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Optic Flow in Harmony

Henning Zimmer Andr¶es Bruhn Joachim Weickert

Abstract

Most variational optic °ow approaches just consist of three con-
stituents: a data term, a smoothness term and a smoothness weight.
In this paper, we present an approach that harmonises these three
components. We start by developing an advanced data term that is
robust under outliers and varying illumination conditions . This is
achieved by using constraint normalisation, and an HSV colour rep-
resentation with higher order constancy assumptions and a separate
robust penalisation. Our novel anisotropic smoothness is designed to
work complementary to the data term. To this end, it incorpor ates
directional information from the data constraints to enable a ¯lling-in
of information solely in the direction where the data term gives no in-
formation, yielding an optimal complementary smoothing behaviour.
This strategy is applied in the spatial as well as in the spatio-temporal
domain. Finally, we propose a simple method for automatically deter-
mining the optimal smoothness weight. This method bases on anovel
concept that we call \optimal prediction principle" (OPP). It states
that the °ow ¯eld obtained with the optimal smoothness weight a llows
for the best prediction of the next frames in the image sequence. The
bene¯ts of our \optic °ow in harmony" (OFH) approach are demon-
strated by an extensive experimental validation and by a competitive
performance at the widely used Middlebury optic °ow benchmark.

1 Introduction

Despite almost three decades of research on variational optic °ow approaches,
there have been hardly any investigations on the compatibility of their three
main components: the data term, the smoothness term and the smoothness
weight. While the data term models constancy assumptions onimage fea-
tures, the smoothness term penalises °uctuations in the °ow ¯eld, and the
smoothness weight determines the balance between the two terms. In this pa-
per, we present theoptic °ow in harmony (OFH) method, which harmonises
the three constituents by following two main ideas:
(i) Widely-used data terms such as the one resulting from the linearised
brightness constancy assumption only constrain the °ow in one direction.
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However, most smoothness terms impose smoothness also in thedata con-
straint direction, leading to an undesirable interference. A notable exception
is the anisotropic smoothness term proposed by Nagel and Enkelmann [27].
At large image gradients, their regulariser solely smoothes along image edges.
For a basic data term modelling the brightness constancy assumption, this
smoothing direction is orthogonal to the data constraint direction and thus
both term complement each other in an optimal manner. Unfortunately, this
promising concept of complementarity between data and smoothness term
has not been further investigated after 1986. Our paper revives this concept
for state-of-the-art optic °ow models by presenting a novelcomplementary
smoothness termin conjunction with an advanced data term.
(ii) Having adjusted the smoothing behaviour to the imposed data con-
straints, it remains to determine the optimal balance between the two terms
for the image sequence under consideration. This comes downto selecting an
appropriate smoothness weight, which is usually considered a di±cult task.
We propose a method that is easy to implement for all variational optic
°ow approaches and nevertheless gives surprisingly good results. It bases on
the assumption that the °ow estimate obtained by an optimal smoothness
weight allows for the best possible prediction of the next frames in the image
sequence. This novel concept we nameoptimal prediction principle (OPP).

1.1 Related Work

In the ¯rst ten years of research on optic °ow, several basic strategies have
been considered, e.g. phase-based methods [15], local methods [23, 5] and
energy-based methods [19]. In recent years, the latter class of methods be-
came increasingly popular, mainly due to their potential for giving highly
accurate results. Within energy-based methods, one can distinguish discrete
approaches that minimise a discrete energy function and areoften proba-
bilistically motivated, and variational approaches that minimise a continuous
energy functional.
Our variational approach naturally incorporates conceptsthat have proven
their bene¯ts over the years. In the following, we brie°y review advances in
the design of data and smoothness terms that are in°uential for our work.

Data Terms. To cope with outliers caused by noise or occlusions,
Black and Anandan [6] replaced the quadratic penalisation from Horn and
Schunck [19] by a robust subquadratic penaliser.
To obtain robustness under additive illumination changes,Brox et al. [8]
combined the classical brightness constancy assumption [19] with the higher-
order gradient constancy assumption [37, 31]. Bruhn and Weickert [9] im-
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proved this idea by a separate robust penalisation of brightness and gradient
constancy assumption. This gives advantages if one of the two constraints
produces an outlier. Recently, Xu et al. [45] went a step further and estimate
a binary map that locally selects between imposing either brightness or gra-
dient constancy. An alternative to higher-order constancy assumptions can
be to preprocess the images by a structure-texture decomposition [40].
In addition to additive illumination changes, realistic scenarios also encom-
pass a multiplicative part [38]. For colour image sequences, this issue can
be tackled by normalising the colour channels [17], or by using alternative
colour spaces with photometric invariances [17, 38, 24]. Ifone is restricted
to greyscale sequences, using log-derivatives [24] can be useful.
A further successful modi¯cation of the data term has been reported by
performing a constraint normalisation [34, 21, 32]. It prevents an undesirable
overweighting of the data term at large image gradient locations.

Smoothness Terms. First ideas go back to Horn and Schunck [19] who
used ahomogeneousregulariser that does not respect any °ow discontinuities.
Since di®erent image objects may move in di®erent directions,it is, however,
desirable to also permit discontinuities.
This can for example be achieved by usingimage-drivenregularisers that take
into account image discontinuities. Alvarez et al. [1] proposed an isotropic
model with a scalar-valued weight function that reduces theregularisation
at image edges. An anisotropic counterpart that also exploits the directional
information of image discontinuities was introduced by Nagel and Enkel-
mann [27]. Their method regularises the °ow ¯eld along image edges but
not across them. Note that for a basic data term modelling the brightness
constancy assumption, the image edge direction coincides with the comple-
mentary direction orthogonal to the data constraint direction.
Of course, not every image edge will coincide with a °ow edge. Thus, image-
driven strategies are prone to give oversegmentation artefacts in textured
image regions. To avoid this,°ow-driven regularisers have been proposed
that respect discontinuities of the evolving °ow ¯eld and are therefore not
misled by image textures. In the isotropic setting this comes down to the use
of robust, subquadratic penalisers which are closely related to line processes
[7]. For energy-based optic °ow methods, such a strategy was used in [33, 31].
An anisotropic extension was later presented by Weickert andSchnÄorr [42].
The drawback of °ow-driven regularisers lies in less well-localised °ow edges
compared to image-driven approaches.
Concerning the individual problems of image- and °ow-drivenstrategies, the
idea arises to combine the advantages of both worlds. This goal was ¯rst
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achieved in the discrete method of Sun et al. [36]. There, theauthors devel-
oped an anisotropic regulariser that uses directional °ow derivatives steered
by image structures. This allows to adapt the smoothing direction to the di-
rection of image structures and the smoothing strength to the °ow contrast.
We call such a strategyimage- and °ow-drivenregularisation. It combines
the bene¯ts of image- and °ow-driven methods, i.e. sharp °ow edges without
oversegmentation problems.
The smoothness terms discussed so far only assume smoothness of the °ow
¯eld in the spatial domain. As image sequences usually consistof more than
two frames, yielding more than one °ow ¯eld, it makes sense to also assume
temporal smoothness of the °ow ¯elds. This leads tospatio-temporalsmooth-
ness terms. In a discrete setting they go back to Murray and Buxton [25]. For
variational approaches, an image-driven spatio-temporalsmoothness terms
was proposed by Nagel [26] and a °ow-driven counterpart was later presented
by Weickert and SchnÄorr [43].

Automatic Parameter Selection. It is well-known that an appropriate
choice of the smoothness weight is crucial for obtaining favourable results.
Nevertheless, there has been remarkably little research on methods that au-
tomatically estimate the optimal smoothness weight or other model param-
eters.
Concerning an optimal selection of the smoothness weight for variational op-
tic °ow approaches, Ng and Solo [28] proposed an error measure which can
be estimated from the image sequence and the °ow estimate only. Using this
measure, a brute-force search for the smoothness weight that gives the small-
est error is performed. Computing the proposed error measure is, however,
computationally expensive, especially for robust data terms. Ng and Solo [28]
hence restricted their focus to the basic method of Horn and Schunck [19]. In
a Bayesian framework, a parameter selection approach that can also handle
robust data terms was presented by Krajsek and Mester [20]. This method
jointly estimates the °ow and the model parameters where the latter encom-
pass the smoothness weight and also the relative weights of di®erent data
terms. This method does not require a brute-force search, but the minimisa-
tion of the objective function is more complicated and only computationally
feasible if certain approximations are performed.

1.2 Our Contributions

The OFH method is obtained in three steps. We ¯rst develop a robust and
invariant data term. Then an anisotropic image- and °ow-driven smoothness
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term is designed that works complementary to the data term. Finally we pro-
pose a simple method for automatically determining the optimal smoothness
weight for the given image sequence.
Our data term combines the brightness and the gradient constancy as-
sumption, and performs a constraint normalisation. It further uses a Hue-
Saturation-Value (HSV) colour representation with a separate robusti¯cation
of each channel. The latter is motivated by the fact that eachchannel in the
HSV space has a distinct level of photometric invariance and information
content. Hence, a separate robusti¯cation allows to choose the most reliable
channel at each position. Our anisotropic complementary smoothness term
takes into account directional information from the constraints imposed in
the data term. Across\constraint edges", we perform a robust penalisation
to reduce the smoothing in the direction where the data term gives the most
information. Along constraint edges, where the data term gives no infor-
mation, a strong ¯lling-in by using a quadratic penalisationmakes sense.
This strategy not only allows for an optimal complementarity between data
and smoothness term, but also leads to a desirable image- and°ow-driven
behaviour. We further show that our regulariser can easily be extended to
work in the spatio-temporal domain. Our method for determining the op-
timal smoothness weight bases on the proposed OPP concept. This results
in ¯nding the optimal smoothness weight as the one corresponding to the
°ow ¯eld with the best prediction quality. To judge the latter, we evaluate
the data constraints between the ¯rst and the third frame of the sequence.
Under mild assumptions (constant speed, linear trajectory of objects) this
can be realised by simply doubling the °ow vectors. Due to its simplicity,
our method is easy to implement for all variational optic °ow approaches,
but nevertheless produces surprisingly good results.
The present article extends our shorter conference paper [46] by the following
points: (i) A more extensive derivation and discussion of the data term.(ii)
An explicit discussion on the adequate treatment of the hue channel of the
HSV colour space.(iii) A taxonomy of existing smoothness terms within a
novel general framework. The latter allows to reformulate most existing as
well as our novel regulariser in a common notation.(iv) The extension of
our complementary regulariser to the spatio-temporal domain. (v) A simple
method for automatically selecting the smoothness weight.(vi) A deeper
discussion of implementation issues.(vii) A more extensive experimental
validation.

Organisation. In Section 2 we present our variational optic °ow model
with the robust data term and the complementary smoothness term. The
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latter is then extended to the spatio-temporal domain. Section 3 describes the
method proposed for determining the smoothness weight. After discussing
implementation issues in Section 4, we show experiments in Section 5. The
paper is ¯nished with conclusions and an outlook on future work in Section 6.

2 Variational Optic Flow

Let f (x) be a grayscale image sequence wherex := ( x; y; t)> . Here, the vector
(x; y)> 2 ­ denotes the location within a rectangular image domain ­½ R2,
and t 2 [0; T] denotes time. We further assume thatf is presmoothed by
a Gaussian convolution: Given an image sequencef 0(x), we obtain f (x) =
(K ¾ ¤ f 0)(x), where K ¾ is a spatial Gaussian of standard deviation¾and ¤
denotes the convolution operator.
The optic °ow ¯eld w := ( u; v;1)> describes the displacement vector ¯eld
between two frames at timet and t + 1. It is found by minimising a global
energy functional of the general form

E(u; v) =
Z

­

¡
M (u; v) + ® V(r 2u; r 2v)

¢
dx dy ; (1)

where r 2 := ( @x ; @y)> denotes the spatial gradient operator. The term
M (u; v) denotes the data term,V(r 2u; r 2v) the smoothness term, and® > 0
is a smoothness weight. Note that the energy (1) refers to the spatial case
where one computes one °ow ¯eld between two frames at timet and t + 1.
The more general spatio-temporal case that uses all framest 2 [0; T] will be
presented in Section 2.3.
According to the calculus of variations [14], a minimiser (u; v) of the energy
(1) necessarily has to ful¯l the associated Euler-Lagrange equations

@uM ¡ ®
¡
@x (@ux V) + @y

¡
@uy V

¢¢
= 0 ; (2)

@vM ¡ ®
¡
@x (@vx V) + @y

¡
@vy V

¢¢
= 0 (3)

with homogeneous Neumann boundary conditions.

2.1 Data Term

Let us now derive our data term in a systematic way. The classical starting
point is the brightness constancy assumptionused by Horn and Schunck [19].
It states that image intensities remain constant under their displacement, i.e.
f (x+ w) = f (x). Assuming that the image sequence is smooth and that the
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displacements are small, we can perform a ¯rst-order Taylor expansion that
yields the linearisedoptic °ow constraint (OFC)

0 = f x u + f y v + f t = r >
3f w ; (4)

where r 3 := ( @x ; @y; @t )> is the spatio-temporal gradient operator and sub-
scripts denote partial derivatives. With a quadratic penalisation, the corre-
sponding data term is given by

M 1(u; v) =
¡
r >

3f w
¢2

= w> J0 w ; (5)

with the tensor
J0 := r 3f r >

3f : (6)

The single equation given by the OFC involves two unknownsu and v. It
is thus not su±cient to compute a unique solution, which is known as the
aperture problem [4]. Nevertheless, the OFC does allow to compute the
°ow component orthogonal to image edges, the so-callednormal °ow. For
jr 2f j 6= 0 it is de¯ned as

wn :=
¡
u>

n ; 1
¢>

:=
µ

¡
f t

jr 2f j
r >

2 f
jr 2f j

; 1
¶ >

: (7)

Normalisation. Our experiments will show that normalising the data term
can be bene¯cial. Following [34, 21, 32] and using the abbreviation u :=
(u; v)> , we rewrite the data termM 1 as

M 1(u; v) =
¡
r >

2f u + f t
¢2

=
·
jr 2f j

µ
r >

2f u
jr 2f j

+
f t

jr 2f j

¶¸ 2

= jr 2f j2
·

r >
2f

jr 2f j

µ
u +

f t r 2f
jr 2f j2

¶¸ 2

= jr 2f j2
Ã

r >
2f

jr 2f j
(u ¡ un )

| {z }
=: d

! 2

: (8)

The term d constitutes a projection of the di®erence between the estimated
°ow u and the normal °ow un in the direction of the image gradientr 2f . In
a geometric interpretation, the termd describes the distance fromu to the
line l in the uv-space that is given by

v = ¡
f x

f y
u ¡

f t

f y
: (9)
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d

l

un

r 2 f
jr 2 f j

u

Figure 1: Geometric interpretation of the rewritten data term (8).

On this line, the °ow u has to lie according to the OFC (4), and the normal
°ow un is the smallest vector that lies on this line. A sketch of thissituation
is given in Figure 1. Our geometric interpretation suggeststhat one should
ideally penalise the distanced in a data term M 2(u; v) = d2. The data term
M 1, however, weighs this distance by the squared spatial imagegradient, as
M 1(u; v) = jr 2f j2 d2, see (8). This results in a stronger enforcement of the
data constraint at high gradient locations. This overweighting is undesirable
as large gradients can be caused by unreliable structures, such as noise or
occlusions.
As a remedy, we normalise the data termM 1 by multiplying it with a factor
[34, 21]

µ0 :=
1

jr 2f j2 + ³ 2
; (10)

where the regularisation parameter³ > 0 avoids division by zero and ad-
ditionally reduces the in°uence of small gradients, while not in°uencing the
normalisation for gradients signi¯cantly larger than³ 2. A normalised version
of M 1 can then be written as

M 2(u; v) = w> ¹J0 w ; (11)

with the normalised tensor

¹J0 := µ0 J0 = µ0
¡
r 3f r >

3f
¢

: (12)

Gradient Constancy Assumption. To render the data term robust un-
der additive illumination changes, it was proposed to impose the gradient
constancy assumption[37, 31, 8]. In contrast to the brightness constancy
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assumption, it states that imagegradients remain constant under their dis-
placement, i.e.r 2f (x + w) = r 2f (x). A Taylor linearisation gives

r >
3f x w = 0 ; and r >

3f y w = 0 ; (13)

respectively. Combining both brightness and gradient constancy assumption
in a quadratic way gives the data term

M 3(u; v) = w> J w ; (14)

where the tensorJ can be written in the motion tensor notation [10] that
allows to combine the two constancy assumptions in a joint tensor

J := J0 + ° Jxy := J0 + ° (Jx + Jy)

:= r 3f r >
3f + °

¡
r 3f x r >

3f x + r 3f y r >
3f y

¢
; (15)

where the parameter° > 0 steers the contribution of the gradient constancy
assumption.
To normaliseM 3, we replace the motion tensorJ by its normalised counter-
part

¹J := ¹J0 + ° ¹Jxy := ¹J0 + °
¡ ¹Jx + ¹Jy

¢

:= µ0 J0 + ° (µx Jx + µy Jy)

:= µ0
¡
r 3f r >

3f
¢

(16)

+ °
¡
µx

¡
r 3f x r >

3f x
¢
+ µy

¡
r 3f y r >

3f y
¢¢

;

with two additional normalisation factors de¯ned as

µx :=
1

jr 2f x j2 + ³ 2
; and µy :=

1
jr 2f y j2 + ³ 2

: (17)

The normalised data termM 4 is given by

M 4(u; v) = w> ¹J w : (18)

Colour Image Sequences. In a next step we extend our data term to
multi-channel sequences (f 1(x); f 2(x); f 3(x)). If one uses the standard RGB
colour space, the three channels represent the red, green and blue channel,
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respectively. We couple the three colour channels in the motion tensor

¹J c :=
3X

i =1

¹J i :=
3X

i =1

£¹J i
0 + ° ¹J i

xy

¤
:=

3X

i =1

£¹J i
0 + °

¡ ¹J i
x + ¹J i

y

¢¤

:=
3X

i =1

h
µi

0

¡
r 3f i r >

3f i
¢

(19)

+ °
¡
µi

x

¡
r 3f i

x r >
3f i

x

¢
+ µi

y

¡
r 3f i

y r >
3f i

y

¢¢i
;

with normalisation factors µi for each colour channelf i . The corresponding
data term reads as

M 5(u; v) = w> ¹J c w : (20)

Photometric Invariant Colour Spaces. Realistic illumination models
encompass a multiplicative in°uence [38], which cannot be captured by the
gradient constancy assumption that is only invariant underadditive illumi-
nation changes. This problem can be tackled by using theHue Saturation
Value (HSV) colour space, as proposed in [17]. The hue channel is invariant
under global and local multiplicative illumination changes, as well as under
local additive changes. The saturation channel is only invariant under global
multiplicative illumination changes, and the value channel exhibits no in-
variances. Mileva et al. [24] thus only used the hue channel for optic °ow
computation as it exhibits the most invariances. We will additionally use the
saturation and value channel, because they contain information that is not
encoded in the hue channel.
As an example, consider the HSV decomposition of theRubberwhaleimage
shown in Figure 2. As we can see, the shadow at the left of the wheel
(shown in the zoom) is not present in the hue and the saturation channel,
but appears in the value channel. Nevertheless, especially the hue channel
discards a lot of image information, as can be observed for the striped cloth.
This information is, on the other hand, available in the value channel.
One problem when using a HSV colour representation is that thehue channel
f 1 describes an angle in a colour circle, i.e.f 1 2 [0±; 360±). The hue channel
is hence not di®erentiable at the interface between 0± and 360±. Our solution
to this problem is to consider the unit vector (cosf 1; sinf 1)> corresponding
to the angle f 1. This results in treating the hue channel as two (coupled)
channels, which are both di®erentiable. The corresponding motion tensor for
the brightness constancy assumption consequently reads as

¹J 1
0 := µ1

0

¡
r 3 cosf 1 r >

3 cosf 1 + r 3 sinf 1 r >
3 sinf 1

¢
; (21)
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Figure 2: HSV decomposition on the example of theRub-
berwhale image from the Middlebury optic °ow database [2]
(http://vision.middlebury.edu/°ow/data/ ). First row, from left to right:
(a) Colour image with zoom in shadow region left of the wheel.(b) Hue
channel, visualised with full saturation and value.Second row, from left to
right: (c) Saturation channel. (d) Value channel

where the normalisation factor is de¯ned as

µ1
0 :=

1

jr 2 cosf 1j2 + jr 2 sinf 1j2 + ³ 2
: (22)

The tensor¹J 1
xy for the gradient constancy assumption is adapted accordingly.

Note that in the di®erentiable partsof the hue channel, the motion tensor
(21) is equivalent to our earlier de¯nition, as

r 3 cosf 1 r >
3 cosf 1 + r 3 sinf 1 r >

3 sinf 1

= sin2f 1
³

er 3f 1 er >
3f 1

´
+ cos2f 1

³
er 3f 1 er >

3f 1
´

= er 3f 1 er >
3f 1 ; (23)

where er denotes the gradient in the di®erentiable parts of the hue channel.

Robust Penalisers. To provide robustness of the data term against out-
liers caused by noise and occlusions, Black and Anandan [6] proposed to
refrain from a quadratic penalisation. Instead they use a subquadratic pe-
nalisation function ª M (s2), wheres2 denotes the quadratic data term. Using
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such a robust penaliser within our data term yields

M 6(u; v) = ª M
¡
w> ¹J c w

¢
: (24)

Good results are reported in [8] for the subquadratic penaliser ª M (s2) :=p
s2 + "2 using a small regularisation parameter" > 0.

Bruhn and Weickert [9] later proposed aseparatepenalisation of the bright-
ness and the gradient constancy assumption, which is advantageous if one
assumption produces an outlier. Incorporating this strategy into our ap-
proach gives the data term

M 7(u; v) = ª M
¡
w> ¹J c

0 w
¢

+ ° ª M
¡
w> ¹J c

xy w
¢

; (25)

where the separate motion tensors are de¯ned as

¹J c
0 :=

3X

i =1

¹J i
0 ; and ¹J c

xy :=
3X

i =1

¹J i
xy : (26)

We will go further by proposing a separate robusti¯cation of each colour
channel in the HSV space. This can be justi¯ed by the distinct information
content of each of the three channels, see Figure 2, that drives the optic °ow
estimation in di®erent ways. The separate robusti¯cation then downweights
the in°uence of less appropriate colour channels.

Final Data Term. Incorporating our separate robusti¯cation idea intoM 7

brings us to our ¯nal data term

M (u; v)=
3X

i =1

ª M
¡
w> ¹J i

0 w
¢
+ °

Ã
3X

i =1

ª M
¡
w> ¹J i

xy w
¢
!

; (27)

with the motion tensors ¹J 1 adapted to the HSV colour space as described
before. Note that our ¯nal data term is (i) normalised, (ii) combines the
brightness and gradient constancy assumption, and(iii) uses the HSV colour
space with(iv) a separate robusti¯cation of all colour channels.
The contributions of our data term (27) to the Euler-Lagrange equations (2)
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and (3) are given by

@uM =
3X

i =1

µ
ª 0

M

¡
w> ¹J i

0 w
¢

¢
³ £¹J i

0

¤
1;1

u +
£¹J i

0

¤
1;2

v +
£¹J i

0

¤
1;3

´ ¶
(28)

+ °

Ã
3X

i =1

µ
ª 0

M

¡
w> ¹J i

xy w
¢

¢
³ £¹J i

xy

¤
1;1

u +
£¹J i

xy

¤
1;2

v +
£¹J i

xy

¤
1;3

´ ¶ !

;

@vM =
3X

i =1

µ
ª 0

M

¡
w> ¹J i

0 w
¢

¢
³ £¹J i

0

¤
1;2

u +
£¹J i

0

¤
2;2

v +
£¹J i

0

¤
2;3

´ ¶
(29)

+ °

Ã
3X

i =1

µ
ª 0

M

¡
w> ¹J i

xy w
¢

¢
³ £¹J i

xy

¤
1;2

u +
£¹J i

xy

¤
2;2

v +
£¹J i

xy

¤
2;3

´ ¶ !

;

where [J]m;n denotes the entry in rowm and column n of the tensor J,
and ª 0

M (s2) denotes the derivative of ªM (s2) w.r.t. its argument. Analysing
the terms (28) and (29), we see that the separate robusti¯cation of the HSV
channels makes sense: If a speci¯c channel violates the imposed constancy as-
sumption at a certain location, the corresponding argumentof the decreasing
function ª 0

M will be large, yielding a downweighting of this channel. Other
channels that satisfy the constancy assumption then have a dominating in-
°uence on the solution. This will be con¯rmed by a speci¯c experiment in
Section 5.1.

2.2 Smoothness Term

Following the extensive taxonomy on optic °ow regularisers [42], we sketch
some existing smoothness terms that led to our novel complementary regu-
lariser. We rewrite the regularisers in a novel framework that uni¯es their
notation and eases their comparison.

Preliminaries for the General Framework. We ¯rst introduce concepts
that will be used in our general framework.
Anisotropic image-driven regularisers take into account directional informa-
tion from image structures. These information can be obtained by consider-
ing the structure tensor [16]

S½ := K ½¤
h
r 2f r >

2f
i

=:
2X

i =1

¹ i si s>
i ; (30)

with an integration scale½ >0. The structure tensor is a symmetric, positive
semide¯nite 2£ 2 matrix that possesses two orthonormal eigenvectorss1 and
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s2 with corresponding eigenvalues¹ 1 ¸ ¹ 2 ¸ 0. The vector s1 points across
image structures, whereas the vectors2 points along them. In the case for
½= 0, i.e. without considering neighbourhood information, one obtains

s0
1 =

r 2f
jr 2f j

; and s0
2 =

r ?
2f

jr 2f j
; (31)

where r ?
2 f := ( ¡ f y; f x )> denotes the vector orthogonal tor 2f . For ½= 0

we also have thatjr 2f j2 = tr S0, with tr denoting the trace operator.
Most regularisers impose smoothness by penalising the magnitude of the °ow
gradients. Ass1 and s2 constitute an orthonormal basis, we can write

jr 2uj2 = u2
x + u2

y = u2
s1

+ u2
s2

; (32)

using the directional derivatives usi := s>
i r 2u. A corresponding rewriting

can also be performed forjr 2vj2.
To analyse the smoothing behaviour of the regularisers, we will consider the
corresponding Euler-Lagrange equations that can be written in the form

@uM ¡ ® div (D r 2u) = 0 ; (33)

@vM ¡ ® div (D r 2v) = 0 ; (34)

with a di®usion tensorD that steers the smoothing of the °ow components
u and v. More speci¯c, the eigenvectors ofD give the smoothing direction,
and the corresponding eigenvalues determine the magnitudeof smoothing.

Homogeneous Regularisation. First ideas for the smoothness term go
back to Horn and Schunck [19] who used a homogeneous regulariser. In our
framework it reads as

VH(r 2u; r 2v) := jr 2uj2 + jr 2vj2

= u2
s1

+ u2
s2

+ v2
s1

+ v2
s2

: (35)

The corresponding di®usion tensor is equal to the unit matrixD H = I . The
smoothing processes thus perform homogeneous di®usion thatblurs impor-
tant °ow edges.

Image-Driven Regularisation. To obtain sharp °ow edges, image-driven
methods [1, 27] reduce the smoothing at image edges, indicated by large
values ofjr 2f j2 = tr S0.
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An isotropic image-driven regulariser goes back to Alvarez etal. [1] who used

VII (r 2u; r 2v) := g
¡
jr 2f j2

¢ ¡
jr 2uj2 + jr 2vj2

¢

= g(tr S0)
¡
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

¢
; (36)

whereg is a decreasing, strictly positive weight function. The corresponding
di®usion tensorD II = g(tr S0) I shows that the weight function allows to
decrease the smoothing in accordance to the strength of image edges.

The anisotropic image-driven regulariser of Nagel and Enkelmann [27] pre-
vents smoothing of the °ow ¯eld across image boundaries but encourages
smoothing along them. This is achieved by the regulariser

VAI (r 2u; r 2v) := r >
2 u P(r 2f ) r 2u + r >

2 v P(r 2f ) r 2v ; (37)

whereP(r 2f ) denotes a regularised projection matrix perpendicular tothe
image gradient. It is de¯ned as

P(r 2f ) :=
1

jr 2f j2 + 2· 2

³
r ?

2 f
¡
r ?

2 f
¢>

+ · 2I
´

: (38)

with a regularisation parameter · > 0. In our common framework, this
regulariser can be written as

VAI (r 2u; r 2v) =
· 2

tr S0 + 2· 2

³
u2

s0
1

+ v2
s0

1

´
+

tr S0 + · 2

tr S0 + 2· 2

³
u2

s0
2

+ v2
s0

2

´
: (39)

The correctness of above rewriting can easily be veri¯ed and is based on the
observations that s0

1 and s0
2 are the eigenvectors ofP, and that the factors

in front of (u2
s0

1
+ v2

s0
1
) and (u2

s0
2
+ v2

s0
2
) are the corresponding eigenvalues. The

di®usion tensor for the regulariser of Nagel and Enkelmann [27] is identical
to the projection matrix: D AI = P. Concerning its eigenvectors and eigen-
values, we observe that in the limiting case for· ! 0, whereVAI ! u2

s0
2
+ v2

s0
2
,

we obtain a smoothing solely ins0
2-direction, i.e. along image edges. In the

de¯nition of the normal °ow (7) we have seen that a data term thatmodels
the brightness constancy assumption constraints the °ow only orthogonal to
image edges. In the limiting case, the regulariser of Nagel and Enkelmann
can hence be interpreted as a ¯rst complementary smoothness term that ¯lls
in information orthogonal to the data constraint direction.

The drawback of image-driven strategies is that they are prone to overseg-
mentation artefacts in textured image regions where image edges do not
necessarily correspond to °ow edges.
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Flow-Driven Regularisation. To remedy the oversegmentation problem,
it makes sense to adapt the smoothing process to the°ow edgesinstead of
the image edges.

In the isotropic setting, Shulman and Herv¶e [33] and SchnÄorr [31] proposed
to use subquadratic penaliser functions for the smoothnessterm, i.e.

VIF (r 2u; r 2v) := ª V
¡
jr 2uj2 + jr 2vj2

¢

= ª V
¡
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

¢
; (40)

where the penaliser function ªV (s2) is preferably increasing, di®erentiable
and convex ins. The associated di®usion tensor is given by

D IF = ª 0
V

¡
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

¢
I : (41)

The underlying di®usion processes perform nonlinear isotropic di®usion,
where the smoothing is reduced at the boundaries of the evolving °ow ¯eld
via the decreasing di®usivity ª0V . If one uses the convex penaliser [12]

ª V (s2) :=
p

s2 + "2 ; (42)

one ends up with regularised total variation (TV) regularisation [30] with the
di®usivity

ª 0
V (s2) =

1

2
p

s2 + "2
¼

1
2jsj

: (43)

Another possible choice is the non-convex Perona-Malik regulariser
(Lorentzian) [6, 29] given by

ª V (s2) := ¸ 2 log
µ

1 +
s2

¸ 2

¶
; (44)

that results in Perona-Malik di®usion with the di®usivity

ª 0
V (s2) =

1

1 + s2

¸ 2

; (45)

using a contrast parameteŗ > 0.

We will not discuss the anisotropic °ow-driven regulariser of Weickert and
SchnÄorr [42] as it does not ¯t in our framework and also has notbeen used
in the design of our complementary regulariser.

Despite the fact that °ow-driven methods reduce the oversegmentation prob-
lem caused by image textures, they su®er from another drawback: The °ow
edges are not as well localised as with image-driven strategies.
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Image- and Flow-Driven Regularisation. We have seen that image-
driven methods su®er from oversegmentation artefacts, but give sharp °ow
edges. Flow-driven strategies remedy the oversegmentation problem but give
less pleasant °ow edges. It is thus desirable to combine the advantages of both
strategies to obtain sharp °ow edges without oversegmentation problems.
This aim was achieved by Sun et al. [36] who presented an anisotropic image-
and °ow-driven smoothness term in a discrete setting. It adapts the smooth-
ing direction to imagestructures but steers the smoothing strength in accor-
dance to the°ow contrast. In contrast to Nagel and Enkelmann [27] who
consideredr ?

2 f to obtain directional information of image structures, the
regulariser in [36] analyses the eigenvectorssi of the structure tensorS½ from
(30) to obtain a more robust direction estimation. A continuous version of
this regulariser can be written as

VAIF (r 2u; r 2v) := ª V
¡
u2

s1

¢
+ ª V

¡
v2

s1

¢
+ ª V

¡
u2

s2

¢
+ ª V

¡
v2

s2

¢
: (46)

Here, we obtain two di®usion tensors, that forp 2 f u; vg read as

D p
AIF = ª 0

V

¡
p2

s1

¢
s1 s>

1 + ª 0
V

¡
p2

s2

¢
s2 s>

2 : (47)

We observe that these tensors allow to obtain the desired behaviour: The
regularisation direction is adapted to the image structuredirections s1 and
s2, whereas the magnitude of the regularisation depends on the°ow contrast
encoded inps1 and ps2 . As a result, one obtains the same sharp °ow edges as
image-driven methods but does not su®er from oversegmentation problems.

2.2.1 Our Novel Complementary Regulariser

In spite of its sophistication, the anisotropic image- and °ow-driven model
[36] given in (46) still su®ers from a few shortcomings. We introduce three
amendments that we will discuss now.

Regularisation Tensor. A ¯rst remark w.r.t. the model from (46) is that
the directional information from the structure tensor S½ is not consistent
with the imposed constraints of our data term (27). It is morenatural to
take into account directional information provided by the motion tensor (19)
and to steer the anisotropic regularisation process w.r.t.\constraint edges"
instead of image edges. To this end we propose to analyse the eigenvectors
r 1 and r 2 of the regularisation tensor

R ½ :=
3X

i =1

K ½¤
·
µi

0

¡
r 2f i r >

2f i
¢

+ °
¡
µi

x

¡
r 2f i

x r >
2f i

x

¢
+ µi

y

¡
r 2f i

y r >
2f i

y

¢¢
¸

;

(48)
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which can be regarded as a generalisation of the structure tensor (30). Note
that the regularisation tensor di®ers from the motion tensor¹Jc from (19)
by the facts that it (i) integrates neighbourhood information via the Gaus-
sian convolution, and(ii) uses the spatial gradient operatorr 2 instead of
the spatio-temporal operatorr 3. The latter is due to the spatial regularisa-
tion. In Section 2.3 we extend our regulariser to the spatio-temporal domain,
yielding a regularisation tensor that also uses the spatio-temporal gradient
r 3. Further note that a Gaussian convolution of themotion tensor leads to
a combined local-global (CLG) data term in the spirit of [11]. Our experi-
ments in Section 5.1 will analyse in which cases such a modi¯cation of our
data term can be useful.

Rotational Invariance. The smoothness termVAIF from (46) lacks the
desirable property of rotational invariance, because the directional derivatives
of u and v in the eigenvector directions are penalised separately. Wepropose
to jointly penalise the directional derivatives, yielding

VAIF R ½;RI (r 2u; r 2v) := ª V

³
u2

r 1
+ v2

r 1

´
+ ª V

³
u2

r 2
+ v2

r 2

´
; (49)

where we use the eigenvectorsr i of the regularisation tensor.

Single Robust Penalisation. The above regulariser (49) performs a
twofold robust penalisationin both eigenvector directions. However, the data
term mainly constraints the °ow in direction of the largest eigenvalue of the
spatial motion tensor, i.e. in r 1-direction. We hence propose asingle ro-
bust penalisationin r 1-direction. In the orthogonal r 2-direction, we opt for
a quadratic penalisation to obtain a strong ¯lling-in e®ect ofmissing infor-
mation. The bene¯ts of this design will be con¯rmed by our experiments in
Section 5.2. Incorporating the single robust penalisation̄nally yields our
complementary regulariser

VCR (r 2u; r 2v) := ª V

³
u2

r 1
+ v2

r 1

´
+ u2

r 2
+ v2

r 2
; (50)

that complements the proposed robust data term from (27) in an optimal
fashion. For the penaliser ªV , we propose the to use the Perona-Malik
regulariser (44).
The corresponding joint di®usion tensor is given by

D CR = ª 0
V

¡
u2

r 1
+ v2

r 1

¢
r 1r >

1 + r 2r >
2 ; (51)

with ª 0
V given in (45). The derivation of this di®usion tensor is presented in

the Appendix A.
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Discussion. To understand the advantages of the complementary regu-
lariser compared to the anisotropic image- and °ow-driven regulariser (46),
we compare our joint di®usion tensor (51) to its counterparts(47), which
reveals the following innovations:(i) The smoothing direction is adapted to
constraint edges instead of image edges, as the eigenvectors of the regularisa-
tion tensor r i are used instead of the eigenvectors of the structure tensor. (ii)
We achieve rotational invariance by coupling the two °ow components in the
argument of ª 0

V . (iii) We only reduce the smoothingacrossconstraint edges,
i.e. in r 1-direction. Along them, always a strong di®usion with strength 1 is
performed, resembling edge-enhancing anisotropic di®usion [41].
Furthermore, when analysing our joint di®usion tensor, the bene¯ts of the
underlying anisotropic image- and °ow-driven regularisation become visible.
The smoothing strength across constraint edges is determined by the expres-
sion ª 0

V (u2
r 1

+ v2
r 1

). Here we can distinguish two scenarios: At a °ow edge
that corresponds to a constraint edge, the °ow gradients willbe large and
almost parallel to r 1. Thus, the argument of the decreasing function ª0V will
be large, yielding a reduced di®usion which preserves this important edge.
At \deceiving" texture edges in °at °ow regions, however, the °ow gradi-
ents are small. This results in a small argument for ª0V , leading to almost
homogeneous di®usion. Hence, we perform a pronounced smoothing in both
directions that avoids oversegmentation artefacts.
Finally note that our complementary regulariser has the same structure, even
if other data terms are used. Only the regularisation tensorR ½ has to be
adapted to the new data term.

2.2.2 Summary

To conclude this section, Table 1 summarises the discussed regularisers
rewritten in our framework. It also compares the way directional information
is obtained for anisotropic strategies, and it indicates ifthe regulariser is ro-
tationally invariant. Note that despite the fact these regularisers have been
developed within almost three decades, our taxonomy shows their structural
similarities.

2.3 Extension to a Spatio-Temporal Smoothness Term

The smoothness terms we have discussed so far model the assumption of a
spatially smooth °ow ¯eld. As image sequences in general encompass more
than two frames, yielding several °ow ¯elds, it makes sense to also assume a
temporal smoothness of the °ow ¯elds, leading to spatio-temporal regulari-
sation strategies.
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Table 1: Comparison of regularisation strategies. The nextto last column names the tensor that is analysed to obtain
directional information for anisotropic strategies, and the last column indicates if the corresponding regulariser is
rotationally invariant.

Strategy RegulariserV Directional Rotationally
Adaptation Invariant

Homogeneous u2
s1

+ u2
s2

+ v2
s1

+ v2
s2

| X
[19]

Isotropic image-driven g(tr S0)
¡
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

¢
| X

[1]

Anisotropic image-driven u2
s0

2
+ v2

s0
2
, for · ! 0 S0 X

[27]

Isotropic °ow-driven ª V
¡
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

¢
| X

[33, 31]

Anisotropic image and °ow-driven ªV
¡
u2

s1

¢
+ ª V

¡
v2

s1

¢
+ ª V

¡
u2

s2

¢
+ ª V

¡
v2

s2

¢
S½ |

[36]

Anisotropic complementary ª V
¡
u2

r 1
+ v2

r 1

¢
+ u2

r 2
+ v2

r 2
R ½ X

image- and °ow-driven
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A spatio-temporal (ST) version of the general energy functional (1) reads as

E ST(u; v) = (52)
Z

­ £ [0;T ]

£
M (u; v) + ® VST(r 3u; r 3v)

¤
dx dy dt :

Compared to the spatial energy (1) we note the additional integration over
the time domain and that the smoothness term now depends on the spatio-
temporal °ow gradient.
To extend our complementary regulariser from (50) to the spatio-temporal
domain, we de¯ne thespatio-temporal regularisation tensor

R
ST

½ := K ½¤ ¹Jc : (53)

For ½= 0 it is identical to the motion tensor ¹Jc from (19). The Gaussian
convolution with K ½ is now performed in the spatio-temporal domain, which
also holds for the presmoothing of the image sequence. The spatio-temporal
regularisation tensor is a 3£ 3 tensor that possesses three orthonormal eigen-
vectors r 1; r 2 and r 3. With their help, we de¯ne the spatio-temporal comple-
mentary regulariser (ST-CR)

V ST
CR (r 3u; r 3v) := ª V

³
u2

r 1
+ v2

r 1

´
+ u2

r 2
+ v2

r 2
+ u2

r 3
+ v2

r 3
: (54)

The corresponding spatio-temporal di®usion tensor reads as

D ST
CR = ª 0

V

¡
u2

r 1
+ v2

r 1

¢
r 1 r >

1 + r 2 r >
2 + r 3 r >

3 : (55)

3 Automatic Selection of the Smoothness
Weight

The last step missing for our OFH method is a strategy that automatically
determines the optimal smoothness parameter® for the image sequence un-
der consideration. This is especially important in real world applications of
optic °ow where no ground truth °ow is known. Note that if the latter would
be the case, we could simply select the smoothness weight that gives the °ow
¯eld with the smallest deviation from the ground truth.

3.1 A Novel Concept

We propose an error measure that allows to judge the quality of a °ow ¯eld
without knowing the ground truth. This error measure bases on a novel
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concept, the optimal prediction principle (OPP). The OPP states that the
°ow ¯eld obtained with an optimal smoothness weight allows forthe best
prediction of the next frames in the image sequence. This makes sense as a
too small smoothness weight would lead to an over¯t to the ¯rst two frames
and consequently result in a bad prediction of further frames. For too large
smoothness weights, the °ow ¯elds would be too smooth and thus also lead
to a bad prediction.
Following the OPP, our error measure needs to judge the quality of the
prediction achieved with a given °ow ¯eld. To this end, we evaluate the
imposed data constraints between the ¯rst and the third frameof the image
sequence, resulting in anaverage data constancy error (ADCE)measure. To
compute this measure, we assume that the motion of the scene objects is of
more or less constant speed and that it describes linear trajectories within
the considered three frames. Under these assumptions, we simply double the
°ow vectors to evaluate the data constraints between ¯rst and third frame.
Following this strategy, we can de¯ne the ADCE between frame 1 and 3 as

ADCE1;3(w®) :=
1

j­ j

Z

­

"
3X

i =1

ª M

³
µi

0

¡
f i (x +2w®) ¡ f i (x)

¢2
´

(56)

+ °

Ã
3X

i =1

ª M

µ
µi

x

¡
f i

x (x +2w®) ¡ f i
x (x)

¢2

+ µi
y

¡
f i

y(x +2w®) ¡ f i
y(x)

¢2
¶ !#

dx dy ;

wherew® denotes the °ow ¯eld obtained with a smoothness weight®. The
integrand of above expression is (apart from the doubled °ow ¯eld) a variant
of our ¯nal data term (27) where no linearisation of the constancy assump-
tions have been performed. To evaluate the images at the subpixel locations
f i (x +2w®) we use Coons patches based on bicubic interpolation [13].

3.2 Determining the Best Parameter

In general, the relation between® and the ADCE is not convex, which ex-
cludes the use of gradient descent-like approaches for ¯nding the optimal
value of ® w.r.t. our error measure.
We propose a brute-force method similar to the one of Ng and Solo [28]: We
¯rst compute the error measures for a \su±ciently large" set of°ow ¯elds
obtained with di®erent® values. We then select the® that gives the smallest
error. To reduce the number of® values to test, we propose to start from a
given, standard value®0, say. This value is then incremented/decremented
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n® times by multiplying/dividing it with a stepping factor a > 1, yielding in
total 2 n® + 1 tests. This strategy results in testing more values of® that are
close to®0 and, more important, tests less very small or very large values of
® that hardly give reasonable results.

4 Implementation

The solution of the Euler-Lagrange equations for our methodcomes down to
solving a nonlinear system of equations. We solve the systemby a nonlinear
multigrid scheme based on a Gau¼-Seidel type solver with alternating line
relaxation [10].

4.1 Warping Strategy for Large Displacements

The derivation of the optic °ow constraint (4) by means of a linearisation
is only valid under the assumption of small displacements. If the temporal
sampling of the image sequence is too coarse, this precondition will be vi-
olated and a linearised approach fails. To overcome this problem, Brox et
al. [8] proposed a coarse-to-¯ne multiscale warping strategy. To obtain a
coarse representation of the problem, we downsample the input images by
a factor ´ 2 [0:5; 1:0). Prior to downsampling, we apply a low-pass ¯lter to
the images by performing a Gaussian convolution with standard deviationp

2=(4´ ). This prevents aliasing problems.
At each warping level, we split the °ow ¯eld into an already computed solu-
tion from coarser levels and an unknown °ow increment. As the increments
are small, they can computed by the presented linearised approach. At the
next ¯ner level, the already computed solution serves as initialisation, which
is achieved by performing a motion compensation of the second frame by
the current °ow, known as warping. For warping with subpixel precision we
again use Coons patches based on bicubic interpolation [13].

Adapting the Smoothness Weight to the Warping Level. The in-
°uence of the data term usually becomes smaller at coarser levels of our
multiscale framework. This is due to the smoothing properties of the down-
sampling that leads to smaller values of the image gradientsat coarse levels.
Such a behaviour is in fact desirable as the data term might not be reliable
at coarse levels. Our proposed data term normalisation leads, however, to
image gradients that are approximately in the same range at each level. To
recover the previous reduction of the data term at coarse levels, we propose
to adapt the smoothness weight® to the warping level k. This is achieved
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by setting ®(k) = ®=´k which results in larger values of® and an emphasis
of the smoothness term at coarse levels.

4.2 Discretisation

We follow [10] for the discretisation of the Euler-Lagrangeequations. The
images and the °ow ¯elds are sampled on a rectangular pixel gridwith grid
sizeh and temporal step size¿.
Spatial image derivatives are approximated via central ¯nite di®erences using
the stencil 1

12h (1; ¡ 8; 0; 8; ¡ 1), resulting in a fourth order approximation. The
spatial °ow derivatives are discretised by second order approximations with
the stencil 1

2h (¡ 1; 0; 1). For approximating temporal image derivatives we use
a two-point stencil (¡ 1; 1), resulting in a temporal di®erence. Concerning the
temporal °ow derivatives that occur in the spatio-temporal case, we use the
stencil (¡ 1; 1)=¿. Here, it makes sense to adapt the value of¿ to the given
image sequence to allow for an appropriate scaling of the temporal direction
compared to the spatial directions [43].
When computing the motion tensor, occurring derivatives are averaged from
the two frames at time t and t + 1 to obtain a lower approximation error.
For the regularisation tensor, the derivatives are solely computed at the ¯rst
frame as we only want to consider directional information from the reference
image.

5 Experiments

In our experiments we show the bene¯ts of the OFH approach. Thērst
experiments are concerned with our robust data term and the complementary
smoothness term in the spatial and the spatio-temporal domain. Then, we
turn to the automatic selection of the smoothness weight. After a small
experiment on the importance of anti-aliasing in the warping scheme, we
¯nish our experiments by presenting the performance at the Middlebury optic
°ow benchmark [2] (http://vision.middlebury.edu/°ow/eval/ ).
As all considered sequences exhibit relatively large displacements, we use
the multiscale warping approach described in Section 4.1. The °ow ¯elds
are visualised by a colour code where hue encodes the °ow direction and
brightness the magnitude, see Figure 3 (d). Throughout our experiments we
use constant values for the following parameters:³ = 0:1; " = 0:001; ¸ = 0:1.
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5.1 Robust Data Term

Bene¯ts of Normalisation and the HSV Colour Space. We proposed
two main innovations in the data term: constraint normalisation and using
an HSV colour representation. In our ¯rst experiment, we thus compare
our method against variants(i) without data term normalisation. (ii) using
the RGB instead of the HSV colour space. For the latter we only separately
robustify the brightness and the gradient constancy assumption, as a separate
robusti¯cation of the RGB channels makes no sense. In Figure 3we show
the results for the Snail sequence that we have created. Note that it is a
rather challenging sequence due to severe shadows and largedisplacements
up to 25 pixels. When comparing the results to our result in Figure 3 (i),
the following drawbacks of the modi¯ed versions become obvious: Without
data term normalisation (Figure 3 (e)), unpleasant artefacts at image edges
arise, even when using a large smoothness weight®. When relying on the
RGB colour space (Figure 3 (f)), a phantom motion in the shadow region at
the right border is estimated.

E®ect of the Separate Robust Penalisation. This experiment illus-
trates the desirable e®ect of our separate robust penalisation of the HSV
channels. Using theRubberwhalesequence from the Middlebury database,
we show in Figure 4 the data term weights ª0M (w>¹J i

0 w) for the bright-
ness constancy assumption on the hue, the saturation and thevalue channel
(i =1; ::; 3). Here, brighter pixels correspond to a larger weight and weonly
show a zoom for better visibility. As we can see, the weight of the value
channel is reduced in the shadow regions (left of the wheel, of the orange
toy and of the clam). This is desirable as the value channel isnot invariant
under shadows, see Figure 2.

A CLG Variant of Our Method. Our next experiment is concerned
with a CLG variant of our data term where we, as for the regularisation
tensor, perform a Gaussian convolution of the motion tensorentries.
First, we compare our method against a CLG variant for some Middlebury
sequences, see Table 2. To evaluate the quality of the °ow ¯eldscompared
to the given ground truth, we use theaverage angular error (AAE)measure
([3]). We ¯nd that the CLG variant always leads to worse results and con-
clude that for the considered test sequences, this modi¯cation seems not to
be useful.
The °ow ¯elds for our proposed method are visualised in Figure 5. Together
with the parameter settings, the resulting error measures can be found in the
caption of the ¯gure. To ease comparison with other methods, we give the
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Figure 3: Results for ourSnail sequencewith di®erent variants of our method.
First row, from left to right: (a) First frame. (b) Zoom in marked region
of ¯rst frame. (c) Same for second frame.Second row, from left to right:
(d) Colour code. (e) Flow ¯eld in marked region, without normalisation
(® = 5000:0). (f ) Same for RGB colour space (® = 300:0). Third row, from
left to right: (g) Same for TV regularisation (® = 50:0). (h) Same for image-
and °ow-driven regularisation [36] (® = 2000:0). (i) Same for our method
(® = 2000:0). All results used the ¯xed parameters¾= 0:5; ° = 20:0; ½=
4:0; ´ = 0:95
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Figure 4: E®ect of our separate robust penalisation of the HSV channels.
First row, from left to right: (a) Zoom in ¯rst frame of the Rubberwhalese-
quence.(b) Visualisation of the corresponding hue channel weight. Brighter
pixels correspond to a larger weight.Second row, from left to right:(c) Same
for the saturation channel. (d) Same for the value channel

AAE and also the alternative average endpoint error (AEE)measure ([2]).
Concerning the theRubberwhalesequence in the ¯rst row of Figure 5, we
wish to note that using the HSV colour space prevents unpleasant artefacts
in the shadow regions, e.g. left of the wheel.
Although we have seen that a CLG variant of our method does not improve
the results on the Middlebury data set, this modi¯cation can actually be
useful in a certain scenario, namely in the presence of severe noise in the
image sequence. To prove this, we compare in Table 3 the performance of our
method to its CLG counterpart on noisy versions of theYosemite sequence.
As it turns out, the CLG variant improves the results at large noise scales,
but deteriorates the quality for low noise scenarios. This also explains the
experienced behaviour on the Middlebury data sets, which hardly su®er from
noise.

5.2 Complementary Smoothness Term

Comparison with Other Regularisers. In Figure 3, we compare our
method against two results obtained when using another regulariser in con-
junction with our robust data term: (i) Using the popular TV regulariser; see
(40) and (42). (ii) Using the anisotropic image and °ow-driven regulariser
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Table 2: Comparison of our method to a CLG variant (using the AAE)

Sequence Rubberwhale Dimetrodon Grove2 Urban2
CLG 3:00± 1:59± 2:20± 2:67±

Proposed 2:77± 1:54± 2:16± 2:49±

Figure 5: Results for some Middlebury sequences with groundtruth. First
column: Reference frame.Second column:Ground truth (white pixels mark
locations where no ground truth is given).Third column: Result with our
method. From top to bottom: Rubberwhale(® = 850:0; ¾= 0:3; ° = 20:0; ½=
2:0 =) AAE = 2 :77±, AEE = 0 :083), Dimetrodon (® = 2500:0; ¾= 0:7; ° =
25:0; ½ = 2:0 =) AAE = 1 :54±, AEE = 0 :079), Grove2 (® = 35:0; ¾ =
0:5; ° = 0:2; ½= 1:0 =) AAE = 2 :16±, AEE = 0 :151), and Urban2 (® =
125:0; ¾ = 0:5; ° = 1:0; ½ = 1:5 =) AAE = 2 :49±, AEE = 0 :245). The
downsampling rate was set tó = 0:95 for all sequences
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Table 3: Comparison of our method to a CLG variant on noisy versions of
the Yosemitesequence (using the AAE). We have added Gaussian noise with
zero mean and standard deviation¾n

¾n 0 10 20 40
CLG 1:75± 4:01± 5:82± 8:14±

Proposed 1:64± 3:82± 6:08± 8:55±

from [36], which built the basis of our complementary regulariser. Here, we
use a rotationally invariant formulation that can be obtained from (49) by
replacing the eigenvectorsr i of the regularisation tensor by the eigenvectors
si of the structure tensor. Comparing the obtained results to our result in
Figure 3 (i), we see that TV regularisation (Figure 3 (g)), leads to blurred
and badly localised °ow edges. Using the regulariser from [36](Figure 3 (h)),
unpleasant staircasing artefacts deteriorate the result.

Optic Flow in the Spatio-Temporal Domain. Let us now turn to the
spatio-temporal extension of our complementary smoothness term. As most
Middlebury sequences consist of 8 frames, a spatio-temporal method would in
general be applicable. However, the displacements between two subsequent
frames are often rather large there, resulting in a violation of the assumption
of a temporally smooth °ow ¯eld. Consequently, spatio-temporal methods
do not improve the results. In our experiments, we use theMarble sequence
(available at http://i21www.ira.uka.de/image sequences/) and the Yosemite
sequence from the Middlebury datasets. These sequences exhibit relatively
small displacements and our spatio-temporal method allowsto obtain notably
better results, see Figure 6 and Table 4{5. Note that when using more than
two frames, a smaller smoothness weight® has to be chosen and that a too
large temporal window may also deteriorate the results again.

5.3 Automatic Selection of the Smoothness Weight

Performance of our Proposed Error Measure. We ¯rst show that our
proposed data constancy error between frame 1 and 3 (ADCE1;3) is a very
good approximation of the popular angular error (AAE) measure. To this
end, we compare the two error measures for theGrove2 sequence in Figure
7. It becomes obvious that our proposed error measure (Figure 7 (b)) indeed
exhibits a shape very close to the angular error shown in Figure 7 (a). As
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Figure 6: Results for theMarble sequence with our spatio-temporal method.
First row, from left to right: (a) Reference frame (frame 16).(b) Ground
truth (white pixels mark locations where no ground truth is available). Sec-
ond row, from left to right: (c) Result using 2 frames (16{17).(d) Same for
6 frames (14{19)

Table 4: Smoothness weight® and AAE measures for our spatio-temporal
method on the Marble sequence, see Figure 6. All results used the ¯xed
parameters¾ = 0:5; ° = 0:5; ½= 1:0; ¿ = 1:5; ´ = 0:5. When using more
than two frames, the convolutions withK ¾ and K ½ are performed in the
spatio-temporal domain

Number of frames 2 4 6 8
(from { to) (16{17) (15{18) (14{19) (13{20)

Smoothn. weight® 75:0 50:0 50:0 50:0
AAE 4:85± 2:63± 1:86± 2:04±
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Table 5: Smoothness weight® and AAE measures for our spatio-temporal
method on the Yosemite sequence from Middlebury. All results used the
¯xed parameters ¾= 1:0; ° = 20:0; ½= 1:5; ¿ = 1:0; ´ = 0:5. Here, better
results could be obtained when disabling the temporal presmoothing

Number of frames 2 4 6 8
(from { to) (10{11) (9{12) (8{13) (7{14)

Smoothn. weight® 2000:0 1000:0 1000:0 1000:0
AAE 1:65± 1:16± 1:05± 1:01±

our error measure re°ects the quality of the prediction with the given °ow
¯eld, our result further substantiate the validity of the proposed OPP.

Bene¯ts of an Automatic Parameter Selection. Next, we show that
our automatic parameter selection works well for a large variety of di®erent
test sequences. In Table 6, we summarise the AAE obtained when(i) setting
® to a ¯xed value (® = ®0 = 400:0), (ii) using our automatic parameter
selection method, and(iii) selecting the (w.r.t. the AAE) optimal value of®
under the tested proposals. As we can see, estimating® with our proposed
method allows to improve the results compared to a ¯xed value of ® in almost
all cases. Just for theGrove 3 sequence, the ¯xed value of® by accidentally
coincides with the optimal value. Compared to the results achieved with an
optimal value of ®, our results are on average 3% and at most 10% worse
than the optimal result.

5.4 Importance of Anti-Aliasing in the Warping
Scheme

We proposed to presmooth the images prior to downsampling inorder to
avoid aliasing problems. In most cases, the resulting artefacts will not sig-
ni¯cantly deteriorate the °ow estimation, which can be attributed to the
robust data term. However, for theUrban sequence from the o±cial Middle-
bury benchmark, anti-aliasing is crucial for obtaining reasonable results, see
Figure 8. As it turns out, the large displacement of the building in the lower
left corner can only be estimated when using with anti-aliasing. We explain
this by the high frequent stripe pattern on the facade of the building.
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Figure 7: Automatic selection of the smoothness weight® at the Grove2
sequence.From left to right: (a) Angular error (AAE) for 51 values of ®,
computed from®0 = 400:0 and a stepping factora = 1:1. (b) Same for the
proposed data constancy error (ADCE1;3). Remaining parameters were set
¯xed to ¾= 0:5; ° = 20:0; ½= 4:0; ´ = 0:95

Table 6: Results (AAE) for some Middlebury sequences when(i) ¯xing the
smoothness weight (® = 400:0), (ii) estimating ®, and (iii) with the optimal
value of ®

Sequence Fixed® Estimated ® Optimal ®
Rubberwhale 3:43± 3:00± 3:00±

Grove2 2:59± 2:43± 2:43±

Grove3 5:50± 5:62± 5:50±

Urban2 3:22± 2:84± 2:66±

Urban3 3:44± 3:37± 3:35±

Hydrangea 1:96± 1:94± 1:86±

Yosemite 2:56± 1:89± 1:71±

Marble 5:73± 5:05± 4:94±
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Figure 8: Importance of anti-aliasing on the example of theUrban sequence.
Top row, from left to right: (a) Frame 10. (b) Frame 11. Bottom row,
from left to right: (c) Our result without anti-aliasing. (d) Same with anti-
aliasing. All results used the ¯xed parameters® = 500:0; ¾ = 0:5; ° =
20:0; ½= 4:0; ´ = 0:95. Please note that for this sequence, no ground truth
is publicly available

5.5 Comparison to State-of-the-Art Methods

To compare our method to the state-of-the-art in optic °ow estimation, we
submitted our results to the popular Middlebury benchmark (available at
http://vision.middlebury.edu/°ow/eval/ ).
We found that for the provided benchmark sequences, using a HSV colour
representation is not as bene¯cial as seen in our experiment from Figure 3.
As the Middlebury sequences hardly su®er from di±cult illumination condi-
tions, we cannot pro¯t from the photometric invariances of the HSV colour
space. On the other hand, some sequences even pose problems in their HSV
representation. As an example, consider the results for the the Teddy se-
quence in the ¯rst row of Figure 9. Here we see that the small white triangle
beneath the chimney causes unpleasant artefacts in the °ow ¯eld. This re-
sults from the problem that greyscales do not have a unique representation
in the hue as well as the saturation channel. Nevertheless, there are also
sequences where a HSV colour representation is bene¯cial. Forthe Mequon
sequence (second row of Figure 9) a HSV colour representationremoves arte-
facts in the shadows left of the toys. The bottom line is, however, that for
the whole set of benchmark sequences, we obtain slightly better results when
using the RGB colour space. Thus, we use this variant of our method for
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Table 7: Estimated values of the smoothness weight®, using our automatic
parameter selection method

Sequence Smoothness weight®
Army 277:8
Grove 277:8
Mequon 277:8
Sche²era 691:2
Urban 480:0
Wooden 995:3
Yosemite 1433:3

evaluation at the Middlebury benchmark.
For our submission we used in accordance to the guidelines a ¯xed set of
parameters: ¾ = 0:5; ° = 20:0; ½= 4:0; ´ = 0:95. The smoothness weight
® was automatically determined by our proposed method with the settings
n® = 8; ®0 = 400:0; a = 1:2. For the Teddy with only two frames, we set
® = ®0, as our parameter estimation method is not applicable in this case.
The resulting running time for theUrban sequence (640£ 480 pixels) was 620 s
on a standard PC (3.2 GHz Intel Pentium 4). For the parameter selection
we computed 2¢8 + 1 = 17 °ow ¯elds, corresponding to approximately 36 s
per °ow ¯eld. As recently shown by Gwosdek et al. [18], these runtimes can
be signi¯cantly lowered by a parallel implementation on modern GPUs.
At the time of submission (August 2010), we achieve the 4th place w.r.t. the
AAE and the AEE measure among 39 listed methods. Note that our previous
Complementary Optic Flow method [46] only ranks 6th for the AAEand 9th
for the AEE, which demonstrates the bene¯ts of the proposed novelties in
this paper, like the automatic parameter selection and the anti-aliasing.
In Table 7 we additionally summarise the estimated values of®resulting from
our automatic parameter selection method. As desired, for sequences with
small details in the °ow ¯eld (Army, Grove, Mequon) a small smoothness
weight is chosen. On the other hand, sequences likeWooden and Yosemite
with a rather smooth °ow yield signi¯cantly larger values for the smoothness
weight.
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Figure 9: Comparison of results obtained with HSV or RGB colour repre-
sentation. First row, from left to right: (a) Frame 10 of theTeddy sequence.
(b) Frame 11. (c) Result when using the HSV colour space (AAE = 3:94±).
(d) Same for the RGB colour space (AAE = 2:64±). Second row, from left
to right: (e) Frame 10 of theMequon sequence.(f ) Frame 11. (g) Result
when using the HSV colour space (AAE = 2:28±). (h) Same for the RGB
colour space (AAE = 2:84±)

6 Conclusions and Outlook

In this paper we have shown how to harmonise the three main constituents of
variational optic °ow approaches: the data term, the smoothness term and
the smoothness weight. This was achieved by two main ideas:(i) We devel-
oped a smoothness term that achieves an optimal complementary smoothing
behaviour w.r.t. the imposed data constraints.(ii) We presented a simple,
yet well performing method for determining the optimal smoothness weight
for the given the image sequence. To this end, we came up with anovel
paradigm, the optimal prediction principle (OPP).
Our optic °ow in harmony (OFH) method bases on an advanced data term
that combines and extended successful concepts like normalisation, photo-
metric invariant colour representation, higher order constancy assumptions
and robust penalisation. The anisotropic complementary smoothness term
incorporates directional information from the motion tensor occurring in the
data term. The smoothing in data constraint direction is reduced to avoid
interference with the data term, while a strong smoothing inthe orthogonal
direction allows to ¯ll-in missing information. This yields an optimal com-
plementary between both terms. Furthermore, our smoothness term uni¯es
the bene¯ts of image- and °ow-driven regularisers, resultingin sharp °ow
edges without oversegmentation artefacts. The proposed parameter selec-
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tion method bases on the OPP that we introduced in this paper.It states
the °ow ¯eld obtained with an optimal smoothness weight allowsfor the
best prediction of the next frames in the image sequence. Under mild as-
sumptions, the quality of the prediction can be judged by evaluating the
data constraints between ¯rst and third frame of the sequenceand using the
doubled °ow vectors. Due to its simplicity, our method can easily be used in
all variational optic °ow approaches and additionally givessurprisingly good
results.
The bene¯ts of the OFH idea are demonstrated by our extensive experimen-
tal validation and the competitive performance at the Middlebury optic °ow
benchmark. Our paper thus shows that a careful design of dataand smooth-
ness term together with an automatic choice of the smoothness weight allows
to outperform other well-engineered methods that incorporate many more
processing steps, e.g. segmentation [22], or the integration of an epipolar
geometry prior [39].
We hope that our work will give rise to more \harmonised" approaches in
other ¯elds where energy-based methods are used, e.g. image registration.
Our current research is concerned with exploring further improvements in
the data and smoothness term. For the latter, incorporatingrecent non-local
smoothing strategies [35, 44] into our framework can be interesting. Finally,
further investigations on the presented novel parameter selection approach
seem promising.
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A Appendix: Derivation of the Di®usion
Tensor for the Complementary Regu-
lariser

Consider the complementary regulariser from (50):

V(r 2u; r 2v) = ª V

³
u2

r 1
+ v2

r 1

´
+ u2

r 2
+ v2

r 2
: (57)

Its contributions to the Euler-Lagrange equations are given by

@x (@ux V) + @y
¡
@uy V

¢
; (58)

and
@x (@vx V) + @y

¡
@vy V

¢
; (59)
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respectively. We exemplify the computation of the ¯rst expression (58). The
second one then follows analogously. Let us ¯rst de¯ne the abbreviations

r i := ( r i 1; r i 2)> ; and Ã0
V (r i ) := ª 0

V

³
u2

r i
+ v2

r i

´
; (60)

for i = 1;::; 2. With their help, we compute the expressions

@ux V = 2 ( Ã0
V (r 1) ur 1 r11 + ur 2 r21) ; (61)

@uy V = 2 ( Ã0
V (r 1) ur 1 r12 + ur 2 r22) : (62)

from (58). Using the fact that

@x (@ux V) + @y
¡
@uy V

¢
= div ( @ux V; @uy V)> ; (63)

we obtain by plugging (61) and (62) into (58):

@x (@ux V) + @y
¡
@uy V

¢
= 2 div

µ
Ã0

V (r 1) ur 1 r11 + ur 2 r21

Ã0
V (r 1) ur 1 r12 + ur 2 r22

¶
: (64)

By multiplying out the expressions inside the divergence expressions one ends
up with

@x (@ux V) + @y
¡
@uy V

¢
= (65)

2 div
µ

(Ã0
V (r 1) r 2

11 + r 2
21) ux + ( Ã0

V (r 1) r11r12 + r21r22) uy
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12 + r 2

22) uy

¶

We can write above equation in di®usion tensor notation as

@x (@ux V) + @y
¡
@uy V

¢
= 2 div ( D r 2u) ; (66)

with the di®usion tensor

D :=
µ

Ã0
V (r 1) ¢r 2

11 + 1 ¢r 2
21 Ã0

V (r 1) ¢r11r12 + 1 ¢r21r22

Ã0
V (r 1) ¢r11r12 + 1 ¢r21r22 Ã0

V (r 1) ¢r 2
12 + 1 ¢r 2

22

¶
: (67)

We multiplied the second term of each sum by a factor of 1 to clarify that the
eigenvalues ofD are Ã0

V (r 1) and 1, respectively. The corresponding eigen-
vectors arer 1 and r 2, respectively, which allows to rewrite the tensorD as

D =
µ

r11 r21

r12 r22

¶µ
Ã0

V (r 1)¢r11 Ã0
V (r 1)¢r12

1¢r21 1¢r22

¶
= ( r 1 j r 2)

µ
Ã0

V (r 1) 0
0 1

¶ Ã
r >

1

r >
2

!

:

(68)
This shows that D is identical to D CR from (51), as it can be written as

D = Ã0
V(r 1) r 1 r >

1 + r 2 r >
2 = ª 0

V

³
u2

r 1
+ v2

r 1

´
r 1 r >

1 + r 2 r >
2 : (69)

42


