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Abstract. This paper is concerned with amoeba median filtering, a
structure-adaptive morphological image filter. It has been introduced
by Lerallut et al. in a discrete formulation. Experimental evidence shows
that iterated amoeba median filtering leads to segmentation-like results
that are similar to those obtained by self-snakes, an image filter based
on a partial differential equation. We investigate this correspondence by
analysing a space-continuous formulation of iterated median filtering. We
prove that in the limit of vanishing radius of the structuring elements,
iterated amoeba median filtering indeed approximates a partial differen-
tial equation related to self-snakes and the well-known (mean) curvature
motion equation. We present experiments with discrete iterated amoeba
median filtering that confirm qualitative and quantitative predictions of
our analysis.

Keywords: morphological amoebas, median filtering, partial differential equa-
tions

1 Introduction

Morphological amoebas are a class of morphological image filters in which struc-
turing elements adapt to image structures with a maximum of flexibility. They
have been introduced by Lerallut et al. [11, 12]. In the amoeba construction, the
structuring elements adapt locally to the variation of grey (or colour) values, also
taking into account the distance to the origin pixel. Thereby, large deviations in
the image values are penalised, so that the amoebas may grow around corners
or along anisotropic image structures. Using the resulting shape as a structuring
element, many filtering procedures can be applied on it. In this paper, we are
particularly interested in the use of the median filter.

Iterated application of amoeba median filtering (AMF) can be carried out in
different ways. In [11], a pilot image is used to steer the iterated processes via an
alternating procedure. This works as follows. A smoothed version of the original
image f is used for constructing amoebas for all pixels. Then, the median filter



is applied using the corresponding structuring elements. The filtered image is
in turn used for constructing new amoebas, and these amoebas are then used
as structuring elements to filter the original image f . We concentrate for this
paper on more straightforward iterative procedures for AMF, using pixelwise the
following steps subsequently: (i) amoeba construction, and (ii) median filtering
using the amoeba as structuring element.

For iterated median filtering with a fixed structuring element, work by Gui-
chard and Morel [7] has brought out that, in the continuous-scale limit, it approx-
imates the partial differential equation (PDE) ut = |∇u| div

(

∇u/ |∇u|
)

, known
as (mean) curvature motion [1]. In this sense, iterated discrete median filtering
with a fixed structuring element can be understood as a specific discretisation
of that PDE.

Iterated AMF simplifies images towards a cartoon-like appearance with ho-
mogeneous regions separated by sharp contours. Even corners are preserved fairly
well, in contrast to median filtering with a fixed structuring element. Using PDE
approaches, similar segmentations can be achieved e.g. by so-called self-snakes
[14, 18]. These are filters that stand in close relationship to curvature motion,
with the difference that the evolution is modulated by an edge-stopping func-
tion depending on the local image gradient. Thereby the displacement of edges
is avoided, and edges are sharpened. In the light of Guichard and Morel’s above-
mentioned result it is therefore natural to ask whether there exists a similar
correspondence between a continuous-scale limit case of amoeba filters and a
self-snakes-like PDE.

In the present paper, we address this question. We prove that iterated amoeba
filtering can indeed be understood as a discrete approximation of a PDE which
is related to curvature motion. We discuss how different choices for the distance
measures involved in the amoeba definition influence the limit case.

Our results extend the framework of known correspondences between discrete
and PDE formulations of morphological filters. The study of these relationships
helps to gain a unified view on image filtering methods and to combine advan-
tages of both approaches.

Related work. Median filtering in its non-adaptive form goes back to Tukey
[16] and became common as a structure-preserving image filter in the 90s [6, 9].

On the PDE side, (mean) curvature motion for image smoothing has been
proposed by Alvarez et al. [1], already together with the generalisation of the
basic PDE by multiplying the right-hand side with a decreasing function of the
image gradient. Sapiro [14] proposed a variant of this idea, named self-snakes,
in which the edge-stopping factor is placed within the divergence expression.
While curvature motion smoothes in level-line direction only, Caselles et al. [3]
defined for image interpolation purposes a process that smoothes exclusively in
gradient direction, called adaptive monotone Lipschitz extension (AMLE). The
representation of an image as a manifold embedded in the product space of image
domain and greyvalue range has been introduced in PDE-based image filtering
with the so-called Beltrami framework by Kimmel et al. [8] and Yezzi [19].



Since the seminal paper by Guichard and Morel [7] further cross-relationships
between discrete and PDE-based image filters have been studied. For example,
van den Boomgaard [17] proved a PDE approximation result for the Kuwahara-
Nagao operator [10, 13]. Didas and Weickert [5] studied correspondences between
adaptive averaging and a class of generalised curvature motion filters. Barash [2]
and Chui and Wang [4] considered PDE limits of bilateral filters [15].

Structure of the paper. The paper is organised as follows. In Section 2 we
describe the discrete algorithm. Our main contribution, namely the derivation
of a PDE corresponding to AMF, follows in Section 3. In Section 4, we show
some test results. The paper is finished with a conclusion in Section 5.

2 The Discrete Amoeba Construction

The basic procedure is described in Lerallut et al.’s papers [11, 12]. Here, we
give a brief account of the algorithm in the form we have implemented, which is
slightly modified in a few points that will be pointed out in the sequel.

In the following, we work with images f whose pixels are numbered by inte-
gers, such that fi denotes the grey value of the pixel with index i. The coordinates
of this pixel are denoted by (xi, yi). We distinguish the initial image f from the
iterated images u(n), where n denotes the iteration number. For starting the iter-
ative process, we set u(0) := f . On the amoebas whose construction is described
below the standard median filter is applied.

Description of the algorithm. For each pixel i0 with (x, y)-coordinates
(xi0 , yi0), an adaptive structuring element is determined as follows. We con-
sider pixels i∗ within a prescribed maximal Euclidean distance ̺ of pixel i0. The
number ̺ represents the maximal size of the shape of the amoeba, since it will
also be used for limiting the allowed amoeba distance. For the so pre-selected
pixels we consider paths (i0, i1, . . . , ik ≡ i∗) that connect i0 with i∗ via a se-
quence of pixels in which each two subsequent pixels ij , ij+1 are neighbours.
Among all these, we determine the shortest path P with respect to the amoeba
distance L(P ). If the amoeba distance is below ̺ for P , the pixel i∗ is accepted
as a member of the amoeba structuring element.

It remains to specify the amoeba distance as well as the neighbourhood re-
lation between subsequent pixels. In [11, 12], the amoeba distance is given by

L
(n)
L (P ) =

k−1
∑

m=0

1 + σ
k−1
∑

m=0

∣

∣

∣
u

(n)
im+1

− u
(n)
im

∣

∣

∣
, (1)

where σ > 0 is a parameter that penalises large deviations in grey value data,
and each pixel is required to be in the 4-neighbourhood of its predecessor, i.e.
a horizontal or vertical neighbour. Note that this definition involves the mea-
surement of spatial distances by the city-block metric, since the first sum in (1)
counts the pixels in the path P (without the starting pixel i0). Moreover, spatial
and tonal distances (i.e. greyvalue differences) are combined via an l1 sum.



In our implementation, we use a metric that better approximates the Eu-
clidean distance in space. To this end, we use 8-neighbourhoods that include
horizontal, vertical, and diagonal neighbours, and use the Euclidean distance on
these pixel pairs. This results in shorter paths compared to the procedure of
Lerallut et al., as well, conceptually, in an improvement in terms of rotational
invariance. For the way how spatial and tonal distances are combined we con-
sider either a Euclidean sum, or an l1 sum like in (1), which leads finally to two
alternative amoeba distance measures L2 and L1 given by

L
(n)
2 (P ) =
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3 Space-Continuous Analysis

For our further investigation, we need a space-continuous formulation of AMF.
We base this on the representation of a (smooth) image u by its graph Γ =
Γu,σ := {p(x, y) = (x, y, σu(x)) | (x, y) ∈ Ω} where Ω ⊂ R

2 is the image
domain, and σ a scaling parameter for grey-values as in (1)–(3). Note that this
embedding is analogous to the Beltrami framework, compare [19]. The surface Γ
is equipped with a metric d which can be obtained by restricting the Euclidean
metric of the embedding space R

3, i.e.

d(p1, p2) ≡ d2(p1, p2) = min

1
∫

0

√

x′(s)2 + y′(s)2 + σ2u′(s)2 ds (4)

where the minimum is taken over all curves [0, 1] → Γ that start in p1 := p(x1, y1)
and end in p2 := p(x2, y2). Alternatively, and closer to the setting of [11], one
can use an l1 sum of the Euclidean distance in space and the greyvalue distance,

d(p1, p2) ≡ d1(p1, p2) = min

1
∫

0

(

√

x′(s)2 + y′(s)2 + σ |u′(s)|
)

ds . (5)

One step of amoeba filtering then reads as follows. For a given location
(x0, y0) in the image domain, an amoeba structuring element A(x0, y0) is consti-
tuted by all locations (x, y) for which d(p(x0, y0), p(x, y)) does not exceed a given
radius ̺. Typical shapes of amoeba structuring elements with both metrics are
shown in Figure 1. It is worth noticing that with the metric (4) the boundary of
A(x0, y0) crosses the level line through (x0, y0) orthogonally and smoothly, while
with (5) it has kinks at the intersection points, giving the structuring element a
digonal overall shape in contrast to the elliptical contour with (4).
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Fig. 1. Amoeba structuring elements. (a) Typical amoeba with metric d ≡ d2 from
(4). (b) Typical amoeba with metric d ≡ d1 from (5).

Once the structuring element has been constructed, the median of all grey-
values within the structuring element is taken, i.e. the value µ whose level line
(the curve along which u(x, y) = µ holds) cuts A(x0, y0) into two parts of equal
area. In the filtered image, µ becomes the new grey-value at location (x0, y0).

We analyse this filter now in a manner similar to Guichard and Morel’s
approach [7]. We focus first on the case of the metric d ≡ d2, see (4). Without loss
of generality, we assume that we are dealing with the location (x0, y0) = (0, 0).
We assume further that u(x0, y0) = 0, and that the image gradient at (x0, y0)
is given by ∇u(x0, y0) = (α/σ, 0)T with some positive α. Then σu possesses the
Taylor expansion

σu(x, y) = αx + βx2 + γxy + δy2 + O(̺3) (6)

within A = A(x0, y0), where we have used that x, y = O(̺).
Consider now a value z = O(̺). We are interested in the level line of u

corresponding to the grey-value z/σ, restricted to A. On this line, σu(x, y) = z
holds. Due to the prescribed gradient direction of u, level lines of u within A
are roughly oriented in y direction. We can therefore express the level line by
writing x as a function of y. Resolving the equation σu(x) = z for x yields

x = x(y) =

(

z

α
− z2β

α3

)

− zγ

α2
y − δ

α
y2 + O(̺3) . (7)

(As a quadratic equation needs to be solved, there is a second solution which is,
however, outside A if ̺ is small enough.) The length of the level line segment
within A acts as a weight with which the value u = z/σ enters the computa-
tion of the median µ. The end points of this segment are obtained by equating
d2(p(x0, y0), p(x(y), y)) to ̺. Approximating d2 by the Euclidean distance within
R

3, this equation becomes x(y)2 + y2 + z2 = ̺2, a quadratic equation for y with



two solutions y1, y2. The length L(z) of the level line segment within A equals
up to O(̺3) the difference |y1 − y2|. We compute therefore

L(z) = 2̺

√

1 − z2(α2 + 1)

̺2α2

(

1 +
zδ

α2
+

z3β

α2 (α2̺2 − z2(α2 + 1))

)

+ O(̺3) . (8)

The median µ is now determined by the equality

σµ
∫

Z−

L(z) dz =

Z+
∫

σµ

L(z) dz , (9)

where Z+ and Z− are the smallest positive and largest negative values for which
L(Z+) = L(Z−) = 0. One has Z+, Z− = Z∗ + O(̺3) with Z∗ = ̺α/

√
α2 + 1.

Provided that µ = O(̺2), the equality (9) can be transformed into

Z∗

∫

0

(L(z) − L(−z)) dz = 2σµL(0) + O(̺4) . (10)

Resolving the integral on the left-hand side analytically yields 4̺3δ
3(α2+1) + 8̺3β

3(α2+1)2 .

Together with L(0) = 2̺ + O(̺3), this implies

µ =
̺2

3σ

(

δ

α2 + 1
+

2β

(α2 + 1)2

)

+ O(̺3) (11)

which can be restated in terms of spatial derivatives of u as

µ =
̺2

6

(

uyy

1 + σ2u2
x

+
2uxx

(1 + σ2u2
x)2

+ O(̺)

)

. (12)

One amoeba median filter step acts therefore approximately like one time
step of an explicit scheme for the PDE

ut =
uξξ

1 + σ2 |∇u|2
+

2uηη
(

1 + σ2 |∇u|2
)2 (13)

with time step size τ = ̺2/6. On the right-hand side, second derivatives are
taken in the directions of the normalised gradient vector η := ∇u/ |∇u| and the
perpendicular vector ξ := η⊥, the tangential vector of the local level line of u.

When ̺ tends to zero, the iterated amoeba median filter therefore converges
to the PDE (13). The first summand of the right-hand side of (13) can obviously
be interpreted as curvature motion ut = uηη modulated in the way proposed in

[1] by an edge-stopping factor g1(|∇u|) :=
(

1 + σ2 |∇u|2
)−1

. It can also be
compared to the self-snakes PDE [14, 18]

ut = |∇u| div

(

g(|∇u|) ∇u

|∇u|

)

= g(|∇u|)uξξ + 〈∇g(|∇u|),∇u〉 , (14)
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Fig. 2. Edge-stopping functions in PDEs approximated by iterated amoeba median
filtering. For visualisation, σ is fixed to 1. (a) Weight functions g1 =

`

1+ |∇u|2
´

−1

for

the curvature motion term (solid line), g2 = 2
`

1+|∇u|2
´

−2

for the AMLE term (dashed
line) from the PDE (13) based on the Euclidean amoeba metric (4). (b) Corresponding
weight functions for the amoeba metric (5).

except that the term 〈∇g,∇u〉 is not present. As this “shock term” contributes
to the edge-enhancing properties of the self-snakes evolution, the edge-enhancing
effect may be less pronounced with the amoeba filter than with self-snakes.

The second summand of (13) resembles the AMLE [3] evolution ut = uηη,

but with an edge-stopping factor g2(|∇u|) := 2
(

1 + σ2 |∇u|2
)−2

. Note that g2

decreases faster than g1, with g1 = g2 for |∇u| = σ−1, see Figure 2 (a). At
all locations where the gradient is sufficiently large, the PDE (13) is therefore
dominated by the self-snakes-like modulated curvature motion part. The AMLE
contribution dominates in almost flat image regions.

A similar analysis applies if instead of d2 the metric d1 from (5) is used.
The resulting equation is again of the form ut = g1(|∇u|)uξξ + g2(|∇u|)uηη with
decreasing functions g1, g2 of the gradient. Here, g1 and g2 are given by compli-
cated integral expressions that are best evaluated numerically, see Figure 2 (b).
The derivation for this case will be published in a forthcoming paper.

4 Experiments

We present two experiments that confirm the behaviour suggested by the ana-
lytical results from the previous section.

The House experiment. In this experiment we use a relatively “simple” image
in order to investigate the influence of parameters, see Figure 3.

Subfigure (a) shows the original image. Figure 3(b) depicts the steady state
achieved by standard median filtering employing a fixed (3 × 3) structuring
element. As usual with median filtering, the shape of edges is rounded, and the
facade of the depicted house is quite non-uniform in its grey value distribution.
The use of a larger non-adaptive structuring element will distort the shape of
important image features.
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Fig. 3. The House experiment. Top row: (a) Original image. (b) Filtered with iter-
ated median filter, 3×3 stencil, 40 iterations. Middle row: (c) Iterated AMF, ̺ = 10,
σ = 0.25, 4 iterations. (d) Same as in (c) but 20 iterations. Bottom row: (e) Iterated
AMF, ̺ = 10, σ = 0.02, 10 iterations. (f) Iterated AMF, ̺ = 20, σ = 0.25, 1 iteration.



In Figure 3(c–f) we compare the results of iterated AMF using the L2 amoeba
distance together with varying parameters.

We start with a relatively strong penalisation of grey value differences given
by σ = 0.25, see (c, d). As predicted, we observe the influence of the self-snakes
very clearly by the sharp transition of regions of different grey values, while
nearly flat image regions are flattened even more.

When a very small σ is used, as in Figure 3(e), the size of regions that are
treated as nearly flat increases significantly. Indeed, we observe the corresponding
dominant blurring-like influence of AMLE.

In Figure 3(f) we increase the amoeba parameter ̺ relative to the setting
from (c, d). From the analytic point of view, this corresponds to a larger time
step size: Due to the quadratic relationship τ = ̺2/6 we can expect that for two
structuring elements with radii ̺1 and ̺2 = 2̺1, four AMF iterations with ̺1

should roughly make up one iteration with ̺2. The comparison of Figure 3(c)
and (f) confirms this approximate relationship: One iteration with ̺ = 20 has a
similar outcome as four iterations with ̺ = 10. We observe especially that the
transition zones at the shadows are located very similarly. The self-snake-like
sharpening, however, appears somewhat more prominent in the image processed
with four iterations.

The Head experiment. In this experiment (Figure 4) we use an MR image of
a human head which is rich in details of different contrast and scale. The original
image is shown in Subfigure (a). In (b–d) iterated AMF results both with L2 and
L1 amoeba distance are displayed. It can be seen that both distance measures
lead to similar results. Moreover, we observe even clearer than in the House
experiment the good quality of segmentation that is achieved in spite of the
relative simplicity of the filtering approach.

5 Conclusion

Our analysis of iterated amoeba median filtering shows that even highly adap-
tive discrete image filters can be interpreted in terms of PDE-based evolutions.
This viewpoint leads to clear explanations of qualitative properties of iterated
AMF, and predictions that can be confirmed by experiments. At the same time,
the cross-relation sheds new light on well-known PDE filters and may inspire
the development of new discretisations of PDE filters. Continuing this direction
of research, we believe that it will not only expedite the development of both
classes of image filters, but also bring forward a fusion between formerly distinct
branches of image processing.
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We regret to announce that our paper

M. Welk, M. Breuß, O. Vogel, Differential equations for morphological
amoebas. In M. H. F. Wilkinson and J. B. T. M. Roerdink, eds., Math-
ematical Morphology and its Applications to Signal and Image Process-
ing, volume 5720 of Lecture Notes in Computer Science, pp. 104–114,
Springer, Berlin, 2009

contains a mistake in the derivation of the partial differential equation for amoeba
median filtering.
In Equation (9) the integrals on both sides need to be corrected by a factor ∂x/∂z
in order to correctly measure the respective area portions within the structuring
element. Correctly this equation must therefore read

σµ∫
Z−

L(z)
∂x

∂z
dz =

Z+∫
σµ

L(z)
∂x

∂z
dz . (9)

The derivative ∂x
∂z = ∂x

∂z (y1+y2
2 , z) herein is evaluated at the midpoint of the

corresponding level line segment, for which it has been derived earlier that
y1+y2

2 = O(%2).
Propagating the correction through the subsequent equations, the PDE (13)
reads

ut =
uξξ

1 + σ2 |∇u|2
− 2σ2 |∇u|2 uηη(

1 + σ2 |∇u|2
)2 (13)

and thereby corresponds exactly to a self-snakes evolution because the two weight
functions

g1(|∇u|) =
(
1 + σ2 |∇u|2

)−1
, g2(|∇u|) = −2σ2

(
1 + σ2 |∇u|2

)−2

after correction fulfil the condition sg′1(s) = g2(s).
The correction of Equation (9) takes also effect in the case of the metric d1. Also
here the corrected weight functions g1, g2 fulfil sg′1(s) = g2(s).
Our recent preprint

M. Welk, M. Breuß, O. Vogel, Morphological amoebas are self-snakes.
Technical Report 259, Department of Mathematics, Saarland University,
Saarbrücken, Germany, February 2010

contains a corrected, extended and substantially generalised version of the re-
sults.


