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Optic Flow in Harmony

Henning Zimmer  Andrgs Bruhn  Joachim Weickert

Abstract

Most variational optic °ow approaches just consist of three ©n-
stituents: a data term, a smoothness term and a smoothness vght.
In this paper, we present an approach that harmonises thesehtee
components. We start by developing an advanced data term thais
robust under outliers and varying illumination conditions. This is
achieved by using constraint normalisation, and an HSV colar rep-
resentation with higher order constancy assumptions and a eparate
robust penalisation. Our novel anisotropic smoothness is @signed to
work complementary to the data term. To this end, it incorporates
directional information from the data constraints to enable a Iling-in
of information solely in the direction where the data term gives no in-
formation, yielding an optimal complementary smoothing behaviour.
This strategy is applied in the spatial as well as in the spato-temporal
domain. Finally, we propose a simple method for automaticdly deter-
mining the optimal smoothness weight. This method bases on aovel
concept that we call \optimal prediction principle" (OPP). It states
that the °ow eld obtained with the optimal smoothness weight allows
for the best prediction of the next frames in the image sequete. The
bene ts of our \optic °ow in harmony" (OFH) approach are demon-
strated by an extensive experimental validation and by a conpetitive
performance at the widely used Middlebury optic °ow benchmak.

1 Introduction

Despite almost three decades of research on variational mptow approaches,
there have been hardly any investigations on the compatiliy of their three
main components: the data term, the smoothness term and thensothness
weight. While the data term models constancy assumptions dmage fea-
tures, the smoothness term penalises °uctuations in the °ow @] and the
smoothness weight determines the balance between the twots. In this pa-
per, we present theoptic °ow in harmony (OFH) method, which harmonises
the three constituents by following two main ideas:

() Widely-used data terms such as the one resulting from the earised
brightness constancy assumption only constrain the °ow in endirection.
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However, most smoothness terms impose smoothness also indh& con-
straint direction, leading to an undesirable interferenceA notable exception
is the anisotropic smoothness term proposed by Nagel and Eitkann [27].
At large image gradients, their regulariser solely smootka@long image edges.
For a basic data term modelling the brightness constancy asaption, this
smoothing direction is orthogonal to the data constraint dection and thus
both term complement each other in an optimal manner. Unfortoately, this
promising concept of complementarity between data and smibmess term
has not been further investigated after 1986. Our paper rass this concept
for state-of-the-art optic °ow models by presenting a novetomplementary
smoothness termn conjunction with an advanced data term.

(i) Having adjusted the smoothing behaviour to the imposed dataon-
straints, it remains to determine the optimal balance betwen the two terms
for the image sequence under consideration. This comes ddeiselecting an
appropriate smoothness weight, which is usually considera ditcult task.
We propose a method that is easy to implement for all variatieal optic
°ow approaches and nevertheless gives surprisingly goodules It bases on
the assumption that the °ow estimate obtained by an optimal smothness
weight allows for the best possible prediction of the nextdmes in the image
sequence. This novel concept we nanegtimal prediction principle (OPP).

1.1 Related Work

In the rst ten years of research on optic °ow, several basic stregies have
been considered, e.g. phase-based methods [15], local w@s$h[23, 5] and
energy-based methods [19]. In recent years, the latter cdasf methods be-
came increasingly popular, mainly due to their potential fogiving highly

accurate results. Within energy-based methods, one cantiiguish discrete
approaches that minimise a discrete energy function and aodten proba-
bilistically motivated, and variational approaches that minimise a continuous
energy functional.

Our variational approach naturally incorporates conceptshat have proven

their bene ts over the years. In the following, we brie°y reviee advances in
the design of data and smoothness terms that are in°uential f@ur work.

Data Terms. To cope with outliers caused by noise or occlusions,
Black and Anandan [6] replaced the quadratic penalisationdm Horn and
Schunck [19] by a robust subquadratic penaliser.

To obtain robustness under additive illumination changesBrox et al. [8]
combined the classical brightness constancy assumptio®] Wwith the higher-
order gradient constancy assumption [37, 31]. Bruhn and Vd#ert [9] im-
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proved this idea by a separate robust penalisation of brighéss and gradient
constancy assumption. This gives advantages if one of theawonstraints
produces an outlier. Recently, Xu et al. [45] went a step furr and estimate
a binary map that locally selects between imposing either ightness or gra-
dient constancy. An alternative to higher-order constancy ssumptions can
be to preprocess the images by a structure-texture decompms [40].

In addition to additive illumination changes, realistic senarios also encom-
pass a multiplicative part [38]. For colour image sequencethis issue can
be tackled by normalising the colour channels [17], or by ug alternative
colour spaces with photometric invariances [17, 38, 24]. dhe is restricted
to greyscale sequences, using log-derivatives [24] can beful.

A further successful modi cation of the data term has been repted by
performing a constraint normalisation [34, 21, 32]. It preants an undesirable
overweighting of the data term at large image gradient locains.

Smoothness Terms.  First ideas go back to Horn and Schunck [19] who
used ahomogeneousegulariser that does not respect any °ow discontinuities.
Since di®erent image objects may move in di®erent directionds, however,
desirable to also permit discontinuities.

This can for example be achieved by usingage-drivenregularisers that take
into account image discontinuities. Alvarez et al. [1] promed an isotropic
model with a scalar-valued weight function that reduces theegularisation
at image edges. An anisotropic counterpart that also explaitthe directional
information of image discontinuities was introduced by Nadgend Enkel-
mann [27]. Their method regularises the °ow eld along image gds but
not across them. Note that for a basic data term modelling therlghtness
constancy assumption, the image edge direction coincideghathe comple-
mentary direction orthogonal to the data constraint direcion.

Of course, not every image edge will coincide with a °ow edgehds, image-
driven strategies are prone to give oversegmentation aréets in textured
image regions. To avoid this,°ow-driven regularisers have been proposed
that respect discontinuities of the evolving °ow eld and are herefore not
misled by image textures. In the isotropic setting this consedown to the use
of robust, subquadratic penalisers which are closely redat to line processes
[7]. For energy-based optic °ow methods, such a strategy wasad in [33, 31].
An anisotropic extension was later presented by Weickert angSichnArr [42].
The drawback of °ow-driven regularisers lies in less welldalised “ow edges
compared to image-driven approaches.

Concerning the individual problems of image- and °ow-drivestrategies, the
idea arises to combine the advantages of both worlds. Thisajavas rst



achieved in the discrete method of Sun et al. [36]. There, tlaithors devel-
oped an anisotropic regulariser that uses directional °ow deatives steered
by image structures. This allows to adapt the smoothing diaion to the di-
rection of image structures and the smoothing strength to # °ow contrast.
We call such a strategyimage- and °ow-drivenregularisation. It combines
the bene ts of image- and °ow-driven methods, i.e. sharp °ow edg without
oversegmentation problems.

The smoothness terms discussed so far only assume smoothreéghe °ow
“eld in the spatial domain. As image sequences usually cons@atmore than
two frames, yielding more than one °ow eld, it makes sense tosa assume
temporal smoothness of the °ow elds. This leads tspatio-temporalsmooth-
ness terms. In a discrete setting they go back to Murray and Bton [25]. For
variational approaches, an image-driven spatio-temporamoothness terms
was proposed by Nagel [26] and a °ow-driven counterpart was ¢atpresented
by Weickert and SchnArr [43].

Automatic Parameter Selection. It is well-known that an appropriate

choice of the smoothness weight is crucial for obtaining faurable results.
Nevertheless, there has been remarkably little research orethods that au-

tomatically estimate the optimal smoothness weight or othhemodel param-
eters.

Concerning an optimal selection of the smoothness weight faariational op-

tic °ow approaches, Ng and Solo [28] proposed an error measuitgici can

be estimated from the image sequence and the °ow estimate anlysing this

measure, a brute-force search for the smoothness weighttthaves the small-
est error is performed. Computing the proposed error measuis, however,
computationally expensive, especially for robust data ters. Ng and Solo [28]
hence restricted their focus to the basic method of Horn and [8mck [19]. In

a Bayesian framework, a parameter selection approach tharc also handle
robust data terms was presented by Krajsek and Mester [20].hi6 method

jointly estimates the °ow and the model parameters where thaiter encom-

pass the smoothness weight and also the relative weights o®drent data
terms. This method does not require a brute-force search, tiilne minimisa-

tion of the objective function is more complicated and onlyamputationally

feasible if certain approximations are performed.

1.2 Our Contributions

The OFH method is obtained in three steps. We rst develop a ralst and
invariant data term. Then an anisotropic image- and °ow-drien smoothness



term is designed that works complementary to the data term. iRally we pro-
pose a simple method for automatically determining the optial smoothness
weight for the given image sequence.

Our data term combines the brightness and the gradient coresicy as-
sumption, and performs a constraint normalisation. It furher uses a Hue-
Saturation-Value (HSV) colour representation with a separa&trobusti cation
of each channel. The latter is motivated by the fact that eaclchannel in the
HSV space has a distinct level of photometric invariance andformation
content. Hence, a separate robusti cation allows to choosedhmost reliable
channel at each position. Our anisotropic complementary sothness term
takes into account directional information from the constaints imposed in
the data term. Across\constraint edges", we perform a robust penalisation
to reduce the smoothing in the direction where the data termiges the most
information. Along constraint edges, where the data term ges no infor-
mation, a strong Tling-in by using a quadratic penalisationmakes sense.
This strategy not only allows for an optimal complementari between data
and smoothness term, but also leads to a desirable image- atwv-driven
behaviour. We further show that our regulariser can easilyebextended to
work in the spatio-temporal domain. Our method for determimg the op-
timal smoothness weight bases on the proposed OPP concepthid results
in nding the optimal smoothness weight as the one correspoing to the
°ow eld with the best prediction quality. To judge the latter, we evaluate
the data constraints between the rst and the third frame of tle sequence.
Under mild assumptions (constant speed, linear trajectoryfmbjects) this
can be realised by simply doubling the °ow vectors. Due to itsmplicity,
our method is easy to implement for all variational optic °ow pproaches,
but nevertheless produces surprisingly good results.

The present article extends our shorter conference pape6]dy the following
points: (i) A more extensive derivation and discussion of the data terngii)
An explicit discussion on the adequate treatment of the hue ahnel of the
HSV colour space.(iii) A taxonomy of existing smoothness terms within a
novel general framework. The latter allows to reformulate ost existing as
well as our novel regulariser in a common notation(iv) The extension of
our complementary regulariser to the spatio-temporal donr/a (v) A simple
method for automatically selecting the smoothness weight(vi) A deeper
discussion of implementation issues(vii) A more extensive experimental
validation.

Organisation.  In Section 2 we present our variational optic °ow model
with the robust data term and the complementary smoothnessetm. The



latter is then extended to the spatio-temporal domain. Sen 3 describes the
method proposed for determining the smoothness weight. Aftéliscussing
implementation issues in Section 4, we show experiments iec8on 5. The
paper is nished with conclusions and an outlook on future whrin Section 6.

2 Variational Optic Flow

Let f (x) be a grayscale image sequence where= (X;y;t)”. Here, the vector
(x;y)” 2 - denotes the location within a rectangular image domain -% R?,
andt 2 [0;T] denotes time. We further assume that is presmoothed by
a Gaussian convolution: Given an image sequentgx), we obtain f (x) =
(Ks,mfg)(x), whereKs, is a spatial Gaussian of standard deviatiozand ©
denotes the convolution operator.
The optic °ow eld w := (u;v;1)” describes the displacement vector eld
between two frames at timet and t + 1. It is found by minimising a global
energy functional of the general form
Z ¢
E(u;v) = 'M (u;v) + ®V(r pu;r ,v) dxdy ; 1)

wherer , = (@;@)” denotes the spatial gradient operator. The term
M (u; v) denotes the data term,V(r ,u;r ,v) the smoothness term, an® > 0
is a smoothness weight. Note that the energy (1) refers to theatial case
where one computes one °ow eld between two frames at timeand t + 1.
The more general spatio-temporal case that uses all frame2 [0; T] will be
presented in Section 2.3.

According to the calculus of variations [14], a minimiseru v) of the energy
(1) necessarily has to ful I the associated Euler-Lagrangeeations

¢e
av i ®.@@v)+ @@V,
aMie'@@V)+ @ @V

with homogeneous Neumann boundary conditions.

0; (2)
0 (3)

2.1 Data Term

Let us now derive our data term in a systematic way. The clagsl starting
point is the brightness constancy assumptionsed by Horn and Schunck [19].
It states that image intensities remain constant under theidisplacement, i.e.

f (x+w) = f(x). Assuming that the image sequence is smooth and that the



displacements are small, we can perform a rst-order Tayloxpansion that
yields the linearisedoptic °ow constraint (OFC)

0=feu+fyv+fi=rifw; (4)

wherer 3 := (@; @; @) is the spatio-temporal gradient operator and sub-
scripts denote partial derivatives. With a quadratic penasation, the corre-
sponding data term is given by

M(u;v) = |rgf W¢2: w”JoWw ; (5)

with the tensor
Jo:=r3fr§f : (6)

The single equation given by the OFC involves two unknowng and v. It

is thus not suzcient to compute a unique solution, which is knan as the

aperture problem [4]. Nevertheless, the OFC does allow to cpuate the

°ow component orthogonal to image edges, the so-calledrmal °ow. For

jr .fj&0itis de ned as

“ gt
Lirofiir £

|
Wp = up;l7 o=

(7)

Normalisation. Our experiments will show that normalising the data term
can be bene cial. Following [34, 21, 32] and using the abbration u :=
(u;v)”, we rewrite the data termM, as

) . M 1.2
i ¢, ) o rafu fi
My(uv) = rafu+f, = jrofj 22—+ ——
l( ) 2 t JZJ Jr2fJ Jrsz
oo M 1.2
L IR L
raofj jr 2t j?
A !
i g2 2 . .

}

The term d constitutes a projection of the di®erence between the estitad
°ow u and the normal °ow u,, in the direction of the image gradientr ,f . In
a geometric interpretation, the termd describes the distance fronu to the
line I in the uv-space that is given by

v=i 2uj — 9



Figure 1: Geometric interpretation of the rewritten data tem (8).

On this line, the °ow u has to lie according to the OFC (4), and the normal
°owW uj, is the smallest vector that lies on this line. A sketch of thisituation
is given in Figure 1. Our geometric interpretation suggesthat one should
ideally penalise the distancel in a data term M,(u;Vv) = d?. The data term
M1, however, weighs this distance by the squared spatial imageadient, as
My(u;v) = jr ofj2d?, see (8). This results in a stronger enforcement of the
data constraint at high gradient locations. This overweigting is undesirable
as large gradients can be caused by unreliable structuresicls as noise or
occlusions.
As a remedy, we normalise the data ternvi; by multiplying it with a factor
[34, 21]

1

Ao 4o

Ho =
where the regularisation parametef > 0 avoids division by zero and ad-
ditionally reduces the in°uence of small gradients, while non°uencing the
normalisation for gradients signi cantly larger than32. A normalised version
of M; can then be written as

Mo(u; V) = W Iow ; (11)
with the normalised tensor
i ¢
Joi= Jdo= o rafraf (12)
Gradient Constancy Assumption. To render the data term robust un-

der additive illumination changes, it was proposed to impesthe gradient
constancy assumption37, 31, 8]. In contrast to the brightness constancy
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assumption, it states that imagegradients remain constant under their dis-
placement, i.e.r of (x+w) = r ,f (x). A Taylor linearisation gives

rafxw=0; and r3fy,w=0 ; (13)

respectively. Combining both brightness and gradient cotecy assumption
in a quadratic way gives the data term

Ms(u;v) = w”JIw ; (14)

where the tensorJ can be written in the motion tensor notation [10] that
allows to combine the two constancy assumptions in a joint mesor

- ¢
= orafr gt rafr It rafyr iy (15)

where the parameter > 0 steers the contribution of the gradient constancy
assumption.

To normalise M 3, we replace the motion tensod by its normalised counter-
part

e
.I.

i ¢
a0"'°~1]xy = 3]O'|'°l3x'|'3y
HoJdo+ ° (I JIx + Iy Jy)
i .. ¢
o raf raf ¢ ¢ (16)

+° qu'r 3fx 1 3fx +Mjlr sfyrafy

with two additional normalisation factors de ned as

1 1
N A = 40
The normalised data termM, is given by
Ma(u;v) = w>Iw : (18)

Colour Image Sequences. In a next step we extend our data term to
multi-channel sequencesf ¢(x); f 2(x); f 3(x)). If one uses the standard RGB
colour space, the three channels represent the red, greerd dlue channel,



respectively. We couple the three colour channels in the mon tensor
x X . o X _ i o
LSRN TR TR T TR TR
i=1 i=1 i=1

(19)

1
—
w
—h
—
w Vv
—h

¢d

i .
y )

+° lpg'(lr3fxr§f>'( + M'jlrgf;rgf
with normalisation factors |i for each colour channef'. The corresponding

data term reads as
Ms(u;v) = w>3°w : (20)

Photometric Invariant Colour Spaces. Realistic illumination models
encompass a multiplicative in°uence [38], which cannot be mtaired by the
gradient constancy assumption that is only invariant undeadditive illumi-
nation changes. This problem can be tackled by using thdue Saturation
Value (HSV) colour space, as proposed in [17]. The hue channel is invatia
under global and local multiplicative illumination changs, as well as under
local additive changes. The saturation channel is only invant under global
multiplicative illumination changes, and the value channleexhibits no in-
variances. Mileva et al. [24] thus only used the hue channearfoptic “ow
computation as it exhibits the most invariances. We will adifionally use the
saturation and value channel, because they contain informan that is not
encoded in the hue channel.

As an example, consider the HSV decomposition of tHRubberwhaleimage
shown in Figure 2. As we can see, the shadow at the left of the vethe
(shown in the zoom) is not present in the hue and the saturatiochannel,
but appears in the value channel. Nevertheless, especiallyethue channel
discards a lot of image information, as can be observed foretistriped cloth.
This information is, on the other hand, available in the vale channel.

One problem when using a HSV colour representation is that theie channel
f 1 describes an angle in a colour circle, i.€12 [0*; 360°). The hue channel
is hence not di®erentiable at the interface betweef Gnd 36G. Our solution
to this problem is to consider the unit vector (co$?;sinf 1)> corresponding
to the anglef®. This results in treating the hue channel as two (coupled)
channels, which are both di®erentiable. The correspondingtion tensor for
the brightness constancy assumption consequently reads as

i ¢
3t = 1|r3cos:f1r>cosf1+ rgsinflrzsinfl (21)
0 Mo 3 3
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Figure 2: HSV decomposition on the example of theRub-
berwhale image from the Middlebury optic °ow database [2]
(http://vision.middlebury.edu/°ow/data/ ). First row, from left to right:

(&) Colour image with zoom in shadow region left of the wheel(b) Hue
channel, visualised with full saturation and value.Second row, from left to
right: (c) Saturation channel.(d) Value channel

where the normalisation factor is de ned as

1
1. .
" jr pcosf 42+ jr psinflj?+ 32

(22)

The tensori&, for the gradient constancy assumption is adapted accordilyg
Note that in the di®erentiable partsof the hue channel, the motion tensor
(21) is equivalent to our earlier de nition, as

racosf'rzcosf! + rasinf'r;sinf?!
3 ’ 3 ’

sin?f! B5f 1 €3f 1 +cosfl €sf T egf !
= €fteyft; (23)
where€ denotes the gradient in the di®erentiable parts of the hue chiael.

Robust Penalisers.  To provide robustness of the data term against out-
liers caused by noise and occlusions, Black and Anandan [6pposed to
refrain from a quadratic penalisation. Instead they use a bguadratic pe-
nalisation function 2 y; (s?), wheres? denotes the quadratic data term. Using
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such a robust penaliser within our data term yields
i ¢
Me(u;v) =2 v w>3°w (24)

ood results are reported in [8] for the subquadratic penaér 2, (s?) :=
s? + "2 using a small regularisation parametet > 0.
Bruhn and Weickert [9] later proposed aseparatepenalisation of the bright-
ness and the gradient constancy assumption, which is advageous if one
assumption produces an outlier. Incorporating this stratgy into our ap-
proach gives the data term

i ¢ i ¢
Mo(U;v) =2y w3 w +°aMIW>~1nyW ; (25)

where the separate motion tensors are de ned as

x x
3¢ = J5; and 3§ = Jay (26)

i=1 i=1

We will go further by proposing a separate robusti cation of &h colour
channel in the HSV space. This can be justi ed by the distinct iformation
content of each of the three channels, see Figure 2, that desvthe optic ow
estimation in di®erent ways. The separate robusti cation the downweights
the in°uence of less appropriate colour channels.

Final Data Term. Incorporating our separate robusti cation idea intoM ;
brings us to our nal data term
A !
i ., ¢ X i . ¢
M(u;v)= 2y wilw +° A WL W (27)
i=1 i=1

with the motion tensors 3 ! adapted to the HSV colour space as described
before. Note that our nal data term is (i) normalised, (i) combines the
brightness and gradient constancy assumption, an{di) uses the HSV colour
space with(iv) a separate robusti cation of all colour channels.

The contributions of our data term (27) to the Euler-Lagrang equations (2)

12



and (3) are given by

e M.
@M = a0 lw>3iw ¢ £flollu+ %012v+ %013 (28)
A i=1 |
x o
+° W ‘IJI w ¢ ijy 11U+%Xy 12V+%Xy 13 ;
i=1
x M ol
@l a,‘\’,llw Jiw ¢ £3]012u+ %022 %023 (29)

i
i

u
+ ° >@"1‘,(\’,|w‘1J'wcl;£5 £f] v% ;

Xy 12 Xy 2;2 Xy 2:3

where P]n.n denotes the entry in rowm and columnn of the tensorJ,
and 2 9, (s?) denotes the derivative of 3 (s?) w.r.t. its argument. Analysing
the terms (28) and (29), we see that the separate robusti cath of the HSV
channels makes sense: If a speci ¢ channel violates the imgibsonstancy as-
sumption at a certain location, the corresponding argumernf the decreasing
function 2 3, will be large, yielding a downweighting of this channel. Otér
channels that satisfy the constancy assumption then have awhinating in-
°uence on the solution. This will be con rmed by a speci ¢ expement in
Section 5.1.

2.2 Smoothness Term

Following the extensive taxonomy on optic “ow regularisergp], we sketch
some existing smoothness terms that led to our novel complentary regu-
lariser. We rewrite the regularisers in a novel framework #t uni es their

notation and eases their comparison.

Preliminaries for the General Framework. We rstintroduce concepts
that will be used in our general framework.
Anisotropic image-driven regularisers take into account cectional informa-
tion from image structures. These information can be obtaed by consider-
ing the structure tensor [16]
h [ X2
Sy,i= Kyo rof rof = Liss (30)
i=1
with an integration scale¥z >0. The structure tensor is a symmetric, positive
semide nite 2£ 2 matrix that possesses two orthonormal eigenvectoss and
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s, with corresponding eigenvalues, , 1, , 0. The vectors; points across
image structures, whereas the vecta, points along them. In the case for
Y%= 0, i.e. without considering neighbourhood information, ne obtains

r2f

0 rof | 0_
and s, = - .
! 2 of |

jrofj’

; (31)

wherer 7 f := (i fy;fx)” denotes the vector orthogonal ta ,f . For %= 0

we also have thatjr »f j2 =tr Sy, with tr denoting the trace operator.

Most regularisers impose smoothness by penalising the magde of the °ow

gradients. Ass; and s, constitute an orthonormal basis, we can write
jroui® = ui+ul = uZ+ul (32)

using the directional derivatives us = sr pu. A corresponding rewriting

can also be performed fojr ,vj2.

To analyse the smoothing behaviour of the regularisers, wallvconsider the

corresponding Euler-Lagrange equations that can be writtein the form

@M | ®div(Dr ,u)
@M ;| ®div(Dr ,v)

0; (33)
0 ; (34)

with a di®usion tensorD that steers the smoothing of the °ow components
u and v. More speci c, the eigenvectors oD give the smoothing direction,
and the corresponding eigenvalues determine the magnitudesmoothing.

Homogeneous Regularisation. First ideas for the smoothness term go
back to Horn and Schunck [19] who used a homogeneous reguéarisn our
framework it reads as

Vi(r2usr ov) 1= jr U + jr pvj°
= Ui+ Ui+ ViV (35)
The corresponding di®usion tensor is equal to the unit matri®y = I. The

smoothing processes thus perform homogeneous di®usion thiats impor-
tant °ow edges.

Image-Driven Regularisation. To obtain sharp °ow edges, image-driven
methods [1, 27] reduce the smoothing at image edges, indaxtby large
values ofjr »f j2=tr S,.
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An isotropic image-driven regulariser goes back to Alvarez at. [1] who used

i .8 o ¢
Vir(r2u;r ov) = gjr of 2 jr auj? + jr ovj?

i ¢
= g(tr Sp) 'u§1 + Ul + VI Ve (36)

whereg is a decreasing, strictly positive weight function. The ceesponding
di®usion tensorD; = g(ir Sg) | shows that the weight function allows to
decrease the smoothing in accordance to the strength of ineagdges.

The anisotropic image-driven regulariser of Nagel and Enke&nn [27] pre-
vents smoothing of the °ow eld across image boundaries but emerages
smoothing along them. This is achieved by the regulariser

Var(rausrov):=rou P(rof)rou+ rov P(rof)rov;  (37)

where P (r ,f ) denotes a regularised projection matrix perpendicular tthe
image gradient. It is de ned as
3

1
rof2+2:2

P(r ,f):= r§f|r§f¢>+-zl (38)
with a regularisation parameter- > 0. In our common framework, this

regulariser can be written as

3 - 3
.2 tr Sg+ -2
. _ 0 2 2 .
Va(rouiro,v)= —— U3 +vyh + —— Uy +v © (39
i (1 2 2V) tr Sp+2-2 9 s? tr Sp+2- 2 s s9 (39)

The correctness of above rewriting can easily be veri ed ansl based on the
observations thats? and s9 are the eigenvectors oP, and that the factors
in front of (u§2+ vgg) and (u§g+ vgg) are the corresponding eigenvalues. The
di®usion tensor for the regulariser of Nagel and Enkelmann [2% identical
to the projection matrix: D = P. Concerning its eigenvectors and eigen-
values, we observe that in the limiting case for! 0, whereVy, ! u§g+ vgg,
we obtain a smoothing solely irsd-direction, i.e. along image edges. In the
de nition of the normal °ow (7) we have seen that a data term thatmodels
the brightness constancy assumption constraints the °ow onbrthogonal to
image edges. In the limiting case, the regulariser of NageldaiEnkelmann
can hence be interpreted as a rst complementary smoothnessr that Iis

in information orthogonal to the data constraint direction

The drawback of image-driven strategies is that they are pne to overseg-
mentation artefacts in textured image regions where imagedges do not
necessarily correspond to °ow edges.
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Flow-Driven Regularisation. To remedy the oversegmentation problem,
it makes sense to adapt the smoothing process to tliew edgesinstead of
the image edges.

In the isotropic setting, Shulman and Hervg [33] and Schn#B1] proposed
to use subquadratic penaliser functions for the smoothnetesm, i.e.
i, e
Vie(r 2U;rov) = 2 o jr ouj? + jr ovj?
i ¢
= &y ul+ul ViV (40)

where the penaliser function 3, (s?) is preferably increasing, di®erentiable
and convex ins. The associated di®usion tensor is given by
' ¢
De=2 3'u§1+ uZ+ vi+ v ol (41)
The underlying di®usion processes perform nonlinear isgifo di®usion,
where the smoothing is reduced at the boundaries of the evinlg ow eld
via the decreasing di®usivity . If one uses the convex penaliser [12]

a V(SZ) = P w ; (42)

one ends up with regularised total variation (TV) regulariséon [30] with the
di®usivity
ald(s?)= —p t ., 1. (43)
v 2V 2+ "2 7 2js)
Another possible choice is the non-convex Perona-Malik rdgtiser
(Lorentzian) [6, 29] given by

H Sz'ﬂ
ay(s?):=,%log 1+— (44)

that results in Perona-Malik di®usion with the di®usivity

1
D= — (45)
Vv 1+%

using a contrast parameter, > 0.

We will not discuss the anisotropic °ow-driven regulariser folWeickert and
SchnArr [42] as it does not T in our framework and also has nbeen used
in the design of our complementary regulariser.

Despite the fact that °ow-driven methods reduce the oversegntation prob-
lem caused by image textures, they su®er from another drawkadhe °ow
edges are not as well localised as with image-driven straiesg)
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Image- and Flow-Driven Regularisation. We have seen that image-
driven methods su®er from oversegmentation artefacts, buivg sharp °ow
edges. Flow-driven strategies remedy the oversegmentatiproblem but give
less pleasant °ow edges. Itis thus desirable to combine thevadtages of both
strategies to obtain sharp °ow edges without oversegmentati problems.
This aim was achieved by Sun et al. [36] who presented an arispic image-
and °ow-driven smoothness term in a discrete setting. It adap the smooth-
ing direction to image structures but steers the smoothing strength in accor-
dance to the®ow contrast. In contrast to Nagel and Enkelmann [27] who
consideredr /f to obtain directional information of image structures, the
regulariser in [36] analyses the eigenvectasof the structure tensorS,, from
(30) to obtain a more robust direction estimation. A continous version of
this regulariser can be written as

, ¢

. — a | a I 2 a [ 2¢ a [ 2¢ .
Vaip (Fau;rpv) =2 youg +2 v vy +2 yug, +2 v vy o (46)

Here, we obtain two di®usion tensors, that fop 2 f u; vg read as
i ¢ i ¢
Dhe =2V 51 s1s; +2 Y p§2 S (47)

We observe that these tensors allow to obtain the desired bahour: The
regularisation direction is adapted to the image structurelirections s; and
S,, Whereas the magnitude of the regularisation depends on th@w contrast
encoded inps, and ps,. As a result, one obtains the same sharp °ow edges as
image-driven methods but does not su®er from oversegmentatiproblems.

2.2.1 Our Novel Complementary Regulariser

In spite of its sophistication, the anisotropic image- and %w@-driven model
[36] given in (46) still su®ers from a few shortcomings. We induce three
amendments that we will discuss now.

Regularisation Tensor. A rst remark w.r.t. the model from (46) is that
the directional information from the structure tensorS., is not consistent
with the imposed constraints of our data term (27). It is morenatural to
take into account directional information provided by the notion tensor (19)
and to steer the anisotropic regularisation process w.r.tconstraint edges"
instead of image edges. To this end we propose to analyse tigeavectors
r, and r, of the regularisation tensor

x3 i N N ¢e
Ry:=  Kyp Wy rof'rof' + 2 rofyrofy + ) raofyrafy

i=1

(48)
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which can be regarded as a generalisation of the structurensor (30). Note
that the regularisation tensor di®ers from the motion tensod® from (19)
by the facts that it (i) integrates neighbourhood information via the Gaus-
sian convolution, and(ii) uses the spatial gradient operator , instead of
the spatio-temporal operatorr 3. The latter is due to the spatial regularisa-
tion. In Section 2.3 we extend our regulariser to the spatimporal domain,
yielding a regularisation tensor that also uses the spattemporal gradient
r 3. Further note that a Gaussian convolution of themotion tensor leads to
a combined local-global (CLG) data term in the spirit of [11] Our experi-
ments in Section 5.1 will analyse in which cases such a moditice of our
data term can be useful.

Rotational Invariance. The smoothness termVe from (46) lacks the

desirable property of rotational invariance, because tharéctional derivatives

of u and v in the eigenvector directions are penalised separately. \Weopose

to jointly penalise the directional derivatives, yielding
3 4 3

’

+ V2 (49)

r2

2

. — 2
VA|FR1/,;R| (r U r 2V) =a u|’1+ V,

ri

2

a
+23 U,

where we use the eigenvectors of the regularisation tensor.

Single Robust Penalisation. The above regulariser (49) performs a
twofold robust penalisationn both eigenvector directions. However, the data
term mainly constraints the °ow in direction of the largest egenvalue of the
spatial motion tensor, i.e. inr;-direction. We hence propose aingle ro-
bust penalisationin r-direction. In the orthogonalr,-direction, we opt for
a quadratic penalisation to obtain a strong Iling-in e®ect ofnissing infor-
mation. The bene ts of this design will be con rmed by our expéments in
Section 5.2. Incorporating the single robust penalisatiomally yields our
complementary regulariser
3 ,
Ver(r 2U;r pv) =2 U2+ VZ + U2+ V2 (50)

that complements the proposed robust data term from (27) inraoptimal
fashion. For the penaliser &, we propose the to use the Perona-Malik
regulariser (44).

The corresponding joint di®usion tensor is given by

i ¢
—_ 0 2 2 > >,
Dcr =2y Ur, + vy, Tafy +rar; (51)

with 2 9 given in (45). The derivation of this di®usion tensor is prested in
the Appendix A.

18



Discussion. To understand the advantages of the complementary regu-
lariser compared to the anisotropic image- and °ow-driven gellariser (46),
we compare our joint di®usion tensor (51) to its counterparté47), which
reveals the following innovations:(i) The smoothing direction is adapted to
constraint edges instead of image edges, as the eigenvextifrthe regularisa-
tion tensorr; are used instead of the eigenvectors of the structure tensd)
We achieve rotational invariance by coupling the two °ow comgnents in the
argument of 29, (iii) We only reduce the smoothin@crossconstraint edges,
i.e. in ry-direction. Along them, always a strong di®usion with strengt 1 is
performed, resembling edge-enhancing anisotropic di®ums[d1].
Furthermore, when analysing our joint di®usion tensor, thedne ts of the
underlying anisotropic image- and °ow-driven regularisabn become visible.
The smoothing strength across constraint edges is deterrathby the expres-
sion @9 (uZ + v2). Here we can distinguish two scenarios: At a °ow edge
that corresponds to a constraint edge, the °ow gradients wilbe large and
almost parallel tor;. Thus, the argument of the decreasing function & will
be large, yielding a reduced di®usion which preserves thispiantant edge.
At \deceiving" texture edges in °at °ow regions, however, the °av gradi-
ents are small. This results in a small argument for &, leading to almost
homogeneous di®usion. Hence, we perform a pronounced smaogtlm both
directions that avoids oversegmentation artefacts.

Finally note that our complementary regulariser has the saestructure, even
if other data terms are used. Only the regularisation tensoR., has to be
adapted to the new data term.

2.2.2 Summary

To conclude this section, Table 1 summarises the discusseegularisers
rewritten in our framework. It also compares the way directinal information
is obtained for anisotropic strategies, and it indicates the regulariser is ro-
tationally invariant. Note that despite the fact these reguarisers have been
developed within almost three decades, our taxonomy showsetr structural
similarities.

2.3 Extension to a Spatio-Temporal Smoothness Term

The smoothness terms we have discussed so far model the aggtion of a
spatially smooth °ow eld. As image sequences in general encompass more
than two frames, yielding several °ow elds, it makes sense tdsa assume a
temporal smoothness of the °ow elds, leading to spatio-tempal regulari-
sation strategies.
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Table 1. Comparison of regularisation strategies. The nekt last column names the tensor that is analysed to obtain
directional information for anisotropic strategies, and he last column indicates if the corresponding regularises i
rotationally invariant.

Strategy RegulariserV Directional Rotationally
Adaptation  Invariant

2 2 2 2
Homogeneous ug, + Ug,+ Vg + Vg, | X
[19]
[
i i 2 2 2 2
Isotropic image-driven g(tr So) ug, + ug,+ V5 + Vg, | X
[1]
Anisotropic image-driven ub+ vy, for-1 0 So X
2 2
[27] ¢
[
i i 2 2 2 2
Isotropic °ow-driven &y ug, U+ VS VS, | X
[33, 31]
| . L I T - T S I
Anisotropic image and °ow-driven v ug, +2 v vy +2youg, oy Vg Sy, |
[36] ¢
: : i
Anisotropic complementary 3y WA+ V2 o+ UE VR Ry, X

image- and °ow-driven




A spatio-temporal (ST) version of the general energy funanal (1) reads as
EST(y;v) = (52)
£ o}
M (u;v)+ ®VST(r su;r 3v) dxdydt :

- £[0;T]

Compared to the spatial energy (1) we note the additional istgration over
the time domain and that the smoothness term now depends onetspatio-
temporal °ow gradient.

To extend our complementary regulariser from (50) to the spia-temporal
domain, we de ne thespatio-temporal regularisation tensor

R, = KyoJ°: (53)

For %= 0 it is identical to the motion tensor 3¢ from (19). The Gaussian
convolution with K, is now performed in the spatio-temporal domain, which
also holds for the presmoothing of the image sequence. Thatsp-temporal
regularisation tensor is a & 3 tensor that possesses three orthonormal eigen-
vectorsr;r, and rz. With their help, we de ne the spatio-temporal comple-

mentary regulariser (ST-CR)
3

2

ST : - 2 2 2 2 2 .
Ver (rau;rav) =2y up, + vy, +Up, + Vo, + U + Vo (54)

The corresponding spatio-temporal di®usion tensor reads as

i ¢
ST —a O 2 2 > > >,

3 Automatic Selection of the Smoothness

Weight
The last step missing for our OFH method is a strategy that aamatically
determines the optimal smoothness paramet&® for the image sequence un-
der consideration. This is especially important in real wdéd applications of
optic °ow where no ground truth °ow is known. Note that if the latter would

be the case, we could simply select the smoothness weighttthaves the °ow
“eld with the smallest deviation from the ground truth.

3.1 A Novel Concept

We propose an error measure that allows to judge the qualityf a “ow eld
without knowing the ground truth. This error measure basesroa novel
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concept, the optimal prediction principle (OPP). The OPP sates that the
°ow eld obtained with an optimal smoothness weight allows fothe best
prediction of the next frames in the image sequence. This neksense as a
too small smoothness weight would lead to an over t to the rstwo frames
and consequently result in a bad prediction of further franse For too large
smoothness weights, the °ow elds would be too smooth and thus¢sa lead
to a bad prediction.

Following the OPP, our error measure needs to judge the quigliof the
prediction achieved with a given °ow eld. To this end, we evalate the
imposed data constraints between the rst and the third framef the image
sequence, resulting in aaverage data constancy error (ADCE)neasure. To
compute this measure, we assume that the motion of the scengexts is of
more or less constant speed and that it describes linear temjtories within
the considered three frames. Under these assumptions, we@yrdouble the
°ow vectors to evaluate the data constraints between rst andtird frame.
Following this strategy, we can de ne the ADCE between frame 1na 3 as

1 Z ll)@ 3 . ¢ ’
ADCE 15(We) = — Tk Fr2we)i P (x) (56)
-] A i=1 u

) . . ¢
+ o a i x+2we)i Fl(x) 2
i=1 ﬂ!#

i ¢
+H'/If)',(x+2w®)i f)',(x) 2 dxdy ;

wherewg denotes the °ow eld obtained with a smoothness weigl®. The

integrand of above expression is (apart from the doubled °ow [@) a variant

of our nal data term (27) where no linearisation of the constacy assump-
tions have been performed. To evaluate the images at the sutg locations
f'(x+2wg) we use Coons patches based on bicubic interpolation [13].

3.2 Determining the Best Parameter

In general, the relation betweer® and the ADCE is not convex, which ex-
cludes the use of gradient descent-like approaches for ndirthe optimal
value of ® w.r.t. our error measure.

We propose a brute-force method similar to the one of Ng and $dk8]: We
“rst compute the error measures for a \suzciently large" set offow elds
obtained with di®erent® values. We then select th& that gives the smallest
error. To reduce the number of® values to test, we propose to start from a
given, standard value®,, say. This value is then incremented/decremented
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Ne times by multiplying/dividing it with a stepping factor a > 1, yielding in
total 2 ng+ 1 tests. This strategy results in testing more values d® that are
close to®, and, more important, tests less very small or very large vads of
® that hardly give reasonable results.

4 Implementation

The solution of the Euler-Lagrange equations for our methocbmes down to
solving a nonlinear system of equations. We solve the systdaya nonlinear
multigrid scheme based on a GauYs-Seidel type solver with aft&ting line

relaxation [10].

4.1 Warping Strategy for Large Displacements

The derivation of the optic “ow constraint (4) by means of a liearisation
is only valid under the assumption of small displacementsf the temporal

sampling of the image sequence is too coarse, this precoiditwill be vi-

olated and a linearised approach fails. To overcome this finlem, Brox et
al. [8] proposed a coarse-to- ne multiscale warping stratgg To obtain a

coarse representation of the problem, we downsample the uigmages by
a factor © 2 [0:5; 1:0). Prior to downsampling, we apply a low-pass lter to
B‘ng images by performing a Gaussian convolution with standa deviation

2=(4"). This prevents aliasing problems.

At each warping level, we split the °ow eld into an already compted solu-
tion from coarser levels and an unknown °ow increment. As the égnements
are small, they can computed by the presented linearised appch. At the

next ner level, the already computed solution serves as imatlisation, which

is achieved by performing a motion compensation of the secbframe by
the current °ow, known as warping. For warping with subpixel pecision we
again use Coons patches based on bicubic interpolation [13]

Adapting the Smoothness Weight to the Warping Level. The in-
°uence of the data term usually becomes smaller at coarser éév of our
multiscale framework. This is due to the smoothing properis of the down-
sampling that leads to smaller values of the image gradiends coarse levels.
Such a behaviour is in fact desirable as the data term might hbe reliable
at coarse levels. Our proposed data term normalisation lesdhowever, to
image gradients that are approximately in the same range ateh level. To
recover the previous reduction of the data term at coarse lelg, we propose
to adapt the smoothness weigh® to the warping levelk. This is achieved
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by setting ®&Kk) = ®="K which results in larger values o® and an emphasis
of the smoothness term at coarse levels.

4.2 Discretisation

We follow [10] for the discretisation of the Euler-Lagrangequations. The
images and the °ow elds are sampled on a rectangular pixel grigith grid
sizeh and temporal step size..

Spatial image derivatives are approximated via central ni di®erences using
the stencilﬁ(l; i 8,0;8;i 1), resulting in a fourth order approximation. The
spatial “ow derivatives are discretised by second order apgptmations with
the stencil %(i 1;0; 1). For approximating temporal image derivatives we use
a two-point stencil (j 1; 1), resulting in a temporal di®erence. Concerning the
temporal °ow derivatives that occur in the spatio-temporal ase, we use the
stencil (j 1;1)=¢. Here, it makes sense to adapt the value @fto the given
image sequence to allow for an appropriate scaling of the tporal direction
compared to the spatial directions [43].

When computing the motion tensor, occurring derivatives & averaged from
the two frames at timet and t + 1 to obtain a lower approximation error.
For the regularisation tensor, the derivatives are solelyomputed at the rst
frame as we only want to consider directional information im the reference
image.

5 Experiments

In our experiments we show the bene ts of the OFH approach. Thest
experiments are concerned with our robust data term and themplementary
smoothness term in the spatial and the spatio-temporal dorima Then, we
turn to the automatic selection of the smoothness weight. Adr a small
experiment on the importance of anti-aliasing in the warpig scheme, we
“nish our experiments by presenting the performance at the Midlebury optic
°ow benchmark [2] fttp://vision.middlebury.edu/°ow/eval/ ).

As all considered sequences exhibit relatively large disptaments, we use
the multiscale warping approach described in Section 4.1. h& °ow elds
are visualised by a colour code where hue encodes the °ow dit and
brightness the magnitude, see Figure 3 (d). Throughout ouxperiments we
use constant values for the following parameters: = 0:1;" = 0:00L, =0:1.
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5.1 Robust Data Term

Bene ts of Normalisation and the HSV Colour Space. We proposed
two main innovations in the data term: constraint normaliséion and using
an HSV colour representation. In our rst experiment, we thus @ampare
our method against variants(i) without data term normalisation. (i) using
the RGB instead of the HSV colour space. For the latter we onlyeparately
robustify the brightness and the gradient constancy assurtipn, as a separate
robusti cation of the RGB channels makes no sense. In Figurev@e show
the results for the Snail sequence that we have created. Note that it is a
rather challenging sequence due to severe shadows and lafgplacements
up to 25 pixels. When comparing the results to our result in ure 3 (i),
the following drawbacks of the modi ed versions become obuia Without
data term normalisation (Figure 3 (e)), unpleasant artefats at image edges
arise, even when using a large smoothness weight When relying on the
RGB colour space (Figure 3 (f)), a phantom motion in the shadw region at
the right border is estimated.

E®ect of the Separate Robust Penalisation. This experiment illus-
trates the desirable e®ect of our separate robust penaligati of the HSV
channels. Using theRubberwhalesequence from the Middlebury database,
we show in Figure 4 the data term weights & (W>f](‘)w) for the bright-
ness constancy assumption on the hue, the saturation and thkalue channel
(i=1;::3). Here, brighter pixels correspond to a larger weight and wenly
show a zoom for better visibility. As we can see, the weight ohe¢ value
channel is reduced in the shadow regions (left of the wheel, the orange
toy and of the clam). This is desirable as the value channel ot invariant
under shadows, see Figure 2.

A CLG Variant of Our Method. Our next experiment is concerned
with a CLG variant of our data term where we, as for the regulasation

tensor, perform a Gaussian convolution of the motion tens@ntries.

First, we compare our method against a CLG variant for some Mdlebury

sequences, see Table 2. To evaluate the quality of the °ow “eldsmpared
to the given ground truth, we use theaverage angular error (AAE) measure
([3]). We nd that the CLG variant always leads to worse resuk and con-
clude that for the considered test sequences, this modi cati seems not to
be useful.

The °ow elds for our proposed method are visualised in Figure Jogether

with the parameter settings, the resulting error measureso be found in the
caption of the gure. To ease comparison with other methods,engive the
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Figure 3: Results for ourSnail sequencsvith di®erent variants of our method.
First row, from left to right: (a) First frame. (b) Zoom in marked region
of rst frame. (c) Same for second frameSecond row, from left to right:
(d) Colour code. (e) Flow eld in marked region, without normalisation
(®=5000:0). (f) Same for RGB colour space®= 300:0). Third row, from
left to right: (g) Same for TV regularisation ® = 50:0). (h) Same for image-
and °ow-driven regularisation [36] ® = 2000:0). (i) Same for our method
(® = 2000:0). All results used the xed parameters¥a= 0:5;° = 20:0; %2=
4:0;" =0:95
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Figure 4. E®ect of our separate robust penalisation of the HSWannels.
First row, from left to right: (a) Zoom in rst frame of the Rubberwhalese-
quence.(b) Visualisation of the corresponding hue channel weight. Biger
pixels correspond to a larger weightSecond row, from left to right:(c) Same
for the saturation channel.(d) Same for the value channel

AAE and also the alternative average endpoint error (AEE) measure ([2]).
Concerning the theRRubberwhalesequence in the rst row of Figure 5, we
wish to note that using the HSV colour space prevents unpleagaartefacts
in the shadow regions, e.g. left of the wheel.

Although we have seen that a CLG variant of our method does notiprove
the results on the Middlebury data set, this modi cation can atually be
useful in a certain scenario, namely in the presence of sevemwise in the
image sequence. To prove this, we compare in Table 3 the penfiance of our
method to its CLG counterpart on noisy versions of thé¥osemite sequence.
As it turns out, the CLG variant improves the results at large mise scales,
but deteriorates the quality for low noise scenarios. Thislso explains the
experienced behaviour on the Middlebury data sets, which fdy su®er from
noise.

5.2 Complementary Smoothness Term

Comparison with Other Regularisers. In Figure 3, we compare our
method against two results obtained when using another relguiser in con-

junction with our robust data term: (i) Using the popular TV regulariser; see
(40) and (42). (ii) Using the anisotropic image and °ow-driven regulariser
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Table 2: Comparison of our method to a CLG variant (using the AAIE

Sequence Rubberwhale Dimetrodon Grove2 Urban2

CLG 3:00* 1:59 2:20° 2:67
Proposed 27T 1.54F 2:16 2:49°

Figure 5: Results for some Middlebury sequences with groumaith. First
column: Reference frameSecond column:Ground truth (white pixels mark
locations where no ground truth is given).Third column: Result with our
method. From top to bottom: Rubberwhal¢® = 850:0; %= 0:3;° = 20:0; Y%=
2.0=) AAE =2:77, AEE = 0:083), Dimetrodon (® = 2500:0; %= 0:7;° =
250;%= 2:0 =) AAE = 1:54, AEE = 0:079), Grove2 (® = 35:0;%=
0:5;° = 0:2,%= 1.0 =) AAE = 2:16°, AEE = 0:151), andUrban2 (® =
1250;% = 0:5;° = 1:0;%= 1:5 =) AAE = 2:49°, AEE = 0:245). The
downsampling rate was set t0 = 0:95 for all sequences
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Table 3: Comparison of our method to a CLG variant on noisy veions of
the Yosemite sequence (using the AAE). We have added Gaussian noise with
zero mean and standard deviatiod4

Ya 0 10 20 40
CLG 1.75* 4.01* 5:82* 8:14*
Proposed 1:64* 3:82* 6:08° 855

from [36], which built the basis of our complementary reguteser. Here, we
use a rotationally invariant formulation that can be obtaired from (49) by
replacing the eigenvectors; of the regularisation tensor by the eigenvectors
s; of the structure tensor. Comparing the obtained results tow result in
Figure 3 (i), we see that TV regularisation (Figure 3 (g)), lads to blurred
and badly localised °ow edges. Using the regulariser from [36jgure 3 (h)),
unpleasant staircasing artefacts deteriorate the result.

Optic Flow in the Spatio-Temporal Domain. Let us now turn to the
spatio-temporal extension of our complementary smoothreterm. As most
Middlebury sequences consist of 8 frames, a spatio-templareethod would in
general be applicable. However, the displacements betwe&wotsubsequent
frames are often rather large there, resulting in a violatioof the assumption
of a temporally smooth °ow eld. Consequently, spatio-temp@l methods
do not improve the results. In our experiments, we use thdarble sequence
(available at http://i21www.ira.uka.de/image _sequences/ and the Yosemite
sequence from the Middlebury datasets. These sequencesil@kmelatively
small displacements and our spatio-temporal method allow obtain notably
better results, see Figure 6 and Table 4{5. Note that when uggnmore than
two frames, a smaller smoothness weigl# has to be chosen and that a too
large temporal window may also deteriorate the results agai

5.3 Automatic Selection of the Smoothness Weight

Performance of our Proposed Error Measure. We rst show that our
proposed data constancy error between frame 1 and 3 (ADEH is a very
good approximation of the popular angular error (AAE) measure To this
end, we compare the two error measures for th@rove2 sequence in Figure
7. It becomes obvious that our proposed error measure (Figur (b)) indeed
exhibits a shape very close to the angular error shown in Figu7 (a). As
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Figure 6: Results for theMarble sequence with our spatio-temporal method.
First row, from left to right: (a) Reference frame (frame 16)(b) Ground
truth (white pixels mark locations where no ground truth is &ailable). Sec-
ond row, from left to right: (c) Result using 2 frames (16{17)(d) Same for
6 frames (14{19)

Table 4: Smoothness weigh® and AAE measures for our spatio-temporal
method on the Marble sequence, see Figure 6. All results used the xed
parameters¥i= 0:5;° = 0:5;%= 1:0;¢ = 1:5;" = 0:5. When using more
than two frames, the convolutions withKs, and K., are performed in the
spatio-temporal domain

Number of frames 2 4 6 8
(from { to) (16{17) (15{18) (14{19) (13{20)
Smoothn. weight® 750 500 500 500
AAE 4:85 2:63 1:86* 2:.04
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Table 5: Smoothness weigh® and AAE measures for our spatio-temporal
method on the Yosemite sequence from Middlebury. All results used the
xed parameters¥= 1:0;° = 20:0; 2= 1:5;¢ = 1:0;” = 0:5. Here, better
results could be obtained when disabling the temporal presrathing

Number of frames 2 4 6 8
(from { to) (10{11) (9{12) (8{13) (7{14)
Smoothn. weight® 20000 10000 10000 10000
AAE 1:65 1:16© 1:.05 1:01*%

our error measure re°ects the quality of the prediction with lhe given °ow
“eld, our result further substantiate the validity of the proposed OPP.

Bene ts of an Automatic Parameter Selection. Next, we show that
our automatic parameter selection works well for a large Viaty of di®erent
test sequences. In Table 6, we summarise the AAE obtained whign setting
® to a xed value (® = ® = 400:0), (i) using our automatic parameter
selection method, andiii) selecting the (w.r.t. the AAE) optimal value of®
under the tested proposals. As we can see, estimatiigwith our proposed
method allows to improve the results compared to a xed valud ®in almost
all cases. Just for theGrove 3 sequence, the xed value o® by accidentally
coincides with the optimal value. Compared to the results a&geved with an
optimal value of ®, our results are on average 3% and at most 10% worse
than the optimal result.

5.4 Importance of Anti-Aliasing in the Warping
Scheme

We proposed to presmooth the images prior to downsampling order to
avoid aliasing problems. In most cases, the resulting arssits will not sig-
ni cantly deteriorate the °ow estimation, which can be attributed to the
robust data term. However, for theUrban sequence from the ozcial Middle-
bury benchmark, anti-aliasing is crucial for obtaining resonable results, see
Figure 8. As it turns out, the large displacement of the buildig in the lower
left corner can only be estimated when using with anti-ali&sg. We explain
this by the high frequent stripe pattern on the facade of the tlding.
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Figure 7: Automatic selection of the smoothness weigl® at the Grove2
sequence.From left to right: (a) Angular error (AAE) for 51 values of ®,
computed from®, = 400:0 and a stepping factora = 1:1. (b) Same for the
proposed data constancy error (ADCE3). Remaining parameters were set
xed to ¥%=0:5;° =20:0;%=4:0;" =0:95

Table 6: Results (AAE) for some Middlebury sequences whei xing the
smoothness weight® = 400:0), (ii) estimating ®, and (iii) with the optimal
value of ®

Sequence Fixe® Estimated ® Optimal ®

Rubberwhale 3:43 3:.00° 3:00°
Grove2 2:59 2:43 2:43
Grove3 5:50 562 5:50
Urban2 32 2:84 2:66
Urban3 344 337 3:35
Hydrangea 1:.96* 1:.94* 1:86
Yosemite 2:56° 1:89 1.71F
Marble 573 5.05* 4:94*
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Figure 8: Importance of anti-aliasing on the example of therban sequence.
Top row, from left to right: (a) Frame 10. (b) Frame 11. Bottom row,
from left to right: (c) Our result without anti-aliasing. (d) Same with anti-
aliasing. All results used the xed parameters® = 500:0;% = 0:5;° =
20:0; %= 4:0;" = 0:95. Please note that for this sequence, no ground truth
is publicly available

5.5 Comparison to State-of-the-Art Methods

To compare our method to the state-of-the-art in optic °ow esination, we

submitted our results to the popular Middlebury benchmark &vailable at

http://vision.middlebury.edu/°ow/eval/ ).

We found that for the provided benchmark sequences, using a YAiSolour

representation is not as bene cial as seen in our experimenoiin Figure 3.

As the Middlebury sequences hardly su®er from ditcult illumin@gon condi-

tions, we cannot pro t from the photometric invariances of te HSV colour
space. On the other hand, some sequences even pose problartiseir HSV

representation. As an example, consider the results for théd Teddy se-
guence in the rst row of Figure 9. Here we see that the small wittriangle

beneath the chimney causes unpleasant artefacts in the °ow del This re-

sults from the problem that greyscales do not have a uniquepesentation
in the hue as well as the saturation channel. Nevertheless,etle are also
sequences where a HSV colour representation is bene cial. Hoe Mequon
sequence (second row of Figure 9) a HSV colour representatiemoves arte-
facts in the shadows left of the toys. The bottom line is, hower, that for

the whole set of benchmark sequences, we obtain slightly teztresults when
using the RGB colour space. Thus, we use this variant of our thed for
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Table 7: Estimated values of the smoothness weigit using our automatic
parameter selection method

Sequence Smoothness weight

Army 2778
Grove 2778
Mequon 2778
Schezera 6912
Urban 4800
Wooden 9953
Yosemite 14333

evaluation at the Middlebury benchmark.

For our submission we used in accordance to the guidelines aedk set of
parameters: %= 0:5;° = 20:0;%= 4:0;” = 0:95. The smoothness weight
® was automatically determined by our proposed method with # settings
Ne = 8;®, = 400:0;a = 1:2. For the Teddy with only two frames, we set
® = ®, as our parameter estimation method is not applicable in thicase.
The resulting running time for the Urban sequence (640480 pixels) was 620 s
on a standard PC (3.2 GHz Intel Pentium 4). For the parameter gection
we computed 28 +1 = 17 °ow elds, corresponding to approximately 36 s
per °ow eld. As recently shown by Gwosdek et al. [18], these ruintes can
be signi cantly lowered by a parallel implementation on moda GPUs.

At the time of submission (August 2010), we achieve the 4th pita w.r.t. the
AAE and the AEE measure among 39 listed methods. Note that our prswus
Complementary Optic Flow method [46] only ranks 6th for the AAEand 9th
for the AEE, which demonstrates the bene ts of the proposed nelties in
this paper, like the automatic parameter selection and thengi-aliasing.

In Table 7 we additionally summarise the estimated values @fresulting from
our automatic parameter selection method. As desired, for cagences with
small details in the °ow eld (Army, Grove, Mequon) a small smoothness
weight is chosen. On the other hand, sequences |Wéoden and Yosemite
with a rather smooth °ow yield signi cantly larger values for he smoothness
weight.
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Figure 9: Comparison of results obtained with HSV or RGB colouepre-

sentation. First row, from left to right: (a) Frame 10 of theTeddy sequence.
(b) Frame 11.(c) Result when using the HSV colour space (AAE =:34).

(d) Same for the RGB colour space (AAE = B4"). Second row, from left
to right: (e) Frame 10 of theMequon sequence.(f) Frame 11. (g) Result
when using the HSV colour space (AAE = 28). (h) Same for the RGB
colour space (AAE = 284")

6 Conclusions and Outlook

In this paper we have shown how to harmonise the three main adituents of

variational optic °ow approaches: the data term, the smoothess term and
the smoothness weight. This was achieved by two main idegs: We devel-
oped a smoothness term that achieves an optimal complementamoothing

behaviour w.r.t. the imposed data constraints.(i) We presented a simple,
yet well performing method for determining the optimal smotbiness weight
for the given the image sequence. To this end, we came up withnavel

paradigm, the optimal prediction principle (OPP).

Our optic °ow in harmony (OFH) method bases on an advanced dataetm

that combines and extended successful concepts like norisation, photo-

metric invariant colour representation, higher order cortancy assumptions
and robust penalisation. The anisotropic complementary smothness term
incorporates directional information from the motion tener occurring in the

data term. The smoothing in data constraint direction is redced to avoid

interference with the data term, while a strong smoothing irthe orthogonal

direction allows to l-in missing information. This yields an optimal com-

plementary between both terms. Furthermore, our smoothngegerm uni es

the bene ts of image- and °ow-driven regularisers, resultingh sharp °ow

edges without oversegmentation artefacts. The proposedrpaeter selec-
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tion method bases on the OPP that we introduced in this paperlt states
the °ow eld obtained with an optimal smoothness weight allowdor the
best prediction of the next frames in the image sequence. Umdaild as-
sumptions, the quality of the prediction can be judged by evaating the
data constraints between rst and third frame of the sequencand using the
doubled °ow vectors. Due to its simplicity, our method can edy be used in
all variational optic “ow approaches and additionally givesurprisingly good
results.

The bene ts of the OFH idea are demonstrated by our extensivexgerimen-
tal validation and the competitive performance at the Middébury optic “ow
benchmark. Our paper thus shows that a careful design of datead smooth-
ness term together with an automatic choice of the smoothreseight allows
to outperform other well-engineered methods that incorpate many more
processing steps, e.g. segmentation [22], or the integoatiof an epipolar
geometry prior [39].

We hope that our work will give rise to more \harmonised" appoaches in
other elds where energy-based methods are used, e.g. imagagistration.
Our current research is concerned with exploring further iprovements in
the data and smoothness term. For the latter, incorporatingecent non-local
smoothing strategies [35, 44] into our framework can be im&sting. Finally,
further investigations on the presented novel parameter Igetion approach
seem promising.
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A Appendix: Derivation of the Di®usion
Tensor for the Complementary Regu-
lariser

Consider the complementary regulariser from (50):
3 ,

V(rourov) =2 U2+ V2, + UZ+ VP (57)
Its contributions to the Euler-Lagrange equations are giveby
i ¢
@@Vv)+@ @V ; (58)

and

i ¢
@@Vv)+ @ @V ; (59)
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respectively. We exemplify the computation of the rst exprssion (58). The
second one then follows analogously. Let us rst de ne the aldwiations
s .

ri=(risri2)”; and AQ(ri) =2 § uf+ V¢ (60)

fori =1;::;2. With their help, we compute the expressions

@V = 2(AY(r) Unru+ Ur,re) ; (61)
@V = 2(AY(ri) Urrio+ U, ) (62)
from (58). Using the fact that
@@v)+ @' @vi=dv(@V:@V) ; (63)
we obtain by plugging (61) and (62) into (58):
St

A\0/ (F1) Ur ran+ Up,rog
X0
Ay (ri) Up, iz + Up,rao

' ¢
@@V)+ @ @V =2dv (64)
By multiplying out the expressions inside the divergence pressions one ends

up with
i ¢
@@V)+t@ @V = (65)
Mo ~
odiy AV i+ 13y Ux + (AY(r1) Mo + 12af 22) Uy
(AY(r1) raaria+ raifao) Ux + (AJ(ra) ri, + riy) uy
We can write above equation in di®usion tensor notation as
i ¢ .
@@V)+ @ @V =2div(Dru) ; (66)
with the di®usion tensor

VR ~ 1
Ad(rq)er2 +1 ¢r3; Ad(ry) Crogrip+1 Crogron

D= AJ(ry) Gruarip +1 Grogra,  AJ(ry) 6r2, + 1 ¢r3, (©7)

We multiplied the second term of each sum by a factor of 1 to c¢iéy that the
eigenvalues oD are AY(r;) and 1, respectively. The corresponding eigen-
vectors arer; and r, respectively, which allows to rewrite the tensob as

" (TR . 1 . 1A
riu ran AS(ry) @y AS(ry)tro, Ay(ry) O M

=(rqjr
12 I 1(17'21 1(1]'22 ( 1] 2) 0 1 r;
(68)
This shows thatD is identical to Dcr from (51), as it can be written as
3 .

D =

D = AJ(ry) rary +rpr; =20 U2+ V2 riry +ror; (69)
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