that arises from the discretised Euler-Lagrange equation (2). As
the system matrix is tri-diagonal, it can directly be solved via the Thomas algo-
rithm [13]. Further note that we set the smoothness weight α = 10−4, to clearly
see the influence of the data term where fx occurs.

When comparing the displacements in Fig. 1 (c)–(e), the large influence of the
choice of (fx)k

i becomes obvious: Averaged central differences only perform well
in the smooth signal regions at the left and right boundaries. At discontinuities
they suffer from over- and undershoots. One-sided differences perform either
favourably or fail totally. Obviously, the correct orientation matters here.

When using the “correct” one-sided differences, the displacement almost co-
incides with the ground truth, except at one point. This is, however, not due to
the numerics, but is caused by the occlusion at the jump in the displacement.
Hence the considered point at time level k does not possess a matching point
at time level k + 1 and its displacement is undefined. In the ground truth, we
assign to this point the displacement of its right neighbour.

The observed behaviour in our experiment can be explained when looking into
the theory of HDEs [10, 11]. There, so called upwind schemes are a widely used
concept where the signal derivatives are approximated by “correctly oriented”
one-sided differences. The correct orientation in our case means opposite to the
displacement direction, see our experiment.
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Fig. 1. Top row: (a) Signal at time k (solid) and k + 1 (dotted). (b) Ground truth
displacement. Bottom row: (c) Displacement computed using standard averaged cen-
tral differences (solid), compared to the ground truth (dotted). (d) Same for one-sided
forward differences. (e) Same for one-sided backward differences.

2.3 An Adaptive Discretisation Scheme

After explaining the outcome of our experiment with the help of hyperbolic
numerics, we now adapt a successful concept from this area for our purpose.

Recall that one-sided upwind differences – that are low-order approxima-
tions – perform well at signal discontinuities. However, they involve a higher
discretisation error than central differences that are high-order approximations
and that perform favourably in smooth signal regions. Hence a natural idea is to
combine the two strategies by using high-order approximations in smooth signal
parts and low-order ones at discontinuities.

Slightly more involved techniques utilising this idea are the high-resolution
methods [11], developed in the context of HDEs. They use a nonlinear blend of
low- and high-order approximations, steered by a smoothness measure. Adapting
this methodology to the variational framework will result in an adaptive high-
resolution-type (HRT) discretisation scheme for correspondence problems, that
will be presented now.

Measuring smoothness. First we discuss how to determine the smooth and dis-
continuous regions of a signal. Therefore we introduce a smoothness measure

Θi := Θ
(
fk

i , fk+1
i

)
:=

∣∣D−
x fk

i −D+
x fk

i

∣∣ +
∣∣D−

x fk+1
i −D+

x fk+1
i

∣∣ , (7)

that is close to 0 in smooth regions where backward and forward differences of
fk

i and fk+1
i are almost identical, and large at discontinuities of fi.

Determining the Upwind Directions. Next we need to determine the appropri-
ate upwind directions for the one-sided differences. Note that our experiment
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from Fig. 1 has shown that this is very crucial. We propose to compute a pre-
dictor solution ũ whose sign determines the upwind direction. The predictor is
computed using standard averaged central differences and a comparatively large
smoothness weight, e.g., α̃ = 1 to cope with outliers caused by the possibly
less appropriate high-order discretisation. With its help the low-order upwind
approximation fL

x of fx is defined as

(
fL

x

)
i
:=

⎧⎪⎪⎨
⎪⎪⎩

D−
x fk

i , if ũi > 0 ,

D+
x fk

i , if ũi < 0 ,

(fH
x )i , if ũi = 0 ,

(8)

where (
fH

x

)
i
:= D0

xf
k+ 1

2
i (9)

denotes the high-order standard approximation of fx using averaged central
differences. Revisiting the experiment from Fig. 1, we realise that this definition
agrees with the results obtained there.

The High-Resolution-Type (HRT) Discretisation Scheme. Now we have every-
thing at hand to define the adaptive HRT discretisation scheme as

(fx)k
i :=

(
fL

x

)
i
+ Φ (Θi)

[(
fH

x

)
i
− (

fL
x

)
i

]
, (10)

using a blending function Φ(Θi). It is close to 1 in smooth signal regions (indi-
cated by Θi), yielding a high-order approximation there. At discontinuities it is
close to 0 which leads to a low-order approximation that is better suited there.

For the actual choice of Φ(Θi) we propose

Φ(Θi) :=

{
1 − Θi

T , if 0 ≤ Θi < T ,

0 , else ,
(11)

using a threshold parameter T > 0. Note that for T → 0 we obtain the upwind
scheme and for T → ∞ one falls back to a standard scheme.

Applying the HRT scheme to the signal sequence from Fig. 1 gives the same
result as with the appropriate upwind scheme, hence we omit an additional
figure. However, for more challenging stereo and optic flow problems that we
discuss in Sect. 3 and 4, the blending of the HRT scheme will give results superior
to a pure upwind scheme.

3 Integration into Variational Stereo Approaches

In this section we integrate our adaptive HRT discretisation scheme into a recent
variational stereo approach by Slesareva et al. [6]. We restrict ourselves to the
rectified scenario where displacements can only occur in horizontal direction
and thus one has to solve a 1-D correspondence problem for each image row.
However, it makes sense to couple those via a 2-D smoothness assumption, as
will be described now.
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3.1 Variational Stereo

We consider the image pair fl(x) ≡ f(x, t) and fr(x) ≡ f(x, t + 1) denoting the
left and right view of a static scene, respectively. Here, x := (x, y)� denotes
the location within a rectangular image domain Ω2 ⊂ IR2. Further assume
that the images are presmoothed by a Gaussian convolution of standard de-
viation σ. The unknown scalar-valued disparity is given by the absolute value of
u which can be written as u := (u, 0)� in the rectified case.

In accordance to [6], the disparity is found by minimising the energy

E(u) =
∫

Ω2

[M(u) + α V (u)] dx . (12)

The data term

M(u) = ΨM

(
|fr(x+u) − fl(x)|2 + γ |∇fr(x+u) −∇fl(x)|2

)
, (13)

where ∇ := (∂x, ∂y)� denotes the spatial gradient operator, combines the bright-
ness and gradient constancy assumption weighted by γ > 0. The latter makes the
method more robust under illumination changes. To cope with outliers caused
by noise or occlusions, a robust penaliser function ΨM (s2) :=

√
s2 + ε2 using a

small regularisation parameter ε > 0 is employed that results in modified L1

penalisation. As will be described below, the linearisation of the data term is
postponed to the minimisation phase to allow for a correct handling of large
displacements.

The smoothness term
V (u) = ΨV (|∇u|2) , (14)

uses the same robust non-quadratic penaliser function as the data term, i.e.,
ΨV = ΨM , resulting in Total Variation regularisation [8].

Concerning the minimisation of the energy (12), we refer to [6] for the cor-
responding Euler-Lagrange equation. To solve it, we employ a coarse-to-fine
multiscale warping approach [4] and compute on each warping level small flow
increments du using the linearised data term

ΨM

(
(fx du + ft)

2 + γ
[
(fxx du + fxt)

2 + (fxy du + fyt)
2
])

. (15)

Note that the discretised Euler-Lagrange equation now leads to a nonlinear sys-
tem of equations. After linearisation, we obtain a large but sparse linear system,
which can be solved efficiently by an iterative solver of Gauß-Seidel type [14].

3.2 The HRT Discretisation Scheme for Variational Stereo

We now adapt the HRT scheme from Sect. 2.3 to the stereo setting. First, we
extend the discrete grid to a 2-D version with grid sizes hx and hy in x- and
y-direction, respectively. The images and the disparity are then approximated
by fl(xi, yj) ≈ fk

i,j , fr(xi, yj) ≈ fk+1
i,j and u(xi, yj) ≈ ui,j .
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I. Smoothness Measures. In the 2-D stereo case, we first of all need distinct
smoothness measures Θx, Θy and Θxy for the x-, y- and xy-direction, respec-
tively. For Θx we use the according expression (7) from the 1-D case and Θy is
obtained by using y- instead of x-differences. With their help, the mixed expres-
sion is defined as Θxy = Θx + Θy .

II. Derivative Approximations. Inspecting the linearised data term from (15),
we realise that now also the second-order derivatives fxx, fxt, fxy and fyt need
to be discretised.

Due to space limitations we will exemplify our approach for fxy. The other
derivatives are than approximated accordingly. Note that given the two signals
fk

i,j and fk+1
i,j , the time derivative ft is always approximated as in (3).

We start with the high-order approximation of fxy = ∂xfy. This translates to
the finite difference case as

(fH
xy)k

i,j = D0
x

(
D0

yf
k+ 1

2
i,j

)
=

1
2

[
D0

x

(D0
yfk

i,j

)
+ D0

x

(D0
yfk+1

i,j

)]
(16)

=
1

4hy

[(
D0

x

(
fk

i,j+1 − fk
i,j−1

))
+

(
D0

x

(
fk+1

i,j+1 − fk+1
i,j−1

))]
(17)

=
1

8hxhy

[
fk

i+1,j+1 − fk
i+1,j−1 −

(
fk

i−1,j+1 − fk
i−1,j−1

)
(18)

+fk+1
i+1,j+1 − fk+1

i+1,j−1 −
(
fk+1

i−1,j+1 − fk+1
i−1,j−1

)]
.

Note that for fxx we employ the central discretisation in accordance to (6).
In the low-order case we use the upwind discretisation of (fx)k

i,j , steered by
the predictor ũ. For the y-derivative we employ the averaged central difference
approximation as in the rectified scenario, the displacement in y-direction is
always zero. Thus we obtain for ũ > 0 :

(fL
xy)k

i,j = D−
x

(
D0

yfk
i,j

)
=

1
2hxhy

(
fk

i,j+1−fk
i,j−1−

(
fk

i−1,j+1−fk
i−1,j−1

))
, (19)

and a corresponding expression for ũ < 0. Note that we do not need a larger
smoothness weight α̃ to compute ũ in this case since an appropriate α for usual
stereo pairs will be large enough.

3.3 Experiments for Variational Stereo

We now show results for disparity computations using the approach of Slesareva
et al. [6] with different derivative approximations.

We use greyscale versions of the stereo image data from the Middlebury Uni-
versity [15]1. To measure the quality of estimated disparities compared to the
given ground truth disparities, we employ the bad pixel error (BPE) measure [15].
As fixed parameters we set ε = 10−3 and T = 1. In the stereo case we set σ = 0.5
and for the optic flow experiments in Sect. 4 we set σ = 0.8.
1 Available under http://vision.middlebury.edu/stereo
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In Fig. 2, the results for the Plastic pair are depicted. Considering the bad
pixel maps in Fig. 2 (b)–(c), we see that the HRT scheme improves the results
in the vicinity of image discontinuities and at the boundaries. Those areas are
marked grey in the error maps. Note that the artefacts in Fig. 2 (f) are again
caused by occlusions. The improvement also becomes visible in the BPE mea-
sures that are summarised in Table 1 that also lists other Middlebury pairs
and parameter settings. Also error measures for a pure upwind scheme are given
there. Comparing them to the HRT scheme shows that the blending of the latter
scheme also pays off in terms of quality measures.

Fig. 2. Top row: (a) Left image of the Plastic pair. (b) Bad pixels for approach with
a standard derivative approximation (bad pixels are coloured black). (c) Same for the
HRT scheme. Bottom row: (d) Ground truth disparity. (e) Disparity for approach
with a standard derivative approximation. (f) Same for the HRT scheme.

4 Extension to Variational Optic Flow

Having presented how to employ the adaptive HRT discretisation scheme for
stereo, its extension to the optic flow case is more or less straightforward.

For optic flow we consider a presmoothed image sequence f(x, t) and want
to compute a flow field w := (u, v)�, where u and v give the displacements in
x- and y-direction, respectively. Using the method of Brox et al. [4] that was
the basis for the stereo approach of Slesareva et al. [6], we compute w as the
minimiser of an energy functional similar to the one from (12).

One difference concerning the HRT scheme is that we now also have to ap-
proximate fy and fyy. This, however, works accordingly to the stereo case.

More problematic are the low-order upwind approximations of fxy, as they
now depend on a predictor w̃ = (ũ, ṽ)�. Hence we need to do an extensive case
distinction taking into account all possible combinations of the signs of ũ and ṽ.
For example, let ũ > 0 and ṽ < 0 then
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Table 1. BPE measures and parameters for stereo experiments

Image Pair Derivative Approximation Parameters BPE
standard α = 5.5, γ = 190.0 25.85

Plastic upwind α = 5.5, γ = 190.0 21.35
HRT scheme α = 5.5, γ = 190.0 18.85

standard α = 8.0, γ = 9.5 17.45
Teddy upwind α = 8.0, γ = 9.5 16.94

HRT scheme α = 8.0, γ = 9.5 16.75

standard α = 4.5, γ = 0.5 3.06
Venus upwind α = 4.5, γ = 0.5 2.78

HRT scheme α = 4.5, γ = 0.5 2.77

(fL
xy)k

i,j = D−
x

(
D+

y fk
i,j

)
=

1
hxhy

(
fk

i,j+1 − fk
i,j −

(
fk

i−1,j+1 − fk
i−1,j

))
. (20)

In order to show that the HRT scheme also performs favourably for optic
flow, we performed experiments using the recent optic flow data sets from the
Middlebury University [16]2. In Fig. 3 we show results obtained for the Urban3
sequence. Note that the error maps now show the magnitude of the average
angular error (AAE) [17] measure. Inspecting them, the favourable performance
of the HRT scheme in the marked regions becomes visible, which is also reflected
in the AAE measures shown in Table 2. It again comprises also other Middlebury
sequences, parameter settings and results for the upwind scheme. Concerning the
latter, we see that also for optic flow, the HRT scheme performs better.

Fig. 3. Top row: (a) Frame 10 of the Urban3 sequence. (b) AAE map for approach
with a standard derivative approximation. (c) Same for the HRT scheme. Bottom
row: (d) Flow magnitude of the ground truth. (e) Flow magnitude for approach with
a standard derivative approximation. (f) Same for the HRT scheme.

2 Available under http://vision.middlebury.edu/flow
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Table 2. AAE measures and parameters for optic flow experiments

Image Sequence Derivative approximation Parameters AAE
standard α = 4.5, γ = 4.0 5.71

Urban3 upwind α = 4.5, γ = 4.0 4.58
HRT scheme α = 4.5, γ = 4.0 4.11

standard α = 50.0, γ = 50.0 4.72
RubberWhale upwind α = 50.0, γ = 50.0 4.73

HRT scheme α = 50.0, γ = 50.0 4.34

standard α = 7.0, γ = 10.0 1.94
Dimetrodon upwind α = 7.0, γ = 10.0 3.06

HRT scheme α = 7.0, γ = 10.0 1.88

5 Conclusions and Outlook

In this paper we have presented a sophisticated numerical scheme for the approx-
imation of spatial image derivatives in variational approaches to correspondence
problems. Our experiments demonstrated that such a scheme allows to tangibly
improve the quality of results, which has in more than 20 years of research in
this field only been experienced by model refinements. We hence conjecture that
the numerics can be a fruitful alternative starting point for further advances.

This finding is no surprise for people acquainted with the theory of HDEs
where sophisticated numerical schemes have been thoroughly investigated. In
this paper we have seen that HDEs and variational approaches share some
structural similarities. However, we were the first to utilise this similarity for
developing a well-engineered numerical scheme for variational approaches.

We want to stress that the adaptive discretisation scheme developed within
this paper is for sure not the only lucrative technique that can be adapted from
the field of HDEs. Our current research is thus concerned with exploring further
directions that may lead to better numerical schemes for variational approaches
to correspondence problems.
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