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Abstract. Forward-and-backward (FAB) diffusion is a method for sleaipg
blurry images (Gilboa et al. 2002). It combines forward wbfbn with a posi-
tive diffusivity and backward diffusion where negativefddivities are used. The
well-posedness properties of FAB diffusion are unknowrd #@rhas been ob-
served that standard discretisations can violate a maximimimum principle.
We show that for a novel nonstandard space discretisatiachvwdays specific
attention to image extrema, one can apply a modification efsipace-discrete
well-posedness and scale-space framework of Weickert8j19%is allows to
establish well-posedness and a maximum-minimum prindipiehe resulting
dynamical system. In the fully discrete 1-D case with an ieiggime discretisa-
tion, a maximum-minimum principle and total variation retian are proved in
spite of the fact that negative diffusivities may appeaisTnovides a theoretical
justification for applying FAB diffusion to digital images.

1 Introduction

In the last two decades, many partial differential equati@PDES) and variational
approaches have been proposed for enhancing digital imagese.g. [1, 13] for an
overview. The continuous framework behind these modeler aftivantages such as
transparent and compact formulations where rotationallgriant approaches are easy
to model.

However, some of the most interesting models are difficudirtalyse in the contin-
uous setting due to well-posedness problems. Often thémsesfilork well in practice,
but lack a sound continuous theory. This has triggered resees to investigate well-
posedness properties for space-discrete and fully destmathulations. Let us mention
a few examples.

For the Perona—Malik filter, Weickert [13] has proposed acspdiscrete and fully
discrete theory for smooth nonnegative diffusivities. Brer, in [14] it is proven that



the corresponding explicit scheme preserves monotonitithe 1-D case. This ex-

plains that staircasing is the worst phenomenon that capdmapollak et al. [12] have

extended this analysis to singular nonnegative diffugsisiby showing well-posedness
for dynamical systems with a discontinuous right hand stlasresult from a space-

discrete Perona-Malik model.

For the stabilised inverse linear diffusion process inticet by Osher and Rudin, it
was not possible to establish a continuous well-posedhessyt, but a stable minmod
discretisation proved to work well in practice [9]. Later, @reul’ and Welk [2] showed
that staircasing cannot be avoided by suitable space tisatiens.

Shock filtering [5, 10] constitutes another example of a P is difficult to anal-
yse in the continuous setting, while for a 1-D space dissa&tin, Welk et al. [15] have
shown that this process is well-posed and satisfies a maximunimum principle. It
was even possible to find an analytic solution of the corredjppm dynamical system.

On the variational side, Nikolova has published a numbempiressive papers that
provide deep insights in the behaviour of minimisers of spdiscrete energies, even
if they are highly nonconvex or nondifferentiable; see €7g8]. It would have been
extremely difficult if not impossible to obtain similar rdt&uin the continuous setting.

One PDE that has been proposed for sharpening images anchichn wo well-
posed results are known so far, is the so-caltedard-and-backward (FAB) diffusion
modelof Gilboa et al. [3]. Essentially this is a filter of PeronalMaype, but its diffu-
sivities are positive in certain areas and negative in stiHgince pure inverse diffusion
with a negative diffusivity is a prototype of an ill-posedpiem, it is not surprising that
no well-posedness results exist in the continuous seffirgerimentally it has been ob-
served that straightforward explicit discretisations g#iate a maximum—minimum
principle.

The goal of our paper is to address this problem. We show featesdiscrete FAB
diffusion is well-posed and satisfies a maiximum—minimumgiple if a specific non-
standard discretisation is applied at extrema. This isexeld by modifying the space-
discrete diffusion framework of Weickert [13]. Moreovear the fully discrete 1-D case
with an explicit time discretisation, a maximum-minimunmnmiple and a total variation
reduction property are established.

Our paper is organised as follows. In Section 2 we discusBAlBediffusion model,
while Section 3 reviews the space-discrete diffision fraorvirom [13]. In the fourth
section we present our nonstandard space discretisati®ABdiffusion, and we mod-
ify the space-discrete diffusion framework such that itdraes applicable to this model.
The fully discrete 1-D case is discussed in detail in Seciio®ur paper is concluded
with a summary in Section 6.

2 Forward-and-Backward Diffusion Filtering

Forward-and-backward (FAB) diffusion filtering has beamaduced by Gilboa, Sochen
and Zeevi in 2002 [3]. Let? € R? be a rectangular image domain and consider a



greyscale imagg : 2 — R that is to be sharpened. Then FAB diffusion filtering
creates filtered versiongx, t) of f(x) by solving a Perona-Malik type [11] equation

du = div (g(|Vul*) Vu) 1)
with f as initial condition,
u(x,0) = f(x), (2)
and homogeneous Neumann boundary conditions,
Onpu =0, (3)

wheren denotes a normal vector to the image bounday Herex := (z,y) ", sub-
scripts denote partial derivative¥, := (9,,9,)" is the spatial gradient, antiv its
corresponding divergence operator.

The diffusivity g may have different formulations, for example [4]:

g(s*) = - e

VI+ (s/kp)? 1+ (s/kp)?
wherek andk, control the gradient magnitudes for forward and backwaffdision,
respectively, andy is the weight between these terms. Note that for small image g
dients, this diffusivity is positive, while it becomes nége for larger ones, and finally
becomes positive again. Our theory relies on the essessahaptiony(0) > 0, which
ensures that extrema undergo forward diffusion.

(4)

FAB diffusion has also been interpreted as an energy miaitiois process of a
nonmonotone potential in the shape of a triple-well [4].He variational formulation
of [4] two additional terms have been introduced: a fideléynt to the input image
and a fourth order term (hyper-diffusion) which increades ftegularisation, strongly
suppressing highly oscillating regions. Here we keep th®onmof a sharpening flow
without these terms. Connections between FAB diffusionwadelet methods for im-
age enhancement have been described in [6].

Apart from these results not many theoretical propertiethefFAB process have
been proven. In particular, existence, uniqueness andistabsults are not available.
Moreover, it was conjectured that such a process violateaxamum-—minimum prin-
ciple, as it may have a negative diffusivity [3]. This waswhdo happen in numerical
experiments, using standard numerical methods. In thismpap will prove that using
a more sophisticated space discretisation, the procesgsaith® maximum—minimum
principle and useful theoretical results can be estaldishe

3 A Space-Discrete Diffusion Framewor k

Let us now review the space-discrete diffusion framewo/efckert [13], since parts
of it can be extended to the FAB setting. A standard disattis of a Perona-Malik
type diffusion equation

O = Oy (g(|Vu|2)8Iu) + 0Oy (g(|Vu|2) ﬁyu) (5)



in some inner pixe(s, j) yields the ordinary differential equation

duz; 1 <9i+1,j+gi,j Uiyl,j —Uij iy +Gi—1j Ui,juil,j)

dt h1 2 h1 2 hl
" 1 (Gige1 +9ig Vigir —Uig  Gig FGigo1 Uig — Uig-1) (©)
h2 2 h2 2 h2

Herew; ; denotes an approximation toin pixel (i, 7). It is centred in the location
((i—1)h1, (j — 3)h2), whereh, andh, denote the grid size (pixel width) in- resp.y-
direction. This formula even holds for boundary pixels\pded that the homogeneous
Neumann boundary conditions (3) are implemented by mimgobioundary pixels into
dummy pixels. A suitable discretisation for the diffusyit will be discussed later.

In a more compact notation, one can represent a pixg¢] by a single index: (i, j).

This leads to )
dug, g1+ 9k
_— = _— - 7
dt E E 2h% (Ul uk)a ( )
n=11eN, (k)

whereN,, (k) are the neighbours of pixél in n-direction (boundary pixels may have
less neighbours). This can be written as a system of ordidéfigrential equations
(ODEs):

W= Aw)u, ®

whereu = (uy, ...,un) ", and theN x N matrix A(u) = (ax,(u)) satisfies

s (L Na(k),

n

2
agg = — > > Lt (I=k), 9
n=11eN, (k) "
0 (else.

Denoting the index sefl, ..., N} by J, a space-discrete problem clagi)is de-
fined in the following way.

Let f € RY. Find a functionu € C!([0, ), RY) that satisfies thg
initial value problem

C;—';L = A(u) u,
u(0) = f,
whereA = (a;;) has the following properties: (Ps)
(S1) Lipschitz-continuity ofdA € C(RY,RN*N) for every bounded
subset ofR?,
(S2) symmetry: aij(u) = aj;(u) Vi, j€J VueRY,

(S3) vanishingrowsums: > ; aij(u) =0 Vi€ J, Vu RV,
(S4) nonnegative off-diagonals: a;;j(u) >0 Vi# j, Vu € RY,
(S5) irreducibility for allu € RV,




One should remember that a matdxe RV <" is called irreducible if for any, j € J
there existy,... k. € J with kg =i andk, = j such thatu x,,, #0forp =0,..r—1.
In other words: There is a way from pixeto pixel j along which the diffusivities do
not vanish.

Under these requirements the subsequent theorem is proyEsii

Theorem 1. (Propertiesof Space-Discrete Diffusion Filtering)

For the space-discrete filter clas®y) the following statements are valid:

(&) (Well-Posedness)
For everyT > 0 the problem £) has a unique solutiom(t) € C([0, 7], RY).
This solution depends continuously on the initial value #reright-hand side of
the ODE system.

(b) (Maximum-Minimum Principle)
Leta := minjeJ fj andb := maX;eJ fj- Then,a < Uz(t) < bforall: e Jand
te[0,T].

(c) (Average Grey Level Invariance)
The average grey level := % Zje] f; is not affected by the space-discrete diffu-
sion filter: 5 >~ ; u;(t) = pforall ¢ > 0.

(d) (Lyapunov Functionals)
V(t) := P(u(t)) = 3 ,c,r(ui(t)) is a Lyapunov function for alt € C'[a, b]
with increasingr’ on [a, b]: V (t) is decreasing and bounded from belowd®ic),
wherec := (p,...,u) T € RV,

(e) (Convergence to a Constant Steady State)
tlirgo u(t) =c.

The proof shows that not all of the requirements (S1)—(S&nacessary for each
of the theoretical results above: Requirement (S1) is ribémtelocal well-posedness,
while proving a maximum—minimum principle requires (S3d&i%4). Local well-
posedness together with the maximum-minimum principldiesmglobal well-posed-
ness. The average grey value invariance is based on (S2)S8)dThe existence of
Lyapunov functionals can be established by means of (S2)-68d convergence to a
constant steady state requires (S5) in addition to (S2)-(S4

4 Application to Space-Discrete FAB Diffusion

It is straightforward to verify the prerequisites (S1)-(8% the populapositivediffu-
sivity functions, such that Theorem 1 is applicable. Howgfagr FAB diffusion nega-
tive diffusivities are possible and the situation becomesmore complicated. One
immediatly sees that space-discrete FAB diffusion sasigfd : smoothness), (S2: sym-
metry), and (S3: vanishing row sums). However, this justliegdocal well-posedness
and average grey level invariance.

By inspecting (9) it becomes clear that (S4: nonnegativel@fonals) and (S5: ir-
reducibility) cannot be satisfied for typical FAB diffudiids: These diffusivities may



vanish (which violates (S5)) and they may even become nagg@tiolating (S4)). As a
consequence, global well-posedness, a maximum—miniminwiple, Lyapunov func-
tions and convergence to a constant steady state cannodvenpn this way.

For the practical applicability of FAB diffusion it would beghly desirable to have
at least global well-posedness and a maximum—minimum iptands there a remedy
for these properties? Fortunately the answer is affirmasiveee (S4: nonnegative off-
diagonals) can be replaced by a less restrictive conditiandnly holds at extrema:

Theorem 2. (Space-Discrete Diffusion Filtering under Weaker Conditions)

Assume that a space-discrete filter satisfies only the ptigse(S1)—(S3) of the frame-
work (P;), and

(S4a) nonnegative off-diagonals at extrema:

a; ;(u) > 0forall j € Jwith j # i if w has an extremum if

Then the well-posedness result (a), the maximum—-minimingiple (b), and the aver-
age grey level invariance (c) of Theorem 1 are still satisfied

Proof. Following [13], one observes that in some pikehat is a discrete global max-
imum (i.e.ux, > u; for all j € J), condition (S4a) implies that

duk
o > ak;(u)u;

= agk(u) uk + Z akj(u) u;
JEN T3

< ue Y ani(u)

jeJ

0. (10)

<ug

(s3)

In the same way one can prove that ifs a minimum, one haé;% > 0.

This nonenhancement behaviour in extrema is the only plde¥ewnonnegativity
is required in the entire proof of the maximum—minimum piihein [13]. As a conse-
guence, the maximum-minimum principle still holds if (S#y&placed by the weaker
condition (S4a). Moreover, together with local well-posesis, global well-posedness
is obtained. This completes the proof.

While the preceding results are encouraging, we have nahgtn that a suitable
space-discretisation satisfies the nonnegativity remere (S4a) at extrema. Unfortu-
nately, this issue is a bit more delicate than one might asséstandard discretisation
of the diffusivity g(|Vu|?) in some pixeli, 5) is given by the central difference approx-

imation ) 5
Uit1,j — Ui—1,j Ui, j4+1 — Ui j—1
. Yit1,j — Ui-1j Yinjl —Wij—1 11
9 9(( T ) +( 2hs ) ) ()



Note that even itx has an extremum iV, j), the preceding central difference approxi-
mation of|Vu|? may become positive — and not 0 as one would expect from thneon
uous theory. Since the FAB diffusivities only guarantee tl{@) > 0, it can happen that
this finite difference approximation creates negativeudiffities in extrema and (S4a)
is violated. Fortunately there is an interesting altexeatd the standard discretisation
of the diffusivity that solves these problems immediately:

Theorem 3. (Propertiesof Space-Discrete FAB Diffusion)

The space discretisation (6) of FAB diffusion is well-posadisfies a maximum—mini-
mum principle and average grey level invariance, if theudiffity is evaluated by the
nonstandard finite difference approximation

Uitl,j — Wiy Uij — Ui—1j
gij =g (max( \J Jo Wi - J
1

b
+ max (“m; g M i, o)) . (12)

It should be noted that this approximation has the same qtiadyrder of con-
sistency as the previous one. However, it guarantees ahiagidiscrete gradient ap-
proximation in extrema. As a consequence, (S4a) is guadnsince FAB diffusities
satisfy g(0) > 0. Interestingly, the property(0) > 0 is the only requirement that is
necessary in order to establish well-posedness and a maximinimum principle for
space-discrete FAB diffusion.

Last but not least, these results are not restricted to thedimensional case: With
a similar nonstandard approximation, it is straightfomiviar verify that space-discrete
FAB diffusion is well-posed and satisfies an extremum pglecin any dimension.

5 Fully Discrete FAB Diffusion

In order to establish useful properties for FAB diffusiortle fully discrete case, we

restrict ourselves to the 1-D setting and use a simple akflice discretisation with

step sizer. Then the corresponding schemédta = 9, (g((0,u)?) d,u) is given by
ub Tt — ok gfa g ub—uwi  gf o) . ujyy — uf

) P .
T o 2 h?+ 2 h2

(13)

u’-“—uil uf —uf
with the nonstandard approximatigfi = g (max ( =t ,0)). The up-

per index denotes the time level, i«€’ approximates: at location(i — 1)k and time
kT. This approximation also holds at the boundary pixglanduy when one uses the
before mentioned dummy pixels.

For our analysis, two additional assumptions are esse¥tiaile the first one refers
to the range of grey values, the second one requires a ditfpgi that still takes suffi-
ciently large positive values for small positive argume¥ie get the following result.



Theorem 4. (Propertiesof Fully Discrete FAB Diffusion)

Let an initial 1-D imagef = (f;) be given and let the sequence of imagés= (uF)
evolve according to (13) with the initial conditias® = f. Let the grey-valueg; be
restricted to a finite interval of lengtR. Assume further that two constant{s> ¢ > 0
exist such that the diffusivity fulfils g(0) = ¢, andg(z) > —co for all z > 0.
Moreover, assume that a positiveexists such thag(s?) > ¢, holds for all s with
0 <s<wR.

If the time step satisfies

w?h?
14
T c1 + co + 2ciw2h? (14)

the following results are true for the evolution@f").

(8) (Maximum-Minimum Principle)
If the initial signal is bounded by < f; < b for all 4, thena < u* < b holds for
alliand allk > 0.

(b) (Total Variation Reduction)
For each time steg > 0, the total variation of the image”**! is less or equal to
the total variation ofu*:

N—-1 N—-1
S Ojub —uf T < > b —uf] (15)
=1 =1

Proof. The global statements of the theorem follow from local prépe which will be
proved in four steps.

Step 1: A local maximal pixel does not increase.
Assume that:¥ is a local maximum of the 1-D image in time stépi.e. we have
uf > ulF  andu? > uf_,. Since in this casgf ; + ¢g¥ andgF + g%, , are certainly

nonnegativey ™! is a convex combination aff_,, u¥ andu¥, , if only
T
1= o (91 + 208 +981) 2 0 (16)

holds. Because aff_; + 2gF + gF,, < 4c, this is certainly the case if

T<—. a7)

Step 2: A neighbour pixel of alocal maximum remains below this maximum.
Assume that:} is a maximum and.?, , is not a local minimum. Then the inequality
ul ! < b holds if

wrht

T —
~ 2c1w?h? 4 ¢y

(18)



To see this, we use the equation

k k k k k k k k
u?—tll _ uerl g <gz 2gz+1 L e i+1 + 9it1 5 Jit2 L _it2 - 1+1> (19)

and distinguish two cases.
Case 1: (uf; —ul)(ul , —ul,,) <w?h?R2
Thengl’fﬁrl + gf+2 is certainly nonnegative. The right-hand side of (19) is¢fere
a convex combination of¥, u¥_, andu?,, if (16) holds. Analogous to our above
reasoning, this is true if (17) is satisfied.
Case 2: (uf,; —uf)(uf , —uf |) > w?h?R2.
Here we conclude from?, ; — uF , < Rthat

uf —uf > w?h’R. (20)
Using (g% + gF.1) < c1 andi(gF,, + gF ) > —co we obtain from (19) the
estimate - -
wi < ufin + ﬁcl(uf —ujy) + 72 C2 R (21)

which ensures/| < u¥, provided that

w2h?

_ 22
~ ciw?h? +co (22)

holds.

Condition (18) ensures the bounds of both cases, i.e. (IVj24).

Step 3: No new extrema are generated around existing extrema.
Assume that:¥ is a local maximum, and none of its neighbours is a local mimm
Assume first that

(U§+1 - uf)(ufw - uerl) > w?R? (23)
and thus again (20) and (21) hold.
Similar considerations foi*** yield
T R T
uf-H > Uf + ﬁcl(uﬁ-l - uf) - ﬁclR (24)
which together with (21) implies
. . T T
ub+t - ui?j_rll > (1 - 2@61) (uf —ul ) — ﬁ(cl + )R . (25)
By the hypothesis of the theorem, (14), and (20) we have that
2
T< f (26)

(c1 +c2) R/ (uf — u§+1) +2¢1



such that the expression on the right-hand side of (25) inegative.

k+1

Thereforeu; "} can become a maximum {@**1) only if

(uf_,,_l - Uf)(uf-m - uf—l—l) <W’h’R?. (27)

Analogous reasoning applies to the left neighbdzijrll. This means that the maximum
property of pixeli can be shifted to one of its neighbours. Our assertion thatewo

extrema are generated remains true except if both neiglalm]f@ql and ufjfll would
simultaneously turn into maxima.
Let us therefore discuss this case. This would require tlodrequalities
(uﬁ-l - Uf)(ufw - U§+1) <w’h’R? (28)
and (uf | —uf ) (uf —ul ) <w?h?R?

K2 K2

to hold at the same time. In this situation, howevgr,, + g%, , andgF , + gF , are
nonnegative, implying

k k
k+1 k Uy — Uy
u;y Suiy TG %
) ) (29)
A

k+1 k
and uifl <wul ,+T01—
while for the central pixel

k k k
g —2uf +uiy

uf“ > uf + 7c1 = (30)
holds. Hence,
X X T
—u ) 2ut - “ﬁrll z (1 - Qﬁcl) (—uiy +2uf —ufy,) . (31)

ForrT < % the right-hand side is clearly nonnegative which ensdnasufjf and

uft! cannot both become maxima.

Step 4: Monotonicity is preserved in image segments without extrema.
Assume that? > u¥ | > u¥ , > uF, ;. We show that then alsal | > u}7; holds.
In the proof we distinguish three cases.

Case 1:gF + gF , > 0andgl,, + g% ;> 0.
Then
k k T .
uirll - Uzrzl 2 (1 - 2ﬁcl) (U§+1 - ufﬁrz) (32)

such that the right-hand side is again nonnegative if (1®)sho



Case 2:g¥ + gF,, > 0andgl,, + g, <O.
(The casg/’ + g%, , < 0andgF,, + g, ; > 0is treated in a symmetric way.)

k k k k k k 272 p2 i
Fromug, , —ui 3 < Rand(ui,, — v o) (ui, o — uiy3) > w’h*R? we obtain

uf_,_l — uf_,_Q > w?h’R . (33)
Consequently,
k+1 k1 s ok k 9 T k k T k k
Uiy — Ujypo Z Uiy — Ujyo — ﬁcl(uiﬂ — Ujto) — ﬁ@(uwz —Uit3)

T T
> ufyy — Uy — 2ﬁcl(u§+1 —ufis) — ﬁ@R . (34)
Due to (33) the right-hand side is certainly nonnegative if

w?ht
< - 35
= 2ci1w?h? + ¢y (35)

Case 3:gF + gF,, < Oandgf,, +gF 5 <0.
Since in this case we have

(“f - U§+1) + (“f+2 - U§+3) <R, (36)
it follows that
(ufpr — ufpo) min(uf — ufyy,ufys — ufys) > W?h*R? (37)
and thus
ui—ﬁrl — uf+2 > 2w h°R . (38)

A similar reasoning as in Case 2 gives théﬂ - ufj{zl is ensured if
wrht
<—F . 39
= 2c1w?h? + ¢ /2 (39)
Comparing the bounds derived for the different statemeieidy (14) as the most
restrictive one. If this condition is imposed, extrema aatrive created but only shifted
to neighbouring pixels, and monotone segments preserireiomotonicity. Both the
maximum-—minimum principle and the reduction of total vaada follow immediately.
This completes the proof.

We are convinced that Theorem 4 also possesses a 2-D analdgereceding
proof, however, does not transfer in a straightforward veethis case: The dependency
of g on nonstandard discretisationsaf andu,, (cf. (12)) makes it highly cumbersome
to control the sign of;.



6 Summary and Conclusions

In spite of its negative diffusivity, FAB diffusion becomesll-posed if a nonstandard
space discretisation is used. It guarantees a positivesdiffy in discrete extrema. This
result is fundamental for justifying FAB diffusion in a ptamal setting with digital
images. Our ongoing work includes research on the multidgiomal fully discrete
case as well as extensions of our results to (semi-)impiicé discretisations.
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