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Short Abstract

Correspondence problems like optic flow belong to the fundamental problems in com-
puter vision. Here, one aims at finding correspondences between the pixels in two (or
more) images. The correspondences are described by a displacement vector field that is
often found by minimising an energy (cost) function. In this thesis, we present several
contributions to the energy-based solution of correspondence problems: (i) We start
by developing a robust data term with a high degree of invariance under illumination
changes. Then, we design an anisotropic smoothness term that works complementary
to the data term, thereby avoiding undesirable interference. Additionally, we propose a
simple method for determining the optimal balance between the two terms. (ii) When
discretising image derivatives that occur in our continuous models, we show that adapt-
ing one-sided upwind discretisations from the field of hyperbolic differential equations
can be beneficial. To ensure a fast solution of the nonlinear system of equations that
arises when minimising the energy, we use the recent fast explicit diffusion (FED) solver
in an explicit gradient descent scheme. (iii) Finally, we present a novel application of
modern optic flow methods where we align exposure series used in high dynamic range
(HDR) imaging. Furthermore, we show how the alignment information can be used in
a joint super-resolution and HDR method.
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Kurzzusammenfassung

Korrespondenzprobleme wie der optische Fluß, gehören zu den fundamentalen Prob-
lemen im Bereich des maschinellen Sehens (Computer Vision). Hierbei ist das Ziel,
Korrespondenzen zwischen den Pixeln in zwei (oder mehreren) Bildern zu finden. Die
Korrespondenzen werden durch ein Verschiebungsvektorfeld beschrieben, welches oft
durch Minimierung einer Energiefunktion (Kostenfunktion) gefunden wird. In dieser
Arbeit stellen wir mehrere Beiträge zur energiebasierten Lösung von Korresponden-
zproblemen vor: (i) Wir beginnen mit der Entwicklung eines robusten Datenterms, der
ein hohes Maß an Invarianz unter Beleuchtungsänderungen aufweißt. Danach entwick-
eln wir einen anisotropen Glattheitsterm, der komplementär zu dem Datenterm wirkt
und deshalb keine unerwünschten Interferenzen erzeugt. Zusätzlich schlagen wir eine
einfache Methode vor, die es erlaubt die optimale Balance zwischen den beiden Ter-
men zu bestimmen. (ii) Im Zuge der Diskretisierung von Bildableitungen, die in unseren
kontinuierlichen Modellen auftauchen, zeigen wir dass es hilfreich sein kann, einseit-
ige upwind Diskretisierungen aus dem Bereich hyperbolischer Differentialgleichungen
zu übernehmen. Um eine schnelle Lösung des nichtlinearen Gleichungssystems, dass
bei der Minimierung der Energie auftaucht, zu gewährleisten, nutzen wir den kürzlich
vorgestellten fast explicit diffusion (FED) Löser im Rahmen eines expliziten Gradien-
tenabstiegsschemas. (iii) Schließlich stellen wir eine neue Anwendung von modernen
optischen Flußmethoden vor, bei der Belichtungsreihen für high dynamic range (HDR)
Bildgebung registriert werden. Außerdem zeigen wir, wie diese Registrierungsinforma-
tion in einer kombinierten super-resolution und HDR Methode genutzt werden kann.
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Abstract

Solving correspondence problems is a fundamental task in computer vision which oc-
curs in various applications such as optic flow estimation, 3D reconstruction or image
alignment. For estimating the displacement field that describes the correspondences
between the pixels in two images, energy-based approaches that minimise a certain cost
function have proven most successful. In this thesis we show that despite three decades
of research on correspondence problems, there is still room for significant improvements
and novel ideas:

(i) Concerning the design of the energy, we develop a novel, robust data term that
offers a high degree of invariance w.r.t. various kinds of illumination changes. We then
propose an anisotropic smoothness term that works complementary to the data term
and only smooths in directions where the data term gives no information. The proposed
smoothness term further combines ideas from image- as well as flow-driven strategies,
which allows to obtain sharp flow boundaries without oversegmentation problems. Fi-
nally, we present a simple, yet well-performing strategy for determining the optimal
balance between the data and the smoothness term.

(ii) For discretising image derivatives that occur in our continuous models, we pro-
pose an alternative to the common central finite difference approximations. By adapting
ideas from the solution of hyperbolic differential equations, we use correctly oriented,
one-sided upwind differences that may lead to improved results.

The minimisation of the energy functionals comes down to solving nonlinear systems
of equations. For a fast solution, we adapt the recently proposed fast explicit diffusion
(FED) scheme that combines small (stable) and large (unstable) time step sizes in an ex-
plicit gradient descent scheme. Due to its simple nature, this scheme allows an efficient
implementation on modern graphics hardware (GPUs) which gives highly accurate dis-
placement fields in the fraction of a second and furthermore enables an implementation
on a modern smartphone.

(iii) We present a novel application of modern optic flow approaches in the field of
computational photography. By a careful modification of the data term, we are able
to align exposure series that are used in the context of high dynamic range (HDR)
imaging. Due to the estimated dense displacement fields, handling severe camera shake
and moving objects becomes possible with our method. By exploiting the subpixel
precision of the displacement fields, we can additionally enhance the spatial resolution
of the result in an energy-based, joint super-resolution and HDR approach. For the
latter, we propose a novel anisotropic smoothness term that gives much more appealing
results compared to previous strategies.
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Zusammenfassung

Die Lösung von Korrespondenzproblemen ist eine fundamentale Aufgabe im Bereich
des maschinellen Sehens (Computer Vision), die in vielen Anwendungen wie z.B. dem
optischen Fluß, bei 3D Rekonstruktionen und bei der Bildregistrierung auftaucht. Um
das Verschiebungsvektorfeld, welches die Korrespondenzen zwischen den Pixeln in zwei
Bildern beschreibt, zu schätzen, haben sich energiebasierte Verfahren, die eine bestimmte
Kostenfunktion minimieren als am erfolgreichsten herausgestellt. In dieser Arbeit zeigen
wir, dass es trotz drei Jahrzehnten Forschung im Bereich von Korrespondenzproblemen
noch immer Raum für signifikante Verbesserungen und neue Ideen gibt:

(i) Bei dem Entwurf der Energie entwickeln wir einen neuen, robusten Datenterm,
welcher ein hohes Maß and Invarianz unter verschiedenen Arten von Beleuchtungsänderun-
gen aufweißt. Danach schlagen wir einen anisotropen Glattheitsterm vor, der komple-
mentär zu dem Datenterm arbeitet und nur in Richtungen glättet, in denen der Daten-
term keine Information liefert. Weiterhin kombiniert der vorgeschlagene Glattheitsterm
Ideen von bild- sowie fluß-getriebenen Strategien, was scharfe Flußkanten erlaubt, ohne
jedoch unter Übersegmentierung zu leiden. Schließlich stellen wir eine einfache und
trotzdem gut funktionierende Strategie zur Bestimmung der optimalen Balance zwis-
chen Daten- und Glattheitsterm vor.

(ii) Zur Diskretisierung von Bildableitungen, die in unseren kontinuierlichen Mod-
ellen auftauchen, schlagen wir eine Alternative zu den üblichen, zentralen Finite–Diffe-
renzen Approximationen vor. Wir übernehmen Ideen aus dem Bereich der Lösung von
hyperbolischen Differentialgleichungen und nutzen korrekt orientierte, einseitige upwind
Differenzen, was zur Verbesserung der Ergebnisse führen kann.

Die Minimierung der Energiefunktionale reduziert sich auf die Lösung nichtlinearer
Gleichungssysteme. Um eine schnelle Lösung zu gewährleisten, nutzen wir das kürzlich
vorgestellte fast explicit diffusion (FED) Schema, welches kleine (stabile) und große
(instabile) Zeitschrittweiten in einem expliziten Gradientenabstiegsschema kombiniert.
Aufgrund seiner einfachen Natur erlaubt dieses Schema eine effiziente Implementierung
auf moderner Grafikhardware (GPUs), welche hoch genaue Verschiebungsfelder im Bruch-
teil einer Sekunde errechnet. Außerdem erlaubt dieses Schema eine Implementierung auf
einem modernen Smartphone.

(iii) Wir stellen eine neue Anwendung moderner optischer Flußverfahren im Bere-
ich der computergestützten Fotografie (Computational Photography) vor. Durch eine
sorgsame Modifizierung des Datenterms sind wir in der Lage, Belichtungsreihen zu reg-
istrieren, die im Bereich der high dynamic range (HDR) Bildgebung verwendet werden.
Wegen der geschätzten dichten Verschiebungsfelder kommt unsere Methode auch mit
heftigem Verwackeln und sich bewegenden Objekte zurecht. Indem wir die subpixel
Genauigkeit der Verschiebungsfelder ausnutzen, sind wir zusätzlich in der Lage, die
räumliche Auflösung der Bilder in einem energiebasierten, gemeinsamen super-resolu-
tion und HDR Ansatz zu erhöhen. Bei letzterem schlagen wir einen neuen, anisotropen
Glattheitsterm vor, welcher deutlich ansprechendere Ergebnisse als vorhergehende Strate-
gien liefert.
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Chapter 1

Introduction

Per aspera ad astra.

Latin saying (“to the stars through difficulties”)

Classic image processing tasks focus on enhancing or analysing a single image, e.g.
removing noise or segmenting the image into meaningful regions. Obviously, by consid-
ering several images of the same scene, one should be able to do more. For example, one
can combine images taken with different exposure times to create an image that shows
details in very dark as well as very bright regions, which is known as high dynamic
range (HDR) imaging. Another example is motion estimation which is naturally only
possible if one considers a whole image sequence, i.e. a video stream. Similarly, 3D re-
constructions from images also require several images to overcome the depth ambiguity
that arises when projecting the 3D world onto 2D images.

If we now want to use such a multi-image methods, the most important step is
to determine which pixels correspond to the same scene object, more specifically we
need to establish correspondences between the pixels in the given images. The latter
task is referred to as a correspondence problem which is a classic problem in computer
vision research. In this thesis, we will present contributions to all aspects of research on
correspondence problems: Appropriate models, efficient solvers, numerical realisation
and novel applications.

In the remainder of this chapter we first discuss the basics of correspondence prob-
lems. We define the task to be solved, show examples where correspondence problems
occur and briefly discuss different solution strategies. Moreover, we give an outlook on
the contributions that will be presented later on.

1.1 Correspondence Problems

The basic task of correspondence problems is the following: Consider two images that
roughly depict the same scene, e.g. two subsequent frames of an image sequence or two
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CHAPTER 1. INTRODUCTION

images taken from slightly different viewpoints. For each pixel in the first image, we
then aim to find its corresponding pixel in the second image. The obtained correspon-
dences are usually described by a displacement vector field where each vector points
from a pixel in the first image to its corresponding location in the second image. Con-
sequently, the displacement vector field is the unknown to be determined when solving
a correspondence problem.

Let us now present some popular examples where correspondence problems arise in
the fields of image processing and computer vision. Thereby, we define the specific task
that has to be solved and also give examples for application areas.

Optic Flow. Given an image sequence, we aim at computing a displacement vector
field that describes the apparent motion of brightness patterns between two subsequent
frames of the sequence. Usually, the displacement field is referred to as (optic) flow field
in this context. For an example showing two frames plus the estimated flow field, we
refer to Figure 1.1. As the flow vectors are projections of the actual 3D motion vectors in
the 3D scene onto the 2D image plane, the flow field encodes information about motion
in the scene. Thus, estimating the optic flow builds a basis for numerous applications
such as driver assistance systems [KER95] (see Figure 1.2), robot navigation [dSK02],
tracking [KDN93], view interpolation [LLB+10] and video compression [MKW97].

Figure 1.1: Optic flow estimation. From left to right: (a) First image. (b) Second image. (c)
Computed flow field using our approach in [10, 11], visualised using the colour code shown in the inset.

Figure 1.2: Optic flow for driver assistance. From left to right: (a) First image of a sequence taken
out of a car [WPZ+08]. (b) Second image. (c) Optic flow field computed using our approach in [10, 11].
Note that the pedestrian is easily distinguishable.

2



1.1. CORRESPONDENCE PROBLEMS

Stereo. In the classic binocular case we are given two images of the same scene that
were captured from two different viewpoints. The magnitude of the displacements be-
tween pixels in these two images is called disparity and is directly related to the depth
of the corresponding scene points. Consequently, disparity estimation is an important
step for 3D reconstructions [FLP01, HZ00]. An example for a basic 3D reconstruction
from two images is shown in Figure 1.3.

If one knows the relative pose of the two cameras, one can restrict the search for
correspondences to a single line in the second image. This line is usually referred to as
the epipolar line [FLP01, HZ00]. In the simplest scenario where the two cameras are
orthoparallel to each other (or if the images have been rectified), all epipolar lines are
horizontal. Thus, the stereo problem in the orthoparallel case can be interpreted as an
optic flow problem where the vertical displacement component is equal to zero, which
eases the search for correspondences. However, to obtain favourable 3D reconstructions,
a large baseline distance between the two cameras is mandatory. This results in displace-
ments that are much larger than in the optic flow case and renders stereo reconstruction
a challenging task.

Figure 1.3: Stereo matching. From left to right: (a) Left image of the Portal scene, available at
http://cmp.felk.cvut.cz/~cechj/GCS/stereo-images/Portal/. (b) Right image. (c) Disparity
estimated with our approach in [8]. (d) Corresponding reconstruction (visualising the estimated dis-
parities as heightfield).

Scene Flow. We argued that the optic flow field only describes a projection of the
actual 3D motion vectors onto the 2D image plane. If one aims at recovering the full 3D
displacement field, called scene flow, one needs to estimate both, the 3D geometry of
the scene and the correspondences of 3D points between subsequent frames. Thus, scene
flow computation can be seen as solving a stereo problem together with an optic flow
problem which in turn requires to consider binocular image sequences, where a stereo
pair is available at each time instant [PAT96].

Estimating the scene flow is for sure more complex than optic flow or stereo alone.
However, the additional information can be of great help for applications like driver

3



CHAPTER 1. INTRODUCTION

assistance [WRV+08, WMR+09] as well as motion capture [5],[VBR+05], see Figure 1.4.

time t

time t+1

left right

Figure 1.4: Scene flow computation. Left: (a)–(d) Four input images (two stereo pairs at time t and
t+1). Right: (e) Reconstruction and scene flow computed with our method from [5].

Image Alignment. Photographic multi-shot techniques [GG09] fuse several images
of the same scene to obtain an image with increased quality. A popular example for such
a technique is high dynamic range (HDR) imaging [RWPD05] where one tries to tackle
the problem that the dynamic range 1 of real world scenes exceeds the dynamic range
of image sensors by orders of magnitude. Thus, images obtained by standard cameras
often suffer from under- and oversaturated regions in dark and bright regions, respec-
tively. By fusing the information from a series of images taken with varying exposure
times, a HDR image can be computed that captures details in both, dark and bright re-
gions. Further multi-shot techniques include super-resolution [PPK03], extended depth
of field [ADA+04], flash/no-flash photography [PSA+04] and image stitching [Sze06].

A major problem is that multi-shot techniques often combine the information at the
same pixel location in all the input images. Consequently, the fusion algorithms rely
on perfectly aligned images without any displacements between them. However, this
assumption is hardly met under real world conditions where moving objects and camera
shake may cause severe displacements. In such cases, one has to compute the displace-
ments between the input images to align them prior to processing. As the captured scene
may be moving, image alignment can be seen as an optic flow problem. However, classi-
cal matching assumptions, e.g. assuming that corresponding pixels have similar colour,
may not hold due to the different acquisitions of the input images. In HDR imaging,

1The dynamic range denotes the ratio between the darkest and the brightest scene point.
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1.1. CORRESPONDENCE PROBLEMS

for example, all images were taken with a different exposure time. Nevertheless, we
could show in [9] that a carefully adapted optic flow method is able to robustly align
HDR input, see Figure 1.5 where we compare HDR images computed from a freehand
exposure series with and without prior alignment.

Figure 1.5: Freehand HDR imaging. Left column: (a)–(c) Three images of a freehand exposure
series. Right: (d) Computed HDR reconstruction with and without alignment [9]. The float-valued
HDR data is visualised by applying the tone mapping operator from [FLW02].

Medical Image Registration. A common problem in medical imaging is the regis-
tration of images that depict the same part of the body, but were captured with different
imaging techniques. An example can be the registration of a magnetic resonance imaging
(MRI) template to an ultrasound (US) reference image [FM08], see Figure 1.6. Similar
to alignment problems discussed above, also here common matching assumption will fail
due to the different capturing techniques. Note that we will not present specific contri-
butions to the field of medical image registration in this thesis. However, we decided to
keep this example for completeness reasons.

Particle Image Velocimetry (PIV). The basic task of PIV methods is to analyse
image sequences that depict the flow of small tracer particles that were placed into a
fluid [RWWK07]. The information encoded in the optic flow field of such sequences
helps researchers in areas like fluid mechanics, aerodynamics, or meteorology to validate
simulations or to do forecasts.

Basically, PIV can be seen as an optic flow problem. However, the estimated flow
fields must obey physical laws like incompressibility, which need to be incorporated in
the model; see e.g. [RSS07]. Additionally, large displacements of small particles and
occurring complex motion patterns like vortices pose further challenges. An example of

5



CHAPTER 1. INTRODUCTION

Figure 1.6: Medical image registration of MRI and US data [FM08]. From left to right: (a) MRI
template of a part of a human liver. (b) Zoom into marked region in (a). (c) US reference image. (d)
Registration of (b) onto (c).

a flow field with strong vortices is shown in Figure 1.7. As for medical image registration,
we discuss PIV methods solely for completeness reasons in this chapter.

Figure 1.7: PIV example [RSS07]. From left to right: (a) One of the input images (passive scalar
image). (b) Estimated flow field with colour-coded vorticity.

1.1.1 Our Focus

The preceding list of examples for correspondence problems shows that these problems
occur in a several important and interesting research areas. One further realises that
optic flow is a rather general setting for correspondence problems as it does not impose
too many constraints on the displacement field. For example, optic flow subsumes stereo
where the displacements have to lie on the epipolar lines. Due its generality, we decided
to mainly focus on optic flow in this thesis. At some points, however, we will also show
how to adapt the presented concepts to stereo in the orthoparallel case.

1.2 Solution of Correspondence Problems

Before presenting an overview of our contributions, let us discuss basic solution strategies
for correspondence problems. First of all, we wish to note that solving correspondence

6



1.2. SOLUTION OF CORRESPONDENCE PROBLEMS

problems is challenging task as they belong to the class of inverse problems. In this sense,
given an image and a displacement field, one can easily compute the second image by
shifting the pixels of the first image in accordance to the displacement. However, solving
the inverse problem, i.e. recovering the displacements from two given images, is hard
and unfortunately this is exactly the task in correspondence problems.

The fundamental strategy for solving correspondence problems is to impose con-
stancy assumptions on image properties. A first idea can be to assume that the image
intensities do not change under their displacement. This is known as the brightness
constancy assumption [HS81, LK81]. However, for a pixel in the first image, there are
probably several pixels in the second image that have the same or a similar intensity,
especially in flat image regions. Even worse, the pixel with the most similar intensity
may not be necessarily the correct match, as we have to take into account image noise
or illumination changes. To overcome this ambiguity, several approaches have been
proposed that can be roughly classified into the two classes:

1. Local approaches determine the displacement for each pixel individually by finding
a pixel in the second image that minimises some matching cost. For a successful
resolving of the ambiguities, this cost should be as discriminative as possible. An
example can be to match whole regions around pixels.

2. Global approaches do not only consider a matching score when assigning a dis-
placement to a pixel, but also take into account the displacements of neighbouring
pixels. A common strategy to achieve this goal is to assume that neighbouring
pixels have similar displacements, i.e. assuming that the overall displacement field
is smooth.

Let us now shortly discuss and compare local and global approaches.

1.2.1 Local Approaches

Block Matching. One of the simplest possibilities to overcome ambiguities is to com-
pare whole patches around pixels instead of just a single pixel. Such techniques are
referred to as block matching approaches; see [MPG85], for example. These methods
perform an exhaustive search (maybe limited by a predefined maximal displacement
limit) and match pixels that give the smallest distance between their patches. In this
context, several distance metrics have been proposed, like the sum of squared distances
(SSD) or the sum of absolute distances (SAD), which is more robust to outliers. Ad-
ditionally, correlation based metrics such as normalised cross correlation (NCC) are
popular as they are invariant under global linear illumination changes.

Regardless of the distance metric used, block matching approaches are known to
produce noisy displacement fields that additionally suffer from block-like artefacts. Fur-
thermore, the exhaustive search results in very long runtimes for larger search ranges.

7



CHAPTER 1. INTRODUCTION

Feature Matching. To improve the quality of block matching methods, one can try
to only match image regions that are most discriminative. A typical choice for such
features (also called interest points), are corners which are used within the well-known
SIFT (Scale Invariant Feature Transform) method by Lowe [Low99, Low04]. Here, a
unit feature vector is computed from the corner neighbourhood. In contrast to image
patches used in basic block matching approaches, the SIFT feature vectors are invariant
to image scale and rotation, and are robust under affine distortions (noise, change in
viewpoint or illumination). Furthermore, the number of interest points is usually much
smaller than the number of pixels, making the matching more efficient compared to
block matching approaches.

Despite of this desirable properties, feature matching approaches suffer from one
fundamental problem: One cannot find an interest point at each pixel and thus the
resulting displacement fields are sparse. To obtain dense fields, a postprocessing by
interpolation has to be performed, which is again challenging and often does not yield
favourable results.

Local Energy-based Approaches. One of the first local optic flow methods was
proposed by Lucas and Kanade [LK81, BM04]. The basic idea of their approach is
to impose brightness constancy and additionally assuming that the displacements are
constant within a small neighbourhood around each pixel. These assumptions can be
expressed in a local energy that penalises deviations of the brightness constancy as-
sumption within the considered neighbourhood in a quadratic way, leading to a least
squares fit. The minimisation of the local energy then comes down to solving a 2 × 2
linear system of equations, which can be efficiently solved by standard methods, e.g. by
applying Cramer’s rule. An affine extension of the Lucas/Kanade method goes back to
the work of Shi and Tomasi [ST94]. Here, it is assumed that the flow within a neighbour-
hood can be described by an affine function, i.e. by 6 parameters. Thus, such methods
are also called parametric methods. A spatiotemporal extension of the Lucas/Kanade
method with additional estimation of the temporal component of the flow field was later
proposed by Bigün et al. [BGW91]. This method can be more robust, but requires to
solve an eigenvalue problem with a 3× 3 matrix.

One major issue of the discussed local energy-based methods is that the assumption
of a locally constant displacement is often violated in reality, e.g. at motion discontinu-
ities, leading to block-like artefacts in the displacement fields. Furthermore, depending
on the local image structure, the equation system or eigenvalue problem may not have
a unique solution. This happens for example in flat image regions and again results in
sparse displacement fields.

1.2.2 Global Approaches

Approaches that yield dense displacement fields by construction are energy-based meth-
ods that find the displacement field by minimising a suitable global energy formula-
tion. The latter usually consists of two terms: a data term and a smoothness term.
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The data term models constancy assumptions on image features, it may for example
penalise deviations from the brightness constancy assumption. The smoothness term
penalises fluctuations in the displacement field, thereby regularising the result which
allows to tackle problems with non-unique matches or outliers. The relative weight
between the two terms is typically steered by a smoothness parameter. Although the
first global energy-based method was already proposed in 1981 in the seminal work of
Horn and Schunck [HS81], such methods became increasingly popular in recent years.
This is mainly due to their potential for giving highly accurate results, which is wit-
nessed by top ranking results at the Middlebury optic flow benchmark [BSL+10]. In
addition to the high accuracy and the dense displacement fields, energy-based ap-
proaches are additionally attractive as they are based on transparent mathematical
models and allow for an efficient solution. Concerning the latter, sequential multi-
grid solvers [BWKS06, KKR07], parallel implementations on modern graphics hardware
(GPU) [3] and [WPZ+08, ZPB07], or even parallel multigrid schemes [GT08] rendered
realtime computations of dense flow fields possible.

Within global energy-based methods, one can distinguish discrete methods that min-
imise a discrete energy function, and continuous variational approaches and that min-
imise a continuous energy functional. We now present the two approaches in more
detail.

Discrete Approaches

Starting from a probabilistic model, the displacement estimation is often formulated in
terms of optimising a Markov Random Field (MRF), which comes down to minimising
a discrete energy function. The minimisation can be realised by graph cuts [BVZ01,
Coo08], dynamic programming [LY09] or similar strategies. Examples for discrete ap-
proaches can be found in [BA96, Coo08, LY09, MP98, MB87, SRB10, SRLB08, SSB10].

Variational Approaches

Especially in the context of optic flow estimation, variational approaches are very pop-
ular; see e.g. [10, 11] and [AELS99, ADK99, BBPW04, Coh93, HS81, NE86, NBK08,
Sch94, WCPB09, WPZ+08, WS01a, WPB10, WTP+09, XCJ08, XJM10, ZPB07].

The minimisation of the continuous energy functionals can be performed by dif-
ferent strategies, such as primal-dual approaches, e.g., [WCPB09, WPZ+08, WPB10,
WTP+09, XJM10, ZPB07], or by solving the corresponding Euler-Lagrange equations.
The latter can be considered as the most widely used technique for solving variational
optic flow problems and is for example used in [10, 11] and [AELS99, ADK99, BBPW04,
Coh93, HS81, NE86, NBK08, Sch94, WS01a]. As we will also follow this strategy in the
remainder of this thesis, let us further detail on it.

The Euler-Lagrange Framework. The calculus of variations [Els62] states that a
minimiser of the variational energy formulation necessarily has to fulfil the corresponding
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Euler-Lagrange equations. Provided that the energy is strictly convex, the solution of
the Euler-Lagrange equations then gives the globally optimal flow field. The Euler-
Lagrange equations describe a system of coupled partial differential equations of elliptic
type. After discretisation, a linear or nonlinear system of equations arises, depending on
the design of the energy. In the nonlinear case, time-lagged nonlinearity methods, also
known as the Kačanov–Galerkin method [FKN73], can help to reformulate the nonlinear
problem as a series of linear ones. To finally solve the linear systems, one exploits the
sparsity of the system matrix which allows to use iterative solvers, e.g., the Jacobi,
Gauss-Seidel, or SOR method [You03].

An alternative solution strategy is to consider the elliptic problem as the steady state
of a parabolic problem, i.e. where time tends to infinity. In this context, explicit schemes
can be used that result in an iterative procedure that updates the solution starting from
a given initialisation until a convergence criterion is met. The advantages of explicit
schemes is that they are easy to deduce from the energy and very easy to implement.
However, to ensure stability very small time step sizes must be chosen s.t. a large number
of iterations are needed until convergence, resulting in poor computational performance.
This problem can be alleviated by leveraging the simple structure of explicit schemes for
parallel implementations on modern graphics hardware, which can lead to a speed up
in the order of magnitudes. An alternative approach can be to resort to semi-implicit
gradient descent schemes. Here, arbitrary time step sizes can be used, but one needs to
solve a system of equations at each time step, as in the elliptic case discussed above.

The Warping Strategy for Handling Large Displacements. Let us give a final,
but very important remark on variational approaches. To make the minimisation of
variational approaches tractable, one mostly performs a linearisation of the data con-
straints. This proceeding is, however, only valid under the assumption of either small
displacements in the sequence or for very smooth images. However, if the temporal sam-
pling of the image sequence is too coarse, or in the stereo context where a large baseline
distance is required to obtain a reasonable depth resolution, large displacements are
unavoidable. Additionally, the smoothness of the given images is beyond our control.

A common remedy to this problem is to use a coarse-to-fine multiscale technique,
often referred to as warping strategy; see e.g. [AWS00, Ana89, BA96, BBPW04, MP98,
WTK87]. A first class of methods [Ana89, BA96, BBPW04, MP98] tackles the problems
of large displacements by downsampling the image sequence in a pyramid-like structure.
On a small (coarse) levels, the displacements become small enough to be estimated by a
linearised approach. These displacements are then used as initialisation for the next finer
level which is achieved by compensating the images for the already estimated motion,
which is known as warping. This procedure is then continued down the pyramid until
the finest level is reached. A second class of methods [AWS00, WTK87] proceeds in a
similar coarse-to-fine manner, but tackles the problem by smoothing the images via a
Gaussian blurring. This results in a scale-space representation (e.g. [Lin94]) instead of
the multiscale pyramid used in the first class of methods.
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1.3 Our Contributions

Despite the long history of research on correspondence problems that led to thousands
of papers, we will show that significant progress is still possible. As stated before, our
contributions will mainly focus on optic flow, where we stick to global energy-based
(variational) approaches due to their accuracy and the possibility for efficient solutions.
In the remainder of this thesis, we will present contributions to the complete pipeline of
correspondence problems research: Modelling, solution, numerical realisation as well as
applications. In the following we briefly summarise the individual contributions.

1.3.1 Modelling

We present both novel ideas for the data term and for the smoothness term.

Data Term. In [10, 11], we revisited a normalisation of the data constraints [LV98,
SAH91, SC06] and adapted it to modern data terms. This proceeding helps to prevent an
undesirable overweighting of the data term at large image gradients. This is undesirable
as large gradients may be caused by unreliable structures like noise or occlusions.

Also in [10, 11], we used a Hue-Saturation-Value (HSV) colour representation instead
of the standard RGB colour space. The benefits of the HSV representation are a high
degree of photometric invariance w.r.t. illumination changes in the scene. However,
each channel exhibits a distinct degree of invariance, and a high degree of invariance
is attended by a loss of details. To account for this, we proposed a separate robust
penalisation of each channel, which for each location downweights the influence of the
less reliable channels.

Smoothness Term. Widely-used data terms such as the one resulting from the lin-
earised brightness constancy assumption only constrain the flow in one direction, which
we call data constraint direction. In the orthogonal direction, the data term gives no
information. Motivated by this basic fact, we developed in [10, 11] a novel anisotropic
complementary smoothness term that enforces smoothness mainly orthogonal to the data
constraint direction. This allows to fill-in missing information orthogonal to the data
constraint direction, while avoiding undesirable interference between data and smooth-
ness term. Analysing the smoothing behaviour of our complementary smoothness term,
it further turns out that it can be characterised as being joint image- and flow-driven:
The direction of smoothing is adapted to image structures, whereas the smoothing
strength depends on the flow contrast. This gives sharp flow edges and remedies over-
segmentation problems of purely image-driven methods. Our smoothness term can be
used in the spatial domain [11], as well as in the spatio-temporal domain [10], where
smoothness of subsequent flow fields is additionally assumed.

Additionally, we found that slight modifications in the definition of our complemen-
tary smoothness term allow to represent a large variety of existing smoothness terms.
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This motivated us to present a taxonomy of smoothness terms [10] in a unified notation
that eases their analysis and comparison.

Finally we consider smoothness terms for stereo. For most of the optic flow smooth-
ness term, it is straightforward to adapt them to the stereo case. However, for the
anisotropic flow-driven regulariser of Weickert and Schnörr [WS01a] this is not the case:
In [8], we showed that adapting the regulariser from [WS01a] to the stereo case results
in an isotropic behaviour. To complete the taxonomy of stereo smoothness terms with
an anisotropic disparity-driven smoothness term, we proposed in [8] to refrain from an
energy formulation and to model a smoothness term directly on the level of the under-
lying Euler-Lagrange equations. This allows to use the structure tensor [FG87] of the
disparity field for steering the direction of smoothing, yielding the desired anisotropic
behaviour.

Automatic Selection of the Smoothness Weight. A central problem when using
global energy-based methods is to find an appropriate balance between the data and
the smoothness term, which comes down to find and optimal smoothness weight for
the image sequence under consideration. To avoid a tedious manual adjustment of the
smoothness weight, we proposed in [10] a very simple but surprisingly well-performing
method for estimating the smoothness weight. Our method bases on the assumption
that the flow field obtained by an optimal smoothness weight allows for the best possible
prediction of the next frames in the image sequence. This novel concept we name optimal
prediction principle (OPP), which allows to select the optimal smoothness weight as
the one corresponding to the flow field with the best prediction quality. To judge the
latter, we evaluate the data constraints between the first and the third frame of the
sequence. Under mild assumptions (constant speed, linear trajectory of objects) this
can be realised by simply doubling the flow vectors. Due to its simplicity, our method
is easy to implement for all variational optic flow approaches, but nevertheless produces
favourable results.

Using the described parameter selection in combination with our complementary
smoothness term yields a variational optic flow approach with an optimal complementary
behaviour plus an optimal balance between the data and the smoothness term. The
resulting method thus harmonises its three components (data term, smoothness term,
smoothness weight) and motivated the name optic flow in harmony (OFH ) method [10].

Other Terms. Small objects that undergo large displacements are a major problem
for warping strategies. As these small objects vanish at coarse levels, but their motion
is too large for an estimation at finer levels, warping methods fail in estimating the
displacement of small objects with large displacements. We proposed a simple possibility
to overcome this problem in [5]: We first use a block matching or a SIFT matching
technique to obtain a sparse displacement field. As block matching or SIFT matching
approaches work on the full image resolution, they can capture the displacements of
small objects with large displacements. The obtained sparse matches are then used as
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an additional prior in a warping-based variational optic flow approach. This finally gives
dense displacement fields that can capture large displacements of small objects.

1.3.2 Numerics

Implementing continuous variational models requires to discretise the images, the dis-
placement fields, as well as occurring derivatives of both. In [1, 7], we showed that a
sophisticated discretisation of the image derivatives can help to improve the quality of
the results. As appropriately oriented one-sided (upwind) discretisations perform well at
discontinuities and symmetric (central) discretisations are more appropriate in smooth
regions, we came up with an adaptive scheme that blends the two discretisations based
on a smoothness measure. This approach is inspired from well-established discretisations
of hyperbolic partial differential equations; see [LeV92, LeV02], for example.

We use the briefly mentioned Euler-Lagrange framework (see Section 1.2.2) for min-
imising the energy functionals that are presented in this thesis. For solving the Euler-
Lagrange equations, we use two strategies: (i) For an efficient solution on sequential
CPU architectures, we use an elliptic strategy which requires to solve a nonlinear sys-
tem of equations. To speed up the solution of the equation system, we use the nonlinear
multigrid scheme proposed by Bruhn et al. [BWKS06]. (ii) Exploiting the possibility
for massively parallel computing on modern graphics hardware (GPUs), we developed
in [3] a method that achieves a speedup of more than one order of magnitude compared
to multigrid schemes on a CPU. This allows to solve our highly accurate complemen-
tary optic flow model [10, 11] in near-realtime on sequences with 640 × 480 pixels. To
achieve this high performance, we had to come up with a solution strategy that can
efficiently be parallelised on GPUs. As this is difficult for multigrid schemes, we decided
to resort to a parabolic gradient descent strategy which allows us to use the recently
proposed fast explicit diffusion (FED) scheme [GWB10]. The latter is an explicit solver
with varying time step sizes, where some time steps can significantly exceed the stabil-
ity limit of classical explicit schemes. If a series of time step sizes is carefully chosen,
the whole is still unconditionally stable. Due to the simple structure of the underlying
explicit solver, FED can easily and efficiently be implemented in parallel, e.g. by using
the NVidia CUDA framework [NVI10]. To obtain high performance despite the large
amounts of data involved in the computation, we pay particular attention to an efficient
use of on-chip memory to reduce transfers from and to global memory. To further boost
the performance, we apply a coarse-to-fine strategy.

This strategy not only allows very fast solutions on GPUs, but also enabled us to
implement basic optic flow methods on a modern smartphone [4].

1.3.3 Applications

Our final contributions concern novel applications of optic flow methods in the field of
computational photography.
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Aligning Exposure Series for HDR Imaging. In Figure 1.5, we have seen that a
major obstacle for the practical applicability of HDR imaging techniques is that they
assume the input images to be perfectly aligned. In [9] we showed how to adapt a mod-
ern energy-based optic flow approach to cope with the brightness changes in the given
exposure series. This allows for a robust and accurate estimation of dense displacement
fields between the input images and yields an alignment method that outperforms ex-
isting strategies in challenging real world scenarios. Additionally, our approach neither
requires a preceding camera calibration nor knowledge of the exposure times and can
be efficiently implemented on CPU and GPU architectures.

Joint Super-Resolution and HDR Reconstruction. As our HDR alignment ap-
proach yields dense displacement fields with subpixel precision, they can be used for
increasing the spatial resolution of the result. To this end, one can adapt concepts from
super-resolution approaches [EF97, FREM04, MPSC09, TH84] where an image with in-
creased spatial resolution is obtained by combining the information from several images
that exhibit some degree of subpixel displacement between each other. This basically
allows to fuse different discrete samplings of the same continuous scene. In [9] we pro-
posed the first energy-based joint super-resolution and high dynamic range (SR-HDR)
approach that uses a robust data term in combination with an anisotropic smoothness
term. As we could show, our model gives more appealing results than existing techniques
such as [GG06, CPK09].

1.4 Organisation

The rest of this thesis is organised as follows:

• Chapter 2 reviews existing prior work that was influential for our contributions.

• The brief Chapter 3 introduces basic definitions concerning the mathematical mod-
elling of images and flow fields.

• We then start presenting our contributions in Chapter 4 by discussing novel models
for the data term (Section 4.2) and the smoothness term (Section 4.3). In the same
chapter, we also show how to select the optimal smoothness weight (Section 4.4)
and present a way to handle large displacements of small objects (Section 4.5).

• The first part of Chapter 5 (Section 5.1) presents the numerical approximation of
image derivatives and flow derivatives that occur in the Euler-Lagrange equations.
In Section 5.2 we then focus on a novel adaptive upwind scheme inspired from the
numerical solution of hyperbolic partial differential equations.

The second part (Section 5.3) first presents the warping strategy to handle large
displacements and then describes different solution strategies in the elliptic case
as well as in the parabolic case. For the latter, we propose an efficient strategy
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based on the fast explicit diffusion (FED) solver that is implemented on parallel
graphics hardware (GPU) as well as on a modern smartphone.

• In Chapter 6 we first show how to apply modern optic flow methods to the task of
aligning exposure series for freehand HDR imaging, see Section 6.2. As the flow
fields are of subpixel precision, they can additionally serve as input for a joint
super-resolution and HDR (SR-HDR) method, which we describe in Section 6.3.

• We conclude in Chapter 7 by a summary of the presented work and an outlook to
possible future research topics.

• In the Appendix A we show proofs of theorems that occur throughout the thesis.
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Chapter 2

Related Work

Wer nicht von dreitausend Jahren
Sich weiß Rechenschaft zu geben,
Bleib im Dunkeln unerfahren,
Mag von Tag zu Tage leben.

Johann Wolfgang von Goethe

This chapter gives an overview of methods and approaches that were influential for our
contributions. In accordance to the focus of this thesis, we mainly review developments
in energy-based (variational) optic flow estimation. At some points, however, we also
give remarks on stereo.

We will discuss models for the data term and the smoothness term, present solution
strategies and also tackle the numerical approximation of derivatives. Finally, we also
discuss applications in HDR imaging.

2.1 Modelling

2.1.1 Data Term

In their seminal work, Horn and Schunck [HS81] proposed a data term that penalises
deviations from the brightness constancy assumption in a quadratic way. While this
strategy facilitates the minimisation of the energy, it gives too much influence to out-
liers that may be caused by noise or occlusions. As a remedy, ideas from the field of
robust statistics [Hub81] have been adapted which led to robust, subquadratic penaliser
functions that reduce the influence of outliers [BA96, BBPW04, MP98].

Apart from noise or occlusions, also illumination changes can complicate a reliable
flow estimation. To specifically tackle global additive illumination changes, it was pro-
posed to impose higher order constancy assumptions in the data term [PBB+06]. In
this context, especially the constancy of the spatial image gradient has proven useful

17



CHAPTER 2. RELATED WORK

[BBPW04, Sch94, TP84]. As higher order constancy assumptions may be combined
with the classical brightness constancy assumption, Bruhn and Weickert [BW05] pro-
posed to apply the robust penaliser function separately to each constraint. This gives
advantages in cases where a single constancy assumption produces an outlier. Recently,
Xu et al. [XJM10] went a step further and proposed estimate a binary map that lo-
cally selects between imposing either brightness or gradient constancy. An alternative
to higher-order constancy assumptions can be to preprocess the images by a structure-
texture decomposition [WPZ+08].

Apart from an additive part, realistic scenarios also encompass multiplicative illu-
mination changes [vG04]. If colour image sequences are available, this issue can be
tackled by normalising the colour channels [GB97], or by using alternative colour spaces
with photometric invariances [GB97, MBW07, vG04]. If one is restricted to greyscale
sequences, using log-derivatives [MBW07] is possible.

Apart from the discussed efforts that aimed at enhancing the robustness of the data
term, favourable effects have also been reported when normalising the data term [LV98,
SC06, SAH91]. This prevents an overweighting of the data term at large image gradient
locations which can be problematic as large gradients may be caused by unreliable
structures like noise or occlusions.

Remarks on Stereo. Sparked by the variational optic flow approach of Horn and
Schunck [HS81], researchers also investigated variational stereo approaches [ADSW00,
PTK85, RD96]. It is thus not surprising that also the discussed ideas for robust data
terms like subquadratic penaliser functions as well as higher-order constancy assump-
tions have been incorporated in recent variational stereo approaches [BAS07, SBW05].

2.1.2 Smoothness Term

Again, first ideas go back to Horn and Schunck [HS81] who proposed a smoothness
term that penalises the magnitude of the flow gradients in a quadratic fashion. This
results in a homogeneous regularisation that does not respect any flow discontinuities.
Since different objects may move in different directions or with different velocities, it is,
however, desirable to permit discontinuities in the flow field.

Image-driven Smoothness Terms. This goal can be achieved by using image-driven
regularisers that take into account image discontinuities. An isotropic model was pro-
posed by Alvarez et al. [AELS99] where a scalar-valued weight function reduces the
regularisation at image edges. An anisotropic counterpart that also exploits the direc-
tional information of image discontinuities goes back to Nagel and Enkelmann [NE86].
Their method regularises the flow field along image edges but not across them. A the-
oretical analysis as well as small modifications of the Nagel and Enkelmann regulariser
were later proposed by Schnörr [Sch93].
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The major problem of image-driven strategies is oversegmentation: As not every
image edge coincides with a flow edge, image-driven methods are prone to give overseg-
mentation artefacts in textured image regions.

Flow-driven Smoothness Terms. To avoid oversegmentation problems, flow-driven
regularisers have been proposed that respect discontinuities of the evolving flow field and
are therefore not misled by image textures. In the isotropic setting this comes down
to the use of robust, nonquadratic penalisers which are closely related to line processes
[BZ87]. For energy-based optic flow methods, such a strategy was used e.g. by Shul-
man and Hervé [SH89], and by Schnörr [Sch94]. Later, Weickert and Schnörr [WS01a]
presented an anisotropic extension.

However, also flow-driven regularisers do not always give satisfactory results, as
they suffer from delocalised and less sharp flow edges compared to their image-driven
counterparts.

Joint Image- and Flow-driven Smoothness Terms. Comparing the properties
of image- and flow-driven strategies, the idea arises to combine the advantages of
both worlds. A first attempt in this direction can be found in the work of Alvarez
et al. [AELS99] where an isotropic flow-driven regulariser is used in combination with
a scalar-valued weight function that decreases the regularisation at image edges. This
regulariser still reduces the smoothing at every image edge, and is also prone to over-
segmentation problems. A similar strategy (with similar shortcomings) was proposed
by Werlberger et al. [WTP+09]. They modified the anisotropic image-driven method of
Nagel and Enkelmann [NE86] by reducing the amount of smoothing orthogonal to im-
age boundaries by a scalar-valued weight function and additionally apply a nonquadratic
penaliser function.

The first successful combination of image- and flow-driven strategies can be found in
the discrete method of Sun et al. [SRLB08]. There, the authors developed an anisotropic
regulariser based on directional flow derivatives that are steered by image structures.
This allows to adapt the smoothing direction to the direction of image structures whereas
the smoothing strength depends on the flow contrast. We call such a strategy image- and
flow-driven regularisation as it combines the benefits of image- and flow-driven methods:
sharp flow edges without oversegmentation problems.

Non-Local Smoothness Terms. Recently, non-local smoothing strategies [Yar85]
have been introduced to the optic flow community by the works of Sun et al. [SRB10]
as well as Werlberger et al. [WPB10]. In these approaches, it is assumed that the flow
vector at a certain pixel is similar to the vectors in a (possibly large) spatial neigh-
bourhood. Adapting ideas proposed by Yoon and Kweon [YK06], the similarity to the
neighbours is weighted by a bilateral weight that depends on the spatial as well as on the
colour value distance of the pixels. Due to the color value distance, these strategies can
be classified as image-driven approaches and are thus also prone to oversegmentation
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problems. However, comparing non-local strategies to the previously discussed smooth-
ness terms is somewhat difficult: Whereas non-local methods explicitly model similarity
in a certain neighbourhood, the previous smoothness terms operate on flow derivatives
that only consider their direct neighbours. Nevertheless, the latter strategies model a
globally smooth flow field as each pixel communicates with each other pixel through its
neighbours.

Spatio-temporal Smoothness Terms. The so far discussed smoothness terms only
assume smoothness of the flow field in the spatial domain. As image sequences may con-
sist of more than two frames, yielding more than one flow field, it makes sense to also as-
sume temporal smoothness of the flow fields. In a discrete setting, such spatio-temporal
smoothness terms go back to Murray and Buxton [MB87]. For variational approaches,
an image-driven spatio-temporal smoothness terms was proposed by Nagel [Nag90] and
a flow-driven counterpart was later presented by Weickert and Schnörr [WS01b]. The
flow-driven spatio-temporal smoothness term from [WS01b] was later successfully used
in the method of Brox et al. [BBPW04] as well as in the approach of Bruhn and Weick-
ert [BW05].

Remarks on Stereo. Equivalent regularisation strategies have also been studied
for variational stereo. An isotropic image-driven regulariser was used by Kim and
Sohn [KS03], whereas an anisotropic version was already earlier proposed by Man-
souri et al. [MMK98]. Recent variational stereo approaches mostly rely on an isotropic
disparity-driven regularisers [BAS07, SBW05] to remedy oversegmentation problems.
An anisotropic disparity-driven regulariser has been missing so far.

2.1.3 Automatic Selection of the Smoothness Weight

It is well-known that an appropriate choice of the smoothness weight, that determines
the balance between the data and the smoothness term, is mandatory for obtaining
favourable results. Nevertheless, there has been remarkably little research on methods
that automatically estimate the optimal smoothness weight or other model parameters.

Concerning an optimal selection of the smoothness weight for variational optic flow
approaches, Ng and Solo [NS97] proposed an error measure which can be estimated from
the image sequence and the flow estimate only. Using this measure, a brute-force search
for the smoothness weight that gives the smallest error is performed. Computing the
proposed error measure is, however, computationally expensive, especially for robust
data terms. The experiments in [NS97] were hence restricted to the basic method of
Horn and Schunck [HS81]. In a Bayesian framework, a parameter selection approach that
can also handle robust data terms was presented by Krajsek and Mester [KM07]. This
method jointly estimates the flow and the model parameters, where the latter encompass
the smoothness weight and also the relative weight of different data terms. This method
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does not require a brute-force search, but the minimisation of the objective function is
nevertheless complicated and only feasible if certain approximations are performed.

2.1.4 Other Terms

In some situations, it can make sense to add further terms to the energy formulation,
e.g. if other prior information is available.

One example for such an additional prior can be found in the work of Brox and Ma-
lik [BM11] where the authors tackled the problem that variational optic flow methods
usually cannot estimate large displacements of small objects. The reason for this is that
at a coarse level of the warping pyramid, these small objects vanish, whereas at a fine
level their displacement is too large to be estimated. To overcome this limitation, the
authors in [BM11] propose to first apply a region-based descriptor matching approach.
This gives a set of sparse hypotheses for point correspondences that can, however, cap-
ture also large displacements of small objects. Then, a traditional optic flow approach
[BBPW04] is guided by these hypotheses to finally obtain a dense flow field that also
captures large displacements of small objects. To guide the variational approach, a
prior is added that penalises deviations of the sought flow field from the given, sparse
hypotheses.

In the context of incorporating feature matching in optic flow approaches, one should
also mention the SIFT flow method [LYT+08]. Here, the authors construct a SIFT
feature vector [Low99, Low04] for each pixel and impose constancy of the SIFT vectors
in the data term of a discrete energy formulation. Although the resulting flow fields
suffer from significant artefacts, the invariances of the SIFT vectors allow to match
images that only roughly depict the same scene, e.g. two images from a database. This
has not been possible with classical optic flow methods.

Finally, we wish to note that there exist also other strategies for handling large
displacements in variational optic flow. Steinbrücker et al. [SPC09b] use a quadratic re-
laxation scheme to minimises an energy that does not perform a linearisation in the data
term. To make this feasible, the minimisation w.r.t. data and smoothness term is decou-
pled by introducing an auxiliary variable. For the data term, this allows to perform a
brute-force search for the best match on the full image resolution. This renders warping
superfluous and enables the approach to estimate arbitrary large displacements at the
expense of being computationally very expensive. Additionally, the simple brute-force
search allows to use complicated data terms as the minimisation only requires to evaluate
the data term for the different solutions. This feature was exploited in [SPC09a], where
data terms that match whole patches based on the L1-norm or normalised cross corre-
lation (NCC) are proposed and compared. The benefits of the patch-based matching
seem, however, limited and further increase the computational burden.
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2.2 Energy Minimisation

There exist different possibilities for minimising the energy functionals of variational
optic flow approaches.

2.2.1 The Euler-Lagrange Framework

The probably most widely used strategy is to solve the corresponding Euler-Lagrange
equations, which constitute a system of coupled partial differential equations (PDE) of
elliptic type. For solving the latter different techniques can be applied.

Numerics. A first step toward solving the Euler-Lagrange equations is to discretise
them, which mainly comes down to sampling the images and the flow fields on some
grid. However, we also need to discretise occurring derivatives of the images and the flow
field. Choosing an appropriate derivative approximation offers some degree of freedom,
but this issue has hardly been studied in the context of correspondence problems. If the
discretisation is discussed at all, most approaches [BAS07, BBPW04] use “standard”
central finite difference approximations, see [MM94]. Alternatively, some methods like
[Coh93] use a finite element method [Joh87]. However, more advanced approximation
schemes have been considered for a long time in variational image restoration meth-
ods [MO99, ROF92].

After discretising the PDE one ends up with a large linear or nonlinear systems
of equations. Exploiting the sparsity of the system matrix, iterative solvers like the
Gauss-Seidel method (used for example in [AWS00, HS81, NBK08]) or the more efficient
SOR method (used for example in [BBPW04]) can be be applied. A further speed up
can be achieved by using highly efficient multigrid schemes [BWKS06, GvV96, Gla84,
GT08, KKR07, KR03]. Here, Bruhn et al. [BWKS06] came up with a bidirectional
full multigrid scheme that is applicable for a variety of different models and achieves
realtime performance for image sequences of size 160 × 120 pixels. To obtain realtime
performance also for larger image sizes, El Kalmoun et al. [KKR07] proposed a parallel
multigrid method on a CPU cluster. A similar approach goes back to Grossauer and
Thoman [GT08] who parallelised a multigrid scheme on a GPU. However, both parallel
implementations could only be realised for basic optic flow models so far.

An alternative is to consider the elliptic problem as the steady state of a parabolic
PDE where the evolution time tends to infinity. In this context, explicit schemes (used
for example in [AELS99]) can be used which are attractive due to their simple implemen-
tation that avoids solving large and possible nonlinear systems of equations. However,
explicit schemes are only stable if the used time step size is rather small which renders
them computationally burdensome. An alternative is offered by semi-implicit schemes
that allow arbitrary time step sizes, but again require to solve a system of equations at
every time step.
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2.2.2 Primal-Dual Approaches

An alternative to the Euler-Lagrange framework that has become increasingly popular
in the last years are primal-dual approaches. For optic flow computations, they were first
proposed by Zach et al. [ZPB07] and were from then on used in a number of methods,
see e.g. [WCPB09, WPZ+08, WPB10, WTP+09, XJM10].

The basic idea of primal-dual methods is to introduce an auxiliary variable to de-
couple the minimisation w.r.t. the data and the smoothness term. For the data term,
one ends up with a simple thresholding step. For the smoothness term, a projected gra-
dient descent algorithm similar to the algorithm of Chambolle [Cha04] can be used. As
the latter was originally proposed for total variation (TV) regularised denoising prob-
lems, most of the first primal-dual approaches [WCPB09, WPZ+08, ZPB07] use the TV
norm as subquadratic penaliser in the smoothness term. Applying the same penaliser
in the data term (to achieve robustness under outliers) leads to an L1 penalisation.
Such methods are thus also referred to as TV-L1 methods. As discussed above for the
Euler-Lagrange framework, also here one needs to discretise occurring derivatives of the
images and the flow field.

As the thresholding as well as the gradient descent step can be efficiently implemented
in parallel on a GPU, primal-dual approaches are able to achieve realtime performance
even for modern optic flow models and images of size 512×512 pixels [WPZ+08]. Apart
from these attractive features, primal-dual approaches suffer from two major problems:
(i) The number of data terms that allow to derive a corresponding thresholding step is
rather limited, e.g. using higher-order constancy assumptions has not been realised so
far. (ii) Adapting the gradient descent algorithm to the smoothness terms different from
a TV penaliser can be difficult, especially for anisotropic regularisers, see [WTP+09].

Remarks on Stereo. As in the optic flow case, variational stereo approaches can be
minimised using the Euler-Lagrange framework [BAS07, SBW05], as well as primal-dual
strategies [PSG+08].

2.3 Applications

Aligning Exposure Series for HDR Imaging. A simple and fast approach for
aligning exposure series is to estimate one global transformation per image pair. In
its seminal work, Ward [War03] describes this transformation by a pure translation,
whereas later extensions use a translation plus a rotation [Gro06, JLW08]. To cope with
the brightness changes due to the varying exposures, the aforementioned approaches
consider mean threshold bitmaps (MTB) obtained by a thresholding at the median of
all pixel values. Using a pyramid of these images, the global displacement can then
be computed by simple shift and difference operations at each pyramid level. Altough
global strategies are thus very efficient, they fail in the presence of independently moving
objects or for complex camera motions, such as zooming and tiling.
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Similar restrictions apply to the method in [TM07] where a homography is com-
puted from SIFT [Low04] feature matches that are invariant under the brightness
changes. Such a strategy is implemented in the align image stack algorithm of the
Hugin toolkit (http://hugin.sourceforge.net). However, homography-based ap-
proaches are known to fail for moving objects or camera motions different from a pure
rotation.

To describe arbitrary camera motions and to handle moving objects in the scene,
dense methods are needed that allow to estimate a different displacement vector for each
pixel in the image. This can be achieved by multi-step methods such as the global-local
alignment strategies [KUWS03, JO08] that first perform some global alignment and
then refine it using the classical local optic flow approach of Lucas and Kanade [LK81].
As optic flow approaches usually assume a similar intensity at corresponding pixels,
these approaches first need to transfer the pixel values to the irradiance domain. This,
however, requires a preceding calibration step to estimate the camera response function.
Another problem is that local optic flow approaches cannot estimate a displacement
in flat image regions (aperture problem) and give blocky artefacts as they assume a
constant (or parametric) displacement within a local neighbourhood.

A more advanced multi-step method was proposed in [ST04]. This approach first
computes sparse correspondences by matching feature points and then computes a dense
displacement field using weighted linear regression. This result is further refined by
applying a local optic flow method [LK81]. A key aspect in this method is to estimate
weights that allow to detect and discard mismatches. To deal with the brightness changes
in exposure series, a normalisation is proposed that gives a partial invariance to the
exposure changes without using the response function.

There also exist dense methods that do not need to apply several processing steps.
Menzel and Guthe [MG07] propose a hierarchical matching of patches that is based on
cross-correlation to ensure robustness under the brightness changes. As no smoothness
assumption on the displacements is imposed, this method is prone to give noisy displace-
ment fields, leading to artefacts in the alignment. The only approach that imposes an
explicit smoothness assumption on the displacements can be found in [KP04]. Here, a
stereo method based on zero-mean normalised cross-correlation is used. This, however,
is only possible for static scenes without moving objects and additionally requires a pair
of cameras with known epipolar geometry.

Joint Super-Resolution and HDR (SR-HDR) Reconstruction. One major
challenge for SR-HDR approaches is an accurate displacement estimation with sub-
pixel precision. Thus, some methods rely on special camera hardware to facilitate the
displacement estimation: While the methods in [NN05, HTO07] use multisampled im-
ages where the pixels on the image sensor are differently exposed, Nakai et al. [NYUS08]
influence the displacements by a controlled shift of the image sensor.

Evidently, it is more convenient to use standard cameras and to take an exposure
series with varying viewpoints. This strategy is applied in [RMVS07] where the images
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are aligned using a frequency domain approach that estimates a global translation and
rotation, as in [Gro06, JLW08]. The SR-HDR result is then computed by simply interpo-
lating the irradiances of the aligned images. More powerful are approaches that find the
SR-HDR image by minimising an energy formulation [GG06, CPK09]. In these works
it is also shown that a joint SR-HDR reconstruction is not only more elegant, but also
gives better results than a sequential approach. Concerning the required displacement
estimation, Choi et al. [CPK09] assume the displacements to be given and Gunturk and
Gevrekci [GG06] estimate the displacements using a homography-based approach as in
[TM07]. The main problem of existing energy-based methods is that they use a prior
that enforces the result to be close to a mean image obtained by averaging the irradiances
of the aligned input images. Although this prior stabilises the minimisation, it does not
allow to fill in missing information and to smooth the resulting image. However, our
experiments in Section 6.3.4 will show that an appropriate filling in of information and
smoothing of the result is required to obtain favourable reconstructions.

Finally, we wish to mention the SR-HDR approach of Schubert et al. [SSM09]. Dif-
ferent from our goal (a high quality reconstruction), their focus lies on efficiency. To
this end, they fuse a separately captured HDR exposure set (2 images, short and long
exposure) and a SR series (several images, constant exposure, varying viewpoints).
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Chapter 3

Preliminaries

As far as the propositions of mathematics refer to
reality, they are not certain; and as far as they are
certain, they do not refer to reality.

Albert Einstein

Before starting with the main part of this thesis, let us briefly present basic concepts
that we will use in the remainder.

3.1 Images

We model images and consequently also image sequences and flow fields as functions.
In the optic flow case, we denote the given image sequence by

f(x) : Ω× [0, T ] → R , (3.1)

where x := (x, y, t)⊤. In the latter, (x, y)⊤ ∈ Ω describes the location within a rectan-
gular image domain Ω ⊂ R

2 and t ∈ [0, T ] denotes time. The co-domain of f (given by
R) denotes the image intensities (greyvalues). Further note that we write vectors like x
and also matrices in a bold font.

3.1.1 Colour Images

We will also consider colour images that consist of several (mostly three) colour channels.
An example are colour images encoded in the popular RGB colour space. To denote
the three channels of RGB image sequences in a convenient manner we use the notation
f = (f 1, f 2, f 3)⊤.
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3.1.2 Presmoothing

We further assume that f has been presmoothed by a frame-wise spatial Gaussian
convolution. Let one frame of the given image sequence be denoted as f0(x, y). Then,
the presmoothed version of this frame is obtained as

f(x, y) = (Kσ ∗ f0)(x, y) , (3.2)

where Kσ denotes a Gaussian of standard deviation σ:

Kσ(x, y) :=
1

2πσ2
exp

(
−
√
x2 + y2

2σ2

)
, (3.3)

and ∗ is the convolution operator defined as

(Kσ ∗ f)(x, y) :=
∫

Ω

Kσ(x̂, ŷ) f(x− x̂, y − ŷ) dx̂ dŷ . (3.4)

This presmoothing step helps to reduce the influence of noise and additionally makes
the image sequence infinitely many times differentiable, i.e. f ∈ C∞. Further note
that a spatio-temporal presmoothing of the whole image sequence is also possible by a
straightforward extension of the above. We will use such a presmoothing strategy in the
context of spatio-temporal optic flow methods in Section 4.3.4.

3.2 Flow Fields

The sought optic flow field that describes the displacement vector field between two
frames at time t and t+ 1 will be denoted by

u(x) := (u(x), v(x))⊤ : Ω× [0, T ] → R
2 . (3.5)

To ease notation, we introduce the abbreviation w := (u, v, 1)⊤. Here, we (as in the
remainder of this thesis) skipped the argument x of the flow field to shorten notation.

Remarks on Stereo We will also consider stereo matching problems in the orthopar-
allel stereo case. Here, the disparity d is given by the magnitude of the horizontal
displacement, i.e. d = |u| and the vertical displacement is equal to zero, i.e. v = 0.

3.2.1 Error Measures

For synthetic or lab-made sequences, a ground truth flow field is often available. For
the task of measuring the quality of the estimated flow w compared to the ground truth
wT , different error measures have been proposed.
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A popular error measure is the average angular error (AAE ) [BFB94] defined as

AAE(w,wT ) :=
1

|Ω|

∫

Ω

arccos

(
w⊤wT

|w||wT |

)
dx dy , (3.6)

where |Ω| denotes the area of the image domain and |w| :=
√
u2 + v2 + 1 is the Euclidean

norm of the flow vector. Note that the AAE considers the average angle between two
spatio-temporal flow vectors. Thus, if the estimated vector is a multiple of the true
vector, the angle is not equal to zero, as often assumed incorrectly.

An alternative error measure is given by the average endpoint error (AEE ) [BSL+10]
defined as

AEE(u,uT ) :=
1

|Ω|

∫

Ω

|u− uT | dx dy , (3.7)

Remarks on Stereo. In the stereo context, the most popular error measure is the
bad pixel error (BPE ) [SS02]. It gives the percentage of points that deviate more than
a threshold δ from the ground truth uT . This can be expressed as

BPE(u, uT ) :=
100

|Ω|

∫

Ω

Gδ(|u(x, y)− uT (x, y)|) dx dy , (3.8)

where Gδ(s) = 1 if s > δ, and 0 else. As proposed in [SS02], we set δ = 1.

3.2.2 Visualisation

For visualising dense flow fields, a colour code is a probably better choice compared
to arrow plots. In the colour code that we will use throughout this thesis, the hue
encodes the direction and the brightness encodes the magnitude of the flow vectors, see
Figure 3.1.

Figure 3.1: Colour code used to visualise flow fields.
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3.3 Derivatives

We will often consider derivatives of the functions that describe images and flow fields.
The reason for this is that the derivatives give important information about edges and
the overall smoothness of the images and flow fields.

As the functions we consider usually depend on more than one variable, we will
mostly deal with partial derivatives. The partial derivative of a function f(x, y) w.r.t.
the variable x will be denoted by one of the following notations

∂

∂x
f =: ∂xf =: fx . (3.9)

With this, we can define the spatial gradient of a function f(x, y) as

∇2f :=

(
fx
fy

)
, (3.10)

and similarly we define the spatio-temporal gradient of f(x, y, t) as

∇3f :=



fx
fy
ft


 . (3.11)

In the stereo context, we will use the gradient operator ∇xt defined for a function
f(x, y, t) as

∇xtf :=

(
fx
ft

)
. (3.12)

Given a normalised vector s = (s1, s2)
⊤ with |s| = 1, we define the directional derivative

of f(x, y) in s-direction as

fs := s⊤∇2f = s1 fx + s2 fy . (3.13)

We will also use the divergence expression which for a vector-valued function
(u(x, y), v(x, y))⊤ is defined as

div

(
u
v

)
:= ux + vy . (3.14)

3.4 Discretisation

Most of our models will be formulated in a continuous manner, but digital images are
sampled and thus of a discrete nature. Consequently, we will have to discretise the image
sequence as well as the flow field at some point in our implementation. We achieve this
by sampling the functions on a spatio-temporal discrete pixel grid.
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Let us illustrate this proceeding on the example of the image sequence f(x, y, t).
We first define spatial grid sizes h1 and h2 that represent the grid spacing in x- and
y-direction, respectively. Furthermore, let h3 denote the spacing in time direction. With
this we obtain the discretisation

f(xi, yj , tk) ≈ fk
i,j , (3.15)

where xi := (i− 1
2
)h1, yj := (j − 1

2
)h2 and tk := k h3. In the remainder, we will mostly

consider two frames fk
i,j and f

k+1
i,j of an image sequence, entailing h3 = 1. The resulting

number of pixels in x- and y-direction will be denoted by nx and ny, respectively.
We will also have to discrete the continuous concept of derivatives. To this end, we

will use finite difference approximations, see [MM94]. As an example, the x-derivative
of the image sequence f can be approximated by the central difference expression

∂xf(xi, yj , tk) =: fx(xi, yj, tk) ≈ fk
i+1,j − fk

i−1,j

2h1
. (3.16)

A detailed discussion on appropriate finite difference approximations will be given in
Chapter 5.
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Chapter 4

Modelling

Essentially, all models are wrong, but some are useful.

George E. P. Box and Norman R. Draper

This chapter presents our contributions to the modelling of variational optic flow ap-
proaches which have been published in [5, 8, 10, 11]. The main part of the chapter
considers models for the data and the smoothness term. Here, we review classical
approaches and show that our contributions can be derived as logical extensions and
combinations of existing concepts. Additionally, we discuss how to automatically select
an optimal smoothness weight, present an additional prior term and also give remarks
on stereo in the orthoparallel case.

4.1 Variational Optic Flow

We will rely on variational approaches for computing the optic flow. These methods
find the flow field (u, v)⊤ as minimiser of a global energy functional of the general form

E(u, v) =

∫

Ω

(
M(u, v) + αV (∇2u,∇2v)

)
dx dy . (4.1)

Here, the termM(u, v) denotes the data term that models how well the flow field explains
the given image sequence f . Weighted by α > 0, the term V (∇2u,∇2v) represents the
smoothness term that models the assumption of a smooth flow field by penalising large
flow gradients.

Note that the energy (4.1) refers to the spatial case where one aims at computing a
single flow field between two frames at time t and t+1. The more general spatio-temporal
case that uses all frames in the sequence will be discussed in Section 4.3.4.

For minimising the energy (4.1) we use the Euler-Lagrange framework. In accordance
to the calculus of variations [Els62], a minimiser (u, v) of the energy (4.1) necessarily
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has to fulfil the associated Euler-Lagrange equations given by

∂uM − α div

(
∂ux

V
∂uy

V

)
= 0 , (4.2)

∂vM − α div

(
∂vxV
∂vyV

)
= 0 , (4.3)

with homogeneous Neumann boundary conditions. Given that the energy functional
is strictly convex, the solution of the Euler-Lagrange equations yields be the global
minimum of the energy, which is identical to the “optimal“ flow field w.r.t. the imposed
model assumptions.

4.1.1 Remarks on Stereo

For stereo, we will consider an orthoparallel camera setup which results in purely hor-
izontal displacements u. To be able to use a similar notation as before, we consider
the left image fℓ of a stereo pair as a frame of an image sequence at time t, i.e.
fℓ(x, y) ≡ f(x, y, t). Consequently, the right image fr is then associated with time
t+1, i.e. fr(x, y) ≡ f(x, y, t+1). With this, we can define an energy functional for the
orthoparallel stereo case as

E(u) =

∫

Ω

(
M(u) + αV (∇2u)

)
dx dy , (4.4)

where we note that the data and smoothness term term now only depend on the dis-
placement u and its gradient ∇2u, respectively. For this energy functional, we only
obtain a single Euler-Lagrange equation given by

∂uM − α div

(
∂ux

V
∂uy

V

)
= 0 . (4.5)

4.2 Data Term

Following our work in [10, 11], we will in the following systematically derive a sophis-
ticated data term that is highly robust w.r.t. several degradations that often impede a
reliable optic flow estimation.

A Basic Data Term. The starting point for our first data term is the classical bright-
ness constancy assumption [HS81]. It states that image intensities remain constant
under their displacement, which for a greyscale image sequence f can be formalised as

f(x+w) = f(x) . (4.6)
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When attempting to minimise an energy functional that incorporates the constraint
(4.6) in its data term, one encounters the problem that the unknown flow field w occurs
implicitly in the argument of the function f . As a remedy, one can perform a Taylor
linearisation: Assuming that the image sequence is smooth and that the displacements
are small, a first-order Taylor expansion

f(x+w) ≈ f(x) + fx(x) u+ fy(x) v + ft(x) , (4.7)

gives a sufficiently accurate approximation. Plugging (4.7) into (4.6), rearranging the
terms and dropping the argument (x) one ends up with the well-known linearised optic
flow constraint (OFC )

0 = fx u+ fy v + ft = (∇3f)
⊤w . (4.8)

Performing a quadratic penalisation of the constraint (4.8), we obtain our first data
term

M1(u, v) =
(
(∇3f)

⊤w
)2

= w⊤
(
∇3f(∇3f)

⊤
)
w =: w⊤J0 w , (4.9)

where we define the tensor

J0 := ∇3f (∇3f)
⊤ . (4.10)

Note that the single equation given by the OFC (4.8) involves two unknowns u and v.
It is thus not sufficient to compute a unique solution, which is known as the aperture
problem [BPT88]. Nevertheless, assuming that the image gradient does not vanish, i.e.
|∇2f | 6= 0, the OFC allows to compute the flow component orthogonal to image edges,
the so-called normal flow. It is defined as

wn :=
(
u⊤

n , 1
)⊤

:=

(
− ft
|∇2f |

(∇2f)
⊤

|∇2f |
, 1

)⊤

. (4.11)

Normalisation. Our experiments in Section 4.2.2 will show that a normalisation of
the data term can be beneficial [LV98, SC06, SAH91]. To understand why this is the
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case, let us we rewrite the basic data term M1 from (4.9) as

M1(u, v) =
(
(∇3f)

⊤w
)2

=
(
(∇2f)

⊤u+ ft
)2

=

[
|∇2f |

(
(∇2f)

⊤ u

|∇2f |
+

ft
|∇2f |

)]2

= |∇2f |2
[
(∇2f)

⊤

|∇2f |

(
u+

ft ∇2f

|∇2f |2
)]2

(4.11)
= |∇2f |2

(
(∇2f)

⊤

|∇2f |
(u− un)

)2

=: |∇2f |2 d2 . (4.12)

The introduced term d constitutes a projection of the difference between the estimated
flow u and the normal flow un in the direction of the image gradient∇2f . In a geometric
interpretation, the term d thus describes the distance from u to the line l in the uv-space
that is given by

v = −fx
fy
u− ft

fy
, (4.13)

which is a simple rewriting of the OFC (4.8). This shows that all flow vectors that lie
on the line l will perfectly fulfil the OFC. Note that the normal flow un is actually the
shortest vector that lies on this line. A sketch of this geometric interpretation of the
data constraints is shown in Figure 4.1.

A logical consequence from our geometric interpretation is that one should penalise
the distance d in a data term M2(u, v) = d 2. The data term M1, however, weighs this
distance by the squared spatial image gradient, asM1(u, v) = |∇2f |2 d 2, see (4.12). This
results in a stronger enforcement of the data constraint at high gradient locations. Such
an overweighting may be inappropriate as large gradients can be caused by unreliable
structures, such as noise or occlusions.

As a remedy, we can normalise the data term M1 by multiplying it with a factor
[LV98, SAH91]

θ0 :=
1

|∇2f |2 + ζ2
, (4.14)

where the regularisation parameter ζ > 0 avoids division by zero. Additionally, it
reduces the influence of small gradients which are significantly smaller than ζ2, e.g.
noise in flat regions. Nevertheless, the normalisation is not influenced for large gradients.
Thus, it may pay off to choose a larger value of ζ in the presence of noise. A normalised
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d

l

un

∇2f

|∇2f |

u

Figure 4.1: Geometric interpretation of the rewritten data term. (4.12)

version of M1 can then be written as

M2(u, v) = w⊤J̄0 w , (4.15)

using the normalised tensor

J̄0 := θ0 J0 = θ0
(
∇3f (∇3f)

⊤
)
. (4.16)

Gradient Constancy Assumption. The brightness constancy assumption is vio-
lated as soon as the illumination conditions in the scene change. A simple (and thus
maybe not too realistic) assumption can be that the scene undergoes a global additive
illumination change. To render the data term robust under such kinds of illumination
changes, the gradient constancy assumption has been proposed [BBPW04, Sch94, TP84].
It states that image gradients remain constant under their displacement, i.e.

∇2f(x+w) = ∇2f(x) . (4.17)

Performing a similar Taylor linearisation as before gives the linearised gradient constancy
assumption

(∇3fx)
⊤ w = 0 , and (∇3fy)

⊤w = 0 . (4.18)

Combining both the brightness and the gradient constancy assumption in a quadratic
way yields the data term

M3(u, v) = w⊤J w , (4.19)

where the tensor J can be written in the motion tensor notation [BWKS06] that allows
to combine the two constancy assumptions in a joint tensor

J := J0 + γ Jxy

:= J0 + γ (Jx + Jy)

:= ∇3f (∇3f)
⊤ + γ

(
∇3fx (∇3fx)

⊤ +∇3fy (∇3fy)
⊤
)
, (4.20)
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where the weighting parameter γ > 0 steers the influence of the gradient constancy
assumption.

To normalise M3, we replace the motion tensor J by its normalised counterpart

J̄ := J̄0 + γ J̄xy

:= J̄0 + γ
(
J̄x + J̄y

)

:= θ0 J0 + γ (θx Jx + θy Jy)

:= θ0
(
∇3f (∇3f)

⊤
)
+ γ

(
θx
(
∇3fx (∇3fx)

⊤
)
+θy

(
∇3fy (∇3fy)

⊤
))

, (4.21)

where the two additional normalisation factors are defined as

θx :=
1

|∇2fx|2 + ζ2
, and θy :=

1

|∇2fy|2 + ζ2
. (4.22)

The normalised data term M4 is then given by

M4(u, v) = w⊤J̄ w . (4.23)

Before we continue, let us remark that although the assumption of a global additive
illumination change maybe not very realistic, experiments show that imposing gradient
constancy nevertheless improves the results in most real world scenarios.

Colour Image Sequences. In a next step we extend our data term to multi-channel
sequences f = (f 1, f 2, f 3). If one uses the standard RGB colour space, the three
channels represent the red, green and blue channel, respectively. We couple the three
colour channels in the joint motion tensor

J̄
C

:=
3∑

c=1

J̄
c

:=
3∑

c=1

[
J̄

c

0 + γ J̄
c

xy

]

:=
3∑

c=1

[
J̄

c

0 + γ
(
J̄

i

x + J̄
c

y

)]

:=
3∑

c=1

[
θc0

(
∇3f

c (∇3f
c)⊤
)

(4.24)

+ γ
(
θcx

(
∇3f

c
x (∇3f

c
x)

⊤
)
+ θcy

(
∇3f

c
y

(
∇3f

c
y

)⊤))]
,

with normalisation factors θc for each colour channel f c. The corresponding data term
reads as

M5(u, v) = w⊤J̄
C
w . (4.25)
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Photometric Invariant Colour Spaces. It is generally agreed that realistic illumi-
nation models mainly encompass a multiplicative influence [vG04]. Consequently, solely
imposing gradient constancy which is only invariant under additive illumination changes
might not be sufficient. Following Golland and Bruckstein [GB97], this problem can be
tackled by using the Hue Saturation Value (HSV ) colour space. The hue channel is
invariant under global and local multiplicative illumination changes, as well as under
local additive changes. The saturation channel is invariant under global multiplicative
illumination changes, and the value channel exhibits no invariances.

Taking the different levels of invariances into account, Mileva et al. [MBW07] pro-
posed to only use the hue channel for optic flow computation as it is the most invariant
channel. We will additionally use the saturation and value channel, because they con-
tain information that is not present in the hue channel. As an example, consider the
HSV decomposition of the Rubberwhale image from the Middlebury database [BSL+10]
shown in Figure 4.2. As it turns out, the shadow at the left of the wheel (shown in
the inset) is not visible in the hue and the saturation channel, but appears in the value
channel. Nevertheless, especially the hue channel discards a lot of information, as can
be observed for the striped cloth. This information is, on the other hand, available in
the value channel.

(a) Image (b) Hue channel

(c) Saturation channel (d) Value channel

Figure 4.2: Example for an HSV decomposition. First row, from left to right: (a) Colour image with
zoom in shadow region left of the wheel. (b) Same for hue channel (visualised with full saturation and
value). Second row, from left to right: (c) Saturation channel. (d) Value channel.
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Adequate Treatment of the Hue Channel. One problem when using the HSV colour
space is that the hue channel f 1 describes an angle in a colour circle, i.e. f 1∈ [0◦, 360◦).
The hue channel is hence not differentiable at the interface between 0◦ and 360◦. In
practise this leads to the following problem: A large change in the angle, e.g. from 5◦

to 355◦, leads to large derivative but corresponds to a small change in hue, only.
A possible remedy is to consider the unit vector (cos f 1, sin f 1)⊤ corresponding to

the angle f 1. This results in treating the hue channel as two (coupled) channels, which
are both differentiable. Practically, a change in angle is in this case expressed as the
distance between the corresponding unit vectors, which does not suffer from the before
mentioned problem.

If we apply this strategy to a normalised motion tensor corresponding to the bright-
ness constancy assumption, one obtains

J̄
1
0 := θ10

(
∇3 cos f

1
(
∇3 cos f

1
)⊤

+ ∇3 sin f
1
(
∇3 sin f

1
)⊤)

, (4.26)

where the normalisation factor is defined as

θ10 :=
1

|∇2 cos f 1|2 + |∇2 sin f 1|2 + ζ2
. (4.27)

Note that in the differentiable parts of the hue channel, the motion tensor (4.26) is
equivalent to our earlier definition, as

∇3 cos f
1
(
∇3 cos f

1
)⊤
+∇3 sin f

1
(
∇3 sin f

1
)⊤

= sin2f 1

(
∇̃3f

1
(
∇̃3f

1
)⊤)

+ cos2f 1

(
∇̃3f

1
(
∇̃3f

1
)⊤)

=
(
sin2f 1 + cos2f 1

)(
∇̃3f

1
(
∇̃3f

1
)⊤)

= ∇̃3f
1
(
∇̃3f

1
)⊤

, (4.28)

where ∇̃3 denotes the gradient in the differentiable parts of the hue channel. The tensor
J̄

1
xy for the gradient constancy assumption is adapted accordingly:

J̄
1
xy := θ1x

(
∇3 cos f

1
x

(
∇3 cos f

1
x

)⊤
+∇3 sin f

1
x

(
∇3 sin f

1
x

)⊤)
(4.29)

+ θ1y

(
∇3 cos f

1
y

(
∇3 cos f

1
y

)⊤
+∇3 sin f

1
y

(
∇3 sin f

1
y

)⊤)
,

with the normalisation factors

θ1x :=
1

|∇2 cos f 1
x |2 + |∇2 sin f 1

x |2 + ζ2
, (4.30)

and

θ1y :=
1∣∣∇2 cos f 1

y

∣∣2 +
∣∣∇2 sin f 1

y

∣∣2 + ζ2
. (4.31)
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Robust Penalisers. To provide robustness of the data term against outliers (possibly
caused by noise or occlusions), Black and Anandan [BA96] proposed to refrain from a
quadratic penalisation as it gives too much influence to outliers. Instead they use a
subquadratic penaliser function ΨM(s2), where s2 denotes the quadratic data term.
Using such a robust penaliser within our data term yields

M6(u, v) = ΨM

(
w⊤J̄

C
w
)
. (4.32)

Good results are reported by Brox et al. [BBPW04] for the subquadratic penaliser
ΨM(s2) :=

√
s2 + ε2, that uses a small regularisation parameter ε > 0.

Bruhn and Weickert [BW05] later proposed a separate penalisation of the brightness
and the gradient constancy assumption, which is advantageous in cases where only one
assumption produces an outlier, but not the other. Incorporating this strategy into our
approach gives the data term

M7(u, v) = ΨM

(
w⊤J̄

C
0 w

)
+ γ ΨM

(
w⊤J̄

C
xy w

)
, (4.33)

where the separate motion tensors are defined as

J̄
C
0 :=

3∑

c=1

J̄
c

0 , and J̄
C
xy :=

3∑

c=1

J̄
c

xy . (4.34)

We will go a step further by proposing a separate robust penalisation of each channel
in the HSV colour space. This is justified by the distinct information content of each of
the three channels, see Figure 4.2. The separate robust penalisation then allows to only
consider the most reliable channel at each location, and to reduce the influence of the
less reliable channels.

Final Data Term. Incorporating the separate robust penalisation into M7 brings us
to our final data term

M(u, v) =
3∑

c=1

ΨM

(
w⊤J̄

c

0 w
)
+ γ

(
3∑

c=1

ΨM

(
w⊤J̄

c

xy w
)
)

, (4.35)

where the motion tensors J̄ 1 are adapted to the HSV colour representation as described
before on page 40. Note that our final data term is (i) normalised, (ii) combines the
brightness and gradient constancy assumption, and (iii) uses the HSV colour space with
(iv) a separate robust penalisation of all channels.
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Contribution to the Euler-Lagrange Equations. The contributions of our final
data term (4.35) to the Euler-Lagrange equations (4.2) and (4.3) are given by

∂uM =
3∑

c=1

(
Ψ′

M

(
w⊤J̄

c

0 w
)
·
([

J̄
c

0

]
1,1
u+

[
J̄

c

0

]
1,2
v +

[
J̄

c

0

]
1,3

))
(4.36)

+ γ
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[
J̄

c

xy

]
1,3

)))
,
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+ γ

(
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c=1

(
Ψ′
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(
w⊤J̄

c

xy w
)
·
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J̄
c

xy

]
1,2
u+

[
J̄

c

xy

]
2,2
v +

[
J̄

c

xy

]
2,3

)))
,

where [J ]m,n denotes the entry in rowm and column n of the matrix J , and Ψ′
M(s2) is the

derivative of ΨM(s2) w.r.t. its argument. For our proposed penaliser ΨM(s2) =
√
s2 + ε2

one for example obtains Ψ′
M(s2) = 1 / (2

√
s2 + ε2).

Analysing the terms (4.36) and (4.37), we can analyse the effect of the separate robust
penalisation of the HSV channels: If a specific channel violates the imposed constancy
assumption at a certain location, the corresponding argument of the decreasing function
Ψ′

M will be large, which reduces the influence of this channel. Other channels that satisfy
the constancy assumption then have a dominating influence on the solution.

4.2.1 Remarks

Let us finish this section by some remarks on the presented concepts.

A Note on Photometric Invariances. Using a photometric invariant colour rep-
resentation (like our proposed HSV colour space) renders the estimation of the optic
flow invariant under lighting artefacts like shadows. Is this, however, desirable? If one
is interested in recovering the optic flow in its original definition where it describes the
apparent motion of brightness patterns between two images [Hor86], such an invariance
is undesirable as it hinders the estimation of apparent motion that is due to lighting
changes. Estimating these motions can, on the other hand, also be of great importance,
e.g. for frame interpolation applications.

Nevertheless, photometric invariances are often desirable. This is the case if one
aims at recovering the actual motion of objects in the scene, i.e. the projection of the
3D motion field (scene flow) onto the 2D image plane. An example for such a scenario
are driver assistance systems, that should not be misled by moving shadows.
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Issues with an HSV colour representation. Apart from its (mostly) desirable pho-
tometric invariances, the HSV colour representation may also pose problems. One such
problem is that greyscales are not distinguishable in the hue and the saturation channel.
An example for this problem is given in Figure 4.3 that shows the HSV decomposition
of the logo of the Hamburger Sportverein (a German football club, interestingly also
called HSV). Apparently, the black and white areas in the centre are indistinguishable
in the hue as well as the saturation channel. In the hue channel, the angle corresponding
to a greyscale is even not defined. For visualisation purposes, we assign an angle of 0◦,
corresponding to a red hue.

(a) Image (b) Hue (c) Saturation (d) Value

Figure 4.3: Problems of an HSV decomposition. From left to right: (a) Colour image depicting
the logo of the Hamburger Sportverein (htp://www.hsv.de). (b) Hue channel, visualised with full
saturation and value. (c) Saturation channel. (d) Value channel.

A RGB Variant of our Data Term. We have seen that in some situations, an
HSV colour representation may not be suitable. As a remedy, we propose to resort
to a standard RGB colour representation. In this case, however, a separate robust
penalisation of each colour channel makes no sense as none of the RGB channels exhibits
photometric invariances. Consequently, we only separately apply the robust penaliser
function to the brightness and the gradient constancy assumption, as in the data term
M7 from (4.33).

Linearisation versus Large Displacements. In order to make the minimisation
of the resulting energy functional feasible, we performed a linearisation of the data
constraints. This proceeding is, however, only valid under the assumption of small dis-
placements in the sequence or for very smooth image data. However, those assumptions
are often violated under real world conditions, e.g. when the frame rate of the camera
used to record an image sequence is too low. A popular strategy for handling large
displacements is to use a coarse-to-fine multiscale warping approach, as for example
in [AWS00, Ana89, BA96, BBPW04, MP98, WTK87]. At a coarse (downsampled or
smoothed) version of the image sequence, the displacements become small enough to be
estimated by a linearised approach. The obtained coarse solution then serves as initial-
isation for the next finer level, resulting in an incremental estimation of the final flow
estimate.
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To simplify the presentation of our ideas, we stick to linearised data terms. In
Section 5.3.1 we will detail on how to incorporate our models into a warping scheme to
handle large displacements correctly.

Data Terms for Stereo. Transferring the presented concepts to stereo in the or-
thoparallel case is straightforward. Recall that in the orthoparallel case, one only ex-
periences horizontal displacements u. Thus, to transfer our optic flow data terms to
orthoparallel stereo, we only have to set the vertical flow component to zero, i.e. v = 0.
For the brightness constancy assumption this yields

f(x+u, y, t+1) = f(x, y, t) . (4.38)

Performing a linearisation and a quadratic penalisation, one ends up with the data term

(fx u+ ft)
2 =

(
(∇xtf)

⊤

(
u
1

))2

= (u, 1)
(
∇xtf (∇xtf)

⊤
)(u

1

)
. (4.39)

As analogue to the the basic motion tensor J0 from (4.10), we can now define a basic
stereo tensor as

JStereo0 := ∇xtf(∇xtf)
⊤ . (4.40)

Comparing the stereo data term to its to its optic flow counterpart, we realise that the
gradient operator ∇3 was replaced by ∇xt and the flow field w was replaced by the
vector (u, 1)⊤. Performing these two modifications, all of the above concepts can be
transferred from optic flow to orthoparallel stereo.

Normalisation. The normalisation factors for stereo are obtained from their optic
flow counterparts by dropping the contributions of fy. The normalisation factor for the
brightness constancy part consequently reads as

1

f 2
x + ζ2

. (4.41)

Note that this factor makes sense because of the following rewriting

(fx u+ ft)
2 =

(
fx

(
u+

ft
fx

))2

= f 2
x

(
u+

ft
fx

)2

=: f 2
x (u− un)

2 , (4.42)

where un := −(ft/fx) is the stereo counterpart of the normal flow, as it solves the lin-
earised constraint (4.39). We see that also in the stereo context, a quadratic penalisation
of the brightness constancy assumption implicitly results in an undesirable weighting
with f 2

x . As a remedy, one can normalise the data term by multiplication with the factor
from (4.41).

4.2.2 Experiments

We now present some experiments that prove the merits of our data term design. For
the smoothness term, we use our novel complementary regulariser that will be presented
in Section 4.3.2.
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Benefits of Normalisation and the HSV Colour Space. We proposed two main
innovations in the data term: constraint normalisation and using an HSV colour repre-
sentation. In our first experiment, we thus compare our method against variants of it
where we (i) do not perform data term normalisation, and (ii) where we use the RGB
instead of the HSV colour space. Recall that in the latter case, we only separately
robustify the brightness and the gradient constancy assumption, as a separate robusti-
fication of the RGB channels makes no sense. In Figure 4.4 we show the results for the
Snail sequence that we have created. Note that it is a rather challenging sequence due
to severe shadows and large displacements up to 25 pixels.

When comparing the results to our final result in Figure 4.4 (f), the following draw-
backs of the modified versions become obvious: Without data term normalisation (Fig-
ure 4.4 (d)), unpleasant artefacts at image edges arise, even when using a large smooth-
ness weight α. This is explained by the fact that without normalisation, the data term
is overweighted at these locations and thus noise and occlusions lead to artefacts. When
relying on the RGB colour space (Figure 4.4 (e)), a phantom motion in the shadow
region at the right border is estimated.

Effect of the Separate Robust Penalisation. This experiment illustrates the de-
sirable effect of our separate robust penalisation of the HSV channels. Using the Rub-
berwhale sequence from the Middlebury database [BSL+10], we show in Figure 4.5 the
data term weights Ψ′

M(w⊤J̄
c

0 w) for the brightness constancy assumption on the hue,
the saturation and the value channel (c=1, .., 3). Here, brighter pixels correspond to a
larger weight and we only show a zoom for better visibility.

As we can see, the weight of the value channel is reduced in the shadow regions (left
of the wheel, of the orange toy and of the clam). This is desirable as the value channel
is not invariant under shadows, see Figure 4.2.

A CLG Variant of Our Method. Our next experiment is concerned with a CLG
variant [BWS05] of our data term. In this case we perform (as for the regularisation
tensor) a Gaussian convolution of the motion tensor entries. Formally, we thus replace
the motion tensor J̄

c

0 by Kρ ∗ J̄ c

0 and J̄
c

xy by Kρ ∗ J̄ c

xy. From this it also becomes clear
that for ρ = 0 we fall back to our original model. Consequently, a CLG variant of our
method refers to a setting with ρ > 0 that led to the best results.

First, we compare our method against a CLG variant for some Middlebury sequences,
see Table 4.1. We find that the CLG variant always leads to worse results and conclude
that for the considered test sequences, this modification seems not to be useful, i.e.
setting ρ = 0 seems most appropriate. However, a CLG variant of can actually be
useful in the presence of severe noise in the image sequence. To prove this, we compare
in Table 4.2 the performance of our method to its CLG counterpart on noisy versions of
the Yosemite sequence. As it turns out, the CLG variant improves the results at large
noise scales, but deteriorates the quality for low noise scenarios. This also explains the
experienced behaviour on the Middlebury data sets, which hardly suffer from noise.
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(a) First frame (b) Zoom into (a) (c) Zoom into second frame

(d) No normalisation (e) RGB colour space (f) Proposed method

Figure 4.4: Results on the Snail sequence with different variants of our data term. First row, from
left to right: (a) First frame. (b) Zoom into marked region of first frame. (c) Same for second frame.
Second row, from left to right: (d) Flow field in marked region, without normalisation (α = 5000.0). (e)
Same for RGB colour space (α = 300.0). (f) Same for proposed method that uses HSV colour space and
normalisation (α = 2000.0). All results used the fixed parameters σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95.

4.3 Smoothness Term

This section first reviews existing smoothness terms that were influential for the design
of our complementary regulariser [10, 11]. After presenting the latter and its extension
to the spatio-temporal domain, we finally also discuss comparable smoothness terms for
stereo.

4.3.1 A General Framework for Smoothness Terms

To ease notation and comparison of all discussed regularisers, we rewrite them in a novel
framework [10] that unifies their notation and eases their comparison.

Preliminaries for our General Framework. Let us first some basic concepts that
will be used in our general framework.
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(a) First frame (b) Hue channel weight

(c) Saturation channel weight (d) Value channel weight

Figure 4.5: Effect of our separate robust penalisation of the HSV channels. First row, from left to
right: (a) Zoom in first frame of the Rubberwhale sequence. (b) Visualisation of the corresponding
hue channel weight. Brighter pixels correspond to a larger weight. Second row, from left to right: (c)
Same for the saturation channel. (d) Same for the value channel.

Table 4.1: Comparison of our data term to a CLG variant (using the AAE)

Sequence Rubberwhale Dimetrodon Grove2 Urban2

CLG (ρ > 0) 3.00◦ 1.59◦ 2.20◦ 2.67◦

Original (ρ = 0) 2.77◦ 1.54◦ 2.16◦ 2.49◦

Table 4.2: Comparison of our data term to a CLG variant on noisy versions of the Yosemite sequence
(using the AAE). We have added Gaussian noise with zero mean and standard deviation σn

σn 0 10 20 40

CLG (ρ > 0) 1.75◦ 4.01◦ 5.82◦ 8.14◦

Original (ρ = 0) 1.64◦ 3.82◦ 6.08◦ 8.55◦

47



CHAPTER 4. MODELLING

Image-driven regularisers take into account image structures. To analyse the latter,
one can consider the structure tensor [FG87]

Sρ := Kρ ∗
[
∇2f (∇2f)

⊤
]
=:

2∑

i=1

µi si s
⊤
i , (4.43)

with an integration scale ρ > 0. The structure tensor is a symmetric, positive semi-
definite 2 × 2 matrix that possesses two orthonormal eigenvectors s1 and s2 with cor-
responding eigenvalues µ1 and µ2, where w.l.o.g. µ1 ≥ µ2 ≥ 0. Directional information
of image structures is encoded in the eigenvectors: The vector s1 points across image
structures, whereas the vector s2 points along them. The corresponding eigenvalues µ1

and µ2 describe the contrast along these directions.
In the case ρ = 0, i.e. without considering neighbourhood information, one obtains

s01 =
∇2f

|∇2f |
, and s02 =

(∇2f)
⊥

|∇2f |
, (4.44)

where (∇2f)
⊥ := (−fy, fx)⊤ denotes the vector orthogonal to ∇2f . The corresponding

eigenvalues in this case are µ0
1 = |∇2f |2 and µ0

2 = 0. For ρ = 0 we also have that
|∇2f |2 = tr S0, with tr denoting the trace operator. Consequently, a large value of
tr S0 indicates the presence of an image edge.

Most regularisers impose smoothness of the flow field by penalising the magnitude
of the flow gradients. As s1 and s2 constitute an orthonormal basis, we can rewrite the
(squared) magnitude of the flow gradients as

|∇2u|2 = u2x + u2y = u2s1 + u2s2 , (4.45)

|∇2v|2 = v2x + v2y = v2s1 + v2s2 , (4.46)

using directional derivatives in s1- and s2-direction.
To analyse the smoothing behaviour of the presented regularisers we will consider the

corresponding Euler-Lagrange equations (4.2) and (4.3). For all regularisers discussed
here, the Euler-Lagrange equations can be written in the form

∂uM − α div (D∇2u) = 0 , (4.47)

∂vM − α div (D∇2v) = 0 , (4.48)

with a diffusion tensor D that steers the smoothing of the flow components u and v.
Specifically, the eigenvectors ofD give the smoothing direction, whereas the correspond-
ing eigenvalues determine the magnitude of the smoothing. Thus, the eigenstructure of
the diffusion tensor determines the smoothing behaviour of the corresponding regu-
lariser. For analysing the eigenstructure, we consider the eigendecomposition

D =
2∑

i=1

mi did
⊤
i , (4.49)

where d1 and d2 are the eigenvectors of D with corresponding eigenvaluesm1 ≥ m2 ≥ 0.
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Homogeneous Regularisation. The first and most basic idea for a regulariser in
variational optic flow estimation goes back to Horn and Schunck [HS81]. They proposed
a homogeneous regulariser which we rewrite in our framework as

VH(∇2u,∇2v) := |∇2u|2 + |∇2v|2

= u2s1 + u2s2 + v2s1 + v2s2 . (4.50)

The corresponding diffusion tensor and its eigendecomposition are given by

DH = I :=

(
1 0
0 1

)

= 1 · exe
⊤
x + 1 · eye

⊤
y , (4.51)

where ex := (1, 0)⊤ and ey := (0, 1)⊤ denote the unit vectors in x- and y-direction, re-
spectively. It becomes obvious that this regulariser performs a homogeneous smoothing
with the full strength of 1 at each location. Thus, it will blur important flow edges.

Image-Driven Regularisation. To obtain sharp flow edges, image-driven methods
like [AELS99, NE86] reduce the smoothing at image edges, which manifest themselves
by large values of |∇2f |2.

An isotropic image-driven regulariser was proposed by Alvarez et al. [AELS99] and
can be written as

VII(∇2u,∇2v) := g
(
|∇2f |2

) (
|∇2u|2 + |∇2v|2

)

= g(tr S0)
(
u2s1 + u2s2 + v2s1 + v2s2

)
, (4.52)

where g is a decreasing, strictly positive weight function. Considering the eigendecom-
position of the corresponding diffusion tensor

DII = g(trS0) I

= g(trS0) · exe
⊤
x + g(trS0) · eye

⊤
y , (4.53)

it turns out that the weight function allows to decrease the smoothing in accordance to
the strength of image edges. However, the smoothing in x- as well as in y-direction is
equally reduced.

To additionally steer the direction of smoothing and more importantly, to allow for
a different strength of smoothing in different directions, anisotropic strategies have been
proposed. The anisotropic image-driven regulariser of Nagel and Enkelmann [NE86]
prevents smoothing of the flow field across image boundaries but encourages smoothing
along them. This is achieved by the regulariser

VAI(∇2u,∇2v) := (∇2u)
⊤ P (∇2f) ∇2u + (∇2v)

⊤P (∇2f) ∇2v , (4.54)
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where P (∇2f) denotes a regularised projection matrix perpendicular to the image gra-
dient ∇2f , i.e. along image edges. The projection matrix is defined as

P (∇2f) :=
1

|∇2f |2 + 2κ2

(
(∇2f)

⊥ (∇2f)
⊥⊤

+ κ2I
)
, (4.55)

with a regularisation parameter κ > 0. In our framework, the regulariser of Nagel and
Enkelmann can be written as

VAI(∇2u,∇2v) =
κ2

tr S0 + 2κ2

(
u2
s0
1

+ v2
s0
1

)
+

tr S0 + κ2

tr S0 + 2κ2

(
u2
s0
2

+ v2
s0
2

)
. (4.56)

The correctness of the rewriting (4.56) is shown in the Appendix A and is based on the
observations that s01 and s02 are the eigenvectors of P , and that the factors in front of
(u2

s0
1

+v2
s0
1

) and (u2
s0
2

+v2
s0
2

) are the corresponding eigenvalues. The diffusion tensor for this

regulariser is identical to the projection matrix, which leads to the eigendecomposition

DAI = P (∇2f)

=
κ2

tr S0 + 2κ2
s01
(
s01
)⊤

+
tr S0 + κ2

tr S0 + 2κ2
s02
(
s02
)⊤

. (4.57)

Let us consider the limiting case where the regularisation parameter tends to zero, i.e.
κ→0. The regulariser then becomes

VAI(∇2u,∇2v) = u2
s0
2

+ v2
s0
2

, (4.58)

and the eigendecomposition of the diffusion tensor simplifies to

DAI = s02
(
s02
)⊤

. (4.59)

In this limit, we thus obtain a smoothing of the flow field solely in s02-direction, i.e. along
image edges. In the definition of the normal flow (4.11) we have seen that a data term
that models the brightness constancy assumption constraints the flow only orthogonal
to image edges. In the limiting case, the regulariser of Nagel and Enkelmann can
hence be interpreted as a first complementary smoothness term that fills in information
orthogonal to the data constraint direction. This complementarity has been emphasised
by Schnörr [Sch93], who contributed a theoretical analysis as well as modifications of
the original Nagel and Enkelmann functional.

As not every image edge necessarily corresponds to a flow edge, image-driven strate-
gies are prone to give oversegmentation artefacts, especially in textured image regions.

Flow-Driven Regularisation. To remedy the oversegmentation problem, it makes
sense to adapt the smoothing process to the flow edges instead of the image edges.
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4.3. SMOOTHNESS TERM

In the isotropic setting, Shulman and Hervé [SH89] as well as Schnörr [Sch94] pro-
posed to use rotationally invariant, subquadratic penaliser functions ΨV , resulting in

VIF(∇2u,∇2v) := ΨV

(
|∇2u|2 + |∇2v|2

)

= ΨV

(
u2s1 + u2s2 + v2s1 + v2s2

)
. (4.60)

The associated diffusion tensor is given by

DIF = Ψ′
V

(
u2s1+ u2s2+ v2s1+ v2s2

)
I

= Ψ′
V

(
u2s1+ u2s2+ v2s1+ v2s2

)
· exe

⊤
x (4.61)

+Ψ′
V

(
u2s1+ u2s2+ v2s1+ v2s2

)
· eye

⊤
y .

The eigenstructure of this diffusion tensor is very similar to the one in the isotropic
image-driven setting, see (4.53). However, in the flow-driven case, the derivative Ψ′ of
the penaliser function serves as decreasing weight function that reduces the smoothing
of the flow field. The weighting thus depends on the contrast of the evolving flow field,
and not anymore on image edges.

The underlying diffusion processes on the flow field are given by ut = div (DIF∇2u)
and vt = div (DIF∇2v), respectively, which can be characterised as nonlinear isotropic
diffusion processes. In order to introduce total variation (TV ) regularisation [ROF92]
to the optic flow case, Cohen [Coh93] used the convex penaliser

ΨV (s
2) :=

√
s2 + ε2 , (4.62)

with the diffusivity

Ψ′
V (s

2) =
1

2
√
s2 + ε2

≈ 1

2 |s| . (4.63)

using a small regularisation parameter ε > 0. Another possible choice is the non-convex
Perona-Malik regulariser (Lorentzian) [BA96, PM90] given by

ΨV (s
2) := λ2 log

(
1 +

s2

λ2

)
, (4.64)

that results in Perona-Malik diffusion [PM90] with the diffusivity

Ψ′
V (s

2) =
1

1 + s2

λ2

, (4.65)

with a contrast parameter λ > 0.

An extension of flow-driven strategies to the anisotropic setting was presented by
Weickert and Schnörr [WS01a]. They proposed the regulariser

VAF(∇2u,∇2v) := tr ΨV

(
∇2u (∇2u)

⊤ +∇2v (∇2v)
⊤
)
, (4.66)
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where the application of the function ΨV to the tensor F := ∇2u (∇2u)
⊤ +∇2v (∇2v)

⊤

is realised by applying ΨV to the eigenvalues of F , i.e.

F :=
2∑

i=1

νi viv
⊤
i ⇒ ΨV (F ) :=

2∑

i=1

ΨV (νi) viv
⊤
i . (4.67)

The eigenvectors vi describe the direction of local flow structures, and the corresponding
eigenvalues νi encode the contrast of the flow field in the eigenvector direction. If one
analytically computes the eigenvalues and eigenvectors of F , one finds that they cannot
be expressed using our rewriting of the flow gradients from (4.45) and (4.46). Hence,
this regulariser cannot be written in our framework. As shown in [WS01a], the diffusion
tensor corresponding to VAF is given by

DAF = Ψ′
V (F )

=
2∑

i=1

Ψ′
V (νi) viv

⊤
i . (4.68)

The smoothing direction is thus adapted in accordance to flow structures encoded in the
eigenvectors vi. A real anisotropic smoothing behaviour is achieved as the smoothing
strength depends on the in general not identical eigenvalues ν1 and ν2.

Despite the fact that flow-driven methods solve the oversegmentation problem, they
suffer from another drawback: The flow edges are not as sharp and well localised as
with image-driven strategies.

Joint Image- and Flow-Driven Regularisation. Our review of image- and flow-
driven strategies has revealed that the two classes exhibit complementary strengths and
weaknesses: Image-driven methods give sharp flow edges, but suffer from oversegmen-
tation artefacts. Flow-driven strategies remedy the oversegmentation problem, but give
less pleasant flow edges. It would thus be desirable to combine the advantages of both
strategies to obtain sharp flow edges without oversegmentation problems.

A first attempt to combine ideas from image- and flow-driven methods in the isotropic
setting can be found in the work of Alvarez et al. [AELS99]. They proposed the regu-
lariser

VIIF(∇2u,∇2v) := g
(
|∇2f |2

)
ΨV

(
|∇2u|2 + |∇2v|2

)

= g(tr S0) ΨV

(
u2s1 + u2s2 + v2s1 + v2s2

)
, (4.69)

with the corresponding diffusion tensor

DIIF = g(tr S0)Ψ
′
V (u

2
s1
+ u2s2 + v2s1 + v2s2) I

= g(tr S0) ·Ψ′
V

(
u2s1+ u2s2+ v2s1+ v2s2

)
· exe

⊤
x (4.70)

+ g(tr S0) ·Ψ′
V

(
u2s1+ u2s2+ v2s1+ v2s2

)
· eye

⊤
y .
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4.3. SMOOTHNESS TERM

As one can see, the smoothing is still reduced at every image edge via the decreasing
function g(tr S0). Thus, one obtains similar oversegmentation artefacts as purely image-
driven methods, and the proposed strategy fails to combine the advantages of image-
and flow-driven strategies.

In the work of Werlberger at al. [WTP+09], a subquadratic penaliser function is
used within an anisotropic image-driven regulariser, thereby combining concepts from
anisotropic image-driven and isotropic flow-driven methods. The corresponding regu-
lariser is given by

VAIF1
(∇2u,∇2v) := ΨV

(
(∇2u)

⊤
Q(∇2f) ∇2u

)
+ΨV

(
(∇2v)

⊤
Q(∇2f) ∇2v

)
, (4.71)

with the tensor

Q(∇2f) := g
(
|∇2f |β

) ∇2f

|∇2f |
(∇2f)

⊤

|∇2f |
+

(∇2f)
⊥

|∇2f |
(∇2f)

⊥⊤

|∇2f |
. (4.72)

Similar to the rewriting of the Nagel and Enkelmann regulariser, we can express the
regulariser from (4.71) in our general framework as

VAIF1
(∇2u,∇2v) := ΨV

(
g(tr S0) u

2
s0
1

+ u2
s0
2

)
+ΨV

(
g(tr S0) v

2
s0
1

+ v2
s0
2

)
, (4.73)

where we set β = 2. For this regulariser, we obtain two different diffusion tensors, one
for each of the Euler-Lagrange equations. For p ∈ {u, v}, they read as

D
p
AIF1

= Ψ′
V

(
g(tr S0) p

2
s0
1

+ p2
s0
2

)
Q(∇2f) (4.74)

= Ψ′
V

(
g(tr S0) p

2
s0
1

+ p2
s0
2

)
g(tr S0) s

0
1

(
s01
)⊤

(4.75)

+Ψ′
V

(
g(tr S0) p

2
s0
1

+ p2
s0
2

)
s02
(
s02
)⊤

.

As it turns out, the anisotropy of this regulariser is solely determined by the function
g(tr S0), which only depends on the image gradient. As seen for flow-driven methods, it
is, however, necessary to reduce the smoothing strength w.r.t. flow gradients to overcome
oversegmentation problems. Thus, also this regulariser does not allow to combine the
advantages of image- and flow driven methods.

The first method that actually allows to combine the advantages of image- and flow-
driven methods goes back to the discrete approach of Sun et al. [SRLB08]. A continuous
version of their regulariser can be written as

VAIF2
(∇2u,∇2v) := ΨV

(
u2s1
)
+ΨV

(
v2s1
)
+ΨV

(
u2s2
)
+ΨV

(
v2s2
)
. (4.76)

Note that in contrast to earlier approaches [NE86, WTP+09] who considered (∇2f)
⊥/|∇2f |

to obtain directional information of image structures, the eigenvectors si of the structure
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tensor Sρ are here considered to obtain a more robust direction estimation. We again
obtain two diffusion tensors, that for p ∈ {u, v} read as

D
p
AIF2

= Ψ′
V

(
p2s1
)
s1 s

⊤
1 +Ψ′

V

(
p2s2
)
s2 s

⊤
2 . (4.77)

We observe that these tensors allow to obtain the desired behaviour: The regularisation
direction is adapted to the image structure directions s1 and s2, whereas the magnitude
of the regularisation depends on the flow contrast encoded in p2si = (s⊤i ∇2p)

2. As a
result, one obtains the same sharp flow edges as image-driven methods but does not
suffer from oversegmentation problems.

4.3.2 Our Novel Complementary Regulariser

In spite of its sophistication, the anisotropic image- and flow-driven model of Sun
et al. [SRLB08] given in (4.76) still suffers from a few shortcomings. We introduced
in [10, 11] three amendments that we will discuss now.

Regularisation Tensor. A first remark w.r.t. the model from (4.76) is that the direc-
tional information from the structure tensor Sρ is not consistent with the more advanced
data constraints, like the ones of our data term (4.35). It is more natural to take into
account directional information provided by the motion tensor (4.24) and to steer the
anisotropic regularisation process w.r.t. “constraint edges” instead of image edges. To
this end we propose to analyse the eigenvectors r1 and r2 of the regularisation tensor

Rρ :=
3∑

c=1

Kρ∗
[
θc0

(
∇2f

c (∇2f
c)⊤
)
+ γ

(
θcx

(
∇2f

c
x (∇2f

c
x)

⊤
)
+ θcy

(
∇2f

c
y

(
∇2f

c
y

)⊤))
]
,

(4.78)
which can be regarded as a generalisation of the structure tensor. Note that the reg-
ularisation tensor differs from the motion tensor J̄C from (4.24) by two aspects: (i) It
integrates neighbourhood information via the Gaussian convolution. Note that if we
also perform a Gaussian convolution of the motion tensor, we would obtain a combined
local-global (CLG) data term in the spirit of [BWS05]. Our experiments in Section 4.2.2
have shows that such a modification of our data term is mainly useful to cope with se-
vere noise in the image sequence. (ii) The regularisation tensor uses the spatial gradient
operator ∇2 instead of the spatio-temporal operator ∇3. The latter is due to the spatial
regularisation. In Section 4.3.4 we will extend our regulariser to the spatio-temporal
domain, yielding a regularisation tensor that also uses the spatio-temporal gradient ∇3.

Taking the mentioned two modifications into account, we can devise a general strat-
egy for computing the regularisation tensor from the motion tensor. To this end,
we denote a general motion tensor encoding n constancy assumptions on features pi
(i = 1, .., n) by

J =
n∑

i=1

γi Θi

(
∇3pi (∇3pi)

⊤
)
, (4.79)
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where γi > 0 are weighting factors and Θi denotes normalisation factors that are equal to
1 if we do not perform normalisation. The general regularisation tensor corresponding
to the general motion tensor (4.79) then reads as

Rρ = Kρ∗
[

n∑

i=1

γi Θi

(
∇2pi (∇2pi)

⊤
)]

. (4.80)

Rotational Invariance. The smoothness term VAIF2
from (4.76) lacks the desirable

property of rotational invariance because the directional derivatives of u and v in the
eigenvector directions are penalised separately. We propose to jointly penalise the di-
rectional derivatives, yielding

VAIF−Rρ−RI(∇2u,∇2v) := ΨV

(
u2r1

+ v2r1

)
+ΨV

(
u2r2

+ v2r2

)
, (4.81)

where we also used the eigenvectors r1 and r2 of the regularisation tensor.

Single Robust Penalisation. The above regulariser VAIF−Rρ−RI performs a twofold
robust penalisation in both eigenvector directions. However, we have seen that the
data term mainly constraints the flow in the direction of the largest eigenvalue of the
regularisation tensor, i.e. in r1-direction. We hence propose a single robust penalisation
in r1-direction. In the orthogonal r2-direction, we opt for a quadratic penalisation
yielding a strong filling-in effect of missing information. Incorporating the single robust
penalisation finally yields our complementary regulariser [10, 11]

VCR(∇2u,∇2v) := ΨV

(
u2r1

+ v2r1

)
+ u2r2

+ v2r2
. (4.82)

For the penaliser function ΨV , we propose the to use the Lorentzian as defined in (4.64).
For our complementary regulariser, we obtain a single, joint diffusion tensor given by

DCR = Ψ′
V

(
u2r1

+ v2r1

)
· r1r

⊤
1 + 1 · r2r

⊤
2 , (4.83)

with Ψ′
V as given in (4.65). The derivation of this diffusion tensor is presented in

Appendix A.

Discussion. To understand the advantages of our complementary regulariser com-
pared to the closest existing regulariser (4.76), we compare our joint diffusion tensor
from (4.83) to its counterparts in (4.77). In this way, the following innovations become
apparent: (i) The smoothing direction is adapted to constraint edges instead of image
edges, as the eigenvectors of the regularisation tensor r1 and r2 are used instead of the
eigenvectors of the structure tensor. (ii) We achieve rotational invariance by coupling
the two flow components in the argument of Ψ′

V . (iii) We only reduce the smoothing
across constraint edges, i.e. in r1-direction. Along them, always a strong diffusion with
strength 1 is performed, resembling edge-enhancing anisotropic diffusion [Wei96].
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Let us also detail on the benefits of the anisotropic image- and flow-driven smoothing
behaviour of our complementary regulariser. Considering the eigenstructure of our joint
diffusion tensor, it becomes clear that the smoothing strength across constraint edges
is determined by the expression Ψ′

V (u
2
r1

+ v2r1
). Here we can distinguish two scenarios:

At a flow edge that corresponds to a constraint edge, the flow gradients will be large
and almost parallel to r1. Thus, the argument of the decreasing function Ψ′

V will be
large, yielding a reduced diffusion which preserves this important edge. At “deceiving”
texture edges in flat flow regions, however, the flow gradients are small which gives a
small argument for Ψ′

V . This leads to almost homogeneous diffusion with a pronounced
smoothing in both directions and helps to avoid oversegmentation artefacts.

4.3.3 Summary

To conclude this section, Table 4.3 summarises the discussed regularisers rewritten in
our general framework. It also compares the way directional information is obtained for
anisotropic strategies, and indicates if the regulariser is rotational invariant. Although
these regularisers were developed within almost three decades, our rewriting shows their
structural similarities. We also wish to note that this comparison extends the work
of Weickert and Schnörr [WS01a] who already compared regularisation strategies in a
unified framework in 2001.

4.3.4 Extension to a Spatio-Temporal Smoothness Term

All smoothness terms we have discussed so far model the assumption of a spatially
smooth flow field. As image sequences in general encompass more than two frames,
yielding several flow fields, it can make sense to also assume a temporal smoothness
of the flow fields. This leads to the so-called spatio-temporal regularisers. A spatio-
temporal (ST) version of the general energy functional (4.1) reads as

EST(u, v) =

∫

Ω×[0,T ]

[M(u, v) + αV (∇3u,∇3v)] dx dy dt . (4.84)

Compared to the spatial energy (4.1) we note an additional integration over the time
interval [0, T ] and that the smoothness term now depends on the spatio-temporal flow
gradient ∇3. The data term remains unchanged. Extending spatial regularisers to the
spatio-temporal domain is thus very simple, we just have to replace the spatial gradient
operator ∇2 by its spatio-temporal counterpart ∇3. For an homogeneous regulariser

VH(∇2u,∇2v) = |∇2u|2 + |∇2v|2 , (4.85)

one for example obtains the spatio-temporal counterpart as

VH(∇3u,∇3v) = |∇3u|2 + |∇3v|2 . (4.86)
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Table 4.3: Comparison of regularisation strategies. The vectors si and ri denote the eigenvectors of the structure tensor Sρ from (4.43) and
the vectors regularisation tensor Rρ from (4.78), respectively. The next to last column names the tensor that is analysed to obtain directional
information for anisotropic strategies, and the last column indicates if the corresponding regulariser is rotational invariant

Strategy Regulariser V Directional Rotational
Adaptation Invariance

Homogeneous [HS81] u2s1+ u2s2+ v2s1+ v2s2 — X

Isotropic image-driven [AELS99] g(tr S0)
(
u2s1+ u2s2+ v2s1+ v2s2

)
— X

Anisotropic image-driven [NE86] u2
s0
2

+ v2
s0
2

, for κ→0 S0 X

Isotropic flow-driven [SH89] ΨV

(
u2s1+ u2s2+ v2s1+ v2s2

)
— X

Isotropic image- and flow-driven [AELS99] g(tr S0) ΨV

(
u2s1+ u2s2+ v2s1+ v2s2

)
— X

Anisotropic image and flow-driven ΨV

(
g(tr S0) u

2
s0
1

+ u2
s0
2

)
S0 —

[WTP+09] +ΨV

(
g(tr S0) v

2
s0
1

+ v2
s0
2

)

Anisotropic image and flow-driven ΨV

(
u2s1
)
+ΨV

(
v2s1
)
+ΨV

(
u2s2
)
+ΨV

(
v2s2
)

Sρ —
[SRLB08]

Anisotropic complementary ΨV

(
u2r1

+ v2r1

)
+ u2r2

+ v2r2
Rρ X

image- and flow-driven [10, 11]
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For our complementary regulariser from (4.82), we first have to define the spatio-
temporal regularisation tensor

R
ST

ρ :=
3∑

c=1

[
θc0

(
∇3f

c (∇3f
c)⊤
)

(4.87)

+ γ
(
θcx

(
∇3f

c
x (∇3f

c
x)

⊤
)
+ θcy

(
∇3f

c
y

(
∇3f

c
y

)⊤))]

= Kρ ∗ J̄C
. (4.88)

For ρ = 0 it is identical to the motion tensor J̄
C
from (4.24). Note in this context that

the Gaussian convolution with Kρ is now performed in the spatio-temporal domain,
which also holds for the presmoothing of the image sequence. The spatio-temporal
regularisation tensor is a 3 × 3 matrix that possesses three orthonormal eigenvectors
r1, r2 and r3. With their help, we define the spatio-temporal complementary regulariser

VCR(∇3u,∇3v) := ΨV

(
u2r1

+ v2r1

)
+ u2r2

+ v2r2
+ u2r3

+ v2r3
, (4.89)

with its spatio-temporal diffusion tensor

DST
CR = Ψ′

V

(
u2r1

+ v2r1

)
r1 r

⊤
1 + r2 r

⊤
2 + r3 r

⊤
3 . (4.90)

4.3.5 Experiments

In the following experiments, we compare the discussed regularisation strategies.

Comparison with Other Regularisers. In Figure 4.6, we again use our Snail se-
quence to compare our complementary regulariser from (4.82) with other regularisers:
(i) A basic homogeneous regulariser [HS81]. (ii) The anisotropic image-driven reg-
ulariser of Nagel and Enkelmann [NE86]. (iii) The popular TV regulariser; see (4.60)
and (4.62). (iv) The anisotropic image and flow-driven regulariser from [SRLB08], which
built the basis of our complementary regulariser. Here, we use a rotationally invariant
formulation that can be obtained from (4.81) by replacing the eigenvectors ri of the
regularisation tensor by the eigenvectors si of the structure tensor. As data term, we
use our final data term from (4.35).

Let us compare the obtained results: A homogeneous regularisation (Figure 4.6 (d))
clearly gives a oversmoothed result. Using an image-driven strategy (Figure 4.6 (e))
gives relatively sharp edges, but suffers from oversegmentation. Note that the latter
leads to the cloud-like artefacts because of the strongly textured background. With a
flow-driven TV regulariser (Figure 4.6 (f)), we obtain blurred and badly localised flow
edges. Using the image-and flow-driven regulariser from [SRLB08] (Figure 4.6 (g)), the
flow edges are already more appealing, but unpleasant staircasing artefacts deteriorate
the result. This can be explained by the twofold robust penalisation that is performed in
this regulariser. Our result is depicted in Figure 4.6 (h) and obviously gives an appealing
flow field without severe degradations.
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Table 4.4: Smoothness weight α and AAE measures for our spatio-temporal method on the Marble
sequence, see Figure 4.7. All results used the fixed parameters σ = 0.5, γ = 0.5, ρ = 1.0, λ = 0.1, h3 =
1.5, η = 0.5. When using more than two frames, the convolutions with Kσ and Kρ are performed in
the spatio-temporal domain

Number of frames 2 4 6 8
(from – to) (16–17) (15–18) (14–19) (13–20)

Smoothn. weight α 75.0 50.0 50.0 50.0
AAE 4.85◦ 2.63◦ 1.86◦ 2.04◦

Table 4.5: Smoothness weight α and AAE measures for our spatio-temporal method on the Yosemite
sequence from Middlebury. All results used the fixed parameters σ = 1.0, γ = 20.0, ρ = 1.5, λ =
0.1, h3 = 1.0, η = 0.5. Here, better results could be obtained when disabling the temporal presmoothing

Number of frames 2 4 6 8
(from – to) (10–11) (9–12) (8–13) (7–14)

Smoothn. weight α 2000.0 1000.0 1000.0 1000.0
AAE 1.65◦ 1.16◦ 1.05◦ 1.01◦

Optic Flow in the Spatio-Temporal Domain. Let us now turn to the spatio-
temporal extension of our complementary smoothness term. Concerning the test se-
quences to use, one could consider the data sets from the Middlebury benchmark [BSL+10].
The latter mostly consist of 8 frames and thus a spatio-temporal method would in gen-
eral be applicable. However, the displacements between two subsequent frames are often
rather large and thus flow vectors at the same pixel location in different flow fields do
not necessarily correspond to the same object. This leads to a violation of the as-
sumption of a temporally smooth flow field and consequently spatio-temporal methods
do not improve the results, which has as already been noted in [WTP+09]. In our
experiments, we use the Marble sequence (available at http://i21www.ira.uka.de/

image_sequences/) and the Yosemite sequence from the Middlebury datasets. These
sequences exhibit relatively small displacements and our spatio-temporal method allows
to obtain notably better results, see Figure 4.7 and Tables 4.4 and 4.5. Note that when
using more than two frames, a smaller smoothness weight α has to be chosen and that
a too large temporal window may also deteriorate the results again.

Temporal Smoothing for Large Displacements. We wish to note that in recent
work [6] we successfully incorporated temporal information from several images despite
the presence of large displacements. To achieve this, we parametrise all flow fields
w.r.t. one reference frame, e.g. the middle frame. In this case, assuming smoothness of
flow vectors in “time” direction (at the same pixel location in all flow fields) results in
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Table 4.6: Error measures (AAE and AEE) and parameter settings for the Middlebury training
datasets. We used the fixed parameters λ = 0.1, η = 0.95. Corresponding results are shown in Fig-
ures 4.9 and 4.10, respectively

AAE AEE α σ γ ρ

Rubberwhale 2.77◦ 0.083 850.0 0.3 20.0 2.0
Hydrangea 1.78◦ 0.146 150.0 0.3 3.0 1.0
Dimetrodon 1.54◦ 0.079 2600.0 0.7 26.0 2.0
Venus 5.33◦ 0.344 500.0 0.8 10.0 2.0
Grove2 2.16◦ 0.151 35.0 0.5 0.2 1.0
Grove3 4.87◦ 0.487 20.0 0.5 0.1 1.0
Urban2 2.49◦ 0.245 126.0 0.5 1.0 1.5
Urban3 2.77◦ 0.298 75.0 0.7 1.0 1.5

a smoothing along motion trajectories which makes sense for arbitrarily large displace-
ments. Furthermore, our parametrisation allows to add a temporal smoothing behaviour
to the spatial regularisers by assuming that all flow fields have joint flow edges at the
same locations. Our experiments on the Middlebury sequences showed that the de-
scribed trajectorial model yields significant improvements compared to a purely spatial
method, also in the presence of large displacements, see Figure 4.8.

Results for the Middlebury Training Sequences. We conclude this experimental
section by presenting results for our complementary optic flow method [10, 11] on the
Middlebury training sequences with ground truth. Recall that the complementary optic
flow method uses the robust data term from (4.35) in combination with the comple-
mentary smoothness term from (4.82). The manually tuned parameter settings and the
AAE and AAE measures can be found in Table 4.6, whereas the flow fields are compared
to the ground truth in Figure 4.9 and 4.10, respectively. As one can see, our obtained
flow fields closely resemble the ground truth. However, minor problems arising from
incorporating image information in the smoothness term are visible at a few locations,
e.g. at the bottom of the Grove 2 result (Figure 4.10 (c)) as well as at the lower part
of the leftmost building in the Urban 3 result (Figure 4.10 (l)). Furthermore, some tiny
flow details are smoothed out, e.g. at the leafs in the Grove 2 and the Grove 3 result
(Figure 4.10 (c) and (f)). As recently shown by Xu et al. [XJM10], the latter problem
could be resolved by using a more sophisticated warping strategy.
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(a) First frame (b) Zoom into (a) (c) Zoom into second frame

(d) Homogeneous (e) Anisotropic image-driven (f) Isotropic flow-driven

(g) Anisotropic image- (h) Anisotropic

and flow-driven complementary

Figure 4.6: Results for our Snail sequence with different smoothness terms. First row, from left to
right: (a) First frame. (b) Zoom in marked region of first frame. (c) Same for second frame. Second
row, from left to right: (d) Flow field in marked region, with homogeneous regularisation [HS81]
(α = 200.0). (e) Same for anisotropic image-driven regularisation [NE86] (α = 500.0, κ = 0.1). (f)
Same for isotropic flow-driven TV regularisation [Sch94, SH89] (α = 50.0, ε = 0.001). Third row, from
left to right: (g) Same for anisotropic image- and flow-driven regularisation [SRLB08] (α = 2000.0, ρ =
4.0, λ = 0.1). (h) Same for our anisotropic complementary regulariser [10, 11] (α = 2000.0, ρ = 4.0, λ =
0.1). All results used the fixed parameters σ = 0.5, γ = 20.0, η = 0.95.
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(a) Reference frame (b) Ground truth (c) Flow (2 frames)

(d) Flow (4 frames) (e) Flow (6 frames) (f) Flow (8 frames)

Figure 4.7: Results for the Marble sequence with our spatio-temporal method. First row, from left
to right: (a) Reference frame (frame 16). (b) Ground truth (white pixels mark locations where no
ground truth is available). (c) Result using 2 frames (16–17). Second row, from left to right: (d) Same
for 4 frames (15–18). (e) Same for 6 frames (14–19). (f) Same for 8 frames (13–20).
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Ground truth Spatial (2 frames) Trajectorial (5 frames)

Figure 4.8: Comparison of a spatial method (2 frames) [10, 11] to a trajectorial method (5 frames) [6]
on the Urban2 sequence. First row, from left to right: First and second image. Second to fifth row,
from left to right: Ground truth, spatial method (AAE = 2.75◦), trajectorial method (AAE = 2.00◦).
Second to fifth row, from top to bottom: Flow field and three magnifications.
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Reference frame Ground truth Our result

Figure 4.9: Results for our complementary optic flow method [10, 11] on the Middlebury training
sequences with ground truth. First column: Reference frame. Second column: Ground truth (white
pixels mark locations where no ground truth is given). Third column: Result with our method. From
top to bottom: Rubberwhale, Dimetrodon, Hydrangea and Venus sequence.
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Reference frame Ground truth Our result

Figure 4.10: Results for our complementary optic flow method [10, 11] on the Middlebury training
sequences with ground truth. First column: Reference frame. Second column: Ground truth (white
pixels mark locations where no ground truth is given). Third column: Result with our method. From
top to bottom: Grove2, Grove3, Urban2 and Urban3 sequence.
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4.3.6 Smoothness Terms for Stereo

In the variational stereo context, similar regularisation strategies as for optic flow have
been proposed, which we will review in this subsection. Recall that in the considered
orthoparallel case, we will only experience horizontal displacements u.

Image-driven Regularisation. In the isotropic setting, an image-driven regulariser
was proposed by Kim and Sohn [KS03]. It can be written as

VII(∇2u) := g
(
|∇2f |2

)
|∇2u|2

= g(tr S0)
(
u2s1 + u2s2

)
, (4.91)

and leads to the same diffusion tensor as in (4.53).

Anisotropic image-driven smoothness terms for stereo became popular through the
works of Mansouri et al. [MMK98] and Alvarez et al. [ADSW02]. They proposed regu-
larisers of the form

VAI(∇2u) = ΨV

(
∇2u

⊤P (∇2f) ∇2u
)
, (4.92)

with a projection matrix P similar as in the Nagel and Enkelmann regulariser (4.55).

Disparity-driven Regularisation. As seen for flow-driven optic flow regularisers,
disparity-driven strategies allow to remedy oversegmentation problems. Isotropic image-
driven strategies were introduced to the stereo community by Slesareva et al. [SBW05]
and Ben-Ari and Sochen [BAS07]. They used the regulariser

VID(∇2u) := ΨV

(
|∇2u|2

)

= ΨV

(
u2s1+ u2s2

)
, (4.93)

leading to the diffusion tensor

DID = Ψ′
V

(
u2s1+ u2s2

)
I

= Ψ′
V

(
u2s1+ u2s2

)
· exe

⊤
x +Ψ′

V

(
u2s1+ u2s2

)
· eye

⊤
y . (4.94)

Completing the Taxonomy of Stereo Regularisers

So far, all presented stereo regularisers could be obtained in a straightforward manner
from their optic flow counterparts. Let us also try this for an anisotropic disparity-
driven regulariser by adapting the anisotropic flow-driven regulariser of Weickert and
Schnörr [WS01a] from (4.66). A stereo counterpart can be written as

VAD(∇2u) := tr ΨV

(
∇2u (∇2u)

⊤
)
, (4.95)
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with the diffusion tensor

DAD = Ψ′
V

(
∇2u (∇2u)

⊤
)

=:
2∑

i=1

Ψ′
V (νi) viv

⊤
i . (4.96)

In the optic flow case, the tensor in the argument of ΨV was given by ∇2u (∇2u)
⊤ +

∇2v (∇2v)
⊤, resulting in a coupling of the two flow components. As a consequence, the

desired anisotropic behaviour can be ensured as the eigenvectors of the tensor are in
general not parallel to the gradients of both flow components.

In the stereo case, however, the resulting tensor ∇2u (∇2u)
⊤ is equal to the structure

tensor of the disparity with a zero integration scale. As we have seen in (4.44) and the
following, the eigenstructure of this tensor is trivial. In above notation, it can be written
as ν1 = |∇2u|2, ν2 = 0 and

v1 =
∇2u

|∇2u|
, and v2 =

∇2u
⊥

|∇2u|
. (4.97)

With this, let us rewrite the diffusion part of the corresponding Euler-Lagrange equation:

div (DAD ∇2u) = div
(
Ψ′

V

(
∇2u (∇2u)

⊤
)
∇2u

)
(4.98)

= div

((
2∑

i=1

Ψ′
V (νi) viv

⊤
i

)
∇2u

)
(4.99)

= div

((
Ψ′

V (|∇2u|2)
|∇2u|2

∇2u∇2u
⊤ (4.100)

+
Ψ′

V (0)

|∇2u|2
∇2u

⊥(∇2u
⊥)⊤

)
∇2u

)

(∗)
= div

(
Ψ′

V (|∇2u|2)
|∇2u|2

|∇2u|2 ∇2u+ 0

)
(4.101)

= div
(
Ψ′

V (|∇2u|2)∇2u
)

(4.102)

= div
(
Ψ′

V (u
2
s1
+ u2s2)∇2u

)
= div (DID ∇2u) , (4.103)

where (∗) makes use of the facts that ∇2u
⊤
∇2u = |∇2u|2 and (∇2u

⊥)⊤∇2u = 0. As it
turns out, adapting the anisotropic flow-driven regulariser (4.66) to the stereo context
results in an isotropic disparity-driven behaviour as for the regulariser (4.93) with the
diffusion tensor (4.94).
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Towards Anisotropic Disparity-driven Regularisation. To model an anisotropic
disparity-driven smoothing process for stereo we follow our work in [8]: We refrain from
designing a regulariser VAD and directly model the diffusion tensor DAD.

In order to obtain a truly anisotropic behaviour we adapted ideas from edge en-
hancing anisotropic diffusion (EED) filtering [Wei94]. Specifically, we consider a stereo
variant of the structure tensor (4.43), given by

Sρ (∇2uσ) := Kρ ∗
(
∇2uσ∇2u

⊤
σ

)
, (4.104)

where uσ := Kσ ∗ u denotes a Gaussian smoothed version of the disparity u. Com-
pared to the previously considered tensor ∇2u∇2u

⊤, we observe two innovations: (i)
The disparity u is regularised by the Gaussian convolution with standard deviation σ,
and (ii) neighbourhood information is integrated by convolving the tensor entries with a
Gaussian kernel of standard deviation ρ. Note that regularisation of the unknown u by
Gaussian convolution with noise scale σ was first proposed in the context of nonlinear
diffusion to reduce staircaising artefacts and problems with noise [CLMC92]. Despite
the fact that ∇2uσ is a useful edge detector, the problem still remains that it is sen-
sitive under noise for small σ, while an increased σ can lead to undesired cancellation
effects. This can be overcome by an additional convolution of the tensor entries with
the integration scale ρ.

Our modified structure tensor Sρ(∇2uσ) is a symmetric, positive semi-definite matrix
with two orthonormal eigenvectors s1 and s2 which give the directions of the local
disparity structure. The corresponding eigenvalues µ1 ≥ µ2 ≥ 0, give the average
contrast along these directions. Consequently, we propose to use the following diffusion
tensor which takes into account the structural information contained in Sρ(∇2uσ):

DAD := Ψ′
V (Sρ (∇2uσ)) =

2∑

i=1

Ψ′
V (µi) si s

⊤
i . (4.105)

For the diffusivity Ψ′
V we propose to use the Perona-Malik diffusivity from (4.65) as it

is known to make backward diffusion possible and thereby enhance edges even more.
Let us now show that our method indeed exhibits the described anisotropic be-

haviour:

• In flat disparity regions:
µ1 ≈ µ2 ≈ 0 ⇒ Ψ′

V (µ1) ≈ 1, Ψ′
V (µ2) ≈ 1.

This leads to a homogeneous smoothing in both directions.

• At a straight disparity edge in s2-direction:
µ1 ≫ µ2 ≈ 0 ⇒ Ψ′

V (µ1) ≈ 0, Ψ′
V (µ2) ≈ 1.

This leads to an anisotropic smoothing in edge direction, but not across.

• At disparity corners:
µ1 ≥ µ2 ≫ 0 ⇒ Ψ′

V (µ1) ≈ 0, Ψ′
V (µ2) ≈ 0.

This prevents smoothing.
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Complementary Regularisation for Stereo. Adapting our complementary regu-
lariser from (4.82) to the stereo case can be done in a straightforward manner.

Although the stereo tensor (4.39) uses the gradient operator ∇xt, the regularisation
tensor for stereo is identical to the optic flow regularisation tensor Rρ from (4.78). This
choice can be justified as also in the stereo case we want to use directional information
from the spatial domain, i.e., from the x- and y-direction, and not from the x- and
t-direction. The complementary regulariser for stereo is defined as

VCR(∇2u) = ΨV

(
u2r1

)
+ u2r2

, (4.106)

with the diffusion tensor

DCR = Ψ′
V

(
u2r1

)
· r1r

⊤
1 + 1 · r2r

⊤
2 . (4.107)

4.3.7 Experiments

Similar to our experiment for the optic flow case in Section 4.3.5, Figure 4.6, we now
want to compare the performance of the presented stereo regularisers. As test image
pair, we chose the popular Tsukuba pair (available at http://bj.middlebury.edu/

~schar/stereo/data/tsukuba/). In Figure 4.11 we show the disparity maps obtained
when using a stereo version of our robust data term (4.35) in combination with different
regularisation strategies. Table 4.7 additionally summarises the parameter settings and
the BPE error measures.

Comparing the results, similar observations as in the optic flow case can be made.
A homogeneous regularisation as in [HS81] (Figure 4.11 (d)) gives oversmoothed result.
With an anisotropic image-driven regulariser [ADSW02, MMK98] (Figure 4.11 (e)), the
disparity edges become sharper, but oversegmentation artefacts deteriorate the result.
As an example, consider the artefact arising at the left of the lamp. A disparity-driven
TV regulariser [BAS07, SBW05] (Figure 4.11 (f)) remedies oversegmentation problems,
but clearly gives delocalised disparity edges. Using our anisotropic disparity-driven reg-
ulariser [8] (Figure 4.11 (g)) gives more appealing disparity edges due to the smoothing
along edges. To obtain even sharper edges, one can use the image- and disparity-driven
regulariser by adapting the smoothness term from [SRLB08] (Figure 4.11 (h)). However,
this regulariser gives unpleasantly jagged disparity edges. When using the stereo variant
(4.106) of our complementary regulariser [10, 11] (Figure 4.11 (i)), we obtain sharp and
well-localised disparity edges.

The above observations are further supported by the bad pixel error (BPE) measures
resulting from the different regularisation strategies, see Table 4.7. Finally, we wish to
note that all image-driven strategies (Figure 4.11 (e),(h),(i)) perform especially well
in the occluded areas, which are shown in Figure 4.11 (c). This observation can be
explained as follows: Occlusions are outliers in the data term, as no matching based
on data constancy assumptions is possible in occluded regions. Consequently, a robust
data term will disable its influence and the smoothness has to fill-in the disparity there.
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Table 4.7: Error measures (BPE) and parameter settings for the Tsukuba pair, see Figure 4.11. All
results used the fixed parameters σ = 0.5, γ = 5.0, η = 0.95

Regulariser BPE Parameters

Homogeneous [HS81] 11.73 α = 50.0

Anisotropic image-driven [ADSW02, MMK98] 10.14 α = 200.0, κ = 0.1

Isotropic disparity-driven [BAS07, SBW05] 8.57 α = 10.0, ε = 0.001

Anisotropic 8.23 α = 150.0, σ = 1.0,
disparity-driven [8] ρ = 2.0, λ = 0.1

Anisotropic 8.12 α = 275.0, ρ = 1.5,
image- and disparity-driven [SRLB08] λ = 0.1

Anisotropic complementary 7.12 α = 260.0, ρ = 1.5,
image- and disparity-driven [10, 11] λ = 0.1

For the filling-in, it is crucial to consider image instead of disparity information, because
the disparity estimate is less reliable at occlusions. Thus, image-driven strategies have
advantages.
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(a) Left image (b) Ground truth (c) Ground truth occlusions

(d) Homogeneous (e) Anisotropic image-driven (f) Isotropic disparity-driven

(g) Anisotropic (h) Anisotropic image- (i) Anisotropic

disparity-driven and disparity-driven complementary

Figure 4.11: Results for the Tsukuba pair with different smoothness terms. First row, from left to
right: (a) Left image. (b) Ground truth disparity. (c) Ground truth occlusions. Second row, from
left to right: (d) Disparity map with homogeneous regularisation [HS81]. (e) Same for anisotropic
image-driven regularisation [MMK98, ADSW02] (f) Same for isotropic disparity-driven TV regulari-
sation [SBW05, BAS07]. Third row, from left to right: (g) Same for our anisotropic disparity-driven
regularisation [8]. (h) Same for anisotropic image- and disparity-driven regularisation [SRLB08]. (i)
Same for our anisotropic complementary regulariser [10, 11].
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4.4 Automatic Selection of the Smoothness Weight

To achieve favourable results, an appropriate selection of the model parameters is
mandatory. Especially for the smoothness weight α that determines the balance be-
tween the data and the smoothness term, an appropriate choice is crucial: Too small
values lead to noisy flow fields whereas too large values lead to an over-smoothing. An
automatic selection of the smoothness weight is thus not only convenient, but especially
important in real world applications of optic flow such as robot navigation or driver
assistance. Also in less time-critical applications like video re-timing, an automatic se-
lection of model parameters for sure eases the use and boost the acceptance of optic
flow-based approaches.

Note that in the mentioned real world scenarios, no ground truth flow is known in
general. If this would be the case, a parameter selection would be very simple: One
could just select the parameters that give the flow field with the smallest deviation from
the ground truth.

4.4.1 A Novel Concept

Our parameter selection approach uses an error measure that allows to judge the quality
of a flow field without knowing the ground truth. This error measure is based on a novel
concept, the optimal prediction principle (OPP) that we introduced in [10]. The OPP
states that the flow field obtained with an optimal smoothness weight allows for the best
prediction of the next frames in the image sequence. This makes sense as a too small
smoothness weight would lead to an overfit to the first two frames and consequently
result in a bad prediction of further frames. For too large smoothness weights, the flow
fields would be too smooth and thus also lead to a bad prediction.

Following the OPP, our error measure needs to judge the quality of the prediction
achieved with a given flow field. To this end, we evaluate the imposed data constraints
between the first and the third frame of the image sequence, resulting in an average
data constancy error (ADCE ) measure. To compute this measure, we assume that
the motion of the scene objects is of more or less constant speed and that it describes
linear trajectories within the considered three frames. Under these assumptions, we
simply double the flow vectors to evaluate the data constraints between the first and
the third frame. Due to the favourable performance of our parameter selection method
that is demonstrated in Section 4.4.3, we conjecture that the made assumptions hold
for common test sequences. In accordance to this strategy, we can define the ADCE
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between frame 1 and 3 as

ADCE1,3(wα) :=
1

|Ω|

∫

Ω

[
3∑

c=1

ΨM

(
θc0 (f

c(x+2wα)−f c(x))2
)

(4.108)

+ γ

(
3∑

c=1

ΨM

(
θcx (f

c
x(x+2wα)−f c

x(x))
2

+ θcy
(
f c
y(x+2wα)−f c

y(x)
)2
))]

dx dy ,

where wα denotes the flow field obtained with a smoothness weight α. The inte-
grand of above expression is (apart from the doubled flow field) a variant of our fi-
nal data term (4.35) where no linearisation of the constancy assumptions has been
performed. To evaluate the images at subpixel locations f i(x+2wα) we use Coons
patches based on bicubic interpolation [Coo67]. Note that when using the HSV colour
space, the normalisation factors Θ1 of the hue channel have to be computed as in
(4.27). Also the difference expression for the hue channel have to be computed ac-
cordingly. For example, the expression |f 1(x+2w)− f 1(x)|2 has to be replaced by
|(cos f 1)(x+2w)− (cos f 1)(x)|2 + |(sin f 1)(x+2w)− (sin f 1)(x)|2.

Determining the Best Parameter. In general, the relation between α and the
ADCE is not convex, which excludes the use of gradient descent-like approaches for
finding the optimal value of α w.r.t. our error measure.

Similar to the approach in [NS97] we propose a brute-force method that first com-
putes the error measures for a “sufficiently large” set of flow fields obtained with different
values of α. Then, we select the very α that gave the smallest error. To reduce the num-
ber values to test for α, we propose to start from a given, standard value α0. This
value is incremented/decremented nα times by multiplying/dividing it with a stepping
factor a > 1, yielding in total 2nα+1 tests. This strategy results in testing more values
close to α0 and, more importantly, less very small or very large values that hardly give
reasonable results.

4.4.2 Scale Selection in the Optic Flow Scale Space

In a recent work [2] we investigated the scale space behaviour of variational optic flow
methods, the optic flow scale space. Intuitively, it is clear that our smoothness parameter
α serves a similar role as the scale parameter in classic image scale spaces (see e.g.
[Lin94]) as larger values of α lead to smoother, i.e. simplified flow fields. In our work, we
reformulated the classic Horn and Schunck energy functional in a signal regularisation-
like manner by rewriting the data term as a similarity term to the normal flow. To make
this possible, we need to penalise deviations from the normal flow in a spatially varying,
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matrix weighted norm. If we apply an explicit scheme to solve the corresponding Euler-
Lagrange equations (see Section 5.3.4 for more details), we end up with a diffusion-like
evolution that starts from the normal flow and builds up the optic flow scale space.

It is clear that in the optic flow case, there exists one distinct scale α that corre-
sponds to the flow field of highest accuracy. To select this optimal scale, which is an
important issue for any scale space, see e.g. [MN03], we utilised our optimal prediction
principle. The big advantage in the context of the optic flow scale space is that the
explicit evolution gives a flow field after each iteration, i.e. after k iterations a flow field
corresponding to the smoothness weight α = k · τ is available, where τ denotes the time
step size of the explicit scheme. Thus, one can easily compute the average data con-
stancy error (ADCE) after each iteration and finally select the scale with the smallest
ADCE as the optimal scale.

4.4.3 Experiments

Performance of our Proposed Error Measure. We first show that our proposed
data constancy error between frame 1 and 3 (ADCE1,3, see (4.108)) is a good approxi-
mation of the popular average angular error (AAE) measure. To this end, we compare
the two error measures for the Grove2 sequence in Figure 4.12 (a) and (b). Additionally,
we also show results obtained with a simpler error measure that evaluates the data con-
stancy assumptions between the first and second frame (ADCE1,2), see Figure 4.12 (c).

It becomes obvious that our proposed error measure (Figure 4.12 (b)) indeed ex-
hibits a shape very close to the angular error shown in Figure 4.12 (a). As our error
measure reflects the quality of the prediction with the given flow field, our result fur-
ther substantiates the validity of the proposed OPP. Furthermore, we see that a simple
error measure that uses only frame one and two (Figure 4.12 (c)) gives unusable results
as it favours way too small values of the smoothness weight. This behaviour could be
expected as the constancy assumptions are imposed between frame one and two in the
data term and thus they are best fulfilled when the influence of the smoothness term,
which is steered by the smoothness weight, becomes small.

Benefits of an Automatic Parameter Selection. Next, we want show that our
automatic parameter selection works well for a large variety of different test sequences.
To this end we apply our method to the Middlebury data sets [BSL+10]. Note that
we cannot give results for the Dimetrodon and Venus sequence here, as those only
encompasses two frames and thus our ADCE1,3 measure cannot be computed.

In Table 4.8, we summarise the AAE when (i) setting the smoothness weight α to a
fixed value (α = α0 = 400.0), (ii) using our automatic parameter selection method, and
(iii) selecting the (w.r.t. the AAE) optimal value of α under the tested proposals. As we
can see, estimating the smoothness weight with our proposed method allows to improve
the results compared to a fixed value of α in almost all cases. The only exception is
the Grove 3 sequence where the fixed value of α accidentally coincides with the optimal
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Figure 4.12: Automatic selection of the smoothness weight α for the Grove2 sequence. From left to
right: (a) Angular error (AAE) for 51 values of α, computed from α0 = 400.0 and using a stepping
factor a = 1.1. The remaining parameters were set fixed to σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95.
The dotted line marks the minimum of the graph. (b) Same for the proposed data constancy error
(ADCE1,3). (c) Same for a simple data constancy error (ADCE1,2).

value. Compared to the results achieved with an optimal value of α, our results are on
average 3% and at most 10% worse than the optimal result. When actually comparing
the value of α chosen by our method to the optimal value, it turns out that we often
choose a value that seems way too small. Nevertheless, the AAE of the corresponding
flow field is still close to the optimum and our method thus fulfils its purpose.

We wish to note that a favourable performance of the proposed parameter selection of
course depends on the validity of our assumptions (constant speed and linear trajectories
of objects). For all considered test sequences these assumptions were obviously valid. In
order to show the limitations of our method, we applied our approach again to the same
sequences, but replaced the third frame by a copy of the second one. This violates the
assumption of a constant speed and leads to a severe impairment of results that reach
up to 30%.

Comparison to State-of-the-Art Methods. In order to evaluate the performance
of an optic flow method compared to the state-of-the-art, one can submit the results
to the popular Middlebury benchmark [BSL+10]. The results that we submitted were
obtained with our optic flow in harmony (OFH) method [10] that uses our robust data
term from (4.35) in combination with the complementary smoothness term from (4.82).
The optimal value of the smoothness weight α is determined by our proposed method
based on the OPP.

We found that for the provided benchmark sequences, using an HSV colour repre-
sentation is not as beneficial as seen in our experiment from Figure 4.4 on page 46. As
the Middlebury sequences hardly suffer from difficult illumination conditions, we cannot
profit from the photometric invariances of the HSV colour space. On the other hand,
some sequences even pose problems in their HSV representation. As an example, con-
sider the results for the the Teddy sequence in the first row of Figure 4.13. Here we see
that the small white triangle beneath the chimney causes unpleasant artefacts in the
flow field. This results from the problem that greyscales do not have a unique represen-
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Table 4.8: Results (AAE) for some Middlebury sequences when (i) fixing the smoothness weight
(α = 400.0), (ii) estimating α with our proposed method, and (iii) with the optimal value of α

Sequence Fixed α Estimated α Optimal α

Rubberwhale 3.43◦ 3.00◦ 3.00◦

α = 400.0 644.2 943.2

Hydrangea 1.96◦ 1.94◦ 1.86◦

α = 400.0 440.0 943.2

Grove2 2.59◦ 2.43◦ 2.43◦

α = 400.0 532.4 779.5

Grove3 5.50◦ 5.62◦ 5.50◦

α = 400.0 532.4 400.0

Urban2 3.22◦ 2.84◦ 2.66◦

α = 400.0 532.4 1255.4

Urban3 3.44◦ 3.37◦ 3.35◦

α = 400.0 484.0 644.2

Yosemite 2.56◦ 1.89◦ 1.71◦

α = 400.0 1037.5 2224.0

Marble 5.73◦ 5.05◦ 4.94◦

α = 400.0 1838.0 3581.7
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Table 4.9: Estimated values of the smoothness weight α, using our automatic parameter selection
method

Sequence Army Grove Mequon Schefflera Urban Wooden Yosemite

Smoothness 277.8 277.8 277.8 691.2 480.0 995.3 1433.3
weight

tation in the hue as well as the saturation channel, see our experiment in Figure 4.3 on
page 43. Nevertheless, there are also sequences where an HSV colour representation is
beneficial. For the Mequon sequence (second row of Figure 4.13) an HSV colour repre-
sentation removes artefacts in the shadows left of the toys that are shown in the insets.
The bottom line is, however, that for the whole set of benchmark sequences, we obtain
slightly better results when using the RGB colour space. Thus, we use this variant of
our method for evaluation at the Middlebury benchmark.

For our submission we used in accordance to the guidelines a fixed set of parameters:
σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95. For determining the smoothness weight α, we used
the settings nα = 8, α0 = 400.0, a = 1.2 (see page 73). For the Teddy sequence with only
two frames, we set α = α0, as our parameter estimation method is not applicable in this
case. The resulting running time for the Urban sequence (640 × 480 pixels) was 620 s
on a standard PC (3.2 GHz Intel Pentium 4). For the parameter selection we computed
2·8+1 = 17 flow fields, corresponding to approximately 36 s per flow field. Following the
trend of parallel implementations on modern GPUs [GT08, SBK10, WPB10, ZPB07]
we recently came up with a GPU version of our method that can compute flow fields of
size 640× 480 pixels in less than one second [3] .

At the time of writing (January 2011), our method achieved the 7th place w.r.t. the
AAE and the 6th place w.r.t. the AEE measure among 46 listed methods. Note that
our previous Complementary Optic Flow method [11] only ranked 9th for the AAE and
13th for the AEE, which demonstrates the benefits of the proposed novelties, like the
automatic parameter selection. In Table 4.9 we additionally summarise the estimated
values of α resulting from our automatic parameter selection method. As desired, for
sequences with small details in the flow field (Army, Grove, Mequon) a small smoothness
weight is chosen. On the other hand, sequences like Wooden and Yosemite with a rather
smooth flow yield significantly larger values for the smoothness weight. Note that we
did not submit our stereo results to the Middlebury stereo benchmark. Despite our
proposed improvements, variational stereo approaches are still not competitive to recent
discrete methods. The main reason for this probably lies in the coarse-to-fine strategy
that is needed to handle large displacements in variational approaches. This strategy
hinders the correct estimation of comparatively small details in the disparity map. The
minimisation strategies of discrete methods on the other hand mostly proceeds on the
finest grid only.
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HSV colour space RGB colour space

Figure 4.13: Comparison of results obtained with HSV or RGB colour representation. From left to
right: Reference frame. Result with HSV colour space. Result with RGB colour space. From top to
bottom: Teddy sequence (HSV ⇒ AAE = 3.94◦, RGB ⇒ AAE = 2.64◦). Mequon sequence (HSV ⇒
AAE = 2.28◦, RGB ⇒ AAE = 2.84◦).

4.5 Prediction Prior

By construction, optic flow methods using a coarse-to-fine warping scheme cannot esti-
mate large displacements of small objects. More precisely, the displacement of an object
must not be larger than the object itself. However, such large displacements may occur
due to fast motion, low frame rate of the camera, or large baseline distances in the stereo
context. For our scene flow method in [5] we had to cope with the latter problem. As
a remedy, we followed the ideas in [BM11] and added a prediction prior to our usual
energy functional. This prior models the knowledge of an initial guess (a “prediction”)
of the flow field we aim to compute, e.g. the prior could be the result from some other
matching strategy that does not suffer from the afore mentioned problems. To incor-
porate this prior knowledge into our model we add a third term to the general energy
functional (4.1), which results in the modified energy functional [BM11]

E(u, v) =

∫

Ω

(
M(u, v) + αV (∇2u,∇2v) + β P (u, v)

)
dx dy , (4.109)

where P (u, v) denotes the prediction prior, and the weight β > 0 steers its influence on
the overall flow estimation. An obvious idea to define the P is

P (u, v) = ΨP

(
(u−ũ)2+(v−ṽ)2

)
, (4.110)
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where (ũ, ṽ)⊤ denotes the given predictor flow field. For the robust penaliser function we
propose to use ΨP (s

2) =
√
s2 + ε2, which helps to cope with outliers (wrong estimates)

in the predictor.
In some cases, e.g. when using SIFT matches [Low99, Low04] as a predictor, we

are not given a prediction at any point of the image domain. To account for this, we
multiply the prediction prior P with a mask cP (x) that is equal to one if we are given
a prediction at the point x ∈ Ω and is else equal to zero. Incorporating the mask in
(4.109) gives the energy

E(u, v) =

∫

Ω

(
M(u, v) + αV (∇2u,∇2v) + β cP P (u, v)

)
dx dy . (4.111)

The corresponding Euler-Lagrange equations for energy (4.111) when using the prior
from (4.110) are given by

∂uM − α div

(
∂ux

V
∂uy

V

)
+ β cP Ψ′

P

(
(u−ũ)2+(v−ṽ)2

)
(u−ũ) = 0 , (4.112)

∂vM − α div

(
∂vxV
∂vyV

)
+ β cP Ψ′

P

(
(u−ũ)2+(v−ṽ)2

)
(v−ṽ) = 0 . (4.113)

4.5.1 Experiments

We now show experiments that illustrate the benefits of a prediction prior. For our first
experiment we consider two frames of the Beanbag sequence shown in the top row of
Figure 4.14. Note the rightmost ball undergoes a large displacement to the top, which is
indeed larger than its own size. Consequently, optic flow approaches relying on warping
cannot capture this displacement, as can be observed in Figure 4.14 (c). On the other
hand, even a simple block matching approach, see Figure 4.14 (d), can estimate the
displacement as this technique does not require to work on coarse representations of
the images. Using the block matching result as a predictor within a warping-based
optic flow approach then finally allows to obtain a smooth flow field that can capture
the displacement of the right ball, as witnessed in Figure 4.14 (e). A small remaining
problem is that some of the artefacts in the upper right corner are still present in the
final result.

In our second experiment, we consider a synthetic sequence that we created in the
context of our work on scene flow from uncalibrated cameras [5]. The scene depicts
a textured sphere which is situated in front of a likewise textured background. In
Figure 4.15 (a) and (b) we show the left and right image of the corresponding stereo
pair at time t. Note that we do not have an orthoparallel camera setup in this case,
which means that the displacements are not purely horizontal. This can easily be seen at
the ground truth displacement in Figure 4.15 (c). For estimating the displacements, we
first try to apply our Complementary optic flow approach [10, 11]. As the displacements
of the small-scale textures are rather large (about 30 pixels), the resulting displacement
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(a) First image (b) Second image

(c) Complementary OF (d) Block matching (NCC) (e) Complementary OF

+ prediction (NCC)

Figure 4.14: Results for the Beanbag sequence. First row, from left to right: (a) First image. (b)
Second image. Second row, from left to right: (c) Flow field obtained with our Complementary Optic
Flow approach [10, 11] (α = 200.0, σ = 0.3, γ = 10.0, ρ = 1.0, η = 0.95). (d) Same for a simple block
matching approach (normalised cross correlation (NCC), 9 × 9 blocks). (e) Same for our Comple-
mentary Optic Flow approach with additional prediction prior using previous block matching result
(α=800.0, β=20.0).

estimation fails, see Figure 4.15 (d). Due to the dominant texture, the present sequence
is on the other hand well-suited for feature matching approaches like SIFT [Low99,
Low04], which find a large number of matches that are shown in Figure 4.15 (e). These
correspondences were computed using the binary available under http://www.cs.ubc.
ca/~lowe/keypoints/. Incorporating the sparse correspondences as a prediction prior,
a favourable estimation of the displacements can be achieved, see Figure 4.15 (f).
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(a) Left image (b) Right image (c) Ground truth

(d) Complementary OF (e) SIFT matches (f) Complementary OF

+ prediction (SIFT)

Figure 4.15: Results for the general sphere sequence [5]. First row, from left to right: (a) Left
image. (b) Right image. (c) Ground truth (white pixels mark locations where no ground truth is
available). Second row, from left to right: (d) Flow field obtained with our Complementary Optic Flow
approach [10, 11] (α = 100.0, σ = 0.9, γ = 0.3, ρ = 1.0, η = 0.95 ⇒ AAE = 77.78◦). (e) Sparse SIFT
matches [Low99, Low04] (matching threshold=0.6). (f) Flow field obtained with our Complementary
Optic Flow approach with additional prediction prior using previous SIFT matches (α=10.0, β =4.0
⇒ AAE = 5.13◦).
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Chapter 5

Numerics

All the mathematical sciences are founded on relations
between physical laws and laws of numbers, so that the
aim of exact science is to reduce the problems of nature
to the determination of quantities by operations with
numbers.

James C. Maxwell

This chapter encompasses two major parts. We first discuss the numerical approxima-
tion of derivatives that occur in our continuous models from the previous section. To
this end, we make use of the popular concept of finite differences, see e.g. [MM94]. For
the discretisation of image derivatives, we additionally present a novel finding from our
work in [1, 7]. Here, we showed that an appropriate discretisation strategy borrowed
from the theory of hyperbolic differential equations can have a tangible influence on the
quality of results.

The second part is mainly concerned with reviewing strategies for the solution of the
Euler-Lagrange equations, including the embedding in a coarse-to-fine warping frame-
work for handling large displacements. As an illustrative example, we consider the
Euler-Lagrange equations arising in our complementary optic flow approach [10, 11].
Additionally, we present two novel contributions from our side: (i) A fast solver that
is based on a parallel implementation of a fast explicit diffusion (FED) [GWB10] gra-
dient descent scheme on modern graphics hardware [3]. (ii) An implementation of the
previous solver on a modern smart phone [4].

5.1 Discretisation

Implementing the continuous variational models that we have discussed in the previous
chapter requires to discretise the images and the flow field as well as their derivatives.
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The discretisation of the images was already presented in Section 3.4 and the discretisa-
tion of the flow fields follows in complete accordance. The discretisation of derivatives
is more involved and will be described in the following.

5.1.1 Discretising Derivatives by Finite Differences

In this thesis, we use the concept of finite difference approximations for discretising
derivatives. As an example, consider the approximation of the x-derivative of an image
f(x, y). To this end, finite differences offer three basic choices: forward, backward and
central differences, which are defined as

D+
x f

k
i,j :=

1

h1

(
fk
i+1,j − fk

i,j

)
, D+

x f
k+1
i,j :=

1

h1

(
fk+1
i+1,j − fk+1

i,j

)
, (5.1)

D−
x f
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1

h1

(
fk
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x f
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(
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)
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D0
xf
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(
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)
, D0

xf
k+1
i,j :=

1

2h1

(
fk+1
i+1,j − fk+1

i−1,j

)
, (5.3)

where h1 denotes the grid size in x-direction and the finite difference operators D+,
D− and D0 denote forward, backward and central differences, respectively. Further note
that these expressions can be computed at the time level k and k+1. The corresponding
differences for the y-derivative are obtained by simply switching the roles of i and j in
above equations. The approximation error of the one-sided differences (forward and
backward) is in O(h), where h ∈ {h1, h2}. Their central counterparts only involve
an error of O(h2), which, together with the unbiased stencil orientation, explains why
central differences are a popular “standard” choice in image processing applications.

In order to increase the accuracy, one may use averaged differences that take into
account differences from both time levels k and k+1. One possibility is to use averaged
central differences that for the x-derivative are defined as

D0
xf

k+ 1

2

i,j :=
1

2

(
D0

xf
k
i,j +D0

xf
k+1
i,j

)

=
1

4h1

(
fk
i+1,j − fk

i−1,j + fk+1
i+1,j − fk+1

i−1,j

)
. (5.4)

In the remainder of this chapter, such a central difference approximation will be referred
to as a “standard” derivative approximation.

Note that averaging the two signals at time k and k + 1 only makes sense if the
displacements between the signals are small, in fact smaller than one pixel. Only if this
precondition is satisfied, our averaging takes into account information originating from
the same points in space. In our case, the multiscale warping approach (see Section 5.3.1)
results in displacements in the desired range.

A means to further reduce the approximation error is to use approximations of
fourth-order that involve more pixels than just the two direct neighbours of the pixel
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under consideration. An averaged fourth-order approximation of the x-derivative is for
example defined as

D00
x f
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i,j :=
1

2

(
D00

x f
k
i,j +D00

x f
k+1
i,j

)

:=
1

24h1

(
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i+1,j − 8fk

i−1,j + fk
i−2,j (5.5)

−fk+1
i+2,j + 8fk+1

i+1,j − 8fk+1
i−1,j + fk+1

i−2,j

)
.

Discretisation of Flow Derivatives

Having presented the basics of finite difference approximations on the examples of image
derivatives, we can turn to the discretisation of the flow derivatives.

Discretising Spatial and Temporal Flow Derivatives. When using flow-driven
or image- and flow-driven regularisers, the spatial flow derivatives ux, uy and vx, vy will
occur in the diffusion tensor D. For discretising the flow derivatives, we use a central
difference approximation of second order. For example, discretising the derivative ux is
done via

ux ≈ D0
xui,j =

1

2h1
(ui+1,j − ui−1,j) . (5.6)

For spatio-temporal regularisers discussed in Section 4.3.4, we also need to discretise
temporal flow derivatives ut and vt. To this end, we use the approximation

ut ≈ 1

h3

(
uk+1
i,j − uki,j

)
, and vt ≈ 1

h3

(
vk+1
i,j − vki,j

)
, (5.7)

respectively. Here, it makes sense to adapt the value of h3 to the given image sequence
to allow for an appropriate scaling of the temporal direction compared to the spatial
directions [WS01b].

Discretising the Divergence Expression. Considering the Euler-Lagrange equa-
tions (5.56) and (5.57) shows that we need to discretise divergence expression of the
form div(D∇2u). Denoting the tensor entries by

D :=

(
a b
b c

)
, (5.8)

we can write the divergence expression as

div (D∇2u) = div

(
aux + buy
bux + cuy

)
(5.9)

= ∂x(aux) + ∂x(buy) + ∂y(bux) + ∂y(cuy) . (5.10)
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The pure x- and y-terms (∂x(aux) and ∂y(cuy)) are discretised by using forward differ-
ences inside the bracket and backward differences for the outer derivative, i.e.

∂x(aux) ≈ D−
x

(
ai+1,j + ai,j

2

ui+1,j − ui,j
h1

)
(5.11)

≈ ai+1,j + ai,j
2h21

(ui+1,j − ui,j) − ai,j + ai−1,j

2h21
(ui,j − ui−1,j) , (5.12)

and correspondingly

∂y(cuy) ≈ ci,j+1 + ci,j
2h22

(ui,j+1 − ui,j) − ci,j + ci,j−1

2h22
(ui,j − ui,j−1) . (5.13)

For the mixed terms ∂x(buy) and ∂y(bux), we can use a standard approximation by
central differences, resulting in

∂x(buy) ≈ D0
x

(
bi,j
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2h2

)
(5.14)
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and correspondingly
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4h1h2
(ui+1,j+1 − ui−1,j+1)−

bi,j−1

4h1h2
(ui+1,j−1 − ui−1,j−1) . (5.16)

This shows that the divergence expression can be discretised as a weighted sum of
differences

div (D ∇2u) ≈
∑

ĩ,j̃∈Ni,j

[w]̃i,j̃

(
[u]̃i,j̃ − [u]i,j

)
, (5.17)

where Ni,j denotes the set of pixels in the 8-neighbourhood of the pixel (i, j) and the
weights [w]̃i,j̃ are defined as

[w]i−1,j =
ai−1,j + ai,j

2h21
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[w]i−1,j+1 =
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−bi+1,j + bi,j−1

4h1h2
. (5.21)
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In order to obtain sharper results, we follow [Wei98] and modify above weights in
accordance to the non-negative stencil proposed in [Wei98], chapter 3.4. This gives the
weights
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2h21
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4h1h2
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5.2 Upwind Discretisation of Image Derivatives

All experiments presented so far used the central difference approximation (5.5) for
discretising occurring image derivatives. The only exception is the computation of the
regularisation tensor (4.78). Here, we do not average the differences, but only use the
image at time level k to consider directional information from the reference image, only.

However, our investigations in [1, 7] showed that using correctly oriented one-sided
differences can tangibly improve the results compared to central difference approxima-
tions. In the context of hyperbolic partial differential equations (HDEs) this fact is
well-known and used in the popular upwind schemes. The major advantage of upwind
discretisations is that they prevent oscillations at edges as they belong to the class of
so-called monotone schemes that satisfy a discrete maximum-minimum principle. In
this class, upwind schemes are known to be the most accurate schemes.

5.2.1 A 1D Example

To illustrate the influence of the applied finite difference operator, we use a simple 1D
example. Here, we consider a 1D signal sequence f(x, t) where x ∈ Ω1 denotes the

87



CHAPTER 5. NUMERICS

position in the interval Ω1 ⊂ R. To compute the unknown displacement function u(x)
we minimise the energy functional

E(u) =

∫

Ω1

(
(fx u+ ft)

2 + αu2x

)
dx , (5.30)

which is identical to a 1D version of the Horn and Schunck model [HS81]. Equivalently
to the brightness constancy assumption, the data term imposes a constancy on the signal
values. In the smoothness term, we penalise the 1D pendant of the gradient magnitude,
given by the x-derivative of the displacement function. Both term use a basic quadratic
penalisation. The Euler-Lagrange equation corresponding to the energy (5.30) reads

f 2
x u+ fxft − αuxx = 0 . (5.31)

Let us now present a 1D experiment that shows the importance of an appropriate
choice for the finite difference approximation of fx. Consider the two frames of a signal
sequence in Figure 5.1 (a). Here, the signal is displaced by exactly one position to the
right in its middle part and stays unchanged otherwise. This is illustrated in the ground
truth displacement shown in Figure 5.1 (b). Note that this example comprises smooth
as well as discontinuous signal and displacement regions which make it rather indicative.

We further wish to note that our example also exhibits the so-called occlusion prob-
lem. This arises if a foreground object is shifted and occludes parts of the background.
Thus, one cannot find any correspondence for the regions that are only visible in the first
frame and then become occluded in the second frame. In our example this happens at
Point 9. Therefore, any computed displacements u will be corrupted at this occlusion.
However, while we comment in this way on the expected computational results, the
occlusion problem is not a topic in the focus of our work. In practical computations, the
occlusion problem is dealt with separately; see e.g. [BBH03] and the references therein.

In Figure 5.1 (c)–(e) we depict the computed displacements using various finite dif-
ference discretisations for the signal derivative fx. The displacements were obtained as
the solution of a linear system of equations that arises from the discrete Euler-Lagrange
equation (5.31). As the corresponding system matrix is tridiagonal, the Thomas algo-
rithm [Tho49] can be used as a simple and efficient solver. In our experiment, we set the
smoothness weight to the small value of α = 10−4 in order to clearly show the influence
of the discretisation of the signal derivative that occurs in the data term.

Comparing the resulting displacements in Figure 5.1 (c)–(e), the effect of the dif-
ferent derivative approximations become obvious: Central differences only perform well
in the smooth signal regions, i.e. at the left and right boundaries. At discontinuities
they produce severe oscillations. One-sided differences perform either favourably or fail
totally. Obviously, the correct orientation matters here. When using correctly oriented
one-sided differences, the displacement almost coincides with the ground truth, except
at one point. As indicated above, this is not a fault of the method, but is caused by
the occlusion at the jump in the displacement. Note that as the displacement of an
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occluded point is in general undefined, we set the ground truth at occlusions to the
value of its right neighbour. The observed behaviour in our experiment is in accordance
with the theory of numerical methods for HDEs [LeV92, LeV02]. There, so called up-
wind schemes are a widely used concept for the discretisation of transport equations,
where the term upwind refers to correctly oriented one-sided differences. The correct
orientation of an upwind stencil in our case is opposite to the displacement direction;
see our experiment.

In the hyperbolic theory, central difference approximations as in (5.5) are known
to lead to oscillations. They can even be unconditionally unstable, as for example
shown in [Tor99]. The reason why they are still a common choice in correspondence
problems is that here only one time step is performed, and thus the instability is “only”
observable in terms of oscillations near strong gradients. Note that there exist stable
central discretisations like the monotone Lax-Friedrichs and the Lax-Wendroff scheme,
see [LeV02]. However, the Lax-Friedrichs scheme is the most dissipative one, it actually
involves the most possible blurring of all monotone schemes. The Lax-Wendroff scheme
is not monotone (it is second-order accurate) and is known to generate oscillations as
by the Gibbs phenomenon. Finally, let us remark that the stability of explicit schemes
for HDEs involves a condition on the time step size called CFL condition, see [LeV02,
Tor99]. This CFL condition can be translated into the assumption, that in one time step,
information can only be translated up to one pixel. Therefore, the CFL condition for
HDEs is related to the assumption of small displacements in correspondence problems.
As discussed earlier, the CFL condition is always satisfied because we use a multiscale
warping approach that results in displacements in the range of one pixel at all pyramid
levels.

Relation to HDEs. Interpreting the data constancy assumption fx u + ft = 0 as
a PDE for the temporal evolution of f leads to a transport process in the form of a
hyperbolic colour equation, see [LeV02]. The name of this equation is derived from a
specific application in fluid dynamics where coloured tracer particles are given into a
flowing fluid in order to visualise the flow lines. The PDE governing the transport of
the particle density of the tracer is the colour equation. It is often assumed that the
fluid moves always in the same way, i.e. the velocity of the fluid is in a steady state.
Therefore, the velocity function of the colour is varying in space (as the displacement u
in correspondence problems does), but not in time.

As we can observe, the colour equation determines the evolution of f at hand of a
given displacement field u. In hyperbolic problems, the roles of known and unknown
are thus switched compared to correspondence problems. We will show, however, that
the same discretisation principles apply in both cases. A last remark is that the colour
equation is a PDE given in the framework of an initial value problem or an initial-
boundary value problem. In our setting, the initial state f(x, t) is evolved in time. The
role of the other given state f(x, t+1) will be (i) to determine the displacement direction
and (ii) to provide data for accurate discretisations.
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Figure 5.1: Comparison of different derivative approximations on a simple 1D example. Top row,
from left to right: (a) Signal at time k (solid) and k + 1 (dotted). (b) Ground truth displacement.
Bottom row, from left to right: (c) Displacement computed using standard central differences averaged
between time level k and k+1 (solid), compared to the ground truth (dotted). (d) Same for one-sided
forward differences. (e) Same for one-sided backward differences.

5.2.2 A Novel Adaptive Upwind Scheme

As we have seen, the one-sided, low-order upwind differences perform well at signal
discontinuities. However, in smooth regions the higher order of accuracy of central
differences will give a better resolution of the displacement function. Hence, a natural
idea is to combine the two types of schemes by using high-order central approximation
in smooth signal parts and upwinding at discontinuities.

This idea has been successfully used for the construction of so-called high-resolution
methods [LeV02, Tor99] for HDEs. They use a nonlinear blending of low- and high-order
approximations, steered by a smoothness measure. In the classic framework for HDEs,
the blending is performed by a limiter function that can be constructed to result in the
total variation stability of the high-resolution (HR) scheme. This construction results
in a non-uniform order but effectively in a discretisation of high quality, which explains
the naming of HR methods. The adaptation of this methodology to our variational
framework results in an adaptive high-resolution-type (HRT ) discretisation scheme for
correspondence problems. This scheme was subject of our papers [1, 7] and will be
presented in the following.

Before proceeding with the scheme description, let us give some comments on simi-
larities and differences of our method to the classic HR schemes, as we will not apply an
off-the-shelf-approach. While it is very useful to consider the hyperbolic colour equation
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as a distinct important part to be re-interpreted and discretised, the final aim is to
compute the displacement u. Especially, while a non-oscillatory resolution of edges in u
is obviously important as seen by the experiment in Figure 5.1, we do not have to spend
too much attention to structural properties of a discretisation, e.g. its total variation
stability. This would only be important for a long-time integration of f , while in our
case f is already given and only two time levels k and k + 1 need to be considered.

Measuring Smoothness. First we discuss how to determine the smooth and discon-
tinuous regions of a signal which will be needed for steering the blending of the two
considered schemes. To this end, we introduce a smoothness measure

Θi :=
∣∣D−

x f
k
i −D+

x f
k
i

∣∣+
∣∣D−

x f
k+1
i −D+

x f
k+1
i

∣∣ , (5.32)

that is close to 0 in smooth regions where backward and forward differences are almost
identical, and large at discontinuities of the signal. Here, one of the differences to an
usual setup of high-resolution methods for HDEs becomes obvious: In correspondence
problems one already has the final state of the evolving signal f at hand, and so we can
base our smoothness measure on both time levels k and k + 1. By using the multiscale
warping approach, such a combination of data from different frames will not result in
taking data from entirely different locations as the displacements at each level of the
warping pyramid are in the range of one pixel.

Determining the Upwind Directions. Next we need to determine the appropriate
upwind directions for discretising the derivative fx. This is not straightforward, since
the upwind direction depends on the direction of the displacement field, and this is
exactly the unknown we aim to compute.

As a remedy, we propose to compute a predictor solution ũ whose sign determines
the upwind direction. This predictor is computed using the high-order standard ap-
proximation fH

x of the derivative fx. It is given by the averaged central difference
approximation (

fH
x

)
i
:= D0

xf
k+ 1

2

i . (5.33)

In order to avoid oscillations as seen in our previous experiment, we use a comparatively
large smoothness weight for this computation (α = 1). If we later consider the extension
of our scheme to optic flow, we can use the same value of α for computing the predictor
as well as the final solution, as common choices of α are large enough in general.

With the help of the predictor solution ũ, the low-order upwind approximation fL
x

of fx is defined as

(
fL
x

)
i
:=





D−
x f

k
i , if ũi > 0 ,

D+
x f

k
i , if ũi < 0 ,

(fH
x )i , if ũi = 0 .

(5.34)

Revisiting our experiment in Figure 5.1, one confirms that this definition agrees with the
results obtained there. Note that we compute in (5.34) the upwind stencils employing
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solely the frame k. This is theoretically justified since the linearised brightness constancy
assumption fx u+ ft = 0 involves a linearisation at that time level.

The Blending Function. Now we can define the blending function Φ(Θi) that realises
the switch between high-order and low-order approximations in accordance to the value
of Θi. The idea is that Θi shall be close to 1 in smooth signal regions, leading to a
high-order approximation there. At discontinuities, the blending function shall be close
to 0 which results in a low-order upwind approximation that is better suited at such
locations. For the actual choice of Φ(Θi) we propose

Φ(Θi) :=

{
1−Θi , if 0 ≤ Θi < 1 ,

0 , else .
(5.35)

The blending is performed in a different way than in the usual setup of high-resolution
schemes for HDEs [LeV02, Tor99]. Other blending functions – especially those standard
in the field of HDEs – do not lead to better results. We tested this but do not comment
on it in more detail here.

The High-Resolution-Type (HRT) Discretisation Scheme. Now everything is
prepared to define the adaptive HRT discretisation scheme as

(fx)
k
i :=

(
fL
x

)
i
+ Φ(Θi)

[(
fH
x

)
i
−
(
fL
x

)
i

]
, (5.36)

using the function Φ(Θi) to blend between the high-order derivative approximation fH
x

and its low-order counterpart fL
x .

Note that applying the HRT scheme to the signal sequence from Figure 5.1 gives
the same result as with the appropriate upwind scheme, hence we omit an additional
figure. However, our experiments in Section 5.2.4 will show that for more challenging
2D problems such as optic flow, the HRT scheme will give results that are superior to a
pure upwind scheme.

5.2.3 Extending the Scheme to 2D Optic Flow Problems

Now we adapt the presented HRT discretisation scheme to the 2D optic flow case. Note
that the orthoparallel stereo case is implicitly encompassed in these considerations as
just less derivatives occur there.

Smoothness Measures. The first extension for the 2D case are distinct smoothness
measures Θx, Θy for the x- and the y-direction, respectively. For Θx we use the according
expression (5.32) from the 1D case, where we only need to replace the pixel index i by
i, j. The measure Θy is obtained by using y- instead of x-differences. As our models
use the gradient constancy assumption, also the second order and mixed derivatives
fxx, fyy, fxy, fxz and fyz occur in the motion tensor, see (4.21), and need to be treated.

92



5.2. UPWIND DISCRETISATION OF IMAGE DERIVATIVES

Thus, we also need to define a smoothness measure for the mixed xy-direction. Given
the smoothness measures Θx and Θy, we define the mixed expression as Θxy := Θx+Θy.

Second Order Derivative Approximations. More involved are the high-order and
the (one-sided) low-order approximations of the second order derivatives.

High-Order: The high-order approximations of fxx and fyy are defined as

fxx ≈ D−
x

(
D+

x fi,j
)

=
1

h21
(fi+1,j − 2fi,j + fi−1,j) , (5.37)

and

fyy ≈ D−
y

(
D+

y fi,j
)

=
1

h22
(fi,j+1 − 2fi,j + f1,j−1) , (5.38)

respectively. The mixed derivative fxy = ∂yfx is approximated in the finite difference
case as

fxy ≈ D0
y

(
D0

xf
k
i,j

)
(5.39)

= D0
y

(
1

2h1

(
fk
i+1,j − fk

i−1,j

))
(5.40)

=
1

4h1h2

(
fk
i+1,j+1 − fk

i−1,j+1 −
(
fk
i+1,j−1 − fk

i−1,j−1

))
. (5.41)

An averaged version taking into account both time levels is then obtained via

fxy ≈ 1

2

(
D0

y

(
D0

xf
k
i,j

)
+D0

y

(
D0

xf
k+1
i,j

))
(5.42)

=
1

8h1h2

(
fk
i+1,j+1 − fk

i−1,j+1 −
(
fk
i+1,j−1 − fk

i−1,j−1

)
(5.43)

+fk+1
i+1,j+1 − fk+1

i−1,j+1 −
(
fk+1
i+1,j−1 − fk+1

i−1,j−1

))
.

Similarly, we approximate fxt by

fxt ≈ D+
t

(
D0

xf
k
i,j

)

=
1

2h1

(
fk+1
i+1,j−fk+1

i−1,j−(fk
i+1,j−fk

i−1,j)
)
, (5.44)

where D+
t f

k
i,j := fk+1

i,j − fk
i,j realises a temporal difference operator. Analogously we

proceed for fyt, yielding

fyt ≈ 1

2h2

(
fk+1
i,j+1−fk+1

i,j−1−(fk
i,j+1−fk

i,j−1)
)
, (5.45)
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Low-order: In the low-order upwind case, the sign of the predictor (ũ, ṽ)⊤ indicates
which one-sided difference should be used: We consider ũ for x-derivatives and ṽ for
y-derivatives, respectively. For approximating fxx we make use of the corresponding
upwind difference for fx:

ũ > 0 : fxx ≈ D−
x

(
D−

x f
k
i,j

)
=

1

h21

(
fk
i,j − 2fk

i−1,j + fk
i−2,j

)
, (5.46)

ũ < 0 : fxx ≈ D+
x

(
D+

x f
k
i,j

)
=

1

h21

(
fk
i+2,j − 2fk

i+1,j − fk
i,j

)
. (5.47)

In case ũ = 0, we use the corresponding high-order approximation described before. For
fyy, we proceed accordingly, taking into account the predictor ṽ:

ṽ > 0 : fyy ≈ D−
y

(
D−

y f
k
i,j

)
=

1

h22

(
fk
i,j − 2fk

i,j−1 + fk
i,j−2

)
, (5.48)

ṽ < 0 : fyy ≈ D+
y

(
D+

y f
k
i,j

)
=

1

h22

(
fk
i,j+2 − 2fk

i,j+1 − fk
i,j

)
. (5.49)

Concerning the mixed derivative fxy we have to use the two predictors ũ and ṽ. If a
predictor is equal to zero, we use the corresponding high-order approximation, and if
it is non-zero, its sign determines which one-sided upwind approximation to use. This
leads to the case distinction summarised in Table 5.1. If ũ = 0 and ṽ = 0 holds, we
again use the high-order approximation of fxy.

For fxt we use the same approach as presented above in the high-order case but just
use one-sided upwind differences for approximating fx. This gives

ũ > 0 : fxt ≈ D+
t

(
D−

x f
k
i,j

)
=

1

h1

(
fk+1
i,j − fk+1

i−1,j − (fk
i,j − fk

i−1,j)
)
, (5.50)

ũ < 0 : fxt ≈ D+
t

(
D+

x f
k
i,j

)
=

1

h1

(
fk+1
i+1,j − fk+1

i,j − (fk
i+1,j − fk

i,j)
)
. (5.51)

Accordingly we proceed for fyt, resulting in

ṽ > 0 : fyt ≈ D+
t

(
D−

y f
k
i,j

)
=

1

h2

(
fk+1
i,j − fk+1

i,j−1 − (fk
i,j − fk

i,j−1)
)
, (5.52)

ṽ < 0 : fyt ≈ D+
t

(
D+

y f
k
i,j

)
=

1

h2

(
fk+1
i,j+1 − fk+1

i,j − (fk
i,j+1 − fk

i,j)
)
. (5.53)

5.2.4 Experiments

We now present experiments that illustrate the benefits of the proposed HRT scheme.
In order to clearly see the influence of the numerics, we start by a considering simple,
basic optic flow model and then turn to more advanced, state-of-the-art models.
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Table 5.1: Upwind-type (one-sided) discretisations of the mixed derivative fxy

Case Discretisation of fxy

ũ = 0 , ṽ > 0 1
2h1h2

(
fk
i+1,j − fk

i−1,j − (fk
i+1,j−1 − fk

i−1,j−1)
)

ũ = 0 , ṽ < 0 1
2h1h2

(
fk
i+1,j+1 − fk

i−1,j+1 − (fk
i+1,j − fk

i−1,j)
)

ũ > 0 , ṽ = 0 1
2h1h2

(
fk
i,j+1 − fk

i−1,j+1 − (fk
i,j−1 − fk

i−1,j−1)
)

ũ < 0 , ṽ = 0 1
2h1h2

(
fk
i+1,j+1 − fk

i,j+1 − (fk
i+1,j−1 − fk

i,j−1)
)

ũ > 0 , ṽ > 0 1
h1h2

(
fk
i,j − fk

i−1,j − (fk
i,j−1 − fk

i−1,j−1)
)

ũ > 0 , ṽ < 0 1
h1h2

(
fk
i,j+1 − fk

i−1,j+1 − (fk
i,j − fk

i−1,j)
)

ũ < 0 , ṽ > 0 1
h1h2

(
fk
i+1,j − fk

i,j − (fk
i+1,j−1 − fk

i,j−1)
)

ũ < 0 , ṽ < 0 1
h1h2

(
fk
i+1,j+1 − fk

i,j+1 − (fk
i+1,j − fk

i,j)
)

Horn and Schunck Model

Our first experiments are conducted with one of the most simple variational optic flow
models, the one proposed in the seminal work of Horn and Schunck [HS81]. The corre-
sponding energy functional models the brightness constancy assumption in the data term
and uses a homogeneous regulariser in the smoothness term. In the original formulation
only greyscale images are considered, leading to the energy

E(u, v) =

∫

Ω

(
w⊤J0 w + α

(
|∇2u|2 + |∇2v|2

))
dx dy , (5.54)

using the motion tensor notation introduced in Section 4.2.
At first we consider a simple synthetic sequence we have created, see Figure 5.2. The

sequence depicts a rectangle that is displaced by one pixel to the right and one pixel to
the bottom, as shown in the ground truth flow field in Figure 5.2 (c). In the same figure
we also compare the results obtained with two different derivative approximations: (i)
A standard scheme using central derivative approximations of second order, and (ii) our
proposed adaptive HRT scheme. Additionally, we show two error maps that visualise
the AAE and where brighter pixels correspond to larger errors. To ease comparison
of these maps, we visualise in Figure 5.2 (d) the difference of the error maps. Here,
green encodes improvements of the HRT scheme over the standard scheme and red
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Table 5.2: Error measures (AAE) for several sequences using the method of Horn and Schunck. We
compare a standard derivative approximation to our proposed adaptive HRT scheme.

Rectangle Marble Yosemite Street

Standard 31.93◦ 9.11◦ 10.72◦ 9.38◦

HRT 28.40◦ 8.50◦ 9.53◦ 9.00◦

encodes impairments. The brightness of the pixels corresponds to the magnitude of
the difference. Inspecting the error maps and their difference, the expected benefits of
the HRT scheme become obvious: Especially at the lower and right boundary of the
rectangle, i.e. at regions with large image discontinuities, the HRT scheme reduces the
error. This observation is validated by the AAE measures given in Table 5.2.

This table also lists the AAE for more complex sequences, like the Marble, the
Yosemite without clouds, and the Street sequence. The latter is available at http://

of-eval.sourceforge.net. For these sequences, a comparison of error maps resulting
from a standard derivative approximation and our adaptive scheme is shown in Fig-
ure 5.3. It turns out that the HRT scheme allows to decrease the errors in regions with
strong discontinuities. For Marble this is the case at the ground floor, for Yosemite we
see an improvement at the lower left boundary, and for Street the error decreases at the
leaves of the tree.

Finally, we wish to evaluate if the upwind directions were correctly estimated using
the predictor solution. To this end, Figure 5.4 visualises the errors by greyscale maps
where black pixels mark locations with correct upwind direction, i.e. the sign of the
predictor solution equals the sign of the ground truth flow in this locations. The grey
pixels mark locations with an error in the direction estimation. The brightness of the
pixels corresponds to the magnitude of the ground truth flow at this location. The latter
is motivated by the observation that errors in the upwind direction estimation are on the
one hand hardly avoidable, but also less harmful, if the flow is very small. Inspecting the
error maps in Figure 5.4, we verify that the computed predictor allows for a very reliable
estimation of the correct upwind directions. Note that we do not show an error map
for our previous experiment in Figure 5.2 as the error is zero there. For the upcoming
experiments, we also refrain from showing error maps for the upwind direction as this
is difficult when using a multiscale warping framework (see Section 5.3.1) where flow
increments are computed at each level.
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(a) First frame (b) Second frame (c) Ground truth (d) Difference between

(g) and (h)

(e) Standard scheme (f) HRT scheme (g) Error map of (e) (h) Error map of (f)

Figure 5.2: Results for the method of Horn and Schunck on our Rectangle sequence. We compare
a standard derivative approximation to our adaptive HRT scheme. First row, from left to right: (a)
First frame. (b) Second frame. (c) Ground truth. (d) Difference of the error maps in (g) and (h).
Green marks improvements, red impairments of our HRT scheme compared to the standard scheme.
Second row, from left to right: (e) Flow field with a standard derivative approximation. (f) Same with
our adaptive HRT scheme. (g) Error map for (e). (h) Error map for (f).
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First frame Error (standard) Error (HRT) Difference

Figure 5.3: Results for the method of Horn and Schunck. We compare a standard derivative approx-
imation to our proposed adaptive HRT scheme. From top to bottom: Marble, Yosemite without clouds
and Street sequence. From left to right: First frame, error map with a standard derivative approxima-
tion, same for our adaptive HRT scheme, difference of the two error maps. Green marks improvements,
red impairments of our HRT scheme compared to the standard scheme.

Figure 5.4: Error in the estimated upwind directions for the sequences shown in Figure 5.3. Black
pixels mark correct direction. Grey pixels mark errors, where the brightness encodes to the magnitude
of the ground truth flow at the corresponding location. From left to right: (a) Marble, (b) Yosemite
without clouds, (c) Street sequence.
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Table 5.3: Error measures (AAE) for several Middlebury sequences using the method of Brox et al..
We compare a standard derivative approximation scheme to a pure upwind scheme (Φ(Θi) = 0), and
our proposed adaptive HRT scheme.

Rubber- Hydrangea Dime- Grove2 Grove3 Urban2 Urban3 Venus
whale trodon

Standard 3.69◦ 2.18◦ 1.94◦ 2.49◦ 6.17◦ 2.84◦ 5.71◦ 4.79◦

Upwind 4.87◦ 2.39◦ 3.06◦ 3.13◦ 6.75◦ 3.77◦ 4.58◦ 4.58◦

HRT 3.55◦ 2.16◦ 1.88◦ 2.46◦ 6.21◦ 2.74◦ 4.11◦ 4.45◦

Brox et al. Model

In order to show results with a more advanced mode,l we conducted some experiments
using our HRT scheme within the method of Brox et al. [BBPW04]. Here, compared to
the model of Horn and Schunck [HS81], the data term additionally imposes the gradient
constancy assumption and a subquadratic L1 penalisation is performed. As smoothness
term, an isotropic flow-driven TV regulariser is used, leading to the energy

E(u, v) =

∫

Ω

(
ΨM

(
w⊤(J0 + γ Jxy) w

)
+ α ΨV

(
|∇2u|2 + |∇2v|2

))
dx dy , (5.55)

with ΨM(s2) = ΨV (s
2) =

√
s2 + ε2 and again using the motion tensor notation from

Section 4.2. The minimisation of this energy is embedded in a coarse-to-fine multiscale
warping approach to handle large displacements, see Section 5.3.1.

Due to the more advanced model we can now consider more challenging test data,
like the Middlebury sequences that we have also used in the previous chapter. In Fig-
ure 5.5, we show results on the Urban3 sequence. As we can see, also for the method
of Brox et al., the HRT scheme allows to improve the results at locations with strong
discontinuities (marked in the images). In this context, we also refer to Figure 5.6 where
we show a plot of the gradient magnitude to support the latter observation. The quali-
tative improvement is confirmed by the corresponding AAE measures in Table 5.3. This
table also lists other Middlebury sequences and gives errors for a pure upwind scheme
using first-order, one-sided differences. Such a scheme can easily obtained from our HRT
scheme (5.36) by setting Φ(Θi) = 0. Analysing the results in Table 5.3 shows: (i) For
7 out of the 8 test sequences, the HRT scheme improves the quality over the standard
scheme. Only for Grove 3, the standard scheme is slightly better. (ii) For the considered
challenging sequences, the blending between high-order and low-order approximations of
the HRT scheme gives significantly better results than a pure upwind scheme. Note that
for some sequences, e.g. Dimetrodon, the upwind scheme produces significantly worse
results. This occurs in the presence of large smooth areas in the images. There, central
derivative approximations are best suited and thus an upwind scheme that uses the less
appropriate first-order approximation leads to bad results.
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(a) Reference frame (b) Flow (standard) (c) Flow (HRT)

(d) Ground truth (e) Error (standard) (f) Error (HRT)

Figure 5.5: Results for the method of Brox et al. on the Urban3 sequence. We compare a standard
derivative approximation to our proposed adaptive HRT scheme. First row, from left to right: (a)
Reference frame. (b) Flow field with a standard derivative approximation. (c) Same with our adaptive
HRT scheme. Second row, from left to right: (d) Ground truth flow. (e) Error map with a stan-
dard derivative approximation. (f) Same with our adaptive HRT scheme. Boxes indicate regions of
significantly better results with the HRT scheme.

Figure 5.6: Plot of the gradient magnitude for the Urban3 sequence. From left to right: (a) Reference
frame. (b) Corresponding gradient magnitude, scaled to the range from 0 to 255. The boxes indicate
regions where the HRT scheme performs significantly better than the standard approach, see Figure
5.5. We observe that these are regions with strong gradients.
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Table 5.4: Error measures (AAE) for several Middlebury sequences using our Complementary Optic
Flow method. We compare a standard derivative approximation scheme to a pure upwind scheme
(Φ(Θi) = 0), and our proposed adaptive HRT scheme.

Rubber- Hydrangea Dime- Grove2 Grove3 Urban2 Urban3 Venus
whale trodon

Standard 3.47◦ 2.30◦ 1.84◦ 2.54◦ 5.34◦ 2.74◦ 3.09◦ 5.26◦

Upwind 4.40◦ 2.45◦ 2.87◦ 3.02◦ 5.72◦ 4.23◦ 3.25◦ 5.24◦

HRT 3.28◦ 2.27◦ 1.87◦ 2.51◦ 5.34◦ 2.75◦ 2.96◦ 5.41◦

Complementary Optic Flow Model

We conclude our experiments on derivative approximations by applying the HRT scheme
within our Complementary Optic Flow model [10, 11] that has been presented in the
previous chapter.

In Figure 5.7, we compare results for the Rubberwhale sequence obtained with the
HRT scheme to results with a standard central derivative approximation of second order.
Note that we usually used central differences of fourth order for this model, but as the
high-order approximations in our HRT scheme are of second order, comparing to fourth-
order approximations would not be fair. To illustrate the improvements of our HRT
scheme, we again give error maps visualising the AAE and show a colour-coded map
visualising the differences in error. Considering the difference map, we see that our HRT
scheme improves the result especially at the edges in the flow field. This improvement
becomes also visible in the corresponding AAE measures that are given in Table 5.4,
which also lists results for other Middlebury sequences and further encompasses results
obtained with a pure upwind scheme. Comparing the error measures, it turns out that
the HRT scheme allows to improve the results for 4 out of the 8 sequences, in 2 cases the
results are almost identical, and for the remaining 2 sequences, the results of our HRT
scheme are slightly worse. Compared to the upwind scheme, the HRT scheme again
gives considerably better results.

Discussion

We wish to stress one important conclusion that we can draw from comparing the results
of above experiments. Obviously, the advanced numerics of our HRT scheme gives a
much stronger improvement in terms of quality when applied within basic models, e.g.
in the Horn and Schunck model [HS81]. It seems that the more sophisticated the contin-
uous models become, the less influential is an appropriate numerical approximation of
derivatives, as shown in the results with our Complementary Optic Flow model [10, 11].
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(a) Flow (standard) (b) Error (standard)

(c) Flow (HRT) (d) Error (HRT)

(e) Difference in error

Figure 5.7: Comparison of a “standard”, central derivative approximation of second order to our
proposed HRT scheme (on the Rubberwhale sequence). Top row, from left to right: (a) Flow field
obtained with standard derivative approximation. (b) Corresponding error map visualising the AAE
(brighter pixels mark higher errors). Middle row, from left to right: (c) Flow field obtained with our
proposed HRT scheme. (d) Corresponding error map. Bottom row: (e) Difference of the error maps
in (b) and (d). Green marks improvements, red impairments of our HRT scheme compared to the
standard scheme.
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5.3 Solving the Euler-Lagrange Equations

After our detailed discussion on discretisation aspects, we now consider the actual solu-
tion of the Euler-Lagrange equations. We start by presenting the coarse-to-fine warping
strategy that is used for handling large displacements and which leads to modified Euler-
Lagrange equations. Then we discuss various solvers for the modified equations.

5.3.1 Handling Large Displacements – Warping

The derivation of the optic flow constraint (4.8) by means of a Taylor linearisation is
only valid under the assumption of either small displacements in the image sequence or
for very smooth image data. However, if the temporal sampling of the sequence is too
coarse, the precondition of small displacements is violated and a linearised approach will
fail. To overcome this problem, a popular strategy [Ana89, BA96, BBPW04, MP98] is to
use a coarse-to-fine multiscale warping strategy that uses downsampled images: At each
warping level ℓ, the flow field is split into (uℓ, vℓ, 1)⊤+ (δuℓ, δvℓ, 0)⊤, where (uℓ, vℓ, 1)⊤=:
wℓ denotes the already computed solution from coarser levels and (δuℓ, δvℓ, 0)⊤ is the
unknown flow increment to be computed at the current level. As the increments are
small, they can be computed by our discussed linearised approach. As soon as the
increments are computed, the flow at the next finer level ℓ+1 is then obtained by adding
the two quantities, i.e. (uℓ+1, vℓ+1, 1)⊤ := (uℓ, vℓ, 1)⊤ + (δuℓ, δvℓ, 0)⊤. This proceeding is
continued until the finest level (original resolution) is reached.

To illustrate how above strategy works in practise we apply it to our complemen-
tary optic flow model [10, 11] that is obtained by using our final data term (4.35) in
combination with our complementary regulariser (4.82). The resulting Euler-Lagrange
equations that need to be solved to obtain the increment (δuℓ, δvℓ, 0)⊤ then read as

0 =
3∑
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+ γ

(
3∑

c=1

Ψ′
M

((
δwℓ

)⊤(
J̄

c
xy

)ℓ
δwℓ

)
·
([(

J̄
c
xy

)ℓ]
1,1

δuℓ +
[(
J̄

c
xy

)ℓ]
1,2

δvℓ +
[(
J̄

c
xy

)ℓ]
1,3

))

−α div

(
Dℓ

CR∇2

(
uℓ + δuℓ

))
,

0 =
3∑

c=1

Ψ′
M

((
δwℓ

)⊤(
J̄

c
0

)ℓ
δwℓ

)
·
([(

J̄
c
0

)ℓ]
1,2

δuℓ +
[(
J̄

c
0

)ℓ]
2,2

δvℓ +
[(
J̄

c
0

)ℓ]
2,3

)
(5.57)

+ γ

(
3∑

c=1

Ψ′
M

((
δwℓ

)⊤(
J̄

c
xy

)ℓ
δwℓ

)
·
([(

J̄
c
xy

)ℓ]
1,2

δuℓ +
[(
J̄

c
xy

)ℓ]
2,2

δvℓ +
[(
J̄

c
xy

)ℓ]
2,3

))

−α div

(
Dℓ

CR∇2

(
vℓ + δvℓ

))
,

103



CHAPTER 5. NUMERICS

where we defined δwℓ := (δuℓ, δvℓ, 1)⊤ to ease notation. Further note that the warped
image sequence f(x+wℓ) is used in the computation of the motion tensors J ℓ and the
diffusion tensor

Dℓ
CR :=

(
rℓ
1|rℓ

2

)( Ψ′
V

(
(uℓ+ δuℓ)2

rℓ
1

+ (vℓ+ δvℓ)2
rℓ
1

)
0

0 1

)((
rℓ
1

)⊤
(
rℓ
2

)⊤

)
. (5.58)

The vectors rℓ
1 and rℓ

2 are the eigenvectors of the regularisation tensor Rℓ
ρ which also

needs to be computed from the warped image sequence f(x+wℓ).
We want to stress that Brox et al. [BBPW04] showed that the presented warping

scheme is a mathematically consistent strategy for minimising an energy functional with
a data term where no linearisation is performed. Such a version of our final data term
(4.35) is given by

M(u, v) =
3∑

c=1

ΨM

(
θc0 (f

c(x+w)−f c(x))2
)

(5.59)

+ γ

(
3∑

c=1

ΨM

(
θcx (f

c
x(x+w)−f c

x(x))
2 + θcy

(
f c
y(x+w)−f c

y(x)
)2
))

.

As large displacements occur in most real world image sequences, all results shown in
this thesis have been computed using the presented warping scheme.

Implementation Details

To evaluate the images at the warped subpixel locations f(x+wℓ) we again use Coons
patches based on bicubic interpolation [Coo67].

To obtain a coarse representation of our problem, we downsample the image sequence
by a factor η ∈ [0.5, 1). In order to prevent aliasing problems, we apply a low-pass filter
to the images prior to downsampling [SW49, Uns00]. The latter is realised by a Gaussian
convolution with standard deviation

√
2/(4η). The actual downsampling is then realised

by an area-based resampling strategy [BWF+05] that operates on the smoothed images.
In most cases, the aliasing artefacts will not significantly deteriorate the flow estimation,
which can be attributed to the robust data term. However, for the Urban sequence
from the official Middlebury benchmark[BSL+10], anti-aliasing is crucial for obtaining
reasonable results, see Figure 5.8. As it turns out, the large displacement of the building
in the lower left corner can only be estimated when using anti-aliasing. We explain this
by the high frequent stripe pattern on the façade of the building.

In order to warp the image sequence at the next finer grid, we need to upsample the
already computed flow field. This is again done by area-based resampling.

Adapting the Smoothness Weight to the Warping Level. The influence of the
data term usually becomes smaller at coarser levels of our multiscale framework. This
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(a) Frame 10 (b) Frame 11 (c) No anti-aliasing (d) Anti-aliasing

Figure 5.8: Importance of anti-aliasing on the example of the Urban sequence. From left to right:
(a) Frame 10. (b) Frame 11. (c) Our result without anti-aliasing. (d) Same with the proposed anti-
aliasing strategy. All results used the fixed parameters α = 500.0, σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95.
For this sequence, no ground truth is publicly available.

is due to the smoothing properties of the downsampling that leads to smaller values of
the image gradients at coarse levels. Such a behaviour is in fact desirable as the data
term might not be reliable at coarse levels. Our proposed data term normalisation leads,
however, to image gradients that are approximately in the same range at each level. To
recover the previous reduction of the data term at coarse levels, we propose to adapt
the smoothness weight α to the warping level ℓ. This is achieved by setting α(k) = α/ηℓ

which results in larger values of α and an emphasis of the smoothness term at coarse
levels.

5.3.2 Different Solution Strategies

Let us now turn to solution strategies for the Euler-Lagrange equations (5.56) and (5.57)
that have to be solved at each level of the warping scheme.

5.3.3 Elliptic Approach

A common solution strategy is to discretise the elliptic Euler-Lagrange equations and
then solve the arising system of equations.

Discretising the Euler-Lagrange equations on the one hand requires to discretise
the motion tensor entries J which comes down to approximating the occurring image
derivatives. We realise this by using finite difference approximations, see Section 5.1.1.
If not stated otherwise, we used central difference approximations of fourth order in
our experiments. The discretisation of the flow vectors (uℓ, vℓ) as well as (δuℓ, δvℓ) is
straightforward and was shortly sketched in our preliminaries chapter, see Section 3.4.
To denote the discrete versions of the flow fields evaluated at pixel (i, j), we use the
notation [·]i,j , e.g. uℓ(x, y) will be discretised as [uℓ]i,j . Similarly, the discrete version
of the motion tensor entry [J ]m,n(x, y) in row m and column n is denoted by [J ]m,n; i,j.
Finally, we need to discretise the divergence expressions div(Dℓ

CR∇2(u
ℓ + δuℓ)) and

div(Dℓ
CR∇2(v

ℓ + δvℓ)). As shown in Section 5.1.1 we can write the discrete divergence
expressions as a weighted sum of differences. In the present case, i.e. within the warping
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framework, we get

div

(
Dℓ

CR∇2

(
uℓ+δuℓ

))
≈
∑
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where the weights [w]ℓĩ,j̃ now need to be computed with the current flow estimate (uℓ +

δuℓ, vℓ + δvℓ) as well as with the warped image sequence f(x+wℓ).
With this notation, a discrete version of the Euler-Lagrange equations (5.56) and

(5.57) reads as
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Solving the discretised Euler-Lagrange equations (5.62) and (5.63) for the unknowns
δuℓ and δvℓ comes down to solving a large nonlinear system of equations. Note that
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large here means that for an image sequences with a resolution of 1 Megapixel, storing
the system matrix would require several Terabyte of memory. Thus, a direct solution is
intractable and one has to resort to an iterative solver, such as the Jacobi, Gauss-Seidel
or SOR solver [You03]. Let us briefly explain how to apply such iterative solvers to our
problem.

The first observation is that the mentioned iterative solvers can only handle linear
systems of equations, but our discretised Euler-Lagrange equations (5.62) and (5.63)
lead to nonlinear systems as the unknowns δuℓ and δvℓ occur in the argument of the Ψ′

M

function and implicitly also in the weights [w]ℓ
ĩ,j̃

that are computed from the diffusion

tensorDℓ
CR. A common remedy to this problem is to embed the solution of the nonlinear

system into a series of linear systems that can be solved by the discussed methods. This
strategy is known as time-lagged nonlinearity, or Kačanov–Galerkin method [FKN73].
To obtain the linear systems, we evaluate the nonlinear terms with a current solution
of the flow field (initially we use a zero solution) and after some iterations of the linear
solver, we recompute the nonlinearities with the updated solution. Then the iterative
solver is again applied to the updated linear system. These steps are iterated in two
nested loops (the outer loop updates the nonlinearities, the inner loop updates the
solution by some solver iterations) until some stopping criterion, usually a maximal
number of inner and outer iterations, is met.

Let us briefly sketch how the discussed iterative solvers for the linear systems work.
We consider a general linear equation system given as

Au = b , (5.64)

whereA ∈ R
2N×2N denotes the block-diagonal system matrix (withN := nx·ny denoting

the number of pixels), u ∈ R
2N is the unknown flow field, and the right-hand side is

denoted by b ∈ R
2N . As the matrix A is positive definite for non-constant image

sequences, the solution of the system is given by

u = A−1 b , (5.65)

which requires to compute the inverse A−1 of the system matrix. This, however, is in
general a difficult and time-consuming task.

The basic idea of iterative solvers is to find an efficient way to compute an approxi-
mation of this inverse. A first step towards this goal is the decomposition of the system
matrix into A = A1 +A2. With this, we can rewrite (5.64) as

A1 u+A2 u = b . (5.66)

This in turn enables us to come up with the fixed point iteration

A1 u
k+1 = b−A2 u

k , (5.67)

where k denotes the iteration index, i.e. uk is the already computed solution and uk+1

is the unknown result of the next iteration. Next, we rewrite equation (5.67) as

uk+1 = A−1
1 (b−A2 u

k) , (5.68)
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where A−1
1 should be a reasonable and efficient to compute approximation of A−1.

A frequent approach for an efficient approximation of A−1 bases on the decompo-
sition A = Ad − Al − Au, where Ad denotes the diagonal part, Al the strictly lower
triangular part and Au the strictly upper triangular part of A. A popular solver re-
lying on this decomposition is the Gauss-Seidel method, which is similar to the Jacobi
method, but more efficient. The Gauss-Seidel method defines A1 = Ad−Al, which is a
triangular matrix and is hence easy to invert. Consequently, A2 = −Au, as we imposed
that A = A1 + A2 = Ad − Al − Au. Using these decomposition in the fixed point
scheme (5.68) yields

uk+1 = (Ad −Al)
−1(b+Au u

k) . (5.69)

For our Euler-Lagrange equations (5.62) and (5.63), this results in the following
Gauss-Seidel iteration step
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where we initialise the iterations with zero, i.e. δuℓ,0 = 0 and δvℓ,0 = 0 and the weights
[w]ℓ,k are now computed from a diffusion tensor Dℓ,k

CR that is obtained with the current
flow estimate wℓ + δwℓ,k. Note that we furthermore introduced the following abbrevia-
tions to ease notation: The sum

∑

c,a

:=
3∑

c=1

∑

a∈{0,xy}

, (5.72)

sums over the image channels c and the two constancy assumptions a ∈ {0, xy}, where 0
denotes the brightness constancy assumption and xy the gradient constancy assumption.
The parameter γ(a) is defined as γ(0) := 1 and γ(xy) := γ. To denote the derivative of
the penaliser in the data term, we define

[
Ψ′

M

(
J̄

c

a

)]ℓ,k
i,j

:= Ψ′
M

([
δwℓ

]k
i,j

⊤ [(
J̄

c

a

)ℓ]
i,j

[
δwℓ

]k
i,j

)
. (5.73)
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Finally, N−
i,j and N+

i,j denote the already processed and the still to be processed neigh-
bours of (i, j), respectively.

A popular strategy for speeding up the presented Gauss-Seidel scheme is to perform
an overrelaxation as in the SOR (Successive Overrelaxation) method. The basic idea of
the latter method is to extrapolate the result of one Gauss-Seidel step. If we denote by
uk+1

GS the result of a Gauss-Seidel iteration, then the SOR scheme reads as

uk+1 = (1− ω)uk + ω uk+1
GS = uk + ω

(
uk+1

GS − uk
)
, (5.74)

with an overrelaxation parameter ω ∈ [0, 2). For ω = 1 one falls back to the Gauss-
Seidel scheme. We propose to set ω = 1.95 which gives good results and allows for a
speedup of two orders of magnitude compared to the original Gauss-Seidel scheme.

A further speed up can be achieved when updating the nonlinearities [Ψ′
M(J̄

c

a)]
ℓ,k
i,j

and [w]ℓ,k
ĩ,j̃

not after every iteration, but keeping them fixed for some iterations. This

is implemented using two nested loops, as described in the context of the time-lagged
nonlinearity method (see page 107).

Multigrid Solver

A further speed up compared to the SOR solver can be achieved by using highly efficient
multigrid solvers, see e.g. [Bra77, BWKS06, Hac85, KKR07, Ter86]. For the experiments
in this thesis, we used the full multigrid solver of Bruhn et al. [BWKS06], unless stated
otherwise.

Full multigrid schemes combine ideas from unidirectional and bidirectional multigrid
methods. The basic strategy of unidirectional methods is to start the iterative solution
with a good initialisation to reduce the required number of iterations. To obtain this
initialisation, the problem is transferred to a smaller (coarser) pixel grid and solved there,
which should be relatively fast. The coarse solution is then interpolated and serves as
initialisation on the next finer grid. Consequently, unidirectional methods belong to
the class of coarse-to-fine strategies. In contrast to unidirectional schemes, bidirectional
strategies do not only go from coarse to fine levels, but also revisit coarser levels to
obtain correction steps. This is motivated by the fact that iterative solvers eliminate
high frequency errors relatively fast, but require a very large number of iterations until
low-frequent errors vanish. However, the low frequencies occur as high frequencies on
coarser grids. There, one then computes the error (not the solution) that was still
present in the fine grid solution and then corrects the fine grid solution for the estimated
error.

For our experiments, we use a Gauß-Seidel type solver with alternating line relax-
ation [BWKS06] to solve the problems arising at each grid level. Please also note that
an in-detail explanation of sophisticated multigrid schemes would by far exceed the
scope of this thesis. For a comprehensive overview on multigrid methods for optic flow
computation, we refer the interested reader to [Bru06].
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5.3.4 Parabolic Approach

An alternative to the previously discussed elliptic approach is to apply a gradient descent
scheme on the Euler-Lagrange equations. This comes down to solving a system of two
coupled diffusion-reaction equations of parabolic type. The latter can be derived from
the Euler-Lagrange equations (5.56) and (5.57) and read as

∂θ δu
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(5.75)
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where ∂θ δu
ℓ and ∂θ δv

ℓ denote derivatives in a numerical time direction. To derive above
diffusion reaction equations (5.75) and (5.76) from the Euler-Lagrange equations (5.56)
and (5.57), we proceeded in two steps: First we replace the zeros on the left-hand side by
the numerical time derivatives, which makes sense as in the steady state (θ → ∞), the
numerical time derivatives tends to zero. Then, we switch the signs on the right-hand
side of the Euler-Lagrange equations to obtain a gradient descent behaviour.

To solve the diffusion-reaction equations (5.75) and (5.76), it is common to use
iterative schemes. The latter compute the sought flow increment δwℓ starting from an
initialisation δwℓ,0 := (δuℓ,0, δvℓ,0, 1)⊤. As before, we initialise the iterations with zero.
The result of the next iteration δwℓ,k+1 := (δuℓ,k+1, δvℓ,k+1, 1)⊤ is then computed from
the previous result δwℓ,k := (δuℓ,k, δvℓ,k, 1)⊤. The iterations are stopped as soon as a
stopping criterion is met, e.g. when the difference between the results of two subsequent
iterations drops below a given threshold. If this is the case we can consider the scheme
to have reached the desired steady state where ∂θ δu

ℓ ≈ 0 and ∂θ δv
ℓ ≈ 0.

Stabilised Explicit Scheme. In order to obtain an iterative scheme, we first discre-
tise the numerical time derivatives by the forward differences

∂θ δu
ℓ ≈ δuℓ,k+1 − δuℓ,k

τ
, and ∂θ δv

ℓ ≈ δvℓ,k+1 − δvℓ,k

τ
, (5.77)

where τ denotes the numerical time step size.
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The simplest form of an iterative scheme is then given by an explicit scheme that
uses the old value at iteration k for all occurrences of the unknowns at the right-hand
side. To stabilise such a scheme, one can use the new value at iteration k + 1 in the
reaction part. This gives the following stabilised explicit scheme (where we mark the
stabilisation in red):
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ĩ,j̃

−
[
δvℓ,k

]
i,j

+
[
vℓ
]
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Solving these equations for the unknowns δuℓ,k+1 and δvℓ,k+1 is straightforward and gives
the desired iterative scheme to be implemented.

Obviously, explicit schemes are appealing because they are very easy to deduce and to
implement: In contrast to the previously described elliptic approach, it is not necessary
to solve a large nonlinear system of equations, but an iterative solution scheme can
directly be deduced. However, there is also a price to pay: The stability of explicit
schemes can only be guaranteed when using rather small time step sizes τ . This results
in a poor performance as many iterations are required to reach the desired steady state.
In the considered 2D case, the time step limit τ

lim
is given by

τ
lim

=
1

mmax

(
2
h2
1

+ 2
h2
2

) , (5.80)

where we recall that h1 and h2 denote the grid size in x- and y-direction, respectively.
By mmax we denote the maximum of the larger eigenvalue over all diffusion tensors
D

ℓ,k
CR. Considering (5.80) we realise that large eigenvalues of the diffusion tensors will

decrease the time step size limit even further. When using our complementary smooth-
ness term (4.82), the eigenvalues of the resulting diffusion tensor D

ℓ,k
CR are given by 1

and Ψ′
V (s

2), respectively. As we use the Perona-Malik penaliser, we have Ψ′
V (s

2) ≤ 1,
see (4.65), and consequently mmax ≤ 1. In this sense, our complementary regulariser is
well-suited for an explicit scheme.
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Scheme Step Sizes for 1000 Iterations Stopping Time

Explicit = 500.00

FED = 166 833.33

Figure 5.9: Comparing the stopping time of a standard explicit scheme after 1000 iterations to a
corresponding FED cycle. The resulting speed-up factor is 334. Note that this example considers the
1D case where the step size limit is 0.5 for an explicit scheme. Illustration: P. Gwosdek.

5.3.5 A Fast Explicit Solver

Our discussion on explicit schemes show that it is desirable to modify an explicit scheme
s.t. larger time steps can be used and thus fewer iterations are needed until a steady
state is reached. This would combine the easy implementation of explicit schemes with
the efficiency of the sophisticated solvers for elliptic approaches. This goal was recently
achieved by Grewenig et al. [GWB10]. They presented a Fast Explicit Diffusion (FED)
scheme, an explicit scheme that uses some extremely large time steps to ensure a fast
convergence. As could be shown, the combination of large (unstable) and small (stable)
time steps within one cycle allows to guarantee unconditional stability of the complete
approach. An illustrated example for an FED cycle compared to a standard explicit
scheme is shown in Figure 5.9. Hence, FED schemes outperform elliptic schemes in
terms of efficiency and are additionally much easier to implement, especially on massively
parallel architectures like GPUs.

In our paper [3], we showed that although FED schemes were originally developed
for solving diffusion problems, they can easily be adapted for solving the Euler-Lagrange
equations of variational optic flow approaches. An intuitive reason for this is that the
Euler-Lagrange equations actually are of diffusion-reaction type. We apply the FED
scheme within our modified explicit scheme from (5.78) and (5.79) by replacing the
previously fixed time step size τ by a varying FED step size τk which is computed
as [GWB10]

τk = τ
lim

· 1

2 cos2
(
π 2k+1

4n+2

) , (5.81)

where n denotes the number of iterations in the current cycle.

Remarks. The result of FED iterations only makes sense at the end of a cycle, where
the unstable time steps have been compensated by stable ones. We thus can only
update the nonlinearities in the weights and the penaliser function Ψ′

M only if a cycle
is completed and not in between a cycle.
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The number of individual time steps n in a cycle is given by min{n ∈ N
+ | (n2 +

n)/12 ≥ T}, where T denotes the desired stopping time of the cycle. For n ≥ 3, one
can show that an FED cycle reaches this stopping time T faster than any other explicit
scheme with n stable time step sizes.

Moreover, the ordering of steps within one FED cycle is irrelevant from a theoretical
point of view, but can in practise affect the influence of rounding errors on the result.
However, it is possible to find permutations of the set {τk | 0 ≤ k < n} that are
more robust w.r.t. floating-point inaccuracies than others. Given the next larger prime
number p to k and let κ < p, a series {τk̃ | k̃=((k+1) · κ) mod p, k̃ < n} is known to
give good results [GS78, GWB10]. In order to find a suitable value for the parameter
κ, we analysed a simple 1-D problem and choose the one κ that minimises the error
between the FED output and the analytic reference solution. These values were once
computed for all practical choices of n to set up a lookup table which is used throughout
our implementation.

Further Improvements. The already high performance of our FED optic flow ap-
proach can further be boosted by using a simple unidirectional coarse-to-fine multigrid
scheme as described above in Section 5.3.3. We call the resulting solver cascadic FED
(CFED).

Finally, our whole approach is parallelised on a GPU using the NVidia CUDA archi-
tecture [NVI10] which is well-suited for FED and CFED solvers due to their algorithmic
simplicity. To obtain a high performance despite the large amounts of data involved in
our computations, we pay particular attention to an efficient use of on-chip memory to
reduce transfers from and to global memory. For more details on the GPU implemen-
tation, we refer to our paper [3].

A Note on Semi-Implicit Schemes. An alternative to overcome the strict limi-
tations on the time step size can be to use semi-implicit schemes which are in fact
unconstrained in their time step sizes. There, one uses the new value from the current
iteration k + 1 also in the divergence expression on the right-hand side. However, this
makes it impossible to explicitly solve the arising equations for the unknowns δuℓ,k+1

and δvℓ,k+1. Instead, if one rearranges the equations s.t. all occurrences of the unknowns
are shifted to the left-hand side, one again ends up with a linear system of equations
that has to be solved at each iteration by some iterative solvers, e.g. the discussed SOR
solver. As parabolic semi-implicit schemes play no role in the present work, we do not
go into detail here.

Remarks on Stereo

The solution schemes for orthoparallel stereo can be derived from above optic flow
schemes in a straightforward manner. The only differences are that: (i) We obtain
only a single equation for the unknown δuℓ. (ii) All occurrences of the vertical flow
component are removed by setting δvℓ = vℓ = 0. (iii) A stereo tensor in the form (4.40)
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is used instead of the motion tensors. Here, one should keep in mind that the entry 1, 1
of the stereo and motion tensor are identical, but the entry 1, 2 of the stereo tensor is
equivalent to the entry 1, 3 of the motion tensor, and the entry 2, 2 of the stereo tensor
is equivalent to the entry 3, 3 of the motion tensor.

5.4 Experiments

The following experiments compare efficient CPU and GPU implementations and also
show some results that could be obtained on a modern smartphone.

5.4.1 Multigrid on CPU versus CFED on GPU

We start by comparing CPU and GPU implementations. On the CPU side, we use
the full multigrid solver of Bruhn et al. [BWKS06], whereas a parallel CUDA imple-
mentation of our cascadic fast explicit diffusion (CFED) solver [3] is used on a GPU
architecture. We compare the two solvers on the Middlebury training data sets and use
our complementary optic flow method [10, 11]. In contrast to the original formulation,
we refrain from an HSV colour representation and resort to the standard RGB colour
space out of simplicity and efficiency reasons. Additionally, we restrict the number of
warping levels to 40 for the Urban 2, Urban 3 and the Venus sequence, and to 10 for
the remaining sequences.

Considering the results shown in Table 5.5 and Figure 5.10, it turns out that our
GPU algorithm allows to obtain speedup factors of up to 55. The quality of results
can be considered to be comparable to the CPU implementation, where some degree
of impairment had to be accepted for preserving the possibility of an efficient parallel
implementation. We furthermore want to note that due to a better GPU occupancy, the
speed up factors are even higher for larger image sizes. This is illustrated in Figure 5.11
where we plotted the runtimes for images of size ratio 4:3 for different image sizes. As
we can see, our method scales linearly for image sizes larger than 0.5 Megapixel. Below,
the efficiency is reduced.

5.4.2 Results on a Mobile Phone

The simple structure of an explicit scheme in combination with the fast CFED solver
does not only enable implementation on powerful GPUs, but also on mobile platforms,
like modern smartphones. As a proof of concept, we showed in [4] that it is possi-
ble to implement basic variational optic flow methods like the method of Horn and
Schunck [HS81] and the CLG method [BWS05] on an Android smartphone. For small
test images of size 316× 252 we achieved interactive runtimes of about 10 seconds, see
Figure 5.12.
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Table 5.5: Comparison of a sequential full multigrid (FMG) solver [BWKS06] on the CPU to our
parallel cascadic fast explicit diffusion (CFED) solver [3] on the GPU. We use the Middlebury training
sequences and give the AAE measure together with the corresponding runtimes and the speed up factor
achieved by the CFED solver. Our CPU code was executed on a Intel Pentium 4 (3.2 GHz), the GPU
code on a GeForce GTX 480

Sequence Size FMG (CPU) CFED (GPU) Speedup

Rubberwhale 584× 388 2.57◦ (17.5 s) 3.28◦ (0.38 s) 46
Hydrangea 584× 388 1.81◦ (17.5 s) 2.05◦ (0.38 s) 46
Dimetrodon 584× 388 1.57◦ (17.5 s) 1.56◦ (0.38 s) 46
Grove 2 640× 480 2.43◦ (23.5 s) 2.43◦ (0.43 s) 55
Grove 3 640× 480 5.41◦ (23.5 s) 5.30◦ (0.43 s) 55
Urban 2 640× 480 2.59◦ (38.0 s) 2.74◦ (1.04 s) 37
Urban 3 640× 480 2.94◦ (38.0 s) 3.35◦ (1.04 s) 37
Venus 420× 380 3.89◦ (20.0 s) 4.24◦ (0.82 s) 24

(a) Reference frame (b) Ground truth

(c) CPU Full Multigrid (d) GPU CFED

(AAE = 2.57◦, 17.5 s) (AAE = 3.28◦, 0.38 s)

Figure 5.10: Comparison of results on the Rubberwhale sequence (584×388) obtained with a sequential
full multigrid (FMG) solver [BWKS06] on the CPU to our parallel cascadic fast explicit diffusion
(CFED) solver [3] on the GPU. First row, from left to right: (a) Reference frame. (b) Ground truth
(white pixels mark locations where no ground truth is available). Second row, from left to right: (c)
Flow field obtained with the multigrid scheme on the CPU. (d) Same for our CFED scheme on the
GPU.
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Figure 5.11: Runtime of our CFED GPU algorithm w.r.t. the image size. Illustration: P. Gwosdek.

(a) First image (b) Parameter dialog

(c) Horn and Schunck (d) CLG

Figure 5.12: Optic flow on a mobile phone. First row, from left to right: (a) First image of the
Yosemite without clouds sequence. (b) Parameter adjustment dialog. Second row, from left to right:
(c) Result with the Horn and Schunck model (AAE = 5.49◦ in 10.5 seconds). Flow field visualised
by colour code shown in bottom left corner. (e) Result with the CLG model (AAE = 5.12◦ in 10.6
seconds).
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Chapter 6

Applications

Il n’existe pas de sciences appliquées, mais seulement des
applications de la science.

Louis Pasteur

In Chapter 1, we pointed out that various applications in the fields of computer vision
and image processing require to solve correspondence problems. One example is shown in
the following where we consider a problem from the field of computational photography:
the alignment of exposure series for HDR imaging [DM97, MP95, RWPD05, RBS99].
This comes down to estimating the displacements in the exposure series, which we realise
by a modified variational optic flow approach that we presented in [9].

In the same work we leveraged the subpixel precision of the resulting flow fields to
combine concepts from super-resolution (SR) methods [PPK03] and HDR imaging in
a joint super-resolution and HDR (SR-HDR) technique that computes an image with
enhanced dynamic range and spatial resolution.

6.1 HDR Imaging

Before presenting our alignment strategy, we first want to briefly discuss the basics of
HDR imaging.

6.1.1 Why Do We Need HDR Imaging?

We usually model images as continuous functions that map from the image domain
Ω ⊂ R

2 to the co-domain R. However, digital images are inherently discrete, they are
actually discrete samples of the continuous world. In Section 3.4 we discussed how the
image domain Ω can be discretised. Let us for now still assume that the image domain
Ω is continuous and focus on the co-domain.
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Typical image formats such as JPEG, PNG or PPM reserve 1 byte, i.e. 8 bits of
storage per pixel and colour channel, resulting in 256 different values for each channel.
This means that the image co-domain of each channel is in fact sampled (quantised) and
can be represented by the discrete set {0, .., 255}. The dynamic range –the ratio between
smallest and largest value that can be expressed– thus spans two orders of magnitude in
the discussed case. This range also correspond to the actual dynamic range of common
display devices (LCD and CRT displays) as well as print media. However, the dynamic
range of real world scenes is orders of magnitude larger: Outdoor scenes may exhibit a
dynamic range of up to 5 orders of magnitude between shadows and highlights, or even
more when a light source, e.g. the sun, is directly visible. This leads to the obvious
problem that today’s low dynamic range (LDR) images that have been taken with
standard cameras either suffer from under-saturation (black pixels) in dark regions or
from over-saturation (white pixels) in bright regions.

Note that many digital SLR cameras allow to take images in a RAW format that
stores the measured data without further quantisation and allows for up to 14 bits per
pixel. However, the resulting dynamic range still only spans 4 orders of magnitude which
is still insufficient in difficult scenarios, as discussed above.

6.1.2 The Basics of HDR Imaging

A popular way to overcome the described problem is to consider a set of images taken
with varying exposure times, a so-called exposure series 1. In this way, despite using
a LDR sensor, the dark parts of the scene can be captured in the long exposures and
the bright parts in the short exposures, respectively. By fusing the information from a
complete exposure series, HDR imaging techniques [DM97, MP95, RWPD05, RBS99]
compute a single image with increased dynamic range. More precisely, the resulting
image should ideally describe the actual scene radiances and thus capture the full dy-
namic range of the scene. This is of course only possible if the exposure series covers a
sufficiently large number of exposures. To get an idea how the radiances can be com-
puted from the exposure series, we briefly subsume in the following the HDR imaging
technique of Robertson et al. [RBS99].

Notation and Observation Model. Assume we have taken an exposure series con-
sisting of ne images fk : Ω → {0, .., 255} for k = 1, .., ne. The corresponding exposure
times we denote by tk ∈ R

+. Our goal is now to compute a radiance map r : Ω → R
+

from the given exposure series.
The basic observation model for HDR imaging relates the measured image intensities

fk and corresponding exposure times tk to the unknown radiances r via

fk(x, y) = φ
(
tk r(x, y)

)
, (6.1)

1Also called Wyckoff set in honour of Charles Wyckoff who already in the 1930s combined differently
exposed film layers to extend the dynamic range of photographic films.
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Figure 6.1: Estimated response curve for our Nikon D90 DSLR camera. It was obtained using the
calibration method described in [RBS99]. We only visualise the response for the red colour channel,
as it is very similar to the ones of the two other channels. From left to right: (a) Response curve
(logarithmically scaled). (b) Close-up view.

for k = 1, .., ne and where φ : R+ → {0, .., 255} denotes the camera response function,
or camera response curve. The latter describes how the amount of light arriving at
the image sensor (given by tk r and referred to as exposure) is mapped to a pixel value
fk. The response function can be estimated from an exposure series by a calibration
procedure as for example described in [DM97, RBS99]. This has to be done only once
for a specific camera and we are thus justified in assuming that the response function is
known when computing the radiances.

Considering colour images, one usually assumes the same observation model for each
colour channel, but with a distinct response function for each channel.

A Note on Camera Response Functions. Let us take a look at a typical response
functions for digital cameras. In Figure 6.1 we show the response curve for a standard
DSLR camera (Nikon D90). This camera was also used for capturing the images used
in our experiments that will be shown in Sections 6.2.4 and 6.3.4.

Due to the discrete nature of digital cameras, the response curve is in fact a piecewise
constant function, which means that always a whole interval of radiances is mapped to
one pixel value, see Figure 6.1 (b). The size of these intervals depends on the slope of the
response function. If the response function is steep, only a small interval of radiances
maps to one pixel value, which is desirable. In flat regions, however, larger intervals
of radiances map to the same pixel value, which reduces the reliability of the radiance
computation there. If we reconsider the response function in Figure 6.1 (a), we realise
that the function is rather steep in the middle range and becomes flat when approaching
its extremes, 0 and 255. According to our previous argumentation, one should thus
reduce the influence of rather dark and bright pixels from the radiance computation.
This can easily be achieved by using a weighting function ω : {0, .., 255} → [0, 1] in the
final radiance computation.

In the literature, several weighting functions have been studied, see [GAW+10] for
a comprehensive overview. For our experiments, we use the Gaussian-like weighting
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Figure 6.2: Gaussian-like weighting function.

function proposed in [RBS99]. It is given by

ω
(
fk(x, y)

)
=: ωk(x, y) := exp

(
−s ·

(
fk(x, y)− 127.5

)2

(127.5)2

)
, (6.2)

with a scale parameter s. A plot of this function for s = 8 is shown in Figure 6.2.
Furthermore, it makes sense to set ω = 0 if the weight would become smaller than a
threshold value, say 0.001. This completely disables the influence of less reliable pixels.
Note in this context that the weight for fully saturated pixels (fk = 255) should anyway
be equal to zero, i.e. ω(255) = 0. The reason for this is that the radiance information
from saturated pixels is completely unreliable as any radiance above a certain threshold
will result in a pixel value of 255.

Computing the Radiances. The sought radiances r are found by minimising an
energy formulation. It solely consists of a data term that penalises deviations from the
observation model (6.1) and is weighted by the discussed weight function ω. To derive
the data term, let us first rewrite the observation model as

fk(x, y) = φ
(
tk r(x, y)

)

⇒ φ−1
(
fk(x, y)

)
= tk r(x, y)

⇔ φ−1
(
fk(x, y)

)
− tk r(x, y) = 0 , (6.3)

for k = 1, .., ne and where φ−1 denotes the inverse of the camera response function. For
notational convenience we further define Ik(x, y) := φ−1(fk(x, y)). Using this notation
and performing a quadratic penalisation of (6.3) together with the weighting yields the
energy

E(r) =

∫

Ω

(
ne∑

k=1

ωk(x, y)
(
Ik(x, y)− tk r(x, y)

)2
)

dx dy . (6.4)
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To obtain a necessary condition for a minimiser of the energy (6.4) we set its derivative
w.r.t. the unknown radiance r to zero, resulting in

0 = ∂rE(r) = −2
ne∑

k=1

ωk(x, y) tk
(
Ik(x, y)− tk r(x, y)

)

= −2

(
ne∑

k=1

ωk(x, y) tk Ik(x, y)−
(

ne∑

k=1

ωk(x, y) t
2
k

)
r

)
. (6.5)

Solving (6.5) for r finally yields

r(x, y) =

ne∑

k=1

ωk(x, y) tk Ik(x, y)

ne∑

k=1

ωk(x, y) t
2
k

. (6.6)

If colour images are to be processed one applies above formula for each channel inde-
pendently while considering the individual response functions of each channel.

Let us finally remark that the obtained radiances are in fact just relative radiances,
i.e. scaled versions of the actual radiances. This scaled information is of course sufficient
to solve the LDR problem as well as for most further applications of HDR images, such
as image-based modelling, image processing and compositing [DM97].

Displaying HDR Images – Tone Mapping. One issue in HDR imaging is that
the dynamic range of current display devices is much lower than the dynamic range of
the HDR radiance maps obtained with the described method. The same holds true for
any print media. Consequently, one first needs to compress the dynamic range of HDR
images before displaying them, which is known as tone mapping.

Simple tone mapping methods apply the same transform to all pixels in the image
and are thus classified as global operators. One of the most basic representatives of this
type is a logarithmic scaling that can be written as

Tlog

(
r(x, y)

)
= Tmax ·

log (1− rmin + r(x, y))

log (1− rmin + rmax)
, (6.7)

where Tmax denotes the desired maximum of the tone mapped result (often Tmax = 255)
and rmin and rmax are the minimum and maximum of all radiance values, respectively.

Global tone mapping algorithms are fast and easy to implement, but often discard
lots of the fine scale details present in the original HDR image. To overcome this
problem, more sophisticated tone mapping strategies have been proposed that try to
compress the overall dynamic range, while preserving as much details as possible. One
example for such a method is the gradient domain approach of Fattal et al. [FLW02].
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Here, the gradients of the radiance map are considered and a scaling function is ap-
plied that compresses large gradients (reduces the dynamic range), while boosting small
gradients (preserving fine details). The tone mapped result is then obtained by inte-
grating the modified gradient field by solving the Poisson equation. We used this tone
mapping operator from [FLW02] for displaying all HDR results shown in this thesis.
Specifically, we use the implementation of the pfstools package [MKMS07] (http://
pfstools.sourceforge.net) with the parameters α = 1.0, β = 0.95, s = 0.8. Please
do not confuse this parameters with the correspondent parameters in this thesis. After
the tone mapping, we additionally perform a gamma correction with γ = 2.0.

Note that a comprehensive survey on other tone mapping techniques would exceed
the scope of this work and we refer the interested reader to [RWPD05].

6.2 Aligning Exposure Series for HDR Imaging

Taking a closer look at equation (6.6) reveals that the HDR result at a certain position
is obtained by computing a weighted average over the radiances computed from the ex-
posure series at this very location. Such a strategy naturally requires perfectly aligned
images without displacements between them. This assumption is, however, hardly ful-
filled in real world scenarios due to moving objects (persons, clouds, etc.) or camera
shake.

In [9] we tackled this problem by adapting a modern optic flow technique to esti-
mate the displacements in the exposure series. This approach seems promising due to
the robustness, high accuracy and efficiency of recent optic flow methods, which was
also demonstrated in the previous chapters of this thesis. Note that as soon as the
displacements are known, one can align the exposure series by compensating the images
for the displacements.

6.2.1 Variational Optic Flow on Exposure Series

Assume we are given an exposure series fk : Ω → R for k=1, . . . , ne. Our goal is now to
estimate the displacements uk := (uk, vk)

⊤ between a reference image fr and the images
fk. Note that for k = r, we have uk = 0, of course. Some methods, e.g. [MG07] define
the reference image fr as the one with the highest entropy. Assuming that the exposure
series is ordered w.r.t. exposure times, the image with the highest entropy will mostly
be the middle image in the series. We are thus justified in defining r := ⌈m/2⌉, where
⌈·⌉ denotes the ceiling function. The latter is defined as ⌈x⌉ = min{n ∈ Z | n ≥ x}.

To use the notation we have introduced for optic flow, we can use the same idea as
in the stereo case and embed fk and fr in an image sequence. This results in fr(x, y) ≡
f(x, y, t) and fk(x, y) ≡ f(x, y, t+1). This allows to compute the sought displacement
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6.2. ALIGNING EXPOSURE SERIES FOR HDR IMAGING

(a) g1 (1/30 s) (b) g3 (1/80 s) (c) ∂xg1 (d) ∂xg3

Figure 6.3: Visualising the x-derivative for two images of an exposure series. From left to right: (a)
Image 1 (exposure time 1/30 s) (b) Image 3 (exposure time 1/80 s) (c) Visualisation of the x-derivative
of the red channel from the image in (a). (d) Same for (b).

fields uk by minimising an energy functional of our general form (4.1):

E(uk, vk) =

∫

Ω

(
M(uk, vk) + αV (∇2uk,∇2vk)

)
dx dy . (6.8)

Data Term. An appropriate design of the data term M(uk, vk) is mandatory for
obtaining reasonable results given images with different exposures. Note for example
that imposing brightness constancy does not make sense at all in this case. We propose
to use the gradient constancy assumption (4.17) [BBPW04, Sch94, TP84] in our data
term which results in using edge information for the alignment, see Fig. 6.3. As noted in
[War03], edges are not completely invariant under exposure changes, but our experiments
in Section 6.2.4 will show that they give a sufficient cue when used within a robust
variational approach.

To render our approach robust against outliers caused by saturation problems, noise
or occlusions, we perform a subquadratic penalisation of the gradient constancy assump-
tion. Furthermore, we normalise the data term to prevent an undesirable overweighting
that leads to artefacts in the displacement fields. Incorporating these concepts (that we
discussed in detail in Section 4.2) leads to the data term

M(uk, vk) = ΨM

((
u⊤

k , 1
)
J̄

C
xy

(
uk

1

))
, (6.9)

where we use the robust penaliser ΨM(s2) :=
√
s2 + ε2 as proposed in [BBPW04]. The

motion tensor is defined as

J̄
C
xy :=

3∑

c=1

J̄
c

xy (6.10)

:=
3∑

c=1

[
θcx

(
∇3f

c
x (∇3f

c
x)

⊤
)
+ θcy

(
∇3f

c
y

(
∇3f

c
y

)⊤)]
, (6.11)

where the superscript c denotes the RGB colour channels and the normalisation factors
θ are defined in (4.22).
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In preliminary experiments, we also investigated data terms that impose constancy
of the radiances to obtain invariance under exposure changes. This, however, requires a
preceding camera calibration step and knowledge of the exposure times as the radiances
are computed via applying the inverse camera response function to the pixel values and
then dividing by the exposure time. Since the radiances make no sense in saturated
regions, and due to possible errors in the calibration, working in the radiance domain
alone produced unsatisfactory results. By additionally imposing constancy of the ra-
diance gradients we could improve the results. However, we could not obtain better
results than with our proposed approach, which is simpler and more efficient as it omits
calibration and radiance computations. Note that due to the latter, our approach also
allows to align image sets for exposure fusion [MKR09] where no camera response curve
or exposure times are given.

Also note that using a HSV colour representation as proposed in Section 4.2 does
not make sense for exposure series. Despite the fact that the exposure changes are
multiplicative and that the hue as well as the saturation channel are invariant under
such changes, the nonlinearity introduced by the camera response function φ causes
problems. Thus, one would first need to apply the inverse response function which is
undesirable, as discussed above.

Smoothness Term. Concerning the smoothness term, we opt for an isotropic flow-
driven regulariser [Sch94, SH89]

V (∇2uk,∇2vk) = ΨV

(
|∇2 uk|2 + |∇2 vk|2

)
, (6.12)

using the regularised total variation (TV) penaliser [ROF92] given by ΨV (s
2) =

√
s2 + ε2.

This discontinuity-preserving smoothness term allows for sharp edges in the flow field,
which is important for a favourable alignment, see our experiment in Figure 6.8. We
also experimented with more advanced smoothness terms, like our complementary regu-
lariser [10, 11], but they could not improve the results, as will be shown in the experiment
in Figure 6.9.

We further wish to note that the smoothness term plays a very important role in
HDR alignment tasks: Flat image regions are omnipresent in exposure series due to
over- and undersaturation problems. In this regions, however, the data term does not
give any information and the smoothness term has to fill in the flow field there.
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6.2.2 Energy Minimisation

As before, we minimise the energy by solving the associated Euler-Lagrange equations
which read as

3∑

c=1

(
Ψ′

M

((
u⊤

k , 1
)
J̄

C
xy

(
uk

1

))
·
([

J̄
c

xy

]
1,1
uk +

[
J̄

c

xy

]
1,2
vk +

[
J̄

c

xy

]
1,3

))
(6.13)

−α div
(
Ψ′

V

(
|∇2 uk|2 + |∇2 vk|2

)
∇2uk

)
= 0 ,

3∑

c=1

(
Ψ′

M

((
u⊤

k , 1
)
J̄

C
xy

(
uk

1

))
·
([

J̄
c

xy

]
1,2
uk +

[
J̄

c

xy

]
2,2
vk +

[
J̄

c

xy

]
2,3

))
(6.14)

−α div
(
Ψ′

V

(
|∇2 uk|2 + |∇2 vk|2

)
∇2vk

)
= 0 .

In order to handle large displacements (which often occur in HDR imaging due to
significant camera shake or fast moving objects), we embed the solution of the Euler-
Lagrange equations in the warping framework described in Section 5.3.1. For an efficient
solution of the problem at each warping level, we propose two strategies, based on the
available hardware architecture: On a sequential CPU architecture, we use the full
multigrid solver of Bruhn et al. [BWKS06], which we briefly discussed in Section 5.3.3.
For parallel GPU architectures, we use the cascadic FED solver from our paper [3],
which is described in Section 5.3.5.

One problem with applying the FED scheme for solving above Euler-Lagrange equa-
tions is the following: When using a TV penaliser in the smoothness term, the eigen-
values of the diffusion tensor are given by

Ψ′
V (s

2) =
1

2
√
s2 + ε2

≤ 1

2ε
=: λmax . (6.15)

For a standard choice of ε = 0.001 the maximal eigenvalue mmax is thus equal to 500,
which significantly restricts the stability limit of an explicit solver, see (5.80). As a
consequence, the time steps that can be chosen by the FED scheme are tangibly smaller.

Fortunately, there is a simple remedy to this problem by using the Charbonnier
penaliser function [CBFAB94] which is defined as

ΨV (s
2) = 2 ε2

√
1 +

s2

ε2
, (6.16)

in the data and the smoothness term. As one can easily show, see Appendix A, the
resulting energy is up to a constant factor equal to our proposed energy that uses
the subquadratic function ΨV (s

2) =
√
s2 + ε2 in the data and smoothness term. The

minimum of both energies is thus the same, yielding the same solution. On the other
hand, the derivative of the Charbonnier function is given by

Ψ′
V (s

2) =
1√

1 + s2

ε2

≤ 1 , (6.17)
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Figure 6.4: A freehand exposure series for HDR imaging. Note that severe displacements due to
moving clouds and camera shake. From left to right: (a) Image 1 of the exposure series. (b) Image 2.
(c) Image 3 (reference image). (d) Image 4. (e) Image 5.

which results in mmax = 1 and allows for a favourable performance of the FED scheme.

6.2.3 Actual Alignment

Having estimated the displacements (uk, vk)
⊤, we can align the exposure series by per-

forming a simple motion compensation. This comes down to replacing each image
fk(x, y) by

f align
k (x, y) := fk(x+uk, y+vk) . (6.18)

6.2.4 Experiments

Comparison to Other Alignment Approaches. In a first experiment, we compare
our proposed optic flow-based HDR alignment method to several competing methods.
To this end, a real world exposure series was taken freehand using a standard DSLR
camera (Nikon D90). The series consists of 5 images taken with exposure times between
1/250 to 1/30 seconds and the image size was rescaled to 512×340 pixels. Some images
of the series are depicted in the first row of Figure 6.4 where we want to point out that
the series suffers from severe displacements due to camera shake and moving clouds.

After aligning the images with the different approaches, we compute HDR recon-
structions following the approach in [RBS99] that we have also briefly reviewed before.
To improve the reconstruction quality, we incorporate information on the camera re-
sponse curve, which we estimated beforehand by the method also described in [RBS99].
Implementations of the before mentioned algorithms can be found in the pfstools pack-
age [MKMS07] (http://pfstools.sourceforge.net).
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Let us now compare our proposed method to some other alignment strategies. These
are (i) the global method of Ward [War03], (ii) the align image stack algorithm from
the Hugin toolkit which implements a homography-based approach as in [TM07], (iii) a
variant of our method without data term normalisation, and (iv) the hierarchical block
matching technique of Menzel and Guthe [MG07].

In Figure 6.5 (b) we show the result obtained with the global alignment strategy
from [War03], where the black border marks pixels warped outside the image domain.
A corresponding zoom is shown in Figure 6.6 (b). It becomes clear that the estimated
global translation completely fails in describing the complex displacements between the
exposures. We also tried to apply a local optic flow approach [LK81] to the globally
aligned images after transferring them to the radiance domain. We found that such a
global-local strategy as in [KUWS03] leads to unusable results due to the poor global
alignment. Also the align image stack algorithm, see Figure 6.5 (c) and Figure 6.6 (c),
fails to correctly align the images. Obviously, the homography computed from feature
matches is not expressive enough to describe the displacements in the exposure series.

In Figure 6.5 (d) we show the result of our method, but without using data term
normalisation. Especially when considering the zoom shown in Figure 6.6 (d), and
comparing it to our final result in Figure 6.6 (f), we realise that the proposed normal-
isation allows to resolve any problems with unpleasant artefacts that arise due to an
overweighting of the data term at image edges. This is further substantiated by the
flow fields shown in Figure 6.7 (a) and (b). Of course, a larger smoothness weight α
would also resolve this problem, but creates an oversmoothed displacement field that
cannot capture the discontinuity between the buildings and the clouds any more, see
Figure 6.7 (c).

The results obtained with the approach of Menzel and Guthe [MG07] are shown in
Figure 6.5 (e). Altough the overall result looks satisfying, the zoom in Figure 6.6 (e)
reveals that the hierarchical block matching technique yields unpleasant artefacts at the
roof of the house since it does not impose smoothness assumptions on the displacement
field.

Our final result in Figure 6.5 (f) and Figure 6.6 (f) shows a favourable HDR recon-
struction without any disturbing artefacts. This becomes possible due to the robust and
accurate displacement estimation of our proposed approach. The latter is demonstrated
in Figure 6.8 that visualises all computed flow fields. As one can see, the motion of the
clouds and the shift of the buildings due to camera shake are nicely discriminated in the
first three rows. For the image in the last row, estimating the motion of the clouds is
difficult, but also unimportant, because the cloud region is oversaturated and thus not
considered in the HDR reconstruction, anyway.

Runtimes. Aligning the whole exposure series from Figure 6.4 that consists of 5 im-
ages with 512 × 340 pixels each took 75 seconds using our CPU version (full multigrid
solver) with unoptimised C code on a 3.2 GHz Intel Pentium 4. An optimised parallel
implementation of a cascadic FED solver on a GeForce GTX 480 reduced the runtime
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(a) Reference image (b) Ward (c) align image stack

(d) No normalisation (e) Menzel and Guthe (f) Proposed method

Figure 6.5: HDR imaging under severe displacements due to moving clouds and camera shake. First
row, from left to right: (a) Reference image of the exposure series shown in Figure 6.4. (b) Tone mapped
HDR image after alignment with the method of Ward [War03]. (c) Same using align image stack.
Second row, from left to right: (d) Same using our method, but without data term normalisation. (e)
Same using the method of Menzel and Guthe [MG07]. (f) Same using our proposed method.

to less than 3 seconds for the whole series.

Using More Advanced Optic Flow Methods. To see if it is possible to further
improve on our results, we experimented with more sophisticated optic flow models, e.g.
using our anisotropic complementary smoothness term [10, 11]. We found that using
such a regulariser even deteriorates the results at occlusion boundaries, see Figure 6.9 (c)
and (d) and focus on the zooms. The reason for this is that the used smoothness terms
incorporates directional information from image edges. Thus, the flow estimates at
occlusions are on the one hand rather sharp, see Figure 6.9 (b). This is in general a
desirable property, but for alignment tasks it is better to allow for a slight over-smoothing
at occlusion boundaries to avoid artefacts. This is illustrated in Figure 6.9 (a) and (c).

More Results. To demonstrate the favourable performance of our alignment strategy
in general, we tested it on several freehand exposure series that are shown in Figures 6.10
to 6.13. In order to visualise the present displacements in the exposure series, we also
show results without prior alignment. All results were aligned using the fixed parameters
α = 2.0, σ = 0.5, ε = 0.001, η = 0.95.

Limitations. Let us conclude our experiments with presenting the limitations of the
proposed alignment strategy. As our alignment is based on a variational optic flow
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(a) Reference image (b) Ward (c) align image stack

(d) No normalisation (e) Menzel and Guthe (f) Proposed method

Figure 6.6: Zoom in the results from Figure 6.5. First row, from left to right: (a) Reference image
of the exposure series shown in Figure 6.4. (b) Tone mapped HDR image after alignment with the
method of Ward [War03]. (c) Same using align image stack. Second row, from left to right: (d)
Same using our method, but without data term normalisation. (e) Same using the method of Menzel
and Guthe [MG07]. (f) Same using our proposed method.

(a) Normalisation (b) No normalisation (c) No normalisation

(α = 2.0) (α = 2.0) (α = 2.5)

Figure 6.7: Comparing flow fields obtained with and without data term normalisation. From left
to right: (a) Flow field from image 3 (reference) to image 1 of our exposure series from Figure 6.4,
computed with normalisation and α = 2.0. (b) Same, but without normalisation and α = 2.0. (c) No
normalisation and α = 2.5. For all results, we used the fixed parameters σ = 0.5, η = 0.95.
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gr gk (uk, vk)

Figure 6.8: Flow fields computed on the exposure series from Figure 6.4. First row, from left to
right: (a)–(c) Image 1. Image 3. Flow field from image 3 to image 1. Second row, from left to right:
(d)–(f) Same for image 2 and 3. Third row, from left to right: (g)–(i) Same for image 4 and 3. Fourth
row, from left to right: (j)–(l) Same for image 5 and 3. For all results, we used the fixed parameters
α = 2.0, σ = 0.5, ε = 0.001, η = 0.95.
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Proposed TV smoothness term Complementary smoothness term

Figure 6.9: Using a more advanced smoothness term. First row, from left to right: (a) Flow field
from image 3 (reference) to image 1 of our exposure series from Figure 6.4, using the proposed TV
regulariser. (b) Same using our complementary smoothness term from [10, 11]. Second row, from left
to right: (c) Resulting tone mapped HDR after alignment using our proposed method. (d) Same, but
using our complementary smoothness term from [10, 11] in the alignment step.
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Figure 6.10: Freehand HDR imaging of a window in the cathedral Notre Dame de Paris. First row,
from left to right: (a)–(c) Image 2, 4 and 6 of the exposure series (7 images, 1072×712 pixels, exposure
times between 1/200 and 2 seconds. Second row, from left to right: (c) Resulting tone mapped HDR
image without alignment. (d) Same using our proposed alignment method.

approach, we naturally have to use a coarse-to-fine warping strategy to handle large
displacements in the exposure series, see Section 5.3.1. However, we have argued in
Section 4.5 that techniques relying on a warping strategy cannot estimate large dis-
placements of small objects. This problem can for example occur if persons or cars
move relatively fast while the exposure series is taken. In such cases, our alignment
strategy will fail to estimate the motion of these objects, which leads to unpleasant
artefacts in the resulting HDR image, see Figure 6.14 and focus on the zooms in (d) and
(e).
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Figure 6.11: Freehand HDR imaging of the Max-Planck Institute for Informatics in Saarbrücken.
First row, from left to right: (a)–(c) Image 1, 3 and 5 of the exposure series (5 images, 490 × 620
pixels, exposure times between 1/800 and 1/50 seconds. Second row, from left to right: (c) Resulting
tone mapped HDR image without alignment. (d) Same using our proposed alignment method.
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Figure 6.12: Freehand HDR imaging of an indoor scene (Lantern). First row, from left to right:
(a)–(c) Image 1, 3 and 5 of the exposure series (5 images, 1268× 854 pixels, exposure times between
1/320 and 1/6 seconds. Second row, from left to right: (c) Resulting tone mapped HDR image without
alignment. (d) Same using our proposed alignment method.

Figure 6.13: Freehand HDR imaging of another indoor scene (Room). First row, from left to right:
(a)–(c) Image 1, 2 and 3 of the exposure series (3 images, 1024× 680 pixels, exposure times between
1/60 and 0.3 seconds. Second row, from left to right: (c) Resulting tone mapped HDR image without
alignment. (d) Same using our proposed alignment method.
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(a) Image 1 (b) Image 2 (c) Image 4

(d) Aligned HDR result (e) Zoom in region 1 in (d)

(f) Zoom in region 2 in (d)

Figure 6.14: Limitations of our method (freehand HDR imaging of the Eiffel tower in Paris). First
row, from left to right: (a)–(c) Image 1, 2 and 4 of the exposure series (4 images, 1072 × 712 pixels,
exposure times between 1/4000 and 1/320 seconds. Second row, from left to right: (d) Resulting tone
mapped HDR image using our proposed alignment method. (e) Zoom in region 1 marked in (d). Third
row: (f) Zoom in region 2 marked in (d).
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6.3 Joint Super-Resolution and HDR (SR-HDR) Re-

construction

Super-resolution (SR) techniques such as [EF97, FREM04, MPSC09, PPK03, TH84]
combine the information from several low-resolution (LR) images of the same scene to
compute an image with increased spatial resolution. Note that although megapixel image
sensors are widely available nowadays, spatial resolution enhancement is still crucial in
applications such as surveillance [ZZSL10] or medical imaging [Gre09], where tiny details
can be of great importance. Furthermore, cameras in mobile phones still suffer from a
limited spatial resolution. The prerequisites for a successful SR reconstruction are: (i)
Some amount of subpixel displacement between the LR input images. Note that if there
are no or only integer displacements, all images somehow contain redundant information
and no resolution enhancement is possible 2. (ii) The images should suffer from aliasing,
i.e. they have been sampled below the Nyquist frequency [SW49, Uns00]. In this way
the LR images contain valuable high-frequency information that helps to recover the SR
result [VSVV06].

The displacement fields resulting from our previously described HDR alignment
strategy (Section 6.2) are by construction of subpixel precision. If one additionally
assures that the exposure series suffers from aliasing –e.g. if one uses a camera with
a limited resolution like in a mobile phone– we meet all requirements for a SR recon-
struction. This motivated our work in [9] where we exploited the displacements in a
freehand exposure series in a joint super-resolution and HDR (SR-HDR) approach simi-
lar to [CPK09, GG06, HTO07, NYUS08, NN05, RMVS07, SSM09]. This allows to turn
the usually perturbing displacements in the exposure series into an advantage: We can
not only enhance the dynamic range, but also the spatial resolution of the reconstructed
image. In this context, we also want to point out that SR and HDR imaging nicely com-
plement each other: While SR methods increase the resolution of the image domain,
HDR techniques increase the resolution of the image co-domain, i.e. the dynamic range.

6.3.1 Super-Resolution Basics

Before we describe our joint SR-HDR approach, we want to briefly review the basic
concepts of SR reconstruction. For a more extensive survey, we refer the interested
reader to [PPK03].

Notation and Observation Model. Assume we are given a set of LR input images
fk : Ωdisc → {0, .., 255} for k = 1, .., ne and where Ωdisc := {1, .., nx} × {1, .., ny} denotes
the discrete representation of the image domain Ω. Note that we now model the images
in a completely discrete manner as the SR problem stems from the discretisation and
does not exist in a continuous model. Our goal is now to compute a SR image F :

2Combing a sequence of images with no or only integer displacements would, however, allow to
obtain a denoised result by simply averaging the noisy images.
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ΩSR
disc → {0, .., 255}, where ΩSR

disc := {1, .., z · nx} × {1, .., z · ny} denotes the discrete SR
image domain and z ∈ R is the corresponding SR zoom factor, so usually z > 1.

The standard observation model for SR imaging (as for example used in [EF97]) can
be written as

SBWk F = fk , (6.19)

for k = 1, .., ne. It models the assumption that the LR images fk are obtained from the
unknown SR image F by a backward warping (Wk), blurring (B) and a downsampling
(S).

The warping Wk describes the displacements (uk, vk)
⊤ between the images, which

need to be estimated beforehand. This could for example be done by applying some
kind of optic flow algorithm. As the warping operator acts on the SR image F , the
displacements have to be transferred to the SR grid. To perform this upsampling, we
use an area-based resampling strategy as proposed in [BWF+05]. Note that in the SR
case, the displacements are computed from the images fk to a reference image fr. For
the HDR alignment in Section 6.2, they were computed in the opposite direction.

The blurring operator B performs a Gaussian convolution with standard deviation
σSR. In accordance to the sampling theorem [SW49, Uns00], we set σSR = z ·

√
2/4. For

simplicity, we follow Mitzel et al. [MPSC09] and assume the same blurring for all input
images. For implementing the downsampling operator S, we also adapt the strategy in
[MPSC09] and use a simple nearest-neighbour interpolation strategy.

If colour images are given, it is usually assumed that the observation model holds
for each of the colour channels independently.

Energy-based Super-Resolution Reconstruction. There are different basic strate-
gies for computing the SR image from the LR input images. The survey in [PPK03]
classifies SR techniques into non-uniform interpolation approaches, frequency domain
approaches and energy-based approaches. We will consider the latter class that finds
the SR image F by minimising an energy function of the form

E(F ) =
∑

(i,j)∈ΩSR

disc

[
MSR(F ) + ϑ VSR(∇2F )

]
, (6.20)

where ∇2F denotes a discrete version of the gradient operator in this case. Here, and for
our further considerations on SR and joint SR-HDR reconstruction, we will intentionally
misuse concepts borrowed from continuous models to facilitate notation.

The term MSR denotes the data term that penalises deviations from the observation
model (6.19). Using a quadratic penalisation and considering colour images one ends
up with

MSR(F ) =
ne∑

k=1

3∑

c=1

(SBWk F
c − f c

k)
2 , (6.21)

where c denotes the colour channels. Note that for greyscale images this summation
over the channels can be omitted.
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In general, SR reconstruction is an ill-posed problem, which means that we cannot
determine an unique solution from the data term alone. This is due to a usually in-
sufficient number of available LR images. To overcome this problem, energy-based SR
approaches additionally use a smoothness term SSR that models the assumption of a
smooth SR result. As in the optic flow case, it thus allows to fill in the solution in
regions where the data alone (the input images) do not provide sufficient information.
The degree of smoothness is determined by a regularisation parameter ϑ > 0. A basic,
homogeneous regulariser is thus given by

VSR(∇2F ) =
3∑

c=1

|∇2F
c|2 . (6.22)

Energy Minimisation. A necessary condition for a minimiser of the energy (6.20) is
given by

0 = ∂F c E =
n∑

k=1

(
W⊤

kBS
⊤
(
SBWk F

c − f c
k

))
− ϑ △F c . (6.23)

Concerning the occurring transposed operators, we implementW⊤
k by a forward warping,

B = B⊤ for Gaussian blurring [MPSC09], and S⊤ results in upsampling. To solve the
equation (6.23), we follow the approach in [MPSC09] and apply an explicit gradient
descent scheme that reads as

[F c](ℓ+1) − [F c](ℓ)

τ
=

n∑

k=1

(
W⊤

kBS
⊤
(
f c
k − SBWk [F

c](ℓ)
))

+ ϑ △[F c](ℓ) . (6.24)

Solving for the unknown at the new time level l + 1 then gives the iterative scheme

[F c](ℓ+1) = [F c](ℓ) + τ

[
n∑

k=1

(
W⊤

kBS
⊤
(
f c
k − SBWk [F

c](ℓ)
))

+ ϑ △[F c](ℓ)

]
, (6.25)

where [F c](ℓ) denotes the result at iteration ℓ and the parameter τ serves as a numerical
time step size. For stability reasons it is set to the small value of τ = 0.01 in accordance
to [MPSC09].

Some Results and Model Extensions. Let us have a look at results obtained with
the described, basic SR approach. In Figure 6.15 (a) we show one frame of an image
sequence depicting a car. Obviously, the resolution of the used camera was very low and
we cannot recognise any details, as for example the license plate, which is shown in the
zoom in Figure 6.15 (d). Considering the SR result in Figure 6.15 (b) and (e), a drastic
improvement becomes visible. However, the SR result looks rather blurry, which can
be explained as follows: The quadratic data term is rather sensitive to outliers caused
by noise, occlusions or misregistrations. This means that a relatively large smoothness
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weight ϑ has to be chosen, which in turn blurs the result due to the homogeneous
smoothing of the result.

These problems can be diminished by following Mitzel et al. [MPSC09] who proposed
to use a subquadratic data term (L1-norm) in combination with a TV regulariser. This
results in the energy

E(F ) =
∑

(i,j)∈ΩSR

disc

[
ne∑

k=1

ΨM

(
3∑

c=1

(SBWk F
c − f c

k)
2

)
+ ϑ ΨV

(
3∑

c=1

|∇2F
c|2
)]

, (6.26)

with ΨM(s2) = ΨV (s
2) =

√
s2 + ε2. With above modifications, the corresponding gra-

dient descent scheme is given by

[F c](ℓ+1) = [F c](ℓ) (6.27)

+ τ

[
n∑

k=1

(
W⊤

kBS
⊤ Ψ′

M

(
3∑

c=1

(
SBWk [F

c](ℓ) − f c
k

)2
)(

f c
k − SBWk [F

c](ℓ)
))

+ϑ div

(
Ψ′

V

(
3∑

c=1

∣∣∇2[F
c](ℓ)
∣∣2
)
∇2[F

c](ℓ)

)]
.

When considering the corresponding results in Figure 6.15 (c) and (f), we see that the
improved model allows to obtain a much sharper reconstruction, which makes it easier
to recognise the license plate.

6.3.2 A Novel Joint Super-Resolution and HDR (SR-HDR)
Model

In the following we show how to extend the presented energy-based SR approach (6.26)
to a novel joint super-resolution and HDR (SR-HDR) method that we presented in [9].

We assume to be given a freehand exposure series fk : Ωdisc → {0, .., 255} for k =
1, .., ne with corresponding exposure times tk. Furthermore, a zoom factor z has to be
specified and we assume that the displacements between the images of the exposure
series has been estimated. The latter is realised by applying our method described in
Section 6.2. From these inputs, we compute a SR-HDR reconstruction, i.e. a super-
resolved radiance map R : ΩSR

disc → R
+.

Energy Formulation

We compute the SR-HDR image R by minimising a suitable energy function of the
general form [CPK09, GG06]

E(R) =
∑

(i,j)∈ΩSR

disc

[
M(R) + ϑ V (∇2R)

]
, (6.28)

with a smoothness weight ϑ > 0.
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Input SR (quadratic) SR (subquadratic)

Figure 6.15: Super-resolution example. First row, from left to right: (a) One of the input im-
ages (64 images, 72 × 121 pixels, taken from http://users.soe.ucsc.edu/~milanfar/software/

sr-datasets.html). (b) Super-resolution result using a quadratic data term and a homogeneous
smoothness term (ϑ = 1.0). The used zoom factor was z = 3. (c) Same using a L1 data term and a
TV smoothness term (ϑ = 0.7). Second row, from left to right: (d)–(f) Zooms in (a)–(c).
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Data Term. The data term M(R) combines concepts from the SR data term (6.26)
and the HDR data term (6.4), which results in

M(R) =
ne∑

k=1

ωk ΨM

(
3∑

c=1

(
SBWk R

c − Ick
tk

)2
)

, (6.29)

where red colour marks SR concepts and blue colour marks HDR concepts. Further note
that we reformulated the HDR data term (Ick − tk r

c)2 as (rc − Ick/tk)
2 where we recall

that Ick := φ−1(f c
k) denotes the result of applying the inverse camera response function

φ−1 to the input images f c
k .

As a novelty compared to existing energy-based SR-HDR approaches [CPK09, GG06],
we use the subquadratic L1 penaliser function ΨM(s2) =

√
s2 + ε2 to render our ap-

proach robust against outliers due to noise or incorrect displacement estimates.

Smoothness Term. The smoothness term plays a major role in the SR-HDR context
as it has to fill in the result R in regions where no information is available. This can
either be due to saturation problems (where ωk≈0), or in pixels where the warping by
the displacements does not provide information.

For our SR-HDR approach, we propose a novel anisotropic smoothness term that
adapts its smoothing direction to local image structures. To obtain the required di-
rectional information, we consider the structure tensor [FG87] of an image R̃ that is
obtained by upsampling a pure HDR reconstruction computed from the aligned input
images. This leads to the following structure tensor definition:

S̃ =
3∑

c=1

Kρ1∗
(
∇2R̃

c
ρ2

(
∇2R̃

c
ρ2

)⊤)
, (6.30)

with
R̃c

ρ2
:= Kρ2∗ R̃c , (6.31)

and where ρ1 and ρ2 serve as neighbourhood and smoothing scale, respectively. As we
already noted earlier in Section 4.3.1, the eigenvectors s1 and s2 of the structure tensor
give the desired direction of local image structures: The vector s1 points across image
structures, and s2 points along them.

Following the design concept of our complementary regulariser [10, 11] (see Sec-
tion 4.3.2), our smoothness term then penalises the projections of the image gradients
onto s1 and s2 in different manners: Along image edges, we perform a quadratic pe-
nalisation to obtain a strong smoothing that pronounces the edges. In the orthogonal
direction across edges, we use a robust penaliser function that reduces the smoothing
and helps to preserve edges. This results in the smoothness term

V (∇2R) = ΨV

(
3∑

c=1

(
s⊤1 ∇2R

c
)2
)

+
3∑

c=1

(
s⊤2 ∇2R

c
)2

. (6.32)

For the robust penaliser ΨV , we use the Charbonnier function (6.16) with ε = 0.1.
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6.3.3 Energy Minimisation

We compute the SR-HDR image R by minimising the energy (6.28). To this end, we
use a semi-implicit gradient descent scheme given by

[Rc](ℓ+1)− [Rc](ℓ)

τ
= (6.33)

ne∑

k=1

(
W⊤

kBS
⊤ωk Ψ

′
M

(
3∑

c=1

(
SBWk [R

c](ℓ) − Ick
tk

)2
)(

Ick
tk

− SBWk [R
c](ℓ)
))

+ϑ div

(
D
(
s1,s2,∇2R

(ℓ)
)
∇2[R

c](ℓ,ℓ+1)
)
,

The occurring diffusion tensor D is given by

D
(
s1,s2,∇2R

(ℓ)
)
= Ψ′

V

(
3∑

c=1

(
s⊤1 ∇2[R

c](ℓ)
)2
)
s1s

⊤
1 + s2s

⊤
2 . (6.34)

Further note that term∇2[R
c](ℓ,ℓ+1) occurring in (6.33) has two indices in the superscript.

By this, we denote that when discretising the divergence expression, the old value at
iteration l is used for the neighbouring pixels, whereas the new result at iteration l + 1
is used for the central pixel. The gradient descent scheme (6.33) can thus be rewritten
as

[Rc]
(ℓ+1)
i,j − [Rc]

(ℓ)
i,j

τ
= [mc]

(ℓ)
i,j + ϑ


 ∑

ĩ,j̃∈Ni,j

[w]̃i,j̃

(
[Rc]

(ℓ)

ĩ,j̃
− [Rc]

(ℓ+1)
i,j

)

 , (6.35)

using the abbreviation

[mc]
(ℓ)
i,j := (6.36)

ne∑

k=1

(
W⊤

kBS
⊤[ωk]i,j Ψ

′
M

(
3∑

c=1

(
SBWk [R

c]
(ℓ)
i,j −

[Ick]i,j
tk

)2)( [Ick]i,j
tk

− SBWk [R
c](ℓ)

))
,

and where the weights [w]̃i,j̃ can be derived from the diffusion tensor (6.34) as described

in Section 5.1.1. Solving (6.35) for the unknown update [Rc](ℓ+1) results in the final
iterative scheme given by

[Rc]
(ℓ+1)
i,j =

[Rc]
(ℓ)
i,j + τ


[mc]

(ℓ)
i,j + ϑ

∑

ĩ,j̃∈Ni,j

[w]̃i,j̃ [R
c]
(ℓ)
i,j




1 + ϑ
∑

ĩ,j̃∈Ni,j

[w]̃i,j̃
. (6.37)
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Concerning the numerical time step size, we experimentally found that setting τ = 0.5
is feasible, which is more than one order of magnitude larger than the step size used in
the explicit scheme (6.25) which was taken from [MPSC09]. We further note that due
to the complicated structure of the data term (6.29), more efficient solution strategies
as in the optic flow case (see Section 5.3.2) are difficult to realise here.

6.3.4 Experiments

For our first experiments, we took a freehand, real world exposure series consisting of
9 images with a resolution of 268 × 178 pixels and with exposure times between 1/800
and 1/8 seconds. Some of the input images are shown in the first row of Figure 6.16. As
zoom factor we set z = 2 for all our experiments. To estimate the displacements between
the images of the exposure series, we use our technique described before in Section 6.2.
The model parameters were set to α = 2.0, σ = 0.5, η = 0.7. If not stated otherwise,
these parameters are also used for the other SR-HDR experiments in this section.

Our SR-HDR Method versus Pure HDR and Existing Approaches. In a first
experiment (see Figure 6.16) we show two benefits of our proposed SR-HDR method:
(i) We illustrate that our obtained SR-HDR reconstruction shown in Figure 6.16 (h)
gives a remarkable improvement over a pure HDR reconstruction (Figure 6.16 (d)).
Especially when comparing the corresponding zooms in Figure 6.16 (e) and (i) we see
that our SR-HDR result gives a much less pixelated result. (ii) We also want to show
that our proposed model (L1-data term with anisotropic smoothness term) gives much
more appealing results compared to existing energy-based SR-HDR approaches [CPK09,
GG06] that use a quadratic data term and a mean prior. Recall that the latter enforces
the result to be close to a mean image that is obtained by averaging the radiances
computed from all input images. Although this prior stabilises the minimisation, it does
not allow to fill in missing information and to smooth the resulting image. Consequently,
the result of such a method (see Figure 6.16 (f) and (g)) hardly improves over a pure
HDR reconstruction and is inferior to our result.

Runtimes. As we have noted before, it is much more difficult to come up with an
efficient numerical solver for our SR-HDR approach. By using a semi-implicit scheme,
we could improve the performance by more than one order of magnitude, as it now
becomes possible to use a time step size of 0.5 instead of the 0.01 which was reported
for an explicit scheme in [MPSC09]. However, computing the final SR-HDR result for
the exposure series from Figure 6.16 still takes about half an hour on a standard PC
(3.2 GHz Intel Pentium 4).

Different Data and Smoothness Terms. Our next experiment compares the influ-
ence of using different data and smoothness terms in energy-based SR-HDR approaches.
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(a) Image 1 (b) Image 5 (c) Image 9

(d) Pure HDR (e) Zoom in (d)

(f) SR-HDR (mean prior) (g) Zoom in (f)

(h) SR-HDR (proposed) (i) Zoom in (h)

Figure 6.16: Joint SR-HDR reconstruction on a real world exposure series. First row, from left to
right: (a) – (c) Images 1, 5 and 9. Second row, from left to right: (d) Upsampled HDR reconstruction.
(e) Zoom in (d). Third row, from left to right: (f) SR-HDR result of [CPK09, GG06] (quadratic data
term, mean prior, ϑ=5.0, τ =0.1, 25 iterations). (g) Zoom in (f). Fourth row, from left to right: (h)
Result of proposed method (ϑ=0.3, s=8, ρ1=0.4, ρ2=0.2, τ=0.5, 1000 iterations). (i) Zoom in (h).
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As input images, we use the same exposure series as before in Figure 6.16. In Fig-
ure 6.17 (d) and (e) we show the result when using a quadratic data and smoothness
term. As the quadratic data term is not robust against outliers we have to use a rela-
tively large smoothness weight ϑ to avoid unpleasant artefacts. Consequently, the result
looks rather blurry and lacks detail as the quadratic regulariser leads to a homogeneous
diffusion of the image. When using a robust L1 data term in combination with a TV
smoothness term as proposed for pure SR by Mitzel et al. [MPSC09], the results look
already much sharper, see Figure 6.17 (f) and (g). However, the edges in the image are
rather jagged, which becomes obvious at the planks in the zoom in Figure 6.17 (g). Re-
placing the TV regulariser by our proposed anisotropic smoothness term (Figure 6.17 (h)
and (i)) allows to obtain a much better reconstruction of edges due to the pronounced
smoothing in edge direction. The reduced smoothing in the orthogonal direction allows
to preserve fine details, as can be seen at the plant in the zoom in Figure 6.17 (i).

More Results. To conclude our experimental section, we compare our SR-HDR re-
sults against pure HDR reconstructions for further real world exposure series. The ex-
posure series together with the corresponding results are shown in Figures 6.18 to 6.20.
In our opinion, the SR-HDR results always look more appealing compared to a pure
HDR reconstruction. As fixed parameters we set s = 8, τ = 0.5 and performed 1000
iterations. The only remaining tuning parameter is the smoothness weight ϑ. Its values
are given in the captions of the respective figures.

The astute reader may also notice that the black border for the HDR and SR-HDR
results are different. This is explained by the fact that in the SR-HDR context, the
displacements are computed in the opposite direction compared to HDR alignment, as
noted before.
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(a) Quadratic data and smoothness term (b) Zoom in (d)

(c) L1 data term, TV smoothness term (d) Zoom in (d)

(e) L1 data term, anisotropic smoothness term (f) Zoom in (d)

Figure 6.17: Comparing data and smoothness terms in energy-based SR-HDR methods (using the
exposure series from Figure 6.16). First row, from left to right: (a) Result with a quadratic data and
smoothness term (ϑ=0.75, s=8, τ=0.5, 1000 it.). (b) Zoom in (a). Second row, from left to right: (c)
Result with a L1 data and a TV smoothness term. (ϑ=0.4, ε=0.001, other parameters as in (a)). (d)
Zoom in (c). Third row, from left to right: (e) Result with our proposed method with a L1 data term
and an anisotropic smoothness term (ϑ=0.3, µ=0.1, ρ1 =0.4, ρ2 =0.2, others as in (c)). (f) Zoom in
(e).
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Pure HDR Joint SR-HDR

Figure 6.18: Comparing a pure HDR to a joint SR-HDR result on an indoor scene. First row,
from left to right: (a) – (d) Images 1, 3, 6 and 8 of the exposure series (8 images, 268 × 178 pixels,
exposure times between 1/200 and and 1/8 seconds.) Second row, from left to right: (d) HDR result
after aligning the exposure series with our proposed technique. (e) SR-HDR result using our proposed
approach. (same alignment, ϑ = 0.6).

Pure HDR Joint SR-HDR

Figure 6.19: Comparing a pure HDR to a joint SR-HDR result on a lab-made scene. First row, from
left to right: (a) – (d) Images 2, 5, 7 and 11 of the exposure series (12 images, 257 × 171 pixels,
exposure times between 1/2500 and and 1/4 seconds.) Second row, from left to right: (d) HDR result
after aligning the exposure series with our proposed technique. (e) SR-HDR result using our proposed
approach. (same alignment, ϑ = 0.4).
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Pure HDR Joint SR-HDR

Figure 6.20: Comparing a pure HDR to a joint SR-HDR result on an outdoor scene. First row, from
left to right: (a) – (d) Images 1, 4, 9 and 12 of the exposure series (12 images, 268 × 178 pixels,
exposure times between 1/2500 and and 1/20 seconds.) Second row, from left to right: (d) HDR result
after aligning the exposure series with our proposed technique. (e) SR-HDR result using our proposed
approach. (same alignment, ϑ = 0.2).

148



Chapter 7

Summary and Future Work

Nothing shocks me. I’m a scientist.

from the motion picture
“Indiana Jones and the Temple of Doom”

7.1 Summary

In the previous chapters we presented contributions to various areas of research on
correspondence problems. Thereby, we mainly focused on optic flow as a representative
and rather general example. At some points we also discussed the more specific stereo
matching problem. Moreover, we only considered energy-based (variational) approaches
that find the optic flow field as minimiser of a suitable energy formulation. In recent
years these strategies have shown to give the most accurate results, and also efficient
solvers have been proposed.

Modelling

Data Term. In Chapter 4 we started by reviewing previous ideas for the design of
robust data terms, such as subquadratic penaliser functions and higher order constancy
assumptions. These concepts were combined into a novel robust data term that offers
a high degree of invariance under illumination changes by considering a HSV colour
representation and applying robust penaliser functions to each channel separately. In
order to avoid an undesirable overweighting of the data term at large image gradient
locations, we incorporated the idea of data term normalisation [LV98, SC06, SAH91]
into our data term, thereby utilising this concept for modern data terms.

Smoothness Term. After discussing the data term, we turned to the design of an
appropriate smoothness term. This resulted in a complementary smoothness term that
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adapts its anisotropic smoothing directions to the imposed data constraints: In the
direction where the data terms provides information, we reduce the smoothing, but opt
for a strong smoothing in the orthogonal direction where the data constraints do not
provide information. Moreover, our smoothness term can be classified as being joint
image- and flow-driven as it adapts the direction of smoothing to image edges, whereas
the amount of smoothing depends on the flow contrast. This allows to obtain sharp
flow edges as known from image-driven methods, but remedies their oversegmentation
problems. Finally, we presented a general framework that introduces a common notation
of several existing as well as our novel smoothness term and thus eases their comparison.

We also discussed smoothness terms for variational stereo approaches where e com-
pleted the taxonomy by presenting the first disparity-driven regularisation strategy.

Parameter Selection. Having adapted the smoothness term and the data term, what
remains is to appropriately balance the two terms, i.e. determine the optimal value of
the smoothness weight for the considered image sequence. To this end, we introduced a
novel concept that we call optimal prediction principle (OPP). It states that an optimal
flow field (obtained by using an optimal smoothness weight) allows for the best possible
prediction of the next images in the sequence. Assuming constant speed and linear
trajectories of objects, we judge the prediction quality by evaluating the data constraints
between the first and the third frame using the doubled flow. Our parameter selection
approach then simply computes flow fields for several values of the smoothness weight
and selects the weight corresponding to the flow field with the best prediction quality.

Combining this parameter selection with our complementary smoothness term yields
a variational approach where all components (data term, smoothness term and smooth-
ness weight) are in harmony, motivating the name optic flow in harmony method.

Other Terms. We also briefly investigated an additional predictor term in the energy
that incorporates prior knowledge by enforcing the resulting flow field to be close to
a given, predictor flow field, e.g. a (possibly sparse) predictor flow field obtained by a
feature matching technique. Altough these methods give in general worse results than
variational methods, they do not require a coarse-to-fine warping strategy to handle large
displacements and can thus capture small flow details. As the latter are problematic for
variational methods, a feature matching predictor can help to remedy these problems.

Numerics

For minimising the proposed energy functionals we deduce and solve the associated
Euler-Lagrange equations. Discretising the Euler-Lagrange equations requires to ap-
proximate occurring derivatives, which is mostly done by symmetric (central) finite
difference approximations. We could show that using correctly-oriented, one-sided dif-
ferences may lead to improved results which constitutes a novel finding for the computer
vision community. However, such upwind discretisations are a classic concepts for the
solution of hyperbolic partial differential equations. Following further ideas from this
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context, we also showed that combining one-sided and central differences based on a
smoothness measure leads to even better results. Here, we could draw an interesting
conclusion from our extensive experiments: The more sophisticated the continuous mod-
els become, the less influential is an appropriate numerical approximation of derivative.
Nevertheless, all results illustrated the importance of an appropriate numerical approx-
imation of derivatives to some extent and eventually showed that advanced numerics
might be an alternative to sophisticated models.

After discretisation, the Euler-Lagrange equations constitute a nonlinear system of
equations. For an efficient solution of the latter, we used two strategies, depending on the
underlying hardware architecture: On the CPU, we used the full multigrid solver pro-
posed in [BWKS06]. To exploit the possibilities of modern graphics hardware (GPUs),
we implemented an explicit gradient descent scheme that was speeded up by a coarse-
to-fine computation and using variable fast explicit diffusion (FED) [GWB10] time step
sizes. Due to its simple nature, we could easily implement our solver on a parallel GPU
architecture using the NVidia CUDA framework and achieved speedup factors of up
to 55 compared to the multigrid scheme on the CPU. Additionally, we could port this
simple solver to a modern smartphone which allowed us to implement basic optic flow
methods with an interactive performance [4].

Applications

As an example of a novel application area for modern optic flow methods we considered
high dynamic range (HDR) imaging. Here, a set of images taken with varying expo-
sure times (exposure series) is fused to compute an image with increased dynamic range,
which allows to capture that details in dark as well as bright regions. However, the prac-
tical applicability of HDR techniques is limited as they assume that the exposure series
is perfectly aligned, which is often violated due to camera shake or moving objects. By
carefully modifying a modern optic flow approach, we managed to robustly estimate the
displacements and thus to align even challenging real world exposure series. The main
modification was to only impose gradient constancy in the data term as the common
brightness constancy assumption will not hold due to the varying exposure times.

Exploiting the subpixel precision of the estimated displacement fields, we combined
ideas from super-resolution and HDR techniques into an energy-based joint super-
resolution and HDR (SR-HDR) approach that computes an image with increased spatial
resolution and dynamic range. In this context, we introduced sophisticated regularisa-
tion strategies in the SR-HDR context, which we could show to be a key aspect for
obtaining visually appealing results.

7.2 Future Work

Our contributions have shown that despite three decades of research on correspondence
problems, significant improvements in the accuracy as well as in the efficiency are still
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possible. Moreover, growing new research areas such as computational photography give
rise to interesting novel applications for correspondence problems. Having this in mind,
there are several future directions that seem promising to be explored.

Data Term

We proposed to use an HSV colour representation to obtain robustness under difficult
illumination conditions. We would thus like to investigate the usefulness of alternative
colour spaces, e.g. HSL, YUV, or CIELAB. Moreover, we still did not consider extreme
distortions in the images, like heavy noise or strong compression artefacts caused by
common image and video codecs like JPEG or MPEG.

Smoothness Term

Our experiments have shown that joint image- and flow-driven regularisers like our
complementary smoothness term mostly remedy oversegmentation problems. However,
we found that small artefacts might still be visible in some sequences; see our remarks in
Section 4.3.5. We are thus interested in analysing and resolving these remaining issues.
Concerning extensions of our smoothness term, we would like to see if the incorporation
of recent non-local regularisation ideas [SRB10, WPB10] allows to further improve the
performance of our smoothness term.

Parameter Selection

For our proposed parameter selection approach based on the optimal prediction principle
(OPP), we plan to investigate several points:

(i) We would like to improve the efficiency, for example by finding a modification
that yields similar results but requires to compute less flow fields during the estimation
process. (ii) It also seems very interesting to apply our approach in cases where only
two images are available. This would also remedy the problems with non-constant speed
of objects that we have mentioned in Section 4.4.3. (iii) Two interesting extensions of
our method could be to apply the parameter estimation on every level of the warping
scheme, or for subsequent image pairs in an image sequence, respectively. In both cases,
we hope that our method could profit from an initialisation with the previous results,
i.e. from the previous warping level or from the previous image pair, respectively. (iv)
Finally, a deeper theoretical underpinning of the optimal prediction principle may give
further ideas for improvements and extensions. For example, we hope to explain why
our method seems to underestimate the smoothness weight in general while still giving
favourable results in terms of quality measures.

Joint Super-Resolution and HDR (SR-HDR) Reconstruction

The major limitation of our SR-HDR approach is that its optic flow-based alignment
step cannot handle large displacements of small objects in the given exposures series.
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This leads to unpleasant artefacts in the reconstruction (see Figure 6.14) and is caused
by the coarse-to-fine warping strategy. One possible solution to this issue could thus be
to incorporate a feature-matching prior as discussed in Section 4.5. Alternatively, if we
do not want, or if we are not able to correct the flow estimate, applying an anti-ghosting
technique [KAR06] will reduce the disturbing artefacts.

Furthermore, a joint estimation of displacements and SR-HDR reconstruction seems
interesting. However, it is questionable if the more difficult minimisation of such a model
pays off in terms of quality. As a starting point, we refer to the SR method in [EM09]
where a joint estimation of displacements and super-resolved image has been proposed.

An Alternative Modelling and Minimisation Framework

We used the Euler-Lagrange framework for minimising our continuous energy function-
als. While this framework allows to minimise rather general energies in an efficient way,
it may still restrict the design of the energy terms. For example, non-differentiable pe-
naliser functions like the Potts model [Pot52] cannot be used although this might be
useful for obtaining extremely sharp discontinuities. Furthermore, although the applied
coarse-to-fine warping strategy often allows to compute a good local minimum of the
energy, there is no guarantee on how well the desired global minimum is approximated.

These problems can be alleviated by formulating the correspondence problem as a
multi-label problem where each pixel is assigned two labels from a discrete set of labels
to represent the two components of the displacement vector. A globally optimal solution
of such multi-label problems can be computed using graph cut optimisation in a discrete
setting [BVZ01]. In a continuous setting, e.g. [PSG+08], one transforms the problem
into a continuous convex problem, computes the global minimum and then projects the
continuous solution back onto the discrete label space. Until recently, these solvers fea-
tured a high computational complexity and an immense memory consumption, which
rendered them practically unusable for large label spaces like the ones typically encoun-
tered in optic flow. However, recently discrete [SKH08] as well continuous solvers [GC10]
for multi-label problems have been proposed that approximate a globally optimal so-
lution while drastically reducing the computational complexity as well as the memory
requirements. As the approximation is fairly close to the global optimum (less than 5%
in [GC10]), adapting these methods to our framework may not only give more freedom
in modelling, but in the long run also a further boost in quality and efficiency.

Further Ideas

We have shown that a carefully modified optic flow method is well-suited for aligning
exposure series in the context of HDR imaging. Building on this finding, we would
like to see if modern optic flow approaches can also help to align the input images for
other multi-shot techniques such as extended depth of field (focus stacking) [ADA+04],
flash/no-flash photography [PSA+04], image stitching [Sze06] or day and night fu-
sion [RIY05]. However, it is not obvious how the optic flow approaches have to be
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adapted to the specific tasks.
Building on our first work in [4], we are interested in porting more of our algorithms to

modern smartphones (like the iPhone 4 or Android phones). Nowadays, these platforms
offer reasonable built-in cameras, a remarkable computational power and also flexible
programming environments that support native programming languages like C/C++.
This opens the door for interesting mobile image processing and computer vision appli-
cations that can additionally profit from features like broadband internet access, GPS
positioning and gyroscopic sensors that can be found in almost every modern smart-
phone.
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Proofs

A.1 Reformulation of the Nagel and Enkelmann Regulariser

We want to show the correctness of our reformulation of the Nagel and Enkelmann
regulariser from (4.56):

VAI(∇2u,∇2v) = (∇2u)
⊤ P (∇2f) ∇2u + (∇2v)

⊤P (∇2f) ∇2v

=
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)
+
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)
, (A.1)

We proceed in two steps: First, we show that p1 := s01 = ∇2f/|∇2f | and p2 := s02 =
∇2f

⊥/|∇2f | are the eigenvectors of the matrix P as defined in (4.55). The corresponding
eigenvalues that we denote by q1 and q2 shall be given by the factors in front of (u2

s0
1

+v2
s0
1

)

and (u2
s0
2

+v2
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2

), respectively. To show that p1 is an eigenvector of P with corresponding

eigenvalue q1, it suffices to prove that P p1 = q1 p1:
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where (∗) holds as
(
∇2f

⊥
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∇2f = 0. For the second eigenvector and eigenvalue, one
obtains
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where (∗) holds as
(
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⊥
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∇2f
⊥ = |∇2f |2.

What remains to show is the validity of the following equation:
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The proof is a straightforward rewriting, which we exemplify for the u-part:
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Equivalently one obtains for the v-part
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Combining u- and v-part finally shows the correctness of (A.13):
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A.2 Diffusion Tensor of the Complementary Regulariser

Consider the complementary regulariser from (4.82)

V (∇2u,∇2v) = ΨV

(
u2r1

+ v2r1

)
+ u2r2

+ v2r2
(A.21)

= ΨV

(
(r⊤

1 ∇2u)
2+ (r⊤

1 ∇2v)
2
)
+ (r⊤

2 ∇2u)
2+ (r⊤

2 ∇2v)
2 (A.22)

= ΨV

(
(r11ux + r12uy)

2+ (r11vx + r12vy)
2
)

(A.23)
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2 ,

with r1 := (r11, r12)
⊤ and r2 := (r21, r22)

⊤. Its contributions to the Euler-Lagrange
equations are given by
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respectively. We exemplify the computation of the first expression (A.24). The second
one then follows analogously.

With the abbreviation
ψ′
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we start by computing the expressions
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Plugging (A.26) and (A.27) into (A.24) gives
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By multiplying out the expressions inside the divergence expressions one ends up with
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Note that the divergence expression has the form
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using a diffusion tensor
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Hence we can write equation (A.29) in diffusion tensor notation as
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with the diffusion tensor
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We multiplied the second term of each sum by a factor of 1 to clarify that the eigenvalues
of D are ψ′

V (r1) and 1, respectively. The corresponding eigenvectors are r1 and r2. We
thus can rewrite the tensor D as
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This shows that D is identical to DCR from (4.83), as it can be written as
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A.3 Equivalence between Two Energy Functionals

Consider the two energy functionals

E1 =

∫

Ω
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∫

Ω

(
2ε2
√
1 +

m2
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v2

ε2

)
dx dy , (A.37)

where m2 denotes some quadratic data term and v2 some quadratic smoothness term,
respectively. Note that both energies use the same penaliser in the data and smooth-
ness term. The energy E1 uses subquadratic penaliser Ψ(s2) =

√
s2 + ε2 that leads to

modified L1 penalisation in the data term and to TV regularisation in the smoothness
term. The energy E2 uses the Charbonnier function in both terms.

We now wish to prove that E2 is (up to a constant factor) equivalent to E1. This in
turn shows that minimising both energies leads to the same solution. Let us denote the
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integrand of E2 by F2. The latter, we rewrite as
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This shows that E2 = 2εE1 and concludes our proof.
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mation. In F. A. Hamprecht, C. Schnörr, and B. Jähne, editors, Pattern
Recognition, volume 4713 of Lecture Notes in Computer Science, pages 142–
151. Springer, Berlin, 2007.

[KP04] S.J. Kim and M. Pollefeys. Radiometric alignment of image sequences. In
Proc. 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1, pages 645–651, Washington, DC, June 2004.
IEEE Computer Society Press.
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[Sch94] C. Schnörr. Segmentation of visual motion by minimizing convex non-
quadratic functionals. In Proc. Twelfth International Conference on Pattern
Recognition, volume A, pages 661–663, Jerusalem, Israel, October 1994.
IEEE Computer Society Press.

[SH89] D. Shulman and J. Hervé. Regularization of discontinuous flow fields. In
Proc. Workshop on Visual Motion, pages 81–86, Irvine, CA, March 1989.
IEEE Computer Society Press.

[SKH08] A. Shekhovtsov, I. Kovtun, and V. Hlaváč. Efficient MRF deformation
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