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ABSTRACT
We propose a rotationally invariant similarity measure as
a modification of the well-known block matching algo-
rithm for finding similar regions in an image or an image
sequence. This algorithm can find similar patches even if
they appear in several rotated or even mirrored instances.
We demonstrate the application of this approach to en-
hance the quality of the non-local means algorithm for
image denoising. For this filtering method, we also intro-
duce a locally adaptive way of choosing the parameters.
Numerical examples show that both modifications lead to
a visible and measurable qualitative improvement of the
denoising results.

1. MOTIVATION

Block matching strategies belong to the earliest and most
often applied ideas in motion analysis [1, 2, 3]. Due to
their simplicity, they still play an important role in modern
algorithms, for example in the MPEG video compression
standard. Besides the application to image sequences, it is
clear that they can also be used to detect repeating struc-
tures or regions inside a single image. Thus, the basic idea
of block matching has also been applied for image pro-
cessing methods: For example, the inpainting algorithm
by Efros and Leung [4] fills in missing information by
searching for similar regions in the image and complet-
ing the missing details according to the information found
there.

A very popular denoising approach motivated by this
inpainting method is the so-called nonlocal means (NL-
means) algorithm for image denoising that has been pro-
posed by Buades et al. [5]. To calculate the denoised value
of one pixel, NL-means searches for similar neighbour-
hoods in the whole image and averages the corresponding
pixels of these neighbourhoods. NL-means belongs to the
class of adaptive averaging filters, like the sigma filter [6],
the Yaroslavsky filter [7], or the bilateral filter [8, 9, 10].
The difference to previous approaches is the way of cal-
culating the weights for the averaging process with the
consideration of neighbourhood information.

In spite of its simplicity, this approach is able to yield
high-quality denoising results. This has motivated sci-

Figure 1. Similar blocks are manually marked with white
squares. Left: Traditional block matching. Right: Rota-
tionally invariant similarity measure.

entific activity in this field: For example, the methodol-
ogy has been formalised with the help of variational ap-
proaches by Kindermann et al. [11] and Gilboa and Osher
[12]. An interpretation and analysis in the statistical con-
text has been given by Kervrann and Boulanger [13]. On
the application side, Mahmoudi and Sapiro have proposed
a fast implementation method which allows for the appli-
cation in the context of video denoising [14]. To improve
the quality, Brox and Cremers have proposed not to aver-
age over all pixels, but only over a certain number of best
matches [15]. They also emphasise that it is often not ap-
propriate to choose the parameters of the method globally.
The idea to use self-similarity in the image for denoising
has also been refined by the so-called collaborative filter-
ing approach by Davob et al. [16].

The goal of this paper is to present a similarity mea-
sure that is invariant under rotations and mirroring. This
extends very recent ideas by Alexander et al. [17] to arbi-
trary rotations. In the context of nonlocal means, it makes
sense also to involve pixels in the averaging which belong
to a neighbourhood that differs from the reference patch
only by rotation and mirroring. Figure 1 visualises the
aim of finding more useful pixels for averaging by con-
sidering rotated and mirrored image patches. It turns out
that this in fact can help to find a better choice of pixels
and more suitable weights for the average and thus im-
prove the quality of the results of NL-means. Further, we



propose a method for a locally adaptive parameter choice.
This paper is organised as follows: The next section

reviews the mathematical formulation of block matching
and the nonlocal means algorithm. The new approach for
rotationally invariant block matching and its application
within the nonlocal means algorithm is described in detail
in Section 3. Section 4 presents further improvements of
NL-means, namely an adaptive choice of parameters. Nu-
merical experiments comparing the qualitative results are
shown in Section 5. Section 6 concludes the paper with a
summary and an outlook.

2. BLOCK MATCHING AND NONLOCAL
MEANS

In this section, we give a mathematical formulation for
block matching and NL-means as we will use it later on.
Let f : Ω −→ R denote a greyscale image, typically with
domain Ω ⊆ R2. The distances of two blocks in classical
block matching is calculated as sum of squared distances:

dSSD(p, q) =
∫

B

(f(p + b)− f(q + b))2 db . (1)

In this continuous formulation B ⊂ R2 is the set defin-
ing the neighbourhood and b ∈ B is the displacement in-
side this neighbourhood. Usually, this will be a square;
for symmetry reasons especially in our context of rota-
tional invariance, we will use a disc here. Instead of the
quadratic penalisation of the distance, it is also common
to use more robust subquadratic functions in (1).

For denoising an image, the NL-means algorithm uses
similarity measures to search for similar areas in the whole
image. For every pixel to be denoised, the algorithm looks
for areas that are similar to the window around that pixel.
The idea is that if two areas are similar, then their cen-
tral pixels should have a similar meaning for the image
and thus similar grey values. If two areas in an image are
very similar, they can be understood as two noisy mea-
surements of the same noise-free patch, and thus it makes
sense to average their central pixel to estimate the original
value. Consequently, the denoising result is obtained by
an average as follows:

Df (p) =
∫

A(p)

w(p, q) · f(q) dq (2)

w(p, q) =
exp(−d(p,q)2

λ2 )∫
A(p)

exp(−d(p,q′)2

λ2 ) dq′
(3)

where A(p) defines a search window, in which the al-
gorithm should search for similar pixels. As described
above, this search window is the whole image in theory.
Nevertheless, for complexity reasons most implementa-
tions restrict A(p) to a window surrounding p; typical
sizes are 21 × 21 pixels. Instead of (1) a weighted dis-
tance measure is used here:

d(p, q) =
∫
B

Gα(b) · (f(p + b)− f(q + b))2 db (4)

where Gα is a Gaussian kernel:

Gα(b) = exp

(
− |b|2

α2

)
. (5)

However, while block matching is known to be robust un-
der noise, it has the severe drawback that it is not invariant
under any transformation such as rotations or mirroring.
As for every pixel the algorithm searches for blocks that
are similar to the window with the original pixel in its cen-
tre, there is no reason why blocks that are rotated around
their centre should have a higher distance than blocks that
are not rotated. We have already seen a visualisation of
the idea in Figure 1: A search strategy which is invariant
under simple transformations can find many more pixels
in the image with a similar meaning.

3. ROTATIONALLY INVARIANT BLOCK
MATCHING

In this section, we describe our generalisation of a simi-
larity measure which is invariant under rotations and mir-
roring. First we sketch the approach in a generic way. In
the second step, we focus in detail on a specific practical
implementation.

3.1. Basic idea

The central problem is to estimate the angle of rotation
between two corresponding blocks. This is done with the
help of one point correspondence: We estimate the an-
gle by which a certain pixel in the block, the so-called
centroid, is rotated around the block’s centre. Natural re-
quirements at such a centroid are that it is robust under
noise and easy to calculate. Furthermore, we identify all
points within a block by vectors pointing from its centre
to the points’ coordinates (see Figure 2). We can then de-
scribe the basic idea of rotationally invariant block match-
ing (RIBM) in a simple generic algorithm:

1. Estimate the angle of rotation between the blocks.

2. To each pixel in the first block, find the position of
the corresponding pixel in the second block by ro-
tating its vector by this estimated angle.

The summed distances represent the total distance of
the two blocks. It obviously makes sense to use circles as
blocks here. This algorithm can be extended to detect not
only rotated, but also mirrored versions of the reference
block. If we have found a mirrored version, we can again
mirror it at an arbitrary axis and then apply the algorithm
as described above.

In the following subsection, we will present an exam-
ple for an implementation of this approach. An evaluation
for the application of denoising with NL-means is shown
in Section 5.

3.2. An implementation of RIBM

Let two blocks B and B′ in the image be given such that
B′ is a noisy, rotated around the centre (and possibly mir-
rored) version of B. In our sample implementation, we



Figure 2. Three identical blocks. The middle block is ro-
tated by 90◦ to the right, while the right block is mirrored
at the y-axis. The continuous arrow points from the cen-
tre to the centroid of the block (in this example, dark grey
values are given high numerical values). The dotted arrow
in the left block points to some arbitrary point, the dotted
vector in the middle and the right block are its correspond-
ing points.

use centroids, which are commonly used for the compu-
tation of shift-invariant moments, to estimate the angle of
rotation. To define the centroid, we assume that pixels
within a block are addressed with a coordinate system that
has its origin at the block’s centre (see Figure 2):

cB :=



R
B

x·f(x,y) dx dyR
B

f(x,y) dx dy

R
B

y·f(x,y) dx dyR
B

f(x,y) dx dy

 (6)

The calculations of the angles can be done without ex-
pensive trigonometric functions by using rotation matri-
ces. Let ~cB denote the normalised vector corresponding
to the centroid of B and let mB,B′(v) be a function that
flips the sign of the first component of the vector v (i.e.
mirrors the vector at the y-axis) if block B′ is a mirrored
version of block B. In our implementation we use the sev-
enth moment of Hu (Hu7, see [18] for the definition and
some properties) to compute m. Hu7 is known to be in-
variant under many transformations such as rotation, but
changes its sign under mirroring. While the numerical
value of Hu7 suffers a lot from discretisation and noise,
its sign remains quite stable. Our strategy to compensate
for mirroring is then given as:

mB,B′(v) :=


(−v1, v2)>, Hu7(B′) · Hu7(B) < 0

(v1, v2)>, else .

(7)

We can write the rotation matrix that describes the esti-
mated rotation between the blocks as:

RB,B′ := R−1
~cB
·RmB,B′ ( ~cB′ ) with (8)

Rv :=
(

v1 −v2

v2 v1

)
. (9)

The normalisation in the Euclidean norm guarantees that
RB,B′ is a rotation matrix. If the block’s centre and cen-
troid coincide, this approach can not be used to estimate a

rotation matrix since cB = 0: We then simply use classi-
cal block matching by setting pB′ to pB in (10).

If, however, we can compute a rotation matrix, finding
the corresponding coordinates of a point pB in another
block B′ is a simple matter of matrix-vector multiplica-
tion:

pB′ := mB,B′(RB,B′ · pB) . (10)

Again, we compensate for mirroring using our function
m. Now pB′ represents the corresponding coordinates of
point p in block B′ relative to the centre of B′

To simplify the notation of the final formulation we
denote the grey value of f at the coordinates that are given
by adding the relative coordinates pB to the centre of block
B with fB(pB). Now we can finally define our new simi-
larity measure as

d(B,B′) :=
∫
B

(fB(pB)− fB′(pB′))2 dpB . (11)

To transfer this to the discrete case we replace this in-
tegral by a sum. Since we work on a rectangular pixel
grid, the rotation of a patch will only map pixels on the
grid if the angle is a multiple of 90◦. In all other cases, we
need some kind of interpolation. For a discrete image and
rotations that are not multiples of 90◦ one will of course
not achieve perfect invariance, but even with simple inter-
polation methods one can get good results. The similarity
measure then looks as follows:

d(B,B′) :=
∑

pB∈B

(fB(pB)− I(fB′ , pB′))2 ,(12)

where I denotes an interpolation function. For our imple-
mentation we used bilinear interpolation. Both formula-
tions can of course be combined with an inner Gaussian
weighting, as in (4).

Figure 3 shows the results of classical block matching
and the rotationally invariant approach presented in this
section with numerical examples. It is clearly visible that
our method is able to find many more possible candidates
of pixels with similar meaning in the image than the stan-
dard approach.

4. FURTHER IMPROVEMENTS OF NL-MEANS

After presenting the similarity measure in the previous
section, we now turn our attention again to the NL-means
method. We are going to present two modifications of the
method that can enhance the quality of the denoising re-
sults in practical examples.

Firstly, we discuss the weighting of the pixels dis-
tances in the similarity calculation, and secondly, we focus
on an adaptive choice of parameters.

4.1. Weighting of the central pixel

As already seen in (4), a weighted sum of squared dis-
tances is used as similarity measure in the classical NL-
means algorithm. The grey value distances of the single



Figure 3. Comparison of classical and rotationally in-
variant block matching. Left: Texture test images, size
129 × 129 pixels. Middle: Similarity to the centre pixel
of the section computed on a block of circular shape with
radius 4 (framed white) using traditional block match-
ing and unweighted Euclidean distances (linearly scaled,
bright pixels have small distances). Right: Rotationally
invariant block matching using bilinear interpolation.

pixels are weighted with by a Gaussian factor respecting
the spatial distance in the image domain. The idea be-
hind such a weighting is that pixels close to the centre are
more relevant than pixels at the block’s boundary. This
idea is quite common also in averaging filters like the bi-
lateral filter [10]. The problem with this approach is that
for the denoising we actually want to know the value of
the pixel at centre of the block, but we give it the high-
est weight and thus punish deviation from that value more
than everything else. This leads to the problem that e. g.
in a noisy but otherwise homogeneous area blocks with
similar values at the centre are considered more similar
than other blocks. To sufficiently denoise those areas one
would have to give even blocks with high distances a high
weight (i.e. increasing λ in equation (3)). Such an action
would lead to problems in other areas of the image, e.g.
edges or fine structures. To overcome this problem we
propose a modified Gaussian kernel for the inner weight-
ing: The weight of the centre pixel is set to a new value
γ < 1. In a discrete setting this can done easily by using

Gα,γ(b) :=

{
γ, b = (0, 0)

exp
(
−|b|2
α2

)
, else .

(13)

The continuous case requires a slightly different solution.
One way to achieve the same effect would be to subtract a
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Figure 4. The middle pixel is weighted down by a second
Gaussian

Figure 5. Behaviour of the MSE depending on the
smoothness parameter λ for Lena with additive Gaussian
noise with σ = 5, 10, 15, 20. The y-axis is logarithmically
scaled.

second Gaussian from the first one:

Gα,β,γ(b) := exp

(
− |b|2

α2

)
− (1− γ) · exp

(
− |b|2

β2

)
(14)

with β < α. The shape of this function can be seen in
Figure 4.

4.2. Locally adaptive weighting

Our second improvement of NL-means concerns the choice
of the parameters: The parameter λ in (3) controlling the
weighting of the distances is the most crucial parameter of
the NL-means filter. Its optimal value of course depends
on the amount of noise in the image: Choosing λ too low
leads to a noisy result while setting it too high blurs fine
structures and edges. Figure 5 displays the behaviour of
the mean square error (MSE) depending on λ for some
denoising examples.

It has been shown by Brox and Cremers [15] that there
is in general not even a global optimal λ for one image
such that all areas of that image are sufficiently denoised
without blurring other areas in the same image too much.
This directly motivates a replacement of the global param-
eter λ by a locally adaptive function Λ(λ, B).

One possibility to achieve this is to take into account
the empirical variance resp. the standard deviation sB of
the block B. The standard deviation depends on both the
structure of the block and the amount of noise. This qual-
ifies it for this task, as a sharp structure (which leads to a



Figure 6. Comparison of method noise (MN) and abso-
lute method noise (AMN). Top: Lena with Gaussian noise
(σ = 20), convolved with a Gaussian kernel. Bottom:
NL-means denoising. From Left to Right: Filtered im-
age of size 256× 256 pixels, MN, AMN.

high variance) usually means that there are only few simi-
lar blocks (at least significantly less than in homogeneous
areas), which requires more smoothing. The same holds
true for a high amount of noise, enabling us to even handle
locally different noise within an image. Scaling down sB

by a sub-linear function Ψ avoids a too high influence on
the smoothing. A locally adaptive function could then be
given by

Λ(λ, B) := λ ·Ψ(sB). (15)

We achieved good results for Ψ(sB) =
√

sB .

Another possibility is to simply look at the best match
within the search window A apart from the pixel itself,
i. e. the smallest distance larger than a threshold which
should not be chosen too small to avoid divisions by small
numbers in the exponent of the weighting function. For
our experiments, we set this threshold to 1. The corre-
sponding function could then look like:

Λ(λ, A) := λ ·Ψ
(

min
q∈A(p)

{dist(p, q)|dist(p, q) > 1}
)

.

(16)

Taking the identity function for Ψ and setting λ to 1 we
can completely avoid the formerly most important param-
eter, resulting in a fully automatic filter. This yields very
good visual results for different amounts of noise. The nu-
merical results, however, are worse than the results of the
original NL-means filter. Details and reasons for this are
given in the next section.

5. NUMERICAL RESULTS

In this section, we demonstrate the influence of our pro-
posed modifications with all three quality measures that
are commonly used for benchmarking denoising filter: the
visual impression of the filtered image, the mean squared

Figure 7. NL-means with block matching vs. RIBM.
Left: Segment (48× 48 pixels) of Flintstones with Gaus-
sian noise (σ = 20). Middle: Classical NL-means.
Right: NL-means with RIBM: round structures are de-
noised better.

error (MSE) and the so-called method noise (MN). MN is
simply the difference between the noisy image f and its
denoised version D(f):

MN := f −D(f). (17)

The idea behind this measure is that this difference should
always look like random noise. The problem is that the
values can have either sign, and thus one has to shift those
values to visualise the results. Blurred edges become vis-
ible as edges with a dark and a bright side. Areas where
most of the noise survives, however, are not visible that
easy. That is why we slightly modify the definition of MN
and introduce the absolute method noise

AMN := |f −D(f)| . (18)

While blurred structures still remain visible with this ap-
proach as bright structures, areas where the noise is still
present are now visible as dark structures (see an example
in Figure 6).

5.1. RIBM

The usage of our RIBM implementation improved the de-
noising quality for most of our test images. The influence
is very well visible on round edges; see Figure 7. The
influence on the MSE is rather moderate. The benefit of
RIBM is most prominent in structured areas that appear
repeatedly in several rotated instances, for example in tex-
tures. The running time is currently about 3-4 times longer
than a comparable NL-means implementation. Since the
speed-up with prefiltering by Mahmoudi and Sapiro [14]
relies on the comparison of the average gradient, the two
ideas can unfortunately not be directly used together.

5.2. Weighting of the central pixel

Weighting down the inner Gaussian increases the amount
of noise removed in homogeneous areas without increas-
ing the blurring artifacts at edges (see Figure 8). The MSE
of all of our test images was improved by this modifica-
tion. The improvement becomes also visible in the AMN:
the images visualising the differences become brighter
without the arisal of bright areas. This improvement is
done at no computational costs: As shown in (13), one sin-
gle line of code is sufficient to adapt existing NL-means
implementations.



Figure 8. Weighting of the central pixel. Left: Section
(18 × 18 pixels) of Flintstones with Gaussian noise (σ =
20). Middle: Classical NL-means. Right: NL-means
with weight of middle pixel of inner Gaussian set to 0:
More noise is removed without edges being blurred.

5.3. Locally adaptive weighting

The locally adaptive approach finally improves the denois-
ing results at structures and edges. When using the empir-
ical variance of the blocks for computing a locally adap-
tive weighting, the AMN looks even more random than
the AMN of images filtered with traditional NL-means
(see Figure 9). The MSE was also improved for all of
our test images except for Barbara. For the local adaptive
approach using minimal distances as weighting parameter
lambda, the visual impression of all test images was very
good, but the MSE increased on all of our test images.
This is due to the fact that this approach removes some
non-repetitive structures in the images without adding ad-
ditional blur (see Figure 10). Another nice effect of using
minimal distances is that the parameters are significantly
less dependent on the actual noise. Figure 11 shows an ex-
ample of images with different amounts of noise that have
been filtered with the same parameters. In all images the
noise is removed without blurring the edges.

A comparison in terms of the absolute method noise
for all variants of NL-means presented in this paper can
be found Figure 12. It is clearly visible that there are
more black regions for NL-means than for the modified
versions, and so more noise remains for the standard al-
gorithm. In Table 1, the MSE of the denoising results for
several test images is displayed. For each test image, most
of the modifications lead to an improved quality compared
to the standard NL-means algorithm. On the other hand,
the combination of all modifications is not always better
than the best one of the single variants.

It is also visible that rotationally invariant block match-
ing performs best for images with round edges. A coun-
terexample is the Barbara image: It contains large regions
with parallel line-like structure (see Figure 10). In these
regions, the centroid and the centre are very close to each
other and an orientation estimation is highly deteriorated
by noise.

6. SUMMARY

We have presented a similarity measure for image patches
which is invariant under rotations and mirroring. It serves
as a generalisation of classical block matching strategies.
We have called this approach rotationally invariant block

Figure 9. Locally adaptive weighting. Left: Lena with
Gaussian noise added (σ = 20), size 256 × 256 pixels.
Middle: AMN of filtered image using traditional NL-
means. Right: AMN of filtered image using NL-means
with a local adaptive smoothing parameter Λ(λ, B) = λ ·√

SB .

Figure 10. Locally adaptive weighting with minimal dis-
tances. Left: Section of Barbara. Two dark spots are visi-
ble. Middle: Gaussian noise added (σ = 20) and filtered
using standard NL-means. Right: NL-means with a local
adaptive smoothing parameter using minimal distances.

matching (RIBM). The direction of the central pixel to a
feature point is used to determine the local rotation of the
blocks. Mirroring of patches is detected with the seventh
Hu moment. Examples show that this method is able to
find many more semantically corresponding pixels in test
images than the standard approach.

We have applied RIBM to image denoising with the
NL-means algorithm. It can be seen that this can increase
the image quality, especially for images with many round
edges. This is achieved at a moderate price: The running
time of the algorithm is about 3-4 times the running time
of the classical NL-means algorithm.

We have proposed two additional modifications of the
NL-means algorithm which can enhance the quality even
further. The first modification reduces the weighting of
the central pixel in the similarity calculation which is mo-
tivated by the fact that the central pixel is still to be de-
termined in the averaging. Thus, the confidence in this
pixel should be low. The second improvement replaces
the global weighting parameter λ by a locally adaptive
one. This can be motivated by previous results in the lit-
erature [15]. These two modification can also be applied
directly to classical NL-means. They improve the quality
and leave the computational costs almost unchanged.

To conclude the paper, we sketch some questions of
ongoing and further research: In the similarity measure,
robust functions instead of the square could be used in or-
der to allow for an adaptation to different kinds of noise.



Figure 11. Locally adaptive weighting using minimal
distances. Top: Section (212 × 212 pixels) of Barbara
with Gaussian noise (σ = 5, 10, 20). Bottom: Filtered
with NL-means using minimal distances for local adaptive
weighting. All images have been filtered with the same
fixed parameter set.

A very interesting question is whether one can also bene-
fit from RIBM in the context of other denoising methods
like collaborative filtering [16] or other image processing
applications like inpainting [4], for example.
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Figure 12. Comparison of absolute method noise for all method variants. Top Left: Flintstones (sometimes also referred
to as ’Flinstones’) with additive Gaussian noise (σ = 20), size 512 × 512 pixels. Top Middle: AMN for classical
NL-means. Top Right: NL-means with RIBM. Bottom Left: NL-means with local adaptive smoothing parameter
Λ(λ, B) = λ ·

√
SB . Bottom Middle: NL-means with Gα,0 as Gaussian kernel. Bottom Right: NL-means with all

three modifications combined. For MSE see Table 1.

Image Barbara Boats Flintstones Lena House Peppers Trui Trui

Size 512x512 512x512 512x512 512x512 256x256 256x256 256x256 256x256
Noise σ = 20 σ = 20 σ = 20 σ = 20 σ = 20 σ = 20 σ = 5 σ = 20
Traditional
NL-means 72.66 78.68 108.92 48.27 44.83 72.19 11.32 46.47
NL-means
with RIBM 93.11 77.21 93.17 47.67 43.66 67.43 9.33 41.53
NL-means
with Gα,0 67.02 78.33 103.24 43.74 38.64 67.02 10.94 39.55
NL-means
with Λ(λ, B) 76.06 74.77 89.20 46.44 40.96 66.80 8.54 43.29
NL-means with RIBM,
Gα,0 and Λ(λ, B) 91.21 77.12 97.61 43.50 39.91 67.12 9.13 39.43
NL-means
with Λ(λ, A) and Gα,0 91.50 105.49 137.28 54.83 47.56 95.82 9.13 45.85

Table 1. Benchmark results given as MSE. Λ(λ, B) denotes the local adaptive approach that takes into account the
variance of the block, Λ(λ, A) denotes the approach that uses the minimal distance. As explained in Section 6 the MSE
increases for the latter one in most images.


