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Abstract. Forward-and-backward (FAB) diffusion is a method for sharpening
blurry images (Gilboa et al. 2002). It combines forward diffusion with a posi-
tive diffusivity and backward diffusion where negative diffusivities are used. The
well-posedness properties of FAB diffusion are unknown, and it has been ob-
served that standard discretisations can violate a maximum-minimum principle.
We show that for a novel nonstandard space discretisation which pays specific
attention to image extrema, one can apply a modification of the space-discrete
well-posedness and scale-space framework of Weickert (1998). This allows to
establish well-posedness and a maximum-minimum principlefor the resulting
dynamical system. In the fully discrete 1-D case with an explicit time discretisa-
tion, a maximum-minimum principle and total variation reduction are proved in
spite of the fact that negative diffusivities may appear. This provides a theoretical
justification for applying FAB diffusion to digital images.

1 Introduction

In the last two decades, many partial differential equations (PDEs) and variational
approaches have been proposed for enhancing digital images; see e.g. [1, 13] for an
overview. The continuous framework behind these models offer advantages such as
transparent and compact formulations where rotationally invariant approaches are easy
to model.

However, some of the most interesting models are difficult toanalyse in the contin-
uous setting due to well-posedness problems. Often these filters work well in practice,
but lack a sound continuous theory. This has triggered researchers to investigate well-
posedness properties for space-discrete and fully discrete formulations. Let us mention
a few examples.

For the Perona–Malik filter, Weickert [13] has proposed a space-discrete and fully
discrete theory for smooth nonnegative diffusivities. Moreover, in [14] it is proven that



the corresponding explicit scheme preserves monotonicityin the 1-D case. This ex-
plains that staircasing is the worst phenomenon that can happen. Pollak et al. [12] have
extended this analysis to singular nonnegative diffusivities by showing well-posedness
for dynamical systems with a discontinuous right hand sidesthat result from a space-
discrete Perona-Malik model.

For the stabilised inverse linear diffusion process introduced by Osher and Rudin, it
was not possible to establish a continuous well-posedness theory, but a stable minmod
discretisation proved to work well in practice [9]. Later on, Breuß and Welk [2] showed
that staircasing cannot be avoided by suitable space discretisations.

Shock filtering [5, 10] constitutes another example of a PDE that is difficult to anal-
yse in the continuous setting, while for a 1-D space discretisation, Welk et al. [15] have
shown that this process is well-posed and satisfies a maximum–minimum principle. It
was even possible to find an analytic solution of the corresponding dynamical system.

On the variational side, Nikolova has published a number of impressive papers that
provide deep insights in the behaviour of minimisers of space-discrete energies, even
if they are highly nonconvex or nondifferentiable; see e.g.[7, 8]. It would have been
extremely difficult if not impossible to obtain similar results in the continuous setting.

One PDE that has been proposed for sharpening images and for which no well-
posed results are known so far, is the so-calledforward-and-backward (FAB) diffusion
modelof Gilboa et al. [3]. Essentially this is a filter of Perona-Malik type, but its diffu-
sivities are positive in certain areas and negative in others. Since pure inverse diffusion
with a negative diffusivity is a prototype of an ill-posed problem, it is not surprising that
no well-posedness results exist in the continuous setting.Experimentally it has been ob-
served that straightforward explicit discretisations canviolate a maximum–minimum
principle.

The goal of our paper is to address this problem. We show that space-discrete FAB
diffusion is well-posed and satisfies a maiximum–minimum principle if a specific non-
standard discretisation is applied at extrema. This is achieved by modifying the space-
discrete diffusion framework of Weickert [13]. Moreover, for the fully discrete 1-D case
with an explicit time discretisation, a maximum-minimum principle and a total variation
reduction property are established.

Our paper is organised as follows. In Section 2 we discuss theFAB diffusion model,
while Section 3 reviews the space-discrete diffision framework from [13]. In the fourth
section we present our nonstandard space discretisation for FAB diffusion, and we mod-
ify the space-discrete diffusion framework such that it becomes applicable to this model.
The fully discrete 1-D case is discussed in detail in Section5. Our paper is concluded
with a summary in Section 6.

2 Forward-and-Backward Diffusion Filtering

Forward-and-backward (FAB) diffusion filtering has been introduced by Gilboa, Sochen
and Zeevi in 2002 [3]. LetΩ ∈ R

2 be a rectangular image domain and consider a



greyscale imagef : Ω → R that is to be sharpened. Then FAB diffusion filtering
creates filtered versionsu(x, t) of f(x) by solving a Perona-Malik type [11] equation

∂tu = div
(
g(|∇u|2)∇u

)
(1)

with f as initial condition,
u(x, 0) = f(x), (2)

and homogeneous Neumann boundary conditions,

∂nu = 0, (3)

wheren denotes a normal vector to the image boundary∂Ω. Herex := (x, y)⊤, sub-
scripts denote partial derivatives,∇ := (∂x, ∂y)⊤ is the spatial gradient, anddiv its
corresponding divergence operator.

The diffusivityg may have different formulations, for example [4]:

g(s2) =
1

√

1 + (s/kf )2
−

α

1 + (s/kb)2
, (4)

wherekf andkb control the gradient magnitudes for forward and backward diffusion,
respectively, andα is the weight between these terms. Note that for small image gra-
dients, this diffusivity is positive, while it becomes negative for larger ones, and finally
becomes positive again. Our theory relies on the essential assumptiong(0) > 0, which
ensures that extrema undergo forward diffusion.

FAB diffusion has also been interpreted as an energy minimisation process of a
nonmonotone potential in the shape of a triple-well [4]. In the variational formulation
of [4] two additional terms have been introduced: a fidelity term to the input image
and a fourth order term (hyper-diffusion) which increases the regularisation, strongly
suppressing highly oscillating regions. Here we keep the notion of a sharpening flow
without these terms. Connections between FAB diffusion andwavelet methods for im-
age enhancement have been described in [6].

Apart from these results not many theoretical properties ofthe FAB process have
been proven. In particular, existence, uniqueness and stability results are not available.
Moreover, it was conjectured that such a process violates a maximum–minimum prin-
ciple, as it may have a negative diffusivity [3]. This was shown to happen in numerical
experiments, using standard numerical methods. In this paper we will prove that using
a more sophisticated space discretisation, the process admits the maximum–minimum
principle and useful theoretical results can be established.

3 A Space-Discrete Diffusion Framework

Let us now review the space-discrete diffusion framework ofWeickert [13], since parts
of it can be extended to the FAB setting. A standard discretisation of a Perona-Malik
type diffusion equation

∂tu = ∂x

(

g(|∇u|2) ∂xu
)

+ ∂y

(

g(|∇u|2) ∂yu
)

(5)



in some inner pixel(i, j) yields the ordinary differential equation

dui,j

dt
=

1

h1

(
gi+1,j + gi,j

2

ui+1,j − ui,j

h1
−

gi,j + gi−1,j

2

ui,j − ui−1,j

h1

)

+
1

h2

(
gi,j+1 + gi,j

2

ui,j+1 − ui,j

h2
−

gi,j + gi,j−1

2

ui,j − ui,j−1

h2

)

. (6)

Hereui,j denotes an approximation tou in pixel (i, j). It is centred in the location
((i− 1

2 )h1, (j−
1
2 )h2), whereh1 andh2 denote the grid size (pixel width) inx- resp.y-

direction. This formula even holds for boundary pixels, provided that the homogeneous
Neumann boundary conditions (3) are implemented by mirroring boundary pixels into
dummy pixels. A suitable discretisation for the diffusivity g will be discussed later.

In a more compact notation, one can represent a pixel(i, j) by a single indexk(i, j).
This leads to

duk

dt
=

2∑

n=1

∑

l∈Nn(k)

gl + gk

2h2
n

(ul − uk), (7)

whereNn(k) are the neighbours of pixelk in n-direction (boundary pixels may have
less neighbours). This can be written as a system of ordinarydifferential equations
(ODEs):

du

dt
= A(u)u, (8)

whereu = (u1, ..., uN)⊤, and theN × N matrixA(u) = (ak,l(u)) satisfies

ak,l :=







gk+gl

2h2
n

(l ∈ Nn(k)),

−
2∑

n=1

∑

l∈Nn(k)

gk+gl

2h2
n

(l = k),

0 (else).

(9)

Denoting the index set{1, ..., N} by J , a space-discrete problem class (Ps) is de-
fined in the following way.

Let f ∈ R
N . Find a functionu ∈ C1([0,∞), RN ) that satisfies the

initial value problem

du

dt
= A(u)u,

u(0) = f ,

whereA = (aij) has the following properties:
(S1) Lipschitz-continuity ofA ∈ C(RN , RN×N ) for every bounded

subset ofRN ,
(S2) symmetry: aij(u) = aji(u) ∀ i, j ∈ J, ∀u ∈ R

N ,
(S3) vanishing row sums:

∑

j∈J aij(u) = 0 ∀ i ∈ J, ∀u ∈ R
N ,

(S4) nonnegative off-diagonals: aij(u) ≥ 0 ∀ i 6= j, ∀u ∈ R
N ,

(S5) irreducibility for allu ∈ R
N .







(Ps)



One should remember that a matrixA ∈ R
N×N is called irreducible if for anyi, j ∈ J

there existk0,...,kr ∈ J with k0 = i andkr =j such thatakpkp+1
6= 0 for p = 0,...,r−1.

In other words: There is a way from pixeli to pixel j along which the diffusivities do
not vanish.

Under these requirements the subsequent theorem is proven in [13]:

Theorem 1. (Properties of Space-Discrete Diffusion Filtering)

For the space-discrete filter class (Ps) the following statements are valid:
(a) (Well-Posedness)

For everyT > 0 the problem (Ps) has a unique solutionu(t) ∈ C1([0, T ], RN).
This solution depends continuously on the initial value andthe right-hand side of
the ODE system.

(b) (Maximum-Minimum Principle)
Let a := minj∈J fj andb := maxj∈J fj . Then,a ≤ ui(t) ≤ b for all i ∈ J and
t ∈ [0, T ].

(c) (Average Grey Level Invariance)
The average grey levelµ := 1

N

∑

j∈J fj is not affected by the space-discrete diffu-

sion filter: 1
N

∑

j∈J uj(t) = µ for all t > 0.
(d) (Lyapunov Functionals)

V (t) := Φ(u(t)) :=
∑

i∈J r(ui(t)) is a Lyapunov function for allr ∈ C1[a, b]
with increasingr′ on [a, b]: V (t) is decreasing and bounded from below byΦ(c),
wherec := (µ, ..., µ)⊤ ∈ R

N .
(e) (Convergence to a Constant Steady State)

lim
t→∞

u(t) = c.

The proof shows that not all of the requirements (S1)–(S5) are necessary for each
of the theoretical results above: Requirement (S1) is needed for local well-posedness,
while proving a maximum–minimum principle requires (S3) and (S4). Local well-
posedness together with the maximum–minimum principle implies global well-posed-
ness. The average grey value invariance is based on (S2) and (S3). The existence of
Lyapunov functionals can be established by means of (S2)–(S4), and convergence to a
constant steady state requires (S5) in addition to (S2)–(S4).

4 Application to Space-Discrete FAB Diffusion

It is straightforward to verify the prerequisites (S1)–(S5) for the popularpositivediffu-
sivity functions, such that Theorem 1 is applicable. However, for FAB diffusion nega-
tive diffusivities are possible and the situation becomes much more complicated. One
immediatly sees that space-discrete FAB diffusion satisfies (S1: smoothness), (S2: sym-
metry), and (S3: vanishing row sums). However, this just implies local well-posedness
and average grey level invariance.

By inspecting (9) it becomes clear that (S4: nonnegative off-diagonals) and (S5: ir-
reducibility) cannot be satisfied for typical FAB diffusivities: These diffusivities may



vanish (which violates (S5)) and they may even become negative (violating (S4)). As a
consequence, global well-posedness, a maximum–minimum principle, Lyapunov func-
tions and convergence to a constant steady state cannot be proven in this way.

For the practical applicability of FAB diffusion it would behighly desirable to have
at least global well-posedness and a maximum–minimum principle. Is there a remedy
for these properties? Fortunately the answer is affirmative, since (S4: nonnegative off-
diagonals) can be replaced by a less restrictive condition that only holds at extrema:

Theorem 2. (Space-Discrete Diffusion Filtering under Weaker Conditions)

Assume that a space-discrete filter satisfies only the properties (S1)–(S3) of the frame-
work (Ps), and

(S4a) nonnegative off-diagonals at extrema:

ai,j(u) ≥ 0 for all j ∈ J with j 6= i if u has an extremum ini.

Then the well-posedness result (a), the maximum–minimum principle (b), and the aver-
age grey level invariance (c) of Theorem 1 are still satisfied.

Proof. Following [13], one observes that in some pixelk that is a discrete global max-
imum (i.e.uk ≥ uj for all j ∈ J), condition (S4a) implies that

duk

dt
=
∑

j∈J

akj(u)uj

= akk(u)uk +
∑

j∈J\{k}

akj(u)
︸ ︷︷ ︸

≥0

uj
︸︷︷︸

≤uk

≤ uk ·
∑

j∈J

akj(u)

(S3)
= 0. (10)

In the same way one can prove that ifk is a minimum, one hasduk

dt
≥ 0.

This nonenhancement behaviour in extrema is the only place where nonnegativity
is required in the entire proof of the maximum–minimum principle in [13]. As a conse-
quence, the maximum–minimum principle still holds if (S4) is replaced by the weaker
condition (S4a). Moreover, together with local well-posedness, global well-posedness
is obtained. This completes the proof.

While the preceding results are encouraging, we have not yetshown that a suitable
space-discretisation satisfies the nonnegativity requirement (S4a) at extrema. Unfortu-
nately, this issue is a bit more delicate than one might assume: A standard discretisation
of the diffusivityg(|∇u|2) in some pixel(i, j) is given by the central difference approx-
imation

gi,j := g

((
ui+1,j − ui−1,j

2h1

)2

+

(
ui,j+1 − ui,j−1

2h2

)2
)

(11)



Note that even ifu has an extremum in(i, j), the preceding central difference approxi-
mation of|∇u|2 may become positive – and not 0 as one would expect from the contin-
uous theory. Since the FAB diffusivities only guarantee that g(0) > 0, it can happen that
this finite difference approximation creates negative diffusivities in extrema and (S4a)
is violated. Fortunately there is an interesting alternative to the standard discretisation
of the diffusivity that solves these problems immediately:

Theorem 3. (Properties of Space-Discrete FAB Diffusion)
The space discretisation (6) of FAB diffusion is well-posed, satisfies a maximum–mini-
mum principle and average grey level invariance, if the diffusivity is evaluated by the
nonstandard finite difference approximation

gi,j := g

(

max

(
ui+1,j − ui,j

h1
·
ui,j − ui−1,j

h1
, 0

)

+ max

(
ui,j+1 − ui,j

h2
·
ui,j − ui,j−1

h2
, 0

))

. (12)

It should be noted that this approximation has the same quadratic order of con-
sistency as the previous one. However, it guarantees a vanishing discrete gradient ap-
proximation in extrema. As a consequence, (S4a) is guaranteed, since FAB diffusities
satisfyg(0) > 0. Interestingly, the propertyg(0) > 0 is the only requirement that is
necessary in order to establish well-posedness and a maximum–minimum principle for
space-discrete FAB diffusion.

Last but not least, these results are not restricted to the two-dimensional case: With
a similar nonstandard approximation, it is straightforward to verify that space-discrete
FAB diffusion is well-posed and satisfies an extremum principle in any dimension.

5 Fully Discrete FAB Diffusion

In order to establish useful properties for FAB diffusion inthe fully discrete case, we
restrict ourselves to the 1-D setting and use a simple explicit time discretisation with
step sizeτ . Then the corresponding scheme to∂tu = ∂x(g((∂xu)2) ∂xu) is given by

uk+1
i − uk

i

τ
=

gk
i−1 + gk

i

2
·
uk

i−1 − uk
i

h2
+

gk
i+1 + gk

i

2
·
uk

i+1 − uk
i

h2
(13)

with the nonstandard approximationgk
i = g

(

max
(

uk
i −uk

i−1

h
·

uk
i+1−uk

i

h
, 0
))

. The up-

per index denotes the time level, i.e.uk
i approximatesu at location(i − 1

2 )h and time
kτ . This approximation also holds at the boundary pixelsu1 anduN when one uses the
before mentioned dummy pixels.

For our analysis, two additional assumptions are essential. While the first one refers
to the range of grey values, the second one requires a diffusivity g that still takes suffi-
ciently large positive values for small positive arguments. We get the following result.



Theorem 4. (Properties of Fully Discrete FAB Diffusion)

Let an initial 1-D imagef = (fi) be given and let the sequence of imagesuk = (uk
i )

evolve according to (13) with the initial conditionu0 = f . Let the grey-valuesfi be
restricted to a finite interval of lengthR. Assume further that two constantsc1 > c2 > 0
exist such that the diffusivityg fulfils g(0) = c1, and g(z) > −c2 for all z > 0.
Moreover, assume that a positiveω exists such thatg(s2) > c2 holds for all s with
0 < s < ωR.

If the time step satisfies

τ <
ω2h4

c1 + c2 + 2c1ω2h2
, (14)

the following results are true for the evolution of(uk).

(a) (Maximum–Minimum Principle)
If the initial signal is bounded bya ≤ fi ≤ b for all i, thena ≤ uk

i ≤ b holds for
all i and allk ≥ 0.

(b) (Total Variation Reduction)
For each time stepk ≥ 0, the total variation of the imageuk+1 is less or equal to
the total variation ofuk:

N−1∑

i=1

∣
∣uk+1

i+1 − uk+1
i

∣
∣ ≤

N−1∑

i=1

∣
∣uk

i+1 − uk
i

∣
∣ . (15)

Proof. The global statements of the theorem follow from local properties which will be
proved in four steps.

Step 1: A local maximal pixel does not increase.
Assume thatuk

i is a local maximum of the 1-D image in time stepk, i.e. we have
uk

i ≥ uk
i+1 anduk

i ≥ uk
i−1. Since in this casegk

i−1 + gk
i andgk

i + gk
i+1 are certainly

nonnegative,uk+1
i is a convex combination ofuk

i−1, uk
i anduk

i+1 if only

1 −
τ

2h2
(gk

i−1 + 2gk
i + gk

i+1) ≥ 0 (16)

holds. Because ofgk
i−1 + 2gk

i + gk
i+1 ≤ 4c1 this is certainly the case if

τ ≤
h2

2c1
. (17)

Step 2: A neighbour pixel of a local maximum remains below this maximum.
Assume thatuk

i is a maximum anduk
i+1 is not a local minimum. Then the inequality

uk+1
i+1 ≤ uk

i holds if

τ ≤
ω2h4

2c1ω2h2 + c2
. (18)



To see this, we use the equation

uk+1
i+1 = uk

i+1 + τ ·

(

gk
i + gk

i+1

2
·
uk

i − uk
i+1

h2
+

gk
i+1 + gk

i+2

2
·
uk

i+2 − uk
i+1

h2

)

(19)

and distinguish two cases.

Case 1: (uk
i+1 − uk

i )(uk
i+2 − uk

i+1) ≤ ω2h2R2.

Thengk
i+1 + gk

i+2 is certainly nonnegative. The right-hand side of (19) is therefore
a convex combination ofuk

i , uk
i+1 anduk

i+2 if (16) holds. Analogous to our above
reasoning, this is true if (17) is satisfied.

Case 2: (uk
i+1 − uk

i )(uk
i+2 − uk

i+1) > ω2h2R2.

Here we conclude fromuk
i+1 − uk

i+2 ≤ R that

uk
i − uk

i+1 > ω2h2R . (20)

Using 1
2 (gk

i + gk
i+1) < c1 and 1

2 (gk
i+1 + gk

i+2) > −c2 we obtain from (19) the
estimate

uk+1
i+1 ≤ uk

i+1 +
τ

h2
c1(u

k
i − uk

i+1) +
τ

h2
c2 R (21)

which ensuresuk+1
i+1 ≤ uk

i , provided that

τ ≤
ω2h4

c1ω2h2 + c2
(22)

holds.

Condition (18) ensures the bounds of both cases, i.e. (17) and (22).

Step 3: No new extrema are generated around existing extrema.
Assume thatuk

i is a local maximum, and none of its neighbours is a local minimum.
Assume first that

(uk
i+1 − uk

i )(uk
i+2 − uk

i+1) > ω2R2 (23)

and thus again (20) and (21) hold.

Similar considerations foruk+1
i yield

uk+1
i ≥ uk

i +
τ

h2
c1(u

k
i+1 − uk

i ) −
τ

h2
c1R (24)

which together with (21) implies

uk+1
i − uk+1

i+1 ≥
(

1 − 2
τ

h2
c1

)

(uk
i − uk

i+1) −
τ

h2
(c1 + c2)R . (25)

By the hypothesis of the theorem, (14), and (20) we have that

τ <
h2

(c1 + c2)R/(uk
i − uk

i+1) + 2c1
, (26)



such that the expression on the right-hand side of (25) is nonnegative.

Thereforeuk+1
i+1 can become a maximum in(uk+1) only if

(uk
i+1 − uk

i )(uk
i+2 − uk

i+1) ≤ ω2h2R2 . (27)

Analogous reasoning applies to the left neighbouruk+1
i−1 . This means that the maximum

property of pixeli can be shifted to one of its neighbours. Our assertion that nonew
extrema are generated remains true except if both neighbours uk+1

i−1 anduk+1
i+1 would

simultaneously turn into maxima.

Let us therefore discuss this case. This would require the two inequalities

(uk
i+1 − uk

i )(uk
i+2 − uk

i+1) ≤ ω2h2R2

and (uk
i−1 − uk

i−2)(u
k
i − uk

i−1) ≤ ω2h2R2
(28)

to hold at the same time. In this situation, however,gk
i+1 + gk

i+2 andgk
i−1 + gk

i−2 are
nonnegative, implying

uk+1
i+1 ≤ uk

i+1 + τc1

uk
i − uk

i+1

h2

and uk+1
i−1 ≤ uk

i−1 + τc1

uk
i − uk

i−1

h2
,

(29)

while for the central pixel

uk+1
i ≥ uk

i + τc1

uk
i−1 − 2uk

i + uk
i+1

h2
(30)

holds. Hence,

−uk+1
i−1 + 2uk+1

i − uk+1
i+1 ≥

(

1 − 2
τ

h2
c1

)

(−uk
i−1 + 2uk

i − uk
i+1) . (31)

For τ ≤ h2

2c1
, the right-hand side is clearly nonnegative which ensures thatuk+1

i−1 and

uk+1
i+1 cannot both become maxima.

Step 4: Monotonicity is preserved in image segments without extrema.
Assume thatuk

i > uk
i+1 > uk

i+2 > uk
i+3. We show that then alsouk+1

i+1 ≥ uk+1
i+2 holds.

In the proof we distinguish three cases.

Case 1: gk
i + gk

i+1 ≥ 0 andgk
i+2 + gk

i+3 ≥ 0.

Then
uk+1

i+1 − uk+1
i+2 ≥

(

1 − 2
τ

h2
c1

)

(uk
i+1 − uk

i+2) (32)

such that the right-hand side is again nonnegative if (17) holds.



Case 2: gk
i + gk

i+1 ≥ 0 andgk
i+2 + gk

i+3 < 0.

(The casegk
i + gk

i+1 < 0 andgk
i+2 + gk

i+3 ≥ 0 is treated in a symmetric way.)

Fromuk
i+2 − uk

i+3 ≤ R and(uk
i+1 − uk

i+2)(u
k
i+2 − uk

i+3) > ω2h2R2 we obtain

uk
i+1 − uk

i+2 > ω2h2R . (33)

Consequently,

uk+1
i+1 − uk+1

i+2 ≥ uk
i+1 − uk

i+2 − 2
τ

h2
c1(u

k
i+1 − uk

i+2) −
τ

h2
c2(u

k
i+2 − uk

i+3)

> uk
i+1 − uk

i+2 − 2
τ

h2
c1(u

k
i+1 − uk

i+2) −
τ

h2
c2R . (34)

Due to (33) the right-hand side is certainly nonnegative if

τ ≤
ω2h4

2c1ω2h2 + c2
. (35)

Case 3: gk
i + gk

i+1 < 0 andgk
i+2 + gk

i+3 < 0.

Since in this case we have

(uk
i − uk

i+1) + (uk
i+2 − uk

i+3) ≤ R , (36)

it follows that

(uk
i+1 − uk

i+2)min(uk
i − uk

i+1, u
k
i+2 − uk

i+3) > ω2h2R2 (37)

and thus
uk

i+1 − uk
i+2 > 2ω2h2R . (38)

A similar reasoning as in Case 2 gives thatuk+1
i+1 − uk+1

i+2 is ensured if

τ ≤
ω2h4

2c1ω2h2 + c2/2
. (39)

Comparing the bounds derived for the different statements yields (14) as the most
restrictive one. If this condition is imposed, extrema cannot be created but only shifted
to neighbouring pixels, and monotone segments preserve their monotonicity. Both the
maximum–minimum principle and the reduction of total variation follow immediately.
This completes the proof.

We are convinced that Theorem 4 also possesses a 2-D analogue. The preceding
proof, however, does not transfer in a straightforward way to this case: The dependency
of g on nonstandard discretisations ofux anduy (cf. (12)) makes it highly cumbersome
to control the sign ofg.



6 Summary and Conclusions

In spite of its negative diffusivity, FAB diffusion becomeswell-posed if a nonstandard
space discretisation is used. It guarantees a positive diffusivity in discrete extrema. This
result is fundamental for justifying FAB diffusion in a practical setting with digital
images. Our ongoing work includes research on the multidimensional fully discrete
case as well as extensions of our results to (semi-)implicittime discretisations.
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15. Welk, M., Weickert, J., Galić, I.: Theoretical foundations for spatially discrete 1-D shock
filtering. Image and Vision Computing25(4) (2007) 455–463


