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Abstract. Image enhancement with forward-and-backward (FAB) diffusion is
numerically very challenging due to its negative diffusivities. As a remedy, we
first extend the explicit nonstandard scheme by Welk et al. (2009) from the 1D
scenario to the practically relevant two-dimensional setting. We prove that un-
der a fairly severe time step restriction, this 2D scheme preserves a maximum–
minimum principle. Moreover, we find an interesting Lyapunov sequence which
guarantees convergence to a flat steady state. Since a global application of the
time step size restriction leads to very slow algorithms and is more restrictive
than necessary for most pixels, we introduce a much more efficient scheme with
locally adapted time step sizes. It applies diffusive two-pixel interactions in a
randomised order and adapts the time step size to the specific pixel pair. These
space-variant time steps are synchronised at sync times. Our experiments show
that our novel two-pixel scheme allows to compute FAB diffusion with guaran-
teed L∞-stability at a speed that can be three orders of magnitude larger than its
explicit counterpart with a global time step size.

1 Introduction

Partial differential equations (PDEs) and variational approaches for enhancing digital
images have been investigated intensively in the last thirty years. An overview can be
found e.g. in [1, 12]. As continuous frameworks, these approaches excel by their concise
and transparent formulation and their natural representation of rotational invariance.

However, some highly interesting models are affected by well-posedness problems,
making their analysis in a continuous setting difficult. Well-posedness properties of
space-discrete and fully-discrete formulations therefore receive increasing attention.
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Regarding the Perona–Malik filter, a space-discrete and fully discrete theory for
smooth nonnegative diffusivities was established by Weickert [12]. The corresponding
explicit scheme was proven in [13] to preserve monotonicity in 1D. An extension of
this analysis to singular nonnegative diffusivities was accomplished by Pollak et al.
[10] who verified the well-posedness of dynamical systems with discontinuous right
hand sides arising from a space-discrete Perona-Malik model.

For the stabilised inverse linear diffusion process introduced by Osher and Rudin, a
continuous well-posedness theory is lacking, but a stable minmod discretisation could
be devised [7]. For shock filtering [5, 8] which, too, is difficult to analyse in the con-
tinuous setting, discrete well-posedness results are found in [15], including an analytic
solution of the corresponding dynamical system.

The forward-and-backward (FAB) diffusion model of Gilboa et al. [4] is another
example for these difficulties. Designed for the sharpening of images, it is basically a
Perona–Malik type PDE filter. However, its diffusivities take positive values in some
regions and negative values in others. The absence of well-posedness results in the
continuous setting is plausible given that inverse diffusion in its pure form, with negative
diffusivity, is a standard example of an ill-posed problem. Experiments with standard
explicit discretisations show violations of a maximum–minimum principle.

For space-discrete and fully discrete FAB diffusion some analytical results have
been obtained in [14]. It was shown that space-discrete FAB diffusion is well-posed and
satisfies a maximum–minimum principle if a specific nonstandard discretisation is ap-
plied at extrema. For a fully discrete 1D FAB diffusion framework with an explicit time
discretisation, a maximum–minimum principle and a total variation reduction property
were established. However, results for higher dimensions are still missing.

Our contribution. In this paper, we consider the practically relevant fully discrete 2D
case. We prove a maximum–minimum principle for an explicit time discretisation. By
introducing a novel Lyapunov sequence – which is also interesting by itself – we prove
convergence to a flat steady state. Our theoretical findings allow to devise an explicit
finite difference scheme for FAB diffusion which is L∞-stable for small positive time
step sizes. Unfortunately, the time step bound is extremely small which limits the prac-
tical applicability of that scheme. However, as our analysis reveals, the small time step
size is actually needed only at few locations in typical images. This motivates us to
adapt the time step size locally. To obtain maximal locality and keep the diffusion in-
teraction process as simple and transparent as possible, we split it into a sequence of
two-pixel interactions. Selecting the pixel pairs randomly averages out any directional
bias. Our experiments show that this gives a stable scheme for 2D FAB diffusion that is
three orders of magnitude more efficient than an explicit scheme with global time step
size restriction.

Structure of the paper. In Section 2, we briefly review the basic ideas behind FAB dif-
fusion. Our theoretical results for an explicit scheme with nonstandard discretisation in
a two-dimensional setting are established in Section 3. In Section 4 we introduce our
novel two-pixel scheme with randomised updates. Its performance is evaluated experi-
mentally in Section 5. Our paper is concluded with a summary in Section 6.
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2 Forward-and-Backward Diffusion Filtering

Forward-and-backward (FAB) diffusion filtering has been proposed by Gilboa, Sochen
and Zeevi in 2002 [4]. Let a greyscale image f : Ω → R on a rectangular image domain
Ω ∈ R2 be given. To sharpen this image, filtered versions u(x, t) of f(x) are created
by solving an initial–boundary value problem for the Perona-Malik type [9] PDE

∂tu = div
(
g(|∇u|2)∇u

)
(1)

with initial condition u(x, 0) = f(x), and homogeneous Neumann boundary condi-
tions, ∂nu = 0, where n denotes a vector normal to the image boundary ∂Ω. Here
x stands for (x, y)>. Writing partial derivatives by subscripts, we denote by ∇ :=
(∂x, ∂y)> the spatial gradient and by div its corresponding divergence operator.

For the diffusivity g different models have been proposed, see for example [3, 11].
Constitutive for a FAB diffusivity is that it is positive for small image gradients, while
it becomes negative for larger ones. An example, adapted from [11], is

g(s2) = 2 exp

(
−κ

2 ln 2

κ2 − 1
· s

2

λ2

)
− exp

(
− ln 2

κ2 − 1
· s

2

λ2

)
(2)

with admissible parameters λ > 0 and κ > 1. In contrast to this diffusivity, some other
FAB diffusivities can also become positive again for large gradient magnitudes; see e.g.
[3]) In [3] FAB diffusion has been interpreted as an energy minimisation process of a
nonmonotone potential in the shape of a triple-well. FAB diffusion has also been put
into relation with wavelet methods for image enhancement [6].

Beyond these works, there is not much theoretical analysis of the fully continuous
FAB process documented in the literature. In particular, no existence, uniqueness and
stability results have been proven. It was conjectured [4] that FAB diffusion violates a
maximum–minimum principle due to the effect of negative diffusivities. In numerical
experiments based on standard numerical methods, such violations were indeed ob-
served. However, [14] brought out that using a more sophisticated space discretisation,
the space-discrete process obeys the maximum–minimum principle and useful theoret-
ical results on the space-discrete process could be established. Stability properties of
fully discrete FAB diffusion were considered in [14], too, but limited to the 1D case.
We will present analytical results for the 2D case in the next section.

3 Analysis of Fully Discrete FAB Diffusion in 2D

To study FAB diffusion in the fully discrete 2D case, we consider the discrete image
domain J := {1, 2, . . . ,m} × {1, 2, . . . , n}. Following [14] we use a simple explicit
scheme for (1) with time step size τ and grid sizes h1 and h2 in x- and y-direction:

uk+1
i,j = uki,j + τ ·

(
gki+1,j+g

k
i,j

2
·
uki+1,j−uki,j

h21
−
gki,j+g

k
i−1,j

2
·
uki,j−uki−1,j

h21

+
gki,j+1+g

k
i,j

2
·
uki,j+1−uki,j

h22
−
gki,j+g

k
i,j−1

2
·
uki,j−uki,j−1

h22

)
. (3)
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Fig. 1. Schematic view of a FAB diffusivity sat-
isfying the conditions of Proposition 1.

Here, uki,j approximates u at location
(
(i − 1

2 )h1, (j − 1
2 )h2

)
and time kτ . Further

following [14], we use a nonstandard approximation for the FAB diffusivity,

gki,j = g

(
max

(
uki+1,j − uki,j

h1
·
uki,j − uki−1,j

h1
, 0

)

+ max

(
uki,j+1 − uki,j

h2
·
uki,j − uki,j−1

h2
, 0

))
. (4)

In contrast to the standard approximation

gki,j = g

(uki+1,j − uki−1,j
2h1

)2

+

(
uki,j+1 − uki,j−1

2h2

)2
 (5)

it offers the advantage that at extrema the gradient approximation is zero which leads
to a positive FAB diffusivity. This will be essential for guaranteeing stability.
To implement homogeneous Neumann boundary conditions, we set

uk0,j := uk1,j , ukm+1,j := ukm,j , uki,0 := uki,1, uki,n+1 := uki,n (6)

for all indices i and j. Then (3) can be used verbatim also at boundary pixels.

3.1 Maximum–Minimum Principle

Our first result is a 2D analogue for the first statement of [14, Prop. 4], i.e. the maximum–
minimum principle. The hypotheses on the grey-value range and shape of the diffusivity
function g are the same as there. Our bound for τ is adapted to the 2D grid geometry.

Proposition 1. Let an initial 2D image f = (fi,j) on J = {1, 2, . . . ,m}×{1, 2, . . . , n}
be given, and let the sequence of images uk = (uki,j) evolve according to (3), (4) with
the initial condition u0 = f . Let the grey-values fi,j be restricted to a finite interval
[a, b] of length R := b− a. Assume that there are two constants c1 > c2 > 0 such that
the diffusivity g fulfils g(0) = c1, and g(z) ∈ [−c2, c1] for all z > 0, compare Fig. 1.
Assume further that there exists an ω > 0 such that g(s2) > c2 holds for all s with
0 < s < ωR.
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Let the time step τ satisfy the inequality

τ ≤ ϑ :=
ω2h41h

4
2

2c1(h21 + h22)(ω2h21h
2
2 + h21 + h22)

. (7)

Then u obeys the following maximum–minimum principle: If the initial signal is
bounded by fi,j ∈ [a, b] for all (i, j) ∈ J , then uki,j ∈ [a, b] for all (i, j) ∈ J , k ≥ 0.

The proof of this statement relies on two local properties.

Lemma 1. Under the assumptions of Proposition 1, local maxima do not increase.

Proof. Let uki,j be a local maximum of uk. Then gki,j = c1, and we have that gki+1,j+g
k
i,j

etc. are positive while uki+1,j − uki,j etc. are negative such that all summands in the
bracket on the r.h.s. of (3) are negative. This holds independent of τ .

The r.h.s. of (3) is a convex combination of uki,j , u
k
i±1,j , u

k
i,j±1 if

1− τ

2h21

(
gki+1,j + 2gki,j + gki−1,j

)
− τ

2h22

(
gki,j+1 + 2gki,j + gki,j−1

)
≥ 0 , (8)

which is certainly the case if τ ≤ h21h22/(2c1(h21 +h22)) (the well-known time-step limit
for the standard explicit scheme in the case of nonnegative diffusivity). �

Lemma 2. Under the assumptions of Proposition 1, a non-maximal pixel does not grow
in excess of its greatest adjacent pixel within one time step.

Proof. Let uki,j be the non-maximal pixel under consideration. Assume first that the
largest grey-value among its neighbours is attained by a horizontal neighbour, say
uki−1,j . So uki−1,j is greater than uki,j and not less than each other neighbour of uki,j .

To outline the proof first, notice that basically two situations can happen: If uki,j is
only slightly smaller than uki−1,j , it turns out that uki,j is “not far from maximality”. In
this case, its diffusivity gki,j will be positive and large enough to ensure forward diffusion
(Case 1 in the following), such that again the time step limit of explicit forward diffusion
applies. Otherwise, negative diffusivity may occur but at the same time there is quite
some way to go before uk+1

i,j could exceed uki−1,j . The overall bounds on the image
contrast limit the diffusion flow and thereby the “speed” of the pixel. So one can state
also in this case a time step size limit that ensures the desired inequality (Case 2). In the
following, these two cases are treated exactly.

Case 1: 1
h2
1
(uki,j − uki−1,j)(uki+1,j − uki,j) + 1

h2
2
(uki,j − uki,j−1)(uki,j+1 − uki,j) ≤ ω2R2.

Then gki,j ≥ c2, and thus gki,j + gki+1,j , g
k
i,j + gki,j±1 ≥ 0. As a consequence, uk+1

i,j

is a convex combination of uki,j , u
k
i±1,j , u

k
i,j±1 if

1− τ

2h21
(gki+1,j + 2gki,j + gki−1,j)−

τ

2h22
(gki,j+1 + 2gki,j + gki,j−1) ≥ 0 , (9)

which is certainly fulfilled if 1− 4τc1
2h2

1
− 4τc1

2h2
2
≥ 0, i.e. τ ≤ h21h22/(2c1(h21 + h22)).

Case 2: 1
h2
1
(uki,j − uki−1,j)(uki+1,j − uki,j) + 1

h2
2
(uki,j − uki,j−1)(uki,j+1 − uki,j) > ω2R2.
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The difference between pixel uki,j and its greatest neighbour fulfils the inequality
uki−1,j − uki,j > ω2R/(h−21 + h−22 ) because the contrary would imply the hypothesis
of Case 1. Further, we have by the hypothesis of Case 2 that −c2 ≤ gki,j ≤ c2. Together
with the hypotheses from Proposition 1 on the range of g and the image range, one has

−2c2 ≤ gki+1,j + gki,j ≤ c1 + c2 , −R ≤ uki+1,j − uki,j ≤ R ,

−2c2 ≤ gki−1,j + gki,j ≤ c1 + c2 , 0 ≤ uki−1,j − uki,j ≤ R ,

−2c2 < gki,j±1 + gki,j ≤ c1 + c2 , −R ≤ uki,j±1 − uki,j ≤ uki−1,j − uki,j .
(10)

Inserting this into (3) gives

uk+1
i,j ≤ u

k
i,j + τ

(
c1 + c2

2h21
R+

c1 + c2
2h21

(uki−1,j − uki,j) + 2
c1 + c2

2h22
R

)
, (11)

uki−1,j−uk+1
i,j ≥ (uki−1,j−uki,j)

(
1− τ(c1+c2)

2h21

)
− τ(c1+c2)R

2

(
1

h21
+

2

h22

)
. (12)

The r.h.s. of (12) is certainly nonnegative if

τ ≤ 2h21
c1 + c2

·
uki−1,j − uki,j

uki−1,j − uki,j +R (1 + 2h21/h
2
2)
, (13)

for which by our initial estimate for uki−1,j − uki,j and monotonicity it suffices that

τ ≤ 2ω2h41h
4
2

(c1 + c2)(ω2h21h
4
2 + (h22 + 2h21)(h21 + h22))

. (14)

This limit on τ ensures that the pixel under consideration cannot grow in excess of
its greatest neighbour if this neighbour is a horizontal neighbour. If uki,j has its greatest
neighbour in vertical direction, analogous considerations lead to a similar constraint,
with h1 and h2 exchanged. Both bounds on τ are larger than the one of Proposition 1.

�

Proof (of the Proposition). The maximum–minimum principle follows immediately
from Lemmas 1 and 2 and analogous statements for local minima. �

Remark 1. Unlike in the 1D case [14, Prop. 4], the statement that an extremum may not
split into two does not hold. Similar to ordinary homogeneous diffusion, a “dumbbell”
configuration with a narrow ridge between two more extended plateaus can serve as
a counterexample. Note that for sufficiently small grey-value differences between the
ridge and the adjacent plateaus all diffusivities in this region are positive.

3.2 Strict Lyapunov Condition

The maximum–minimum principle from Proposition 1 suggests the use of the differ-
ence between global maximum and global minimum of the image as a Lyapunov func-
tion to investigate the possible convergence of discrete FAB diffusion. Our proofs from
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the previous subsection, however, still leave the possibility that the global maximum
and minimum of the image stay constant, and different from each other, forever.

To rule out this possibility, we will refine our analysis and construct a strictly de-
creasing Lyapunov function by incorporating multiplicities of maxima and minima as
additional information. From now on, we require that τ is strictly smaller than the bound
from Proposition 1. We introduce notations for the global extremal grey-values of im-
ages with their multiplicities, and an ordering for pairs of values with multiplicities.

Definition 1. For any image u = (ui,j)(i,j)∈J , let umax := max
i,j

ui,j , umin := min
i,j

ui,j

denote its maximal and minimal grey-value, respectively, and nmax := #{(i, j) | ui,j =
umax}, nmin := #{(i, j) | ui,j = umin} their multiplicities.

Definition 2. Let the relation ≺ on R× N be given by

(u1, n1) ≺ (u2, n2) :⇐⇒ (u1 < u2) or (u1 = u2 and n1 < n2) . (15)

Clearly, ≺ is a strict total order. We can now establish the maximum–minimum
difference with multiplicities as Lyapunov function for discrete FAB diffusion.

Proposition 2. Consider the fully discrete FAB diffusion (3), (4). If the time step size is
chosen as τ < ϑ with ϑ as in Proposition 1, then

(uk+1
max − uk+1

min , n
k+1
max + nk+1

min ) ≺ (ukmax − ukmin, n
k
max + nkmin) (16)

holds, unless ukmax = ukmin.

Proof. Let uki,j be a local maximum of uk. As in the proof of Lemma 1, we have
gki,j = c1. Thus, the new value uk+1

i,j of that pixel will be a convex combination of the
old grey-values of pixel (i, j) and its neighbours, with all neighbours having positive
weights. Therefore, uk+1

i,j = uki,j can happen only if all neighbours have the same value
as ui,j in time step k. As long as not all pixels of the image have the same value, there
will be at least one pixel uki,j = ukmax with a neighbour of smaller grey-value.

Following the proof of Lemma 2 we see that for τ < ϑ the new pixel value uk+1
i,j

remains strictly below the old value of its largest neighbour uki−1,j . Thus, uk+1
i,j = ukmax

cannot hold for a pixel with uki,j < ukmax.
Combining both arguments, we see that the number of pixels attaining the value

ukmax decreases in time step k+1. As a consequence, one has uk+1
max < ukmax (if no pixel

with that value remains), or nk+1
max < nkmax (if the maximal value remains equal).

Analogous reasoning for minima completes the proof. �

3.3 Convergence to a Flat Steady State

An immediate consequence of Proposition 2 is the following statement.

Corollary 1. The only fixed points of the discrete FAB diffusion process (3), (4) are the
flat images given for each µ ∈ R by

ui,j = µ for all (i, j) ∈ J . (17)
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By average grey-value invariance, the only steady state that could be reached from
a given initial image f is that for which µ is the average grey value of f . We will now
prove convergence to this steady state.

Proposition 3. Fully discrete FAB diffusion (3), (4) with u0 = f and time step size
τ < ϑ converges to the fixed point (17) where µ is the average grey value of f .

Proof. Consider the strictly decreasing (w.r.t. ≺) sequences
(
(ukmax, n

k
max)

)
k∈N and(

(−ukmin, n
k
min)

)
k∈N from Proposition 2. These sequences are bounded from below by

(a,N), (−b,N), respectively, where a := fmin, and b := fmax. By an easy adaptation
of the standard argument for sequences in R to sequences in R × N it follows that the
sequences (ukmax), (ukmin) converge. Denote by ū, u their respective limits.

Assume u < ū. By the maximum–minimum principle, uk ∈ [a, b]N holds for all
k. Since [a, b]N is compact, the sequence (uk) has a cumulation point. Because of the
monotonicity of (ukmax), (ukmin) each cumulation point satisfies u∗max = ū, u∗min = u.

We choose one cumulation point u∗ and consider the FAB evolution (ũk)k∈N0
with

initial condition ũ0 = u∗. By Proposition 2, there exists a natural number K such that
ũKmax = max ũ < ū. Let therefore δ := ū− ũKmax > 0.

Moreover, the evolution (3), (4) satisfies a Lipschitz condition on [a, b]N with re-
spect to the maximum norm ‖ · ‖, i.e.

‖uk − ûk‖ < B ⇒ ‖uk+1 − ûk+1‖ < LB (18)

with some Lipschitz constant L > 0. Since u∗ is a cumulation point of (uk), we can
choose k such that ‖uk −u∗‖ < δ/LK . Consequently, ‖uk+K − ũK‖ < δ, and by the
triangle inequality it follows that

uk+Kmax ≤ ũKmax + ‖uk+K − ũK‖ < ū− δ + δ = ū , (19)

contradicting the convergence of (ukmax) to ū. Thus, our assumption u < ū must be
wrong, and we have u = ū, i.e. convergence to a flat steady state. �

4 An Efficient and Stable Two-Pixel Scheme

Based on the stability result from Proposition 1 it is possible to compute FAB diffusion
by a stable explicit scheme. The time step size limit imposed by (7), however, is way
too small for practical purposes. In fact, (7) is an a priori estimate for the time step size
resulting from several worst-case estimates which in general apply only to a few pixel
locations. The theory in Section 3.1 can be used to derive instead a posteriori estimates
which allow to steer the time stepping in an adaptive way. The resulting time steps will
almost always be considerably larger than (7).

To make this precise, note that (3) can be written as uk+1
i,j = uki,j + τ u̇ki,j where the

finite-difference approximation u̇ki,j of div(g∇u) can be computed independent of the
time step size τ . To ensure that the maximum–minimum property is not violated within
a time step, bounds on τ can then be derived directly from the criteria formulated in
Lemma 1 and Lemma 2 for each pixel location. First, non-enhancement of extrema is
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warranted for τ ≤ τmax := h21h
2
2/(2c1(h21 + h22)) as stated in the proof of Lemma 1.

Second, local monotonicity preservation as stated in Lemma 2 can be achieved if in each
time step, each non-maximal pixel is prevented from growing in excess of its largest
neighbour, and each non-minimal pixel from decreasing below its smallest neighbour.
Appropriate time step bounds can be computed for each pixel individually from u̇ki,j .

Whereas these conditions could be evaluated to derive a global time step τ in each
iteration, we obtain a higher effiency by following a radically localised approach: The
diffusion flow u̇ki,j in (3) is composed of four two-pixel flows, each between the loca-
tion (i, j) and one of its neighbours. Each of these flows appears with opposite signs
in the flows of its two participating pixels, which ensures that the average grey-value
conservation property of the continuous diffusion process is exactly fulfilled also in its
discretisation (3). In order to maintain this conservation property, we choose the two-
pixel flows as the elementary units for our scheme; compare also the proceeding in [2].
Starting from an approximation uk pertaining to evolution time kτmax, a global time
step of size τmax is carried out by updating two-pixel flows in random order, each one
with an appropriate time step. In the case of forward diffusion the time step is cho-
sen so that the two interacting pixels preserve their monotonicity order. In the case of
backward diffusion it is chosen such that they are prevented from growing above the
maximum, or decreasing below the minimum of their respective neighbourhoods. Up-
dated values ui,j enter immediately the computation of other pixels. This is repeated
until all flows have reached the new time level, yielding the new approximation uk+1.

The time step k 7→ k + 1 thus starts by initialising an evolution time account for
each pair of neighbouring pixels, {(i, j), (i′, j′)} with (i′, j′) = (i + 1, j) or (i′, j′) =
(i, j + 1), as Ti,j;i′,j′ := τmax. Then, the following steps are repeated until all Ti,j;i′,j′
reach zero, implying that we have progressed from sync time kτmax to (k + 1)τmax:

1. Random selection: Select a two-pixel pair {(i, j), (i′, j′)} randomly, with the prob-
ability of each pair to be selected being proportional to Ti,j;i′,j′ .

2. Diffusivity computation: Compute gi,j and gi′,j′ as in (4); let g := 1
2 (gi,j+gi′,j′).

3. Flow computation: Compute the flow u̇ := g · (ui′,j′ −ui,j)/h2, using h = h1 for
horizontal or h = h2 for vertical neighbours.

4. Step-size determination: Let τ∗ := Ti,j;i′,j′ .
If g > 0 and τ∗ > h2/(2g), reduce τ∗ to h2/(2g).
If g < 0 and (i, j) is not a discrete local maximum, let (i∗, j∗) be its maximal
neighbour. If ui,j + τ∗u̇ > ui∗,j∗ , reduce τ∗ to τ∗ := (ui∗,j∗ − ui,j)/u̇.
If g < 0 and (i, j) is not a discrete local minimum, let (i∗, j∗) be its minimal
neighbour. If ui,j + τ∗u̇ < ui∗,j∗ , reduce τ∗ to τ∗ := (ui∗,j∗ − ui,j)/u̇.
If g < 0 and (i′, j′) is not a discrete local maximum, let (i∗, j∗) be its maximal
neighbour. If ui′,j′ − τ∗u̇ > ui∗,j∗ , reduce τ∗ to τ∗ := (ui∗,j∗ − ui′,j′)/(−u̇).
If g < 0 and (i′, j′) is not a discrete local minimum, let (i∗, j∗) be its minimal
neighbour. If ui′,j′ − τ∗u̇ < ui∗,j∗ , reduce τ∗ to τ∗ := (ui∗,j∗ − ui′,j′)/(−u̇).

5. Two-pixel flow update: Update ui,j and ui′,j′ by replacing them with the new
values ũi,j := ui,j + τ∗u̇ and ũi′,j′ := ui′,j′ − τ∗u̇. Decrease Ti,j;i′,j′ by τ∗.

This process terminates, since τ∗ cannot fall below the global positive limit (7). The
approximation error of our scheme can be shown to beO(τ +h2 + τ/h3). This ensures
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a conditionally consistent approximation to the FAB diffusion PDE if τ/h4 is bounded
by a constant when τ, h → 0. For an efficient implementation of the algorithm, the
performance of the selection in Step 1 is crucial. To this end, the bookkeeping of time
step accounts Ti,j;i′,j′ is done within a binary tree structure. The selection then requires
logarithmic time w.r.t. the total number of pixels.

5 Experiments

Let us now evaluate our numerical algorithms. To this end we have implemented them
in ANSI C and compiled the code with a GNU gcc compiler. We report runtimes on a
single core of an Acer P 645 Laptop with an Intel R© CoreTM i5-5200U CPU running at
2.20 GHz. No advanced code optimisations took place.

In our first experiment we compare an implementation of our explicit scheme (3)
with standard (5) or nonstandard discretisation (4) and its two-pixel variant (with non-
standard discretisation). We use the diffusivity function (2). Fig. 2 shows the results for
λ = 4, κ = 2.5 and stopping time t = 10. First, we observe that an explicit scheme
with standard discretisation is unstable, even for very small time step sizes. Thus, it
is not considered any further. Second, we see that an explicit scheme with nonstan-
dard discretisation is stable for small time steps and visually equivalent to its two-pixel
counterpart. However, the runtimes of both schemes differ enormously:

– Explicit scheme (with nonstandard discretisation):
For the diffusivity (2) with λ = 4 and κ = 2.5, the constant ω in the time step
size limit (7) is given by ω = 0.009568. Together with the grid sizes h1 = h2 = 1
this yields a time step size restriction of τ ≤ 1.14 · 10−5. Choosing τ := 1 · 10−5

requires as many as 1 million iterations to reach a stopping time of t = 10. The
corresponding CPU time was 70 minutes 13 seconds.

– Two-pixel scheme:
For the two-pixel variant of the explicit scheme with nonstandard discretisation we
used a sync step size of τmax = 0.1. Thus, only 100 sync steps are necessary to
reach a stopping time of t = 10. This requires a CPU time of 7.73 seconds.

We observe that our two-pixel scheme gives a speed-up by a factor 544 !

Since the two-pixel algorithm is highly efficient, it can also be used for long term
computations, arising e.g. in scale-space analysis. Fig. 3 depicts the scale-space be-
haviour of a noisy test image when the scale-space is governed by FAB diffusion. We
observe the high robustness of the FAB scale-space in spite of the fact that it uses nega-
tive diffusities. Moreover, the experiment confirms convergence to a flat steady state for
t→∞. This is in full accordance with our theoretical results established in Section 3.

6 Summary and Conclusions

While backward diffusion suffers from an extremely bad reputation of being a terribly
ill-posed process, we have seen in our paper that it can be turned into a highly stable
evolution, provided that some essential requirements are met:
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Fig. 2. Influence of the numerical scheme on the result of FAB diffusion (λ = 4, κ = 2.5,
t = 10). From left to right: (a) Test image, 256 × 256 pixels. (b) Explicit scheme (3) with
standard discretisation (5). Computing 1 million iterations with time step size τ = 10−5 requires
70 minutes and 13 seconds, while the result is unstable. (c) Explicit scheme (3) with nonstan-
dard discretisation (5). Performing 1 million iterations with τ = 10−5 takes 66 minutes and 34
seconds. (d) Corresponding two-pixel scheme. We used 100 iterations with synchronisation step
size τmax = 0.1, leading to a runtime of 7.73 seconds. The average time step size was 0.0991.

Fig. 3. Scale-space behaviour of FAB diffusion (λ = 2, κ = 2.5). From left to right: (a) Test
image, 256 × 256 pixels. (b) After a diffusion time of t = 10. (c) t = 300. (d) t = 10 000. All
computations have been done with a two-pixel scheme with sync step size τmax = 0.1.

First of all, it must be stabilised at extrema in order to avoid under- and overshoots.
The FAB diffusion paradigm does take care of this. Our discrete analysis is based on a
FAB diffusivity that attains a positive diffusivity in zero which is larger than the moduli
of all negative diffusivities. Under this mild model assumption we were able to establish
a maximum–minimum principle for an explicit 2D scheme with nonstandard discreti-
sation as well as convergence to a flat steady state, if one adheres to a very restrictive
time step size limit. In order to make this concept practically viable, we came up with a
novel scheme that combines several unconventional features:

– By splitting the diffusion process into a sequence of two-pixel interactions, we
ended up with the most local scheme that is possible. The simplicity of two-pixel
interactions allowed to adapt the time step size locally and use only small time
steps at those locations where this is unavoidable. Although local time step size
adaptations are uncommon in PDE-based image analysis, we have shown that
they may lead to speed-ups by three orders of magnitude.

– In contrast to other splittings in the PDE-based image analysis literature which are
usually synchronous, our splitting is asynchronous: Generating a sequence of sim-
ple two-pixel interactions turns out to be attractive, because their stability follows
trivially from the stability of each two-pixel interaction.
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– Introducing a randomisation in the order of the two-pixel diffusions removes any
directional bias that is characteristic of sequential splittings which are carried out
in a deterministic order.

It is our hope that our results may help to improve the reputation of backward parabolic
processes, since they can offer some very attractive image enhancement properties
that have hardly been explored so far, mainly because of the lack of stable numeri-
cal schemes. In our ongoing work we are also looking into extensions to other time
discretisations such as (semi-)implicit schemes.
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