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Abstract. Based on a new, general formulation of the geometric method of mov-
ing frames, invariantization of numerical schemes has been established during
the last years as a powerful tool to guarantee symmetries for numerical solutions
while simultaneously reducing the numerical errors. In this paper, we make the
first step to apply this framework to the differential equations of image process-
ing. We focus on the Hamilton–Jacobi equation governing dilation and erosion
processes which displays morphological symmetry, i.e. is invariant under strictly
monotonically increasing transformations of gray-values. Results demonstrate
that invariantization is able to handle the specific needs of differential equations
applied in image processing, and thus encourage further research in this direction.

1 Introduction

Image filters based on partial differential equations play an important role in contempo-
rary digital image processing. The field therefore has a need for efficient and accurate
numerical algorithms for solving the PDEs that arise in applications.

The method of invariantization provides a general framework for designing numer-
ical schemes for (ordinary and partial) differential equations [17, 12, 10] that preserve
symmetries of the continuous-scale differential equation. The method is based on a new
approach to the Cartan method of moving frames [4] that applies to completely general
group actions, and has been extensively developed in the last few years [7, 18]. The
invariantization process is based on a choice of cross-section to the symmetry group
orbits, and careful selection of the cross-section can produce a more robust numerical
scheme that is better able to handle rapid variations and singularities. So far, the in-
variantization technique has been studied for standard numerical schemes for ordinary



differential equations [10], as well as for a number of partial differential equations in-
cluding the heat equation, the Korteweg–deVries equation, and Burgers’ equation [11],
with encouraging results.

In this paper, we will investigate the applicability of the invariantization framework
in the context of image processing. This field of application poses special needs in that
it requires in particular an accurate representation of sharp discontinuity-type structures
such as edges. A variety of partial differential equations with discontinuity-preserving
properties has been developed over the years but often numerical dissipation adversely
affects their favorable theoretical properties. We are therefore especially interested in
whether invariantization can contribute to reducing numerical dissipation effects and
thereby improve the treatment of edges in images.

For our investigation, we select the Hamilton–Jacobi equations governing the mor-
phological processes of dilation and erosion [1, 6]. They offer the advantage of combin-
ing formal simplicity with high relevance for image analysis – mathematical morphol-
ogy being one of the oldest and most successful techniques in the field [15, 21] – and
a particularly attractive symmetry property, namely the so-called morphological invari-
ance. The latter is also a characteristic of many other image processing PDEs such as
mean curvature motion [8, 9, 2], and the affine invariant morphological scale space [1,
20]. Thus, our present results can be viewed as a proof of concept for a wider application
of the invariantization idea in this field.

2 Morphological PDEs

Dilation and erosion are the basic operations of mathematical morphology. Let S be
a closed connected convex set containing zero. Dilation of a gray-value image u with
S as structuring element then comes down to taking at each location the maximum of
gray-values within the translated structuring element while erosion uses the minimum
instead:

dilation: (u ⊕ S)(x) := max
y∈S

u(x + y) ,

erosion: (u 	 S)(x) := min
y∈S

u(x + y) .
(1)

Dilation and erosion with disk-shaped structuring elements are closely related to the
Hamilton–Jacobi partial differential equation

ut = ± |∇u| (2)

where ∇u denotes the spatial gradient of u, i.e. ∇u = ux in the 1D case, or ∇u =
(ux, uy)

T in the 2D case: Given the initial image u0 at time t = 0, we evolve via (2) up
to time t. In the case of the positive sign in (2) the resulting image u will be the dilation
of u0 with the disk S = Dt = {x | |x| ≤ t} as structuring element while in the case of
the negative sign an erosion with the same structuring element results.

2.1 The Upwind Scheme

In spite of the simplicity of the PDE (2), its numerical evaluation remains a challenge. In
image processing, one is particularly interested in the correct treatment of steep gradi-
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ents which represent image edges. Under the Hamilton–Jacobi flow, these should propa-
gate in space at constant speed without being blurred. Moreover, the partial differential
equation (2) obeys a maximum–minimum principle which is also essential in image
processing applications.

The simplest approach, a forward Euler discretization, with central spatial differ-
ences, generates oscillations in the vicinity of edges that violate the maximum–minimum
principle; this is another manifestation of the general Gibbs phenomena observed in nu-
merical approximations to discontinuous solutions, [14]. They can only be reduced but
not eliminated by choosing very small time step sizes. Moreover, edges are smeared
out as the number of iterations increases, and so the problem becomes even worse with
smaller time steps.

An alternative scheme that avoids the oscillatory behavior and obeys the maximum–
minimum principle is the upwind scheme [22]. Its idea is to discretize the first-order
derivatives on the right-hand side of (2) by one-sided difference and switch between
their possible directions depending on the local gradient direction, and hence on the in-
formation flow direction. In the case of 1D dilation, ut = |ux|, one step of the resulting
explicit scheme with spatial grid size h and time step size τ then reads

uk+1
i = uk

i +
τ

h
max{uk

i+1 − uk
i , uk

i−1 − uk
i , 0} . (3)

For time step sizes τ ≤ h this scheme respects the maximum–minimum principle.
There are several ways to adapt this idea to the two-dimensional case. We defer

these considerations until Subsection 3.3.

3 Morphological invariantization

In general, given a freely acting r-parameter transformation group acting on an m-
dimensional space, one defines a moving frame by the choice of a cross-section to the
group orbits, [7, 18]. In practice, one begins by writing out the group transformations
as explicit functions of the coordinates z = (z1, . . . , zm) and the group parameters
λ = (λ1, . . . , λr). One then normalizes r of these expressions by equating them to
well-chosen constants – typically either 0 or 1 – and solving for the group parameters
in terms of the coordinates: λ = ρ(z), which defines the moving frame map. The in-
variantization of any function, numerical scheme, etc. is then found by first writing out
its transformed version and then replacing the group parameters by their moving frame
formula. In particular, the invariantization of the coordinates zi yields the fundamental
invariants Ii(z), with those corresponding to the r normalization coordinates being con-
stant. The invariantization of any other function F (z1, . . . , zm) is then found by replac-
ing each zi by its corresponding invariant (constant or not), leading to the invariantized
function I(z) = F (I1(z), . . . , Im(z)). In particular, invariantization does not change
a function that is already invariant under the group. This so-called Replacement Rule
makes it particularly easy to convert (both mathematically and in pre-existing software
packages) numerical schemes into invariant numerical schemes. The resulting schemes
are guaranteed to be consistent with the underlying differential equations, since invari-
antization preserves consistency of numerical schemes. In fact, one of the key benefits
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of the invariantization method is that it enables one to modify and tune existing schemes
without affecting their consistency. In numerical applications, one selects the normal-
ization coordinates and constants so as to try to eliminate as many of the error terms as
possible; see [12, 10, 18] for further details.

3.1 Symmetry Group

The Hamilton–Jacobi PDE (2) that governs the processes of dilation and erosion dis-
plays one outstanding symmetry: It is invariant under any (differentiable) strictly mono-
tonically increasing gray-value transformation [3]. This specific symmetry which is
shared by a class of other PDEs relevant for image processing like mean curvature
motion and affine curvature flow is called morphological invariance. PDEs with this
symmetry can be re-formulated into intrinsic level set evolutions, i.e. curve or hyper-
surface evolutions of the level sets which depend on nothing else but the geometry of
the evolving level sets themselves [19, 3]. Infinitesimal generators for this symmetry are
given by f(u)∂u for arbitrary differentiable functions f(u).

From the viewpoint of the invariantization of numerical schemes, the morphological
symmetry is special in that it involves the function values only, in contrast to the sym-
metries of many other differential equations that involve both the independent and the
dependent variables. Moreover, it is a very rich symmetry since the group of strictly in-
creasing differentiable maps of IR is an infinite-dimensional Lie pseudogroup. Though
an extension of the invariantization framework for the Lie pseudogroup case has been
recently developed, [18], to simplify the constructions, we will restrict our attention to
a particular one-dimensional subgroup.

To this end, we use the strictly monotonically increasing transformations

τλ : [0, 1] −→ [0, 1], u 7−→ λu

1 + (λ − 1)u
(4)

where λ ∈ IR+ is the group parameter. This family of functions on [0, 1] forms a one-
parameter Lie group with infinitesimal generator u(1−u)∂u, satisfying the group laws
τµ ◦ τλ = τλµ, (τλ)−1 = τ1/λ.

3.2 The One-Dimensional Case

We want now to use the invariantization idea in order to improve the accuracy of numer-
ical schemes for the 1D Hamilton–Jacobi equation ut = |ux|. With respect to image
processing applications we are particularly interested in reducing numerical dissipation
at edges.

The one-parameter Lie group selected in the previous subsection allows us to im-
pose one equality constraint on the local numerical data. A closer look reveals that both
the forward Euler scheme with central spatial differences and the upwind scheme are
exact if the function u is linear in x. We want therefore to annihilate locally the second
derivative uxx.

While this idea is easy to carry out for the central difference scheme, it turns out
that the numerical dissipation is in no way reduced. Thus, we turn our attention to
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the upwind scheme. Since this scheme uses one-sided difference approximations for
the first derivatives, the question arises which approximation of the second derivative
should be used in the constraint that is to be enforced by invariantization. Since the
first order derivative approximations can be considered as central differences located
at inter-pixel positions i ± 1/2, thus providing higher accuracy at these locations, we
decide to use a four-pixel stencil centred at the same location for the second derivative.

Let us consider without loss of generality the case ux > 0 in which the upwind
scheme uses the right-sided derivative approximation. As approximation of the second
derivative we then use (uxx)i ≈ ui+2 − ui+1 − ui + ui−1. For the invariantization at
pixel i in time step k, we linearly transform the pixel values uk

j , j = i−1, i, i+1, i+2,
to [0, 1] which gives ũk

j , and apply (4) to obtain vk
j = τλ(ũk

j ). Herein, the parameter
λ = λk

i > 0 is to be determined, using the invariantization condition

vk
i+2 − vk

i+1 − vk
i + vk

i−1 = 0 . (5)

Inserting (4) into (5) gives

0 = λ
(
(λ + 1)2(−ũk

i+2ũ
k
i+1ũ

k
i + ũk

i+2ũ
k
i+1ũ

k
i−1 + ũk

i+2ũ
k
i ũk

i−1 − ũk
i+1ũ

k
i ũk

i−1)

+ 2(λ + 1)(ũk
i+2ũ

k
i−1 − ũk

i+2ũ
k
i ) + (ũk

i+2 − ũk
i+1 − ũk

i + ũk
i−1)

)
.

(6)

This equation has exactly one positive solution if the sequence uk
i−1, u

k
i , uk

i+1, u
k
i+2 is

strictly monotonic. If this is not the case, our one-parameter transformation group in fact
does not contain a transformation that satisfies (5). Instead, λ = 0 is then calculated as
largest solution of (6). We select therefore a small ε > 0 and use λ̃ = max{λ, ε} in the
algorithm. Whenever λ < ε, our invariantization is therefore imperfect, and the second
derivative error term not completely annihilated. Still, the numerical error is reduced in
these cases.

One time step for pixel i of a 1D signal reads therefore as follows.

1. Compute the one-sided derivative approximations ∆k
i,+ := uk

i+1 − uk
i , ∆k

i,− :=

uk
i − uk

i−1. If max{∆k
i,+,−∆k

i,−, 0} = 0, let uk+1
i = uk

i and finish. Otherwise, if
∆k

i,+ ≥ −∆k
i,−, let σ = +1, else σ = −1. Let ûj := uk

i+jσ for j = −1, 0, 1, 2.
2. Let

m := min{ûj | j ∈ {−1, 0, 1, 2}} ,

M := max{ûj | j ∈ {−1, 0, 1, 2}} ,

ũj :=
ûj − m

M − m
, j ∈ {−1, 0, 1, 2} .

(7)

3. Compute the coefficients

a := ũ2ũ1ũ0 − ũ2ũ1ũ−1 − ũ2ũ0ũ−1 + ũ1ũ0ũ−1 ,

b := ũ2ũ−1 − ũ1ũ0 ,

c := ũ2 − ũ1 − ũ0 + ũ−1

(8)

and the transformation parameter

λ := 1 +
b +

√
b2 + 4ac

a
. (9)
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Bound the transformation parameter via λ̃ := max{λ, ε}.
4. Transform the pixel values by

vj := τλ̃(ũj) , j ∈ {−1, 0, 1, 2} . (10)

5. Perform one step of the upwind scheme on the transformed data:

ṽ0 := v0 +
τ

h
(v1 − v0) . (11)

6. Transform back:
uk+1

i := m + (M − m)τ
1/λ̃(ṽ0) . (12)

It is easy to see that as for the unmodified upwind scheme, the maximum–minimum
principle is guaranteed for the modified algorithm if the time step size fulfills τ < 1.

3.3 The Two-Dimensional Case

In the two-dimensional situation there is a continuum of possible “upwind” directions.
This adds complication to the discretization of first and second derivatives. While in
the original upwind scheme an approximation of the gradient magnitude based on one-
sided difference approximations of ux and uy works reasonably, experiments show that
the invariantization via second derivatives is highly sensitive to misestimations of the
second derivatives in gradient direction.

−1T

T21

T1 T23

P0

P−1

1P

P2T22

Fig. 1. Interpolation of a local 1-D subsample in gradient direction consisting of function values
at P

−1, P0, P1, and P2. The points P
−1, P1, P2 are located on circular arcs around P0. P

−1 is
linearly interpolated within the triangle T

−1, P1 within T1, and P2 within one of the triangles
T21, T22, T23.

However, since the 2D Hamilton–Jacobi flow at every single location is essentially
a 1D process, we can directly build on our 1D algorithm in the following way. First,
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we compute via ux and uy approximations in the spirit of classical 2D upwind scheme
implementations the gradient direction. Then, we resample the needed pixels along this
direction to obtain a 1D section that represents the problem at the given location. While
in principle this could be done via bilinear interpolation within grid squares, we choose
an interpolation within isosceles right triangles of side length 1 that experimentally
represents the local features of the 1D section slightly better (see Fig. 1). To interpolate
u for a point P on a 1D section through (i, j) in gradient direction, we use the triangle
of grid points that encloses P and whose vertex has either maximal or minimal distance
to (i, j) among the three corner points.

One time step for pixel (i, j) then reads as follows.

1. Compute

∆k
i,j;x+ := uk

i+1,j − uk
i,j , ∆k

i,j;x− := uk
i,j − uk

i−1,j ,

∆k
i,j;y+ := uk

i,j+1 − uk
i,j , ∆k

i,j;y− := uk
i,j − uk

i,j−1 .
(13)

If max{∆k
i,j;x+,−∆k

i,j;x−, 0} = 0, let sx := 0, ∆x := 0, else if ∆k
i,j;x+ ≥

−∆k
i,j;x−, let sx := +1, ∆x := ∆k

i,j;x+, else let sx := −1, ∆x := −∆k
i,j;x−.

Proceed analogously to determine sy and ∆y.
2. If ∆x = ∆y = 0, let uk+1

i,j = uk
i,j and finish. Otherwise, let

σx :=
sx√

s2
x + s2

y

, σy :=
sy√

s2
x + s2

y

. (14)

3. Compute
ûl := uk

i+lσx,j+lσy
, l = −1, 0, 1, 2 , (15)

where inter-pixel values of u are linearly interpolated between three neighboring
grid locations.

4. Apply steps 2–6 of the 1D algorithm to the 1D signal û, and assign the resulting
value to uk+1

i,j .

Though the calculation on the resampled 1D subsample involves inter-pixel sample
values which are not present in the previous time step of the image, the maximum–
minimum principle is still obeyed because the linear interpolation itself satisfies the
maximum–minimum principle.

4 Experiments

4.1 One-Dimensional Case
To illustrate the effect of invariantization on a 1D example, Figure 2 shows the dilation
of a single peak by the upwind scheme and our invariantized modification together with
the theoretical solution. The higher sharpness of the invariantized scheme is clearly
visible. We note that comparing with the theoretical result the propagation of the edge
is slightly accelerated, an undesired effect that even increases for smaller time step
sizes. The reason is that our scheme in its present form does not compensate for the
bias in the treatment of regions of opposite curvature which is introduced by the use of
one-sided derivative approximations. Since experimentally the effect is much smaller
in the 2D case, we do not discuss remedies here.
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Fig. 2. 1D dilation of a single peak, 20 iterations with τ = 0.5 of upwind scheme without and
with invariantization. For comparison, the theoretical dilation result at evolution time t = 10 is
also included.

4.2 Two-Dimensional Case

We demonstrate the 2D version of our algorithm with two experiments. First, Fig. 3
shows a test image featuring three discs, together with two stages of dilation evolution,
for both the upwind scheme and our method. It is evident that the sharp boundaries of
the expanding discs are preserved better by the invariantized scheme. The second stage
of evolution demonstrates the correct handling of the merging between the objects.

At the same time, one can observe the reasonable degree of rotational invariance
achieved by our method. This has been supported by choosing a smaller time step size
than in the 1D case. Still, a close look suggests that a small amount of additional blur
is added in diagonal directions due to the interpolation procedure used to obtain the 1D
subsample.

A 1D section from the 2D evolution (slightly above the horizontal diameter of one
circle, as indicated in Fig. 3) is shown in Fig. 4. The increased sharpness of the invari-
antized scheme is again visible; the interface between the bright and dark region attains
a width of approx. four to five pixels, which is in accordance with the effective region
of influence of each time step. This degree of edge blur remains essentially unchanged
even after many more time steps.

The position of the expanded contour under an exact dilation with equal evolution
time is also shown. Here, the speed of expansion of the bright regions is in good agree-
ment with the theoretically derived speed, even with the smaller time step size. Besides
this, the maximum–minimum stability is confirmed by Fig. 4.
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Fig. 3. Top, left: Original image (256 × 256 pixels) showing three discs. White line marks a 1D
section shown in Fig. 4. Top, middle: Dilation by upwind scheme without invariantization, 100

iterations, time step τ = 0.1. Top, right: Same but with 200 iterations. Bottom row: Same as
above but with invariantized upwind scheme
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Fig. 4. Profiles of 2D dilation results along the line marked in Fig. 3. Original image, theoretical
result of dilation at time t = 10, upwind scheme without and with invariantization, 100 iterations
with τ = 0.1
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Fig. 5. Left: Original image (256 × 256 pixels). Middle: Dilation with invariantized upwind
scheme, 50 iterations with τ = 0.1 Right: Same with 150 iterations
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Fig. 6. Left: Dilation of Fig. 3 by flux-corrected transport (FCT) scheme, 20 iterations with
τ = 0.5 (provided by M. Breuß). Right: Central part of the dilated profiles from Fig. 4 and
corresponding profile of the FCT result

Fig. 5 finally demonstrates the dilation process of a natural halftone image by our
algorithm.

A comparison with another state-of-the-art numerical method for evaluating the
Hamilton–Jacobi equation of dilation is shown in Fig. 6. The flux-corrected transport
(FCT) scheme by Breuß and Weickert [5] relies on a direct modelling of, and compen-
sation for, the numerical viscosity of the upwind scheme. Thereby, it achieves a higher
degree of sharpness, with an interface width of only one to two pixels. Note that for the
FCT scheme a larger time step size has been used. Since the two approaches exploit
different aspects of the process, it will be worth conducting future research to look for
ways how their respective advantages can be combined.

Erosion is equivalent to dilation of an inverted image and can therefore be performed
in a completely analogous fashion by our method. Due to space limitations, we have not
included an erosion example here.

5 Conclusion

We have demonstrated that the invariantization technique can be applied to the numer-
ics of PDE-based image filters. It allows to raise the accuracy of numerical schemes
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and also to reduce numerical problems that are particularly troublesome in image pro-
cessing applications such as numerical blurring of edges. We have concentrated here on
a particular interesting symmetry of PDEs occurring in image processing applications,
namely morphological invariance. One direction of ongoing research is the transfer of
these techniques to other image filtering schemes based on PDEs with invariance prop-
erties. Though our method already displays a reasonable rotational invariance, the high
directional sensitivity of the process makes further improvements in this respect desir-
able. Also, combinations of the invariantization idea with conservation properties are
of interest. Finally, by reducing the morphological symmetry to a one-parameter sub-
group, it has not been fully used so far; a better exploitation of its potential is therefore
also a topic of continued research.
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