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Abstract While shock filters are popular morphological image enhancement methods, no
well-posedness theory is available for their corresponding partial differential
equations (PDEs). By analysing the dynamical system of ordinary differential
equations that results from a space discretisation of a PDE for 1-D shock fil-
tering, we derive an analytical solution and prove well-posedness. Finally we
show that the results carry over to the fully discrete case when an explicit time
discretisation is applied.
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1. Introduction
Shock filters are morphological image enhancement methods where dilation

is performed around maxima and erosion around minima. Iterating this pro-
cess leads to a segmentation with piecewise constant segments that are sepa-
rated by discontinuities, so-called shocks. This makes shock filtering attractive
for a number of applications where edge sharpening and a piecewise constant
segmentation is desired.

In 1975 the first shock filters have been formulated by Kramer and Bruckner
in a fully discrete manner [6], while first continuous formulations by means of
partial differential equations (PDEs) have been developed in 1990 by Osher
and Rudin [8]. The relation of these methods to the discrete Kramer–Bruckner
filter became clear several years later [4, 12]. PDE-based shock filters have
been investigated in a number of papers. Many of them proposed modifica-
tions with higher robustness under noise [1, 3, 5, 7, 12], but also coherence-
enhancing shock filters [14] and numerical schemes have been studied [11].

Let us consider some continuous d-dimensional initial image f : IRd → IR.
In the simplest case of a PDE-based shock filter [8], one obtains a filtered
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Figure 1. Left: Original image. Right: After applying the Osher–Rudin shock filter.

version u(x, t) of f(x) by solving the evolution equation

∂tu = −sgn(∆u) |∇u| (t ≥ 0)

with f as initial condition, i. e. u(0, x) = f(x). Experimentally one observes
that within finite “evolution time” t, a piecewise constant, segmentation-like
result is obtained (see Fig. 1).

Specialising to the one-dimensional case, we obtain

∂tu = −sgn(∂xxu) |∂xu| =







|∂xu| , ∂xxu < 0,
− |∂xu| , ∂xxu > 0,

0, ∂xxu = 0.
(1)

It is clearly visible that this filter performs dilation ∂tu = |∂xu| in concave
segments of u, while in convex parts the erosion process ∂tu = −|∂xu| takes
place. The time t specifies the radius of the interval (a 1-D disk) [−t, t] as
structuring element. For a derivation of these PDE formulations for classical
morphological operations, see e.g. [2].

While there is clear experimental evidence that shock filtering is a useful
operation, no analytical solutions and well-posedness results are available for
PDE-based shock filters. In general this problem is considered to be too diffi-
cult, since shock filters have some connections to classical ill-posed problems
such as backward diffusion [8, 7].

The goal of the present paper is to we show that it is possible to establish
analytical solutions and well-posedness as soon as we study the semidiscrete
case with a spatial discretisation and a continuous time parameter t. This case
is of great practical relevance, since digital images already induce a natural
space discretisation. For the sake of simplicity we restrict ourselves to the 1-D
case. We also show that these results carry over to the fully discrete case with
an explicit (Euler forward) time discretisation.
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Our paper is organised as follows: In Section 2 we present an analytical
solution and a well-posedness proof for the semidiscrete case, whereas cor-
responding fully discrete results are given in Section 3. Conclusions are pre-
sented in Section 4.

2. The Semidiscrete Model
Throughout this paper, we are concerned with a spatial discretisation of (1)

which we will describe now.

Problem. Let (. . . , u0(t), u1(t), u2(t), . . .) be a time-dependent real-valued
signal which evolves according to

u̇i =







max(ui+1 − ui, ui−1 − ui, 0), 2ui > ui+1 + ui−1,
min(ui+1 − ui, ui−1 − ui, 0), 2ui < ui+1 + ui−1,
0, 2ui = ui+1 + ui−1

(2)

with the initial conditions
ui(0) = fi. (3)

Assume further that the signal is either of infinite length or finite with reflecting
boundary conditions.

Like (1), this filter switches between dilation and erosion depending on the
local convexity or concavity of the signal. Dilation and erosion themselves are
modeled by upwind-type discretisations [9], and u̇i denotes the time derivative
of ui(t).

It should be noted that in case 2ui > ui+1 + ui−1 the two neighbour dif-
ferences ui+1 − ui and ui−1 − ui cannot be simultaneously positive; with
the opposite inequality they can’t be simultaneously negative. In fact, always
when the maximum or minimum in (2) does not select its third argument, zero,
it returns the absolutely smaller of the neighbour differences.

No modification of (2) is needed for finite-length signals with reflecting
boundary conditions. In this case, each boundary pixel has one vanishing
neighbour difference.

In order to study the solution behaviour of this system, we have to spec-
ify the possible solutions, taking into account that the right-hand side of (2)
may involve discontinuities. We say that a time-dependent signal u(t) =
(. . . , u1(t), u2(t), u3(t) . . .) is a solution of (2) if

(I) each ui is a piecewise differentiable function of t,

(II) each ui satisfies (2) for all times t for which u̇i(t) exists,

(III) for t = 0, the right-sided derivative u̇+

i (0) equals the right-hand side of
(2) if 2ui(0) 6= ui+1(0) + ui−1(0).
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We state now our main result.

Theorem 1 (Well-Posedness) For our Problem, assume that the equal-
ity fk+1 − 2fk + fk−1 = 0 does not hold for any pixel fk which is not a local
maximum or minimum of f . Then the following are true:

(i) Existence and uniqueness: The Problem has a unique solution for all
t ≥ 0.

(ii) Maximum–minimum principle: If there are real bounds a, b such that
a < fk < b holds for all k, then a < uk(t) < b holds for all k and all
t ≥ 0.

(iii) l∞-stability: There exists a δ > 0 such that for any initial signal f̃ with
‖f̃ − f‖

∞
< δ the corresponding solution ũ satisfies the estimate

‖ũ(t) − u(t)‖
∞

< ‖f̃ − f‖
∞

for all t > 0. The solution therefore depends l∞-continuously on the
initial conditions within a neighbourhood of f .

(iv) Total variation preservation: If the total variation of f is finite, then the
total variation of u at any time t ≥ 0 equals that of f .

(v) Steady state: For t → ∞, the signal u converges to a piecewise con-
stant signal. The jumps in this signal are located at the steepest slope
positions of the original signal.

All statements of this theorem follow from an explicit analytical solution of
the Problem that will be described in the following proposition.

Proposition 2 (Analytical solution) For our standard problem, let
the segment (f1, . . . , fm) be strictly decreasing and concave in all pixels. As-
sume that the leading pixel f1 is either a local maximum or a neighbour to a
convex pixel f0 > f1. Then the following hold for all t ≥ 0:

(i) If f1 is a local maximum of f , u1(t) is a local maximum of u(t).

(ii) If f1 is neighbour to a convex pixel f0 > f1, then u1(t) also has a convex
neighbour pixel u0(t) > u1(t).

(iii) The segment (u1, . . . , um) remains strictly decreasing and concave in
all pixels. The grey values of all pixels at time t are given by

uk(t) = C ·



1 + (−1)ke−2t − e−t
k−2
∑

j=0

tj

j!
(1 + (−1)k−j)





+ e−t
k−2
∑

j=0

tj

j!
fk−j − (−1)kf1e

−t



e−t −
k−2
∑

j=0

(−t)j

j!





(4)
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for k = 1, . . . ,m, where C = f1(0) if f1 is a local maximum of f , and
C = 1

2
(f0(0) + f1(0)) otherwise.

(iv) At no time t ≥ 0, the equation 2ui(t) = ui+1(t) + ui−1(t) becomes true
for any i ∈ {1, . . . ,m}.

Analogous statements hold for increasing concave and for convex signal
segments.

In a signal that contains no locally flat pixels (such with 2fi = fi+1 +
fi−1), each pixel belongs to a chain of either concave or convex pixels led
by an extremal pixel or an “inflection pair” of a convex and a concave pixel.
Therefore Proposition 2 completely describes the dynamics of such a signal.
Let us prove this proposition.

Proof. We show in steps (i)–(iii) that the claimed evolution equations hold as
long as the initial monotonicity and convexity properties of the signal segment
prevail. Step (iv) then completes the proof by demonstrating that the evolution
equations preserve exactly these monotonicity and convexity requirements.

(i) From (2) it is clear that any pixel ui which is extremal at time t has
u̇i(t) = 0 and therefore does not move. Particularly, if f1 is a local maximum
of f , then u1(t) remains constant as long as it continues to be a maximum.

(ii) If u0 > u1, u0 is convex and u1 concave for t ∈ [0, T ). Then we have
for these pixels

u̇0 = u1 − u0 ,
u̇1 = u0 − u1

(5)

which by the substitutions y := 1

2
(u0 + u1) and v := u1 − u0 becomes

ẏ = 0 ,
v̇ = −2v .

This system of linear ordinary differential equations (ODEs) has the solution
y(t) = y(0) = C and v(t) = v(0) exp(−2t). Backsubstitution gives

u0(t) = C · (1 − e−2t) + f0e
−2t ,

u1(t) = C · (1 − e−2t) + f1e
−2t .

(6)

This explicit solution is valid as long as the convexity and monotonicity prop-
erties of u0 and u1 do not change.

(iii) Assume the monotonicity and convexity conditions required by the
proposition for the initial signal hold for u(t) for all t ∈ [0, T ). Then we
have in all cases, defining C as in the proposition, the system of ODEs

u̇1 = −2(u1 − C) ,
u̇k = uk−1 − uk , k = 2, . . . ,m

(7)
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for t ∈ [0, T ). We substitute further vk := uk −C for k = 1, . . . ,m as well as
w1 := v1 and wk := vk + (−1)kv1 for k = 2, . . . ,m. This leads to the system

ẇ1 = −2w1 ,
ẇ2 = −w2 ,
ẇk = wk−1 − wk , k = 3, . . . ,m .

(8)

This system of linear ODEs has the unique solution

w1(t) = w1(0)e
−2t ,

wk(t) = e−t
k−2
∑

j=0

tj

j!
wk−j(0) , k = 2, . . . ,m

which after reverse substitution yields (4) for all t ∈ [0, T ].
(iv) Note that (5) and (7) are systems of linear ODEs which have the unique

explicit solutions (6) and (4) for all t > 0. As long as the initial monotonicity
and convexity conditions are satisfied, the solutions of (2) coincide with those
of the linear ODE systems.

We prove therefore that the solution (4) fulfils the monotonicity condition

uk(t) − uk−1(t) < 0 , k = 2, . . . ,m

and the concavity conditions

uk+1(t) − 2uk(t) + uk−1(t) < 0 k = 1, . . . ,m

for all t > 0 if they are valid for t = 0. To see this, we calculate first

uk(t) − uk−1(t) = e−t
k−2
∑

j=0

tj

j!
(fk−j − fk−1−j)

+ 2e−t(−1)k−1



e−t −
k−2
∑

j=0

(−t)j

j!



 (f1 − C) .

By hypothesis, fk−j − fk−1−j and f1 − C are negative. Further, exp(−t) −
∑k−2

j=0
(−t)j/j! is the error of the (alternating) Taylor series of exp(−t), thus

having the same sign (−1)k−1 as the first neglected member. Consequently,
the monotonicity is preserved by (4) for all t > 0.

Second, we have for k = 2, . . . ,m − 1

uk+1(t) − 2uk(t) + uk−1(t) = e−t
k−1
∑

j=0

tj

j!
(fk+1−j − 2fk−j + fk−j−1)

+ 4e−t(−t)k





k−1
∑

j=0

(−t)j

j!



 (f1 − C)
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which is seen to be negative by similar reasoning as above.
Concavity at um(t) follows in nearly the same way. By extending (4) to

k = m + 1, one obtains not necessarily the true evolution of um+1 since that
pixel is not assumed to be included in the concave segment. However, the true
trajectory of um+1 can only lie below or on that predicted by (4).

Third, if f1 is a maximum of f , then u1(t) remains one for all t > 0 which
also ensures concavity at u1. If f1 has a convex neighbour pixel f0 > f1, we
have instead

u2(t) − 2u1(t) + u0(t) = e−t(f2 − 2f1 + f0) + 4e−t(1 − e−t)(f1 − C) < 0

which is again negative for all t > 0.
Finally, we remark that the solution (6) ensures u0(t) > u1(t) for all t > 0

if it holds for t = 0. That convexity at u0 is preserved can be established by
analogous reasoning as for the concavity at u1.

Since the solutions from the linear systems guarantee preservation of all
monotonicity and convexity properties which initially hold for the considered
segment, these solutions are the solutions of (2) for all t > 0.

We remark that uniqueness fails if the initial signal contains non-extremal
locally flat pixels. More details for this case are given in a preprint [15].

3. Explicit Time Discretisation
In the following we discuss an explicit time discretisation of our time-

continuous system. We denote the time step by τ > 0. The time discretisation
of our Problem then reads as follows:

Time-Discrete Problem. Let (. . . , ul
0, u

l
1, u

l
2, . . .), l = 0, 1, 2, . . . be a

series of real-valued signals which satisfy the equations

ul+1

i − ul
i

τ
=







max(ui+1 − ui, ui−1 − ui, 0), 2ui > ui+1 + ui−1,
min(ui+1 − ui, ui−1 − ui, 0), 2ui < ui+1 + ui−1,
0, 2ui = ui+1 + ui−1

(9)

with the initial conditions
u0

i = fi ; (10)

assume further that the signal is either of infinite length or finite with reflecting
boundary conditions.

Theorem 3 (Time-Discrete Well-Posedness) Assume that in the
Time-Discrete Problem the equality fk+1 − 2fk + fk−1 = 0 does not hold
for any pixel fk which is not a local maximum or minimum of f . Assume fur-
ther that τ < 1/2. Then the statements of Theorem 1 are valid for the solution
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of the Time-Discrete Problem if only uk(t) for t > 0 is replaced everywhere by
ul

k with l = 0, 1, 2, . . .

The existence and uniqueness of the solution of the Time-Discrete Problem
for l = 0, 1, 2, . . . is obvious. Maximum–minimum principle, l∞-stability,
total variation preservation and the steady state property are immediate conse-
quences of the following proposition. It states that for τ < 1/2 all qualitative
properties of the time-continuous solution transfer to the time-discrete case.

Proposition 4 (Time-discrete solution) Let ul
i be the value of pixel

i in time step l of the solution of our Time-Discrete Problem with time step size
τ < 1/2. Then the following hold for all l = 0, 1, 2, . . .:

(i) If ul
1 is a local maximum of ul, then ul+1

1 is a local maximum of ul+1.

(ii) If ul
1 is a concave pixel neighbouring to a convex pixel ul

0 > ul
1, then

ul+1
1 is again concave and has a convex neighbour pixel ul+1

0 > ul+1
1 .

(iii) If the segment (ul
1, . . . , u

l
m) is strictly decreasing and concave in all

pixels, and ul
1 is either a local maximum of ul or neighbours to a convex

pixel ul
0 > ul

1, then the segment (ul+1
1 , . . . , ul+1

m ) is strictly decreasing.

(iv) Under the same assumptions as in (iii), the segment (ul+1
1 , . . . , ul+1

m ) is
strictly concave in all pixels.

(v) If 2ul
i = ul

i+1 + ul
i−1 holds for no pixel i, then 2ul+1

i = ul+1

i+1
+ ul+1

i−1

also holds for no pixel i.

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . ,m}
have the same limit lim

l→∞

ul
i = C with C := ul

1 if ul
1 is a local maximum,

or C := 1

2
(ul

0 + ul
1) if it neighbours to the convex pixel ul

0.

Analogous statements hold for increasing concave and for convex signal
segments.

Proof. Assume first that ul
1 is a local maximum of ul. >From the evolution

equation (9) it is clear that ul+1

j ≤ ul
j + τ(ul

1 − ul
j) for j = 0, 2. For τ < 1

this entails ul+1

j < ul
1 = ul+1

1 , thus (i).
If instead ul

i is a concave neighbour of a convex pixel ul
0 > ul

1, then we have
ul+1

1 = ul
1 + τ(ul

0−ul
1) and ul+1

0 = ul
0 + τ(ul

1−ul
0). Obviously, ul+1

0 > ul+1
1

holds if and only if τ < 1/2. For concavity, note that ul+1
2 ≤ ul

2 + τ(ul
1 − ul

2)

and therefore ul+1
0 − 2ul+1

1 + ul+1
2 ≤ (1− τ)(ul

0 − 2ul
1 + ul

2) + 2τ(ul
1 − ul

0).
The right-hand side is certainly negative for τ ≤ 1/2. An analogous argument
secures convexity at pixel 0 which completes the proof of (ii).
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In both cases we have ul+1
1 ≥ ul

1. Under the assumptions of (iii), (iv) we
then have ul+1

k = ul
k + τ(ul

k−1
− ul

k) for k = 2, . . . ,m. If τ < 1, it follows
that ul

k < ul+1

k ≤ ul
k−1

for k = 2, . . . ,m which together with ul+1
1 ≥ ul

1

implies that ul+1

k−1
> ul

k for k = 2, . . . ,m and therefore (iii).
For the concavity condition we compute

ul+1

k−1
−2ul+1

k +ul+1

k+1
= (1− τ)(ul

k−1−2ul
k +ul

k+1)+ τ(ul
k−2−2ul

k−1 +ul
k)

for k = 3, . . . ,m − 1. The right-hand side is certainly negative for τ ≤ 1
which secures concavity in the pixels k = 3, . . . ,m− 1. Concavity in pixel m
for τ ≤ 1 follows from essentially the same argument; however, the equation is
now replaced by an inequality since for pixel m+1 we know only that ul+1

m+1 ≤

ul
m+1 +τ(ul

m−ul
m+1). If ul

1 is a local maximum and therefore ul+1
1 = ul

1, we
find for pixel 2 that ul+1

1 −2ul+1
2 +ul+1

3 = (1−τ)(ul
1−2ul

2+ul
3)+τ(ul

2−ul
1)

which again secures concavity for τ ≤ 1. As was proven above, concavity in
pixel 1 is preserved for τ ≤ 1/2 such that (iv) is proven.

Under the hypothesis of (v), the evolution of all pixels in the signal is de-
scribed by statements (i)–(iv) or their obvious analoga for increasing and con-
vex segments. The claim of (v) then is obvious.

Finally, addition of the equalities C −ul+1
1 = (1− 2τ)(C −ul

1) and ul+1

i−1
−

ul+1

i = (1 − τ)(ul
i−1 − ul

i) for i = 2, . . . ,m implies that

C − ul+1

k = (1 − τ)(C − ul
k) − τ(C − ul

1) < (1 − τ)(C − ul
k)

for all k = 1, . . . ,m. By induction, we have

C − ul+l′

k ≤ (1 − τ)l′(C − ul
k)

where the right-hand side tends to zero for l′ → ∞. Together with the mono-
tonicity preservation for τ < 1/2, statement (vi) follows.

4. Conclusions
Theoretical foundations for PDE-based shock filtering has long been con-

sidered to be a hopelessly difficult problem. In this paper we have shown that it
is possible to obtain both an analytical solution and well-posedness by consid-
ering the space-discrete case where the partial differential equation becomes a
dynamical system of ordinary differential equations (ODEs). Moreover, cor-
responding results can also be established in the fully discrete case when an
explicit time discretisation is applied to this ODE system.

We are convinced that this basic idea to establish well-posedness results
for difficult PDEs in image analysis by considering the semidiscrete case is
also useful in a number of other important PDEs. While this has already
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been demonstrated for nonlinear diffusion filtering [13, 10], we plan to in-
vestigate a number of other PDEs in this manner, both in the one- and the
higher-dimensional case. This should give important theoretical insights into
the dynamics of these experimentally well-performing nonlinear processes.
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