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Abstract

Image enhancement with forward-and-backward (FAB) diffusion lacks a sound theory
and is numerically very challenging due to its diffusivities that are negative within a
certain gradient range. In our paper we address both problems. First we establish a
comprehensive theory for space-discrete and time-continuous FAB diffusion processes. It
requires approximating the gradient magnitude with a nonstandard discretisation. Then
we show that this theory carries over to the fully discrete case, when an explicit time
discretisation with a fairly restrictive step size limit is applied. To come up with more
efficient algorithms we propose three accelerated schemes: (i) an explicit scheme with
global time step size adaptation that is also well-suited for parallel implementations on
GPUs, (ii) a randomised two-pixel scheme that offers optimal adaptivity of the time step
size, (iii) a deterministic two-pixel scheme which benefits from less restrictive consistency
bounds. Our experiments demonstrate that these algorithms allow speed-ups by up to
three orders of magnitude without compromising stability or introducing visual artifacts.

Keywords: image enhancement • diffusion filtering • backward parabolic PDEs • dy-
namical systems • nonstandard finite differences • ill-posed problems
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1 Introduction

Partial differential equations (PDEs) and variational approaches for enhancing digital images
have been investigated intensively in the last thirty years. An overview can be found e.g. in
[1, 33]. As continuous frameworks, these approaches excel by their concise and transparent
formulation and their natural representation of rotational invariance.

However, some highly interesting models are affected by well-posedness problems, making
their analysis in a continuous setting difficult. Well-posedness properties of space-discrete
and fully-discrete formulations therefore receive increasing attention.

Regarding the Perona–Malik filter, a space-discrete and fully discrete theory for smooth
nonnegative diffusivities was established by Weickert [33]. The corresponding explicit scheme
was proven in [34] to preserve monotonicity in 1D. This explains that staircasing is the
worst phenomenon that can happen. An extension of this analysis to singular nonnegative
diffusivities was accomplished by Pollak et al. [25] who verified the well-posedness of dynamical
systems with discontinuous right hand sides arising from a space-discrete Perona-Malik model.

Using backward diffusion to enhance image features has a long tradition, going back
already to a 1955 publication by Kovasznay and Joseph [12] and a 1965 paper by Gabor
[8, 15]. Since backward diffusion is a classical example of an ill-posed problem [29], designing
appropriate numerical schemes for these processes continues to be a difficult research topic;
see e.g. the recent papers [5, 6, 40] and the references therein. For the stabilised inverse
linear diffusion process introduced by Osher and Rudin, a continuous well-posedness theory
is lacking, but a stable minmod discretisation could be devised [21]. Breuß and Welk [3]
showed that staircasing cannot be avoided by suitable space discretisations.

For shock filtering [13, 22] which, too, is difficult to analyse in the continuous setting,
discrete well-posedness results are found in [38], including an analytic solution of the corre-
sponding dynamical system.

On the variational side, Nikolova has published a number of impressive papers that provide
deep insights into the behaviour of minimisers of space-discrete energies, even if they are highly
nonconvex or nondifferentiable; see e.g. [19, 20]. It would have been extremely difficult if not
impossible to obtain similar results in the continuous setting.

The forward-and-backward (FAB) diffusion model of Gilboa et al. [10] is another example
for such difficulties. Designed for the sharpening of images, it is basically a Perona–Malik
type PDE filter. However, its diffusivities take positive values in some regions and negative
values in others. Thus, it is not surprising that no well-posedness results are available in the
continuous setting and experiments with standard explicit discretisations show violations of
a maximum–minimum principle. On the other hand, FAB diffusion has been modified and
generalised in a number of ways [9, 26, 27, 30, 31, 32]. Thus, it would clearly be desirable
to have some theoretical underpinnings and reliable and efficient algorithms for this class of
methods. However, in view of the difficulties described above, it is most promising to establish
a sound theory if one focuses on discrete FAB models.

Our Contribution. The goal of our paper is to address these two problems. In a first step,
we establish a space-discrete diffusion theory that generalises the results from Weickert [33]
which are only applicable for positive diffusivities. By relaxing some of its requirements we
end up with a framework that can also be applied to space-discrete FAB diffusion: In partic-
ular, we can establish well-posedness, a preservation of the average grey value, a maximum–
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minimum principle, an interesting Lyapunov function and convergence to a discrete steady
state. However, these results hold only if we replace the standard discretisation of the gradient
magnitude by a nonstandard one that vanishes at discrete extrema. We show that this theory
also carries over to the fully discrete setting with an explicit time discretisation, if the time
step size stays below a very severe bound that results from worst case a priori estimates. By
replacing them with more realistic a posteriori estimates we end up with much more efficient
schemes. They may either adapt the time step size for all locations simultaneously, or they
can be based on estimates with maximal locality / adaptivity by splitting the diffusion into
pairs of neighbouring pixels. Our experiments show that these acceleration strategies can
lead to speed-ups of up to three orders of magnitude.

The present paper is based on two conference publications [35, 37]: The first one has
presented early results on a space-discrete theory and one-dimensional experiments, whereas
the second one focuses on a fully discrete theory and an efficient randomised two-pixel scheme
for 2D images. Our present manuscript extends these preliminary findings in several ways:

• In the space-discrete and time-continuous setting, we establish Lyapunov functions and
come up with convergence results.

• In the fully discrete framework, we propose two novel schemes:
(i) An explicit scheme with global time step size adaptation and its parallelisation on a
GPU.
(ii) A deterministic two-pixel scheme that outperforms its randomised predecessor from
[37] w.r.t. its consistency properties and its efficiency.

• Our experiments are more comprehensive and include e.g. also comparisons between
different types of FAB diffusivities.

Structure of the Paper. Sections 2 and 3 provide concepts that are essential for un-
derstanding the remainder of our paper by reviewing FAB diffusion [10] and the classical
space-discrete diffusion framework from [33], respectively. In Section 4 we introduce our
novel space-discrete theory that is also applicable to FAB diffusion. A corresponding fully
discrete theory for explicit schemes is established in Section 5. Section 6 discusses several
algorithmic variants which are substantially more efficient by exploiting local adaptivity or
parallelism, and Section 7 confirms this by experiments. The paper is concluded with a
summary and an outlook in Section 8.

2 Forward-and-Backward Diffusion Filtering

Forward-and-backward (FAB) diffusion filtering has been proposed by Gilboa, Sochen and
Zeevi in 2002 [10]. We recall the basic definitions for the 2D case (generalisation to arbitrary
dimensions is straightforward).

The starting point is the well-known nonlinear diffusion model of Perona and Malik [24].
Let a greyscale image f : Ω → R on a rectangular image domain Ω ⊂ R2 be given. To enhance
this image, filtered versions u(x, t) of f(x) are created by solving an initial–boundary value
problem for the PDE

∂tu = div
(
g(|∇u|2)∇u

)
(1)
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with the input image f as initial condition,

u(x, 0) = f(x) , (2)

and homogeneous Neumann boundary conditions,

∂nu = 0 , (3)

where n denotes a vector normal to the image boundary ∂Ω . Here x stands for (x, y)>.
Writing partial derivatives by subscripts, we denote by ∇ := (∂x, ∂y)

> the spatial gradient
and by div its corresponding divergence operator.

The specificity of FAB diffusion is the choice of the diffusivity function. The Perona–Malik
framework [24] requires g to take positive values. In contrast, a FAB diffusivity is positive for
small image gradients, while it becomes negative for larger ones. Different models for such
diffusivities g have been proposed, see for example [9, 26]. In [9] the diffusivity

g(s2) =
1√

1 + (s/kf )2
− α

1 + (s/kb)2
, (4)

is proposed, where kf and kb control the gradient magnitudes for forward and backward
diffusion, respectively, and α is the weight between these terms. Note that for suitable values
of the parameters, this diffusivity is positive for small image gradients, while it becomes
negative for larger ones, and finally becomes positive again, see [9]. Another example, adapted
from [26], is

g(s2) = 2 exp

(
−κ

2 ln 2

κ2 − 1
· s

2

λ2

)
− exp

(
− ln 2

κ2 − 1
· s

2

λ2

)
(5)

with admissible parameters λ > 0 and κ > 1. In contrast to (4), this diffusivity does not
become positive again for large gradient magnitudes: Asymptotically it approaches 0 from
below when the gradient magnitude grows to infinity. We will discuss different types of FAB
diffusivities in more detail in Subsection 7.5.

The main motivation for FAB was to introduce a general-purpose stable image sharpening
process for which dominant gradients, above the noise level, are strongly enhanced.

To understand the difference between a Perona–Malik filter and FAB diffusion, let us
rewrite the evolution (1) in terms of the flowline direction η ‖∇u and the isophote direction
ξ ⊥∇u. With the flux function φ(s) := g(s2)s this yields

∂tu = φ′(|∇u|)uηη + g(|∇u|2)uξξ . (6)

Both the Perona–Malik filter and FAB diffusion allow flux functions which may be decreasing
in an interval: Consider e.g. the positive diffusivity

g(s2) =
1

1 + s2/λ2
(λ > 0) (7)

in the Perona–Malik case. Thus, we may encounter backward diffusion in the flowline direc-
tion η for both filters, producing a desirable sharpening across edges which enhances contrast.
Along the isophote direction ξ, however, both processes differ: Since the Perona-Malik filter
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permits only positive diffusivities, it always shows forward diffusion behaviour. On the con-
trary, the FAB diffusion may also exhibit backward behaviour. Thus, it is a more consequent
realisation of a sharpening process.

Like some other types of nonlinear diffusion processes, FAB diffusion can be related to
variational approaches. In [9] FAB diffusion with the diffusivity (4) has been interpreted as
an energy minimisation process of a nonmonotone potential in the shape of a triple-well. FAB
diffusion has also been put into relation with wavelet methods for image enhancement [18]. A
schematic form of the FAB diffusivity is shown in Figure 1. Several examples of diffusivities
and their corresponding potentials (penalisers) are plotted within the experimental section in
Figure 6.

Beyond these works, there is not much theoretical analysis of the fully continuous FAB
process documented in the literature. In particular, no existence, uniqueness and stability
results have been proven. In [10] it was conjectured that FAB diffusion violates a maximum–
minimum principle due to the effect of negative diffusivities.

Indeed, such violations can be observed in numerical experiments, where FAB diffusion is
discretised using standard numerical methods. However, this is no longer true if more sophis-
ticated space discretisations are used: As [35] brought out, one can discretise FAB diffusion
in a way such that the space-discrete process obeys the maximum–minimum principle, and
further useful theoretical results on the space-discrete process could be established. Stability
properties of fully discrete FAB diffusion were considered in [35], too, but limited to the 1D
case. This analysis was extended to the 2D case in [37]. In Sections 4 and 5, we will also
detail the analytical results from [35] and [37], focusing on the 2D case.

3 A Space-Discrete Diffusion Framework

Let us now review the space-discrete diffusion framework of Weickert [33], since parts of it
can be extended to the FAB setting.

To study diffusion in the space-discrete 2D case, we consider the discrete image domain

Γ := {1, 2, . . . ,m} × {1, 2, . . . , n} . (8)

Each pixel (i, j) ∈ Γ is assumed to be centred in the location
(
(i− 1

2)h1, (j− 1
2)h2

)
, where h1

and h2 denote the grid size (pixel width) in x- and y-direction, respectively.

Denoting by ui,j an approximation to u in pixel (i, j) ∈ Γ , a standard discretisation of a
Perona-Malik type diffusion equation

∂tu = ∂x

(
g(|∇u|2) ∂xu

)
+ ∂y

(
g(|∇u|2) ∂yu

)
(9)

in some inner pixel (i, j) yields the ordinary differential equation

dui,j
dt

=
1

h1

(
gi+1,j + gi,j

2

ui+1,j − ui,j
h1

− gi,j + gi−1,j
2

ui,j − ui−1,j
h1

)

+
1

h2

(
gi,j+1 + gi,j

2

ui,j+1 − ui,j
h2

− gi,j + gi,j−1
2

ui,j − ui,j−1
h2

)
. (10)
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This formula even holds for boundary pixels, provided that the homogeneous Neumann bound-
ary conditions (3) are implemented by mirroring boundary pixels into dummy pixels:

uk0,j := uk1,j , ukm+1,j := ukm,j , uki,0 := uki,1 , uki,n+1 := uki,n (11)

for all indices i and j. A suitable discretisation for the diffusivity g will be discussed later.

In a more compact notation, one can represent a pixel (i, j) ∈ Γ by a single index k(i, j) ∈
J with the new index set J = {1, . . . , N}, where N = n ·m. This leads to

duk
dt

=

2∑
ν=1

∑
l∈Nν(k)

gl + gk
2h2ν

(ul − uk) , (12)

where Nν(k) are the neighbours of pixel k in the ν-th coordinate direction (boundary pixels
may have less neighbours). This can be written as a system of ordinary differential equations
(ODEs):

du

dt
= A(u)u , (13)

where u = (u1, . . . , uN )>, and the N ×N matrix A(u) =
(
ak,l(u)

)
satisfies

ak,l =


gk+gl
2h2ν

if l ∈ Nν(k) ,

−
2∑

ν=1

∑
l∈Nν(k)

gk+gl
2h2ν

if l = k ,

0 else .

(14)

A space-discrete problem class (Ps) is defined in the following way.

Let f ∈ RN . Find a function u ∈ C1([0,∞),RN ) that satisfies the initial value
problem

du

dt
= A(u)u ,

u(0) = f ,

where A = (ai,j) has the following properties:

(S1) Lipschitz-continuity of A ∈ C(RN ,RN×N ) for every bounded subset of
RN ,

(S2) symmetry: ai,j(u) = aj,i(u) ∀ i, j ∈ J, ∀u ∈ RN ,

(S3) vanishing row sums:
∑

j∈J ai,j(u) = 0 ∀ i ∈ J, ∀u ∈ RN ,

(S4) nonnegative off-diagonals: ai,j(u) ≥ 0 ∀ i 6= j, ∀u ∈ RN ,

(S5) irreducibility for all u ∈ RN .



(Ps)

One should remember that a matrix A ∈ RN×N is called irreducible if for any i, j ∈ J there
exist k0,. . . ,kr ∈ J with k0 = i and kr = j such that akpkp+1 6= 0 for p = 0, . . . , r− 1. In other
words: There is a path from pixel i to pixel j along which the diffusivities do not vanish.

Under these requirements the subsequent result is proven in [33]:
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Proposition 1 (Properties of Space-Discrete Diffusion Filtering). For the space-discrete filter
class (Ps) the following statements are valid:

(a) (Well-Posedness)
For every T > 0 the problem (Ps) has a unique solution u(t) ∈ C1([0, T ],RN ). This
solution depends continuously on the initial value and the right-hand side of the ODE
system.

(b) (Maximum–Minimum Principle)
Let a := minj∈J fj and b := maxj∈J fj. Then, a ≤ ui(t) ≤ b for all i ∈ J and t ∈ [0, T ].

(c) (Average Grey Level Invariance)
The average grey level µ := 1

N

∑
j∈J fj is not affected by the space-discrete diffusion filter:

1
N

∑
j∈J uj(t) = µ for all t > 0.

(d) (Lyapunov Functions)
For all r ∈ C1[a, b] with increasing derivative r′ on [a, b], the function V (t) := Φ(u(t)) :=∑

i∈J r(ui(t)) is a Lyapunov function, i.e. V (t) is decreasing and bounded from below by
Φ(c), where c := (µ, . . . , µ)> ∈ RN .

(e) (Convergence to a Constant Steady State)
lim
t→∞

u(t) = c.

The proof shows that not all of the requirements (S1)–(S5) are necessary for each of
the theoretical results above: Requirement (S1) is needed for local well-posedness, while
proving a maximum–minimum principle requires (S3) and (S4). Local well-posedness together
with the maximum–minimum principle implies global well-posedness. The average grey value
invariance is based on (S2) and (S3). The existence of Lyapunov functionals can be established
by means of (S2)–(S4), and convergence to a constant steady state requires (S5) in addition
to (S2)–(S4).

4 Analysis of Space-Discrete FAB Diffusion

We turn now to apply the results from the previous section to space-discrete FAB diffusion.
Herein we follow mostly [35], adding in Subsection 4.2 new findings on Lyapunov functions
and convergence to a constant steady state.

Whereas we write down our theory focused on the 2D regular grid Γ as introduced in
(8), the analysis in the previous as well as in most of this section can be generalised straight-
forwardly to diffusion in arbitrary dimensions, and even to diffusion on graphs, where the
image domain J is the node set of a graph, edges connecting neighbouring nodes are weighted
by distances, and intensities propagate in the diffusion process via these edges, see [7]. For
example, by rewriting (12) as

duk
dt

=
∑

l∈N (k)

gl + gk
2h2k,l

(ul − uk) , (15)

(and (14) accordingly) where N (k) are all neighbours of pixel k, and hk,l := h1 for horizontal
and hk,l := h2 for vertical neighbours, it becomes obvious that (15) can be used verbatim also
for diffusion on graphs, by just redefining hk,l based on the edge weights (distances).
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Specific to regular grids is Subsection 4.3 where discretisations of the diffusivity are dis-
cussed.

4.1 Direct Consequences from the Space-Discrete Framework

It is straightforward to verify the prerequisites (S1)–(S5) for the popular positive diffusivity
functions, such that Proposition 1 is applicable. However, for FAB diffusion negative diffu-
sivities are possible and the situation becomes much more complicated. One immediately
sees that space-discrete FAB diffusion satisfies (S1: smoothness), (S2: symmetry), and (S3:
vanishing row sums). However, this just implies local well-posedness and average grey level
invariance.

By inspecting (14) it becomes clear that (S4: nonnegative off-diagonals) and (S5: irre-
ducibility) cannot be satisfied for typical FAB diffusivities: These diffusivities may vanish
(which violates (S5)) and they may even become negative (violating (S4)). As a consequence,
global well-posedness, a maximum–minimum principle, Lyapunov functions and convergence
to a constant steady state cannot be proven in this way.

4.2 Scale-Space Theory under Weaker Prerequisites

For the practical applicability of FAB diffusion it would be highly desirable to have at least
global well-posedness and a maximum–minimum principle. Is there a remedy for these prop-
erties? Fortunately the answer is affirmative, since (S4: nonnegative off-diagonals) can be
replaced by a less restrictive condition that only holds at extrema:

Proposition 2 (Maximum–Minimum Principle for Space-Discrete Diffusion Filtering under
Weaker Conditions). Assume that a space-discrete filter satisfies only the properties (S1)–(S3)
of the framework (Ps), and

(S4a) nonnegative off-diagonals at extrema:

ai,j(u) ≥ 0 for all j ∈ J with j 6= i if u has an extremum in i.

Then the well-posedness result (a), the maximum–minimum principle (b), and the average
grey level invariance (c) of Proposition 1 are still satisfied.

Proof. Following [33], one observes that in some pixel k that is a discrete global maximum
(i.e. uk ≥ uj for all j ∈ J), condition (S4a) implies that

duk
dt

=
∑
j∈J

akj(u)uj = akk(u)uk +
∑

j∈J\{k}

akj(u)︸ ︷︷ ︸
≥0

uj︸︷︷︸
≤uk

≤ uk ·
∑
j∈J

akj(u)
(S3)
= 0 . (16)

In the same way one can prove that if k is a minimum, one has duk/dt ≥ 0.

This nonenhancement behaviour in extrema is the only place where nonnegativity is re-
quired in the entire proof of the maximum–minimum principle in [33]. As a consequence, the
maximum–minimum principle still holds if (S4) is replaced by the weaker condition (S4a).
Moreover, together with local well-posedness, global well-posedness is obtained. This com-
pletes the proof.
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Further adapting the conditions of the general theory in Section 3 to FAB diffusivities,
we can also devise Lyapunov functions.

Proposition 3 (Lyapunov Condition for Space-Discrete Diffusion Filtering under Weaker
Conditions). Assume that a space-discrete filter satisfies only the properties (S1)–(S3) of the
framework (Ps) and (S4a) from Proposition 2. Assume further that there is a symmetric
neighbourhood relation ∼ on J such that the following two conditions are satisfied:

(S4b) positive off-diagonals in neighbourhood of extrema:

If u has an extremum in i, ai,j(u) > 0 holds for all j ∈ J \ {i} with i ∼ j.
(S5a) irreducibility of neighbourhood relation:

The neighbourhood graph in J based on the neighbourhood relation ∼ is con-
nected.

Using umax := max
j
uj, umin := min

j
uj and

Φ(u) := umax − umin , (17)

define then the function V : [0,∞)→ R+
0 by V := Φ ◦ u, i.e.

V (t) := umax(t)− umin(t) . (18)

Then the Lyapunov property (d) and steady state property (e) of Proposition 1 are satisfied
with the Lyapunov function V (t).

Remark 1. For images on regular grids which are in the focus of the present paper, the
symmetric neighbourhood relation ∼ will relate a pixel to its immediate neighbours in the co-
ordinate directions (resulting in a 4-neighbourhood for interior pixels of 2D images). However,
the proposition is equally applicable to arbitrary neighbourhood graphs.

The proof of this proposition relies on the following statement.

Lemma 1. Under the assumptions of Proposition 3, the functions Φ and V satisfy the fol-
lowing three conditions:

(i) Φ is continuous on [a, b]N , where a and b are the minimum and maximum of u0, respec-
tively.

(ii) V is continuous, bounded and piecewise differentiable.

(iii) Let V ′+(t) denote the right-sided derivative of V . Then V (t) > 0 and V ′+(t) ≤ 0 hold for
all t ≥ 0, with V ′+(t) = 0 only for discrete times t, unless the image f is flat.

Proof of the Lemma. Continuity of Φ w.r.t. u, and of u w.r.t. t, is straightforward, as (Ps)
with the modified condition set (S1)–(S3), (S4a), (S4b), (S5a) is a dynamical system with
bounded right-hand side. By composition, V (t) is continuous, too. By the Lipschitz-
continuity of A the right-hand side of the dynamical system is even continuous, ensuring
continuous differentiability of u(t). Therefore V is also differentiable, except at those times
t when the global maximum, or minimum, of u(t) is attained by two equal-valued pixels
ui(t) and uj(t) with u̇i(t) 6= u̇j(t), such that the global maximum or minimum property is
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transferred from one to the other pixel at time t. As the number N of pixels is finite, this can
happen only at discrete times t, and at each of these times the pixels representing the global
maximum and minimum in the subsequent time interval establish a well-defined right-sided
derivative of V . This completes the proof of (i).

Next we prove that for a non-trivial image V ′+(t) = 0 cannot stay true throughout a time
interval [t1, t2], t1 < t2.

For any pixel ui(t) representing the global maximum or minimum at time t, the weights
ai,j(t) for all neighbours j of i are positive by hypothesis (S4b), while ai,i(t) is positive by
(S4a) and (S3). Thus, u̇i,j = 0 can hold only if all neighbours of ui,j have the same grey value
as ui,j at time t.

Assume ui(t) is a global maximum with u̇i(t) = 0 throughout [t1, t2]. Then all neighbour
pixels uj with j ∼ i satisfy uj = ui throughout [t1, t2], thus also u̇j = 0. As the image domain
J is irreducible (connected by the neighbourhood relation) by (S5), this implies by recursive
application that the image is a steady state. By reversibility of the dynamical system under
consideration, this is possible only if f is trivial.

Thus, V ′+(t) can vanish only at discrete time points. For all other times, V ′+(t) is negative
because of the negative matrix entries ai,i and nonnegative ai,j for j 6= i at extrema i ∈ J .

Finally, the reversibility of the aforementioned dynamical system also ensures V (t) > 0
for all times if f is nontrivial.

Proof of Proposition 3. Since the quantity Φ(u) is nonnegative, and vanishes exactly for the
steady states u(t) = c, Lemma 1 characterises V as a Lyapunov function for semidiscrete
FAB diffusion on each interval [t0,∞) with t0 > 0.

The convergence result (e) will follow now by slight adaptation of a standard proof from
the theory of dynamical systems. Note that properties (ii) and (iii) from Lemma 1 but with
the stronger inequality V ′(t) < 0 for all t, are a standard argument about global asymptotic
stability of dynamical systems; see e.g. [23, p. 127, Theorem 3]. However, the sole purpose of
V ′ < 0 in the proof of the result is to ensure that V (t) is strictly decreasing. The latter can
equally be inferred from the slightly weaker property in Lemma 1(iii). With this modification,
the proof from [23] carries over.

4.3 A Nonstandard Space Discretisation for FAB Diffusion

While the preceding results are encouraging, and the standard pixel grid obviously induces a
neighbourhood relation ∼ that satisfies condition (S5a), we have not yet shown that a suitable
space-discretisation satisfies the modified requirements (S4a) and (S4b) at extrema. Unfor-
tunately, this issue is a bit more delicate than one might assume: A standard discretisation
of the diffusivity g

(
|∇u|2) in some pixel (i, j) of a regular grid Γ is given by the central

difference approximation

gi,j := g

((
ui+1,j−ui−1,j

2h1

)2

+

(
ui,j+1−ui,j−1

2h2

)2
)
. (19)

However, even if u has an extremum in (i, j), the approximation (19) of |∇u|2 may become
positive – and not 0 as one would expect from the continuous theory. Since the FAB diffu-
sivities only guarantee that g(0) > 0, it can happen that this finite difference approximation
creates negative diffusivities in extrema and (S4a) is violated.
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Fortunately there is an interesting alternative to the standard discretisation of the diffu-
sivity on a regular grid that solves these problems immediately. As a prerequisite, let us first
specify our requirements for FAB diffusivities more precisely.

Definition 1 (Admissible FAB diffusivity). Let g : R+
0 → R be a Lipschitz-continuous

function. Assume that there are two constants c1 > c2 > 0 such that g(0) = c1, and
g(z) > −c2 for all z > 0. Then g is called admissible FAB diffusivity.

Figure 1 illustrates the requirements of this definition.

Proposition 4 (Properties of Space-Discrete FAB Diffusion). Let an admissible FAB diffu-
sivity g according to Definition 1 be given. Then the space discretisation (10) of FAB diffusion
is well-posed, satisfies a maximum–minimum principle and average grey level invariance, if
the diffusivity is evaluated by the nonstandard finite difference approximation

gi,j := g

(
max

(
ui+1,j − ui,j

h1
· ui,j − ui−1,j

h1
, 0

)

+ max

(
ui,j+1 − ui,j

h2
· ui,j − ui,j−1

h2
, 0

))
. (20)

Under these conditions, the FAB evolution also satisfies the Lyapunov property with the Lya-
punov function V (t) = umax(t) − umin(t), and converges to the trivial steady state u = c for
t→∞.

It should be noted that this approximation has the same quadratic order of consistency
as the previous one. However, it guarantees a vanishing discrete gradient approximation in
extrema. Since according to the conditions of Definition 1 the diffusivity g(0) = c1 at an
extremum yields a positive average with any other value of the diffusivity g, (S4a) and (S4b)
are guaranteed. Interestingly, the Lipschitz continuity of g and the property g(0) > − inf

z>0
g(z)

are the only requirements that are necessary to establish well-posedness, maximum–minimum
principle, Lyapunov property and convergence to the trivial steady state for space-discrete
FAB diffusion.

Nonstandard finite difference approximations that approximate nonlinear expressions by
a combination of forward and backward differences have been advocated by Mickens [17] as
an appropriate tool to design algorithms which capture essential physical properties of their
underlying differential equations. Our paper confirms this.

Last but not least, our results are not restricted to the two-dimensional case: With a
similar nonstandard approximation, it is straightforward to verify that space-discrete FAB
diffusion is well-posed and satisfies an extremum principle on regular grids in any dimension.

5 Analysis of Fully Discrete FAB Diffusion in 2D

Combining the spatial discretisation from Section 4 with a forward difference discretisation
in time, we obtain a simple explicit scheme for (1) with time step size τ and grid sizes h1 and

11



g(s2)

s

c1

c2

0

−c2

ωR

Figure 1: Schematic view of an admissible FAB diffusivity satisfying the conditions of Propo-
sition 5.

h2 in x- and y-direction:

uk+1
i,j = uki,j + τ ·

(
gki+1,j+g

k
i,j

2
·
uki+1,j−uki,j

h21
−
gki,j+g

k
i−1,j

2
·
uki,j−uki−1,j

h21

+
gki,j+1+g

k
i,j

2
·
uki,j+1−uki,j

h22
−
gki,j+g

k
i,j−1

2
·
uki,j−uki,j−1

h22

)
. (21)

Here, uki,j approximates u at the grid location of (i, j) ∈ Γ and time kτ . Furthermore,
we use the nonstandard approximation (20) for the admissible FAB diffusivity, computing
diffusivities gki,j in all pixels in time step k from the values uki,j in the same time step.

Our requirements to the discrete FAB diffusion problem and the diffusivity function are
summarised in the following definition.

Definition 2 (Discrete FAB evolution). Let an initial 2D image f = (fi,j) on Γ =
{1, 2, . . . ,m} × {1, 2, . . . , n} be given. Let the grey values fi,j be restricted to a finite in-
terval [a, b] of length R := b− a.

The discrete FAB evolution is the sequence of images uk = (uki,j) that evolves according to

(21), (20) with the initial condition u0 = f , mirroring boundary conditions, and an admissible
FAB diffusivity function g as specified in Definition 1.

The stabilisation range constant of g is the largest constant ω = ω(g) > 0 such that
g(s2) > c2 holds for all s with 0 < s < ωR (such an ω exists due to the continuity of g;
compare Figure 1).

5.1 Maximum–Minimum Principle

Our first result is a 2D analogue for the first statement of [35, Prop. 4], i.e. the maximum–
minimum principle. Our bound for τ is adapted to the 2D grid geometry.

Proposition 5 (Maximum–Minimum Principle for Discrete FAB Diffusion). Consider the
discrete FAB evolution as specified in Definition 2. Let the time step τ satisfy the inequality

τ ≤ ϑ :=
ω2h41h

4
2

2c1(h21 + h22)(ω
2h21h

2
2 + h21 + h22)

. (22)

12



Then u obeys the following maximum–minimum principle: If the initial signal is bounded
by fi,j ∈ [a, b] for all (i, j) ∈ Γ , then uki,j ∈ [a, b] for all (i, j) ∈ Γ , k ≥ 0.

The proof of this statement relies on two local properties.

Lemma 2. Under the assumptions of Proposition 5, local maxima do not increase.

Proof. Let uki,j be a local maximum of uk. Then gki,j = c1, and we have that gki+1,j + gki,j etc.

are positive while uki+1,j − uki,j etc. are negative such that all summands in the bracket on the
r.h.s. of (21) are negative. This holds independent of τ .

The r.h.s. of (21) is a convex combination of uki,j , u
k
i±1,j , u

k
i,j±1 if

1− τ

2h21

(
gki+1,j + 2gki,j + gki−1,j

)
− τ

1h22

(
gki,j+1 + 2gki,j + gki,j−1

)
≥ 0 , (23)

which is certainly the case if

τ ≤ 1

2 c1

(
1
h21

+ 1
h22

) . (24)

Note that this is the well-known time step limit for the standard explicit scheme in the case
of nonnegative diffusivity. The bound in (24) is greater than ϑ in Proposition 5 since

1

2 c1

(
1
h21

+ 1
h22

) =
ω2h41h

4
2

2 c1(h21 + h22)ω
2h21h

2
2

≥ ω2h41h
4
2

2 c1(h21 + h22)ω
2h21h

2
2 + 2 c1(h21 + h22)

2
= ϑ . (25)

This completes the proof.

Nonenhancement of local extrema is a frequently used scale-space property for linear and
nonlinear diffusion processes; see e.g. [2, 14, 33]. However, in the case of FAB diffusion, we
need one more property to prove a maximum–minimum principle:

Lemma 3. Within one time step of the discrete FAB evolution from Definition 2 with the
time step size τ bounded by (22), the value of a pixel which is not a local maximum cannot
grow larger than the greatest value among its neighbouring pixels before that time step.

Proof. Let uki,j be the non-maximal pixel under consideration. Assume first that the largest

grey value among its neighbours is attained by a horizontal neighbour, say uki−1,j . So uki−1,j
is greater than uki,j and not less than each other neighbour of uki,j .

To outline the proof first, notice that basically two situations can happen: If uki,j is only

slightly smaller than uki−1,j , it turns out that uki,j is “not far from maximality”. In this case,

its diffusivity gki,j will be positive and large enough to ensure forward diffusion (Case 1 in the
following), such that again the time step limit of explicit forward diffusion applies. Otherwise,
negative diffusivity may occur, but at the same time there is quite some way to go before
uk+1
i,j could exceed uki−1,j . The overall bounds on the image contrast limit the diffusion flow

and thereby the “speed” of the pixel. So one can state also in this case a time step size limit
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that ensures the desired inequality (Case 2). In the following, these two cases are treated
exactly.

Case 1: Assume that one has

1

h21
(uki,j − uki−1,j)(uki+1,j − uki,j) +

1

h22
(uki,j − uki,j−1)(uki,j+1 − uki,j) ≤ ω2R2 . (26)

Then gki,j ≥ c2, and thus gki,j + gki+1,j , g
k
i,j + gki,j±1 ≥ 0. As a consequence, uk+1

i,j is a convex

combination of uki,j , u
k
i±1,j , u

k
i,j±1 (and thereby certainly not greater than the maximum of

these) if

1− τ

2h21
(gki+1,j + 2gki,j + gki−1,j)−

τ

2h22
(gki,j+1 + 2gki,j + gki,j−1) ≥ 0 , (27)

which is certainly fulfilled if

1− 4τc1
2h21

− 4τc1
2h22

≥ 0 , (28)

i.e. (24). As pointed out in the proof of Lemma 2, the time step bound ϑ from (22) satisfies
this condition which completes the proof for the present case.

Case 2: Let

1

h21
(uki,j − uki−1,j)(uki+1,j − uki,j) +

1

h22
(uki,j − uki,j−1)(uki,j+1 − uki,j) > ω2R2 . (29)

We prove first that the difference between pixel uki,j and its greatest neighbour uki−1,j fulfils
the inequality

uki−1,j − uki,j >
ω2R

1
h21

+ 1
h22

. (30)

To this end, assume the contrary

uki−1,j − uki,j ≤
ω2R

1
h21

+ 1
h22

. (31)

Since |uki+1,j − uki,j | ≤ R by Definition 2, we have then

1

h21
(uki,j − uki−1,j)(uki+1,j − uki,j) ≤

ω2R2h22
h21 + h22

. (32)

Assume first that uki,j+1 ≥ uki,j ≥ uki,j−1. By (31), the maximality of uki−1,j within the neigh-

bourhood of uki,j implies

uki,j+1 − uki,j ≤
ω2R

1
h21

+ 1
h22

, (33)
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which together with uki,j − uki,j−1 ≤ R yields

1

h21
(uki,j − uki,j−1)(uki,j+1 − uki,j) ≤

ω2R2h21
h21 + h22

, (34)

The same estimate holds also if uki,j+1 ≤ uki,j ≤ uki,j−1. In the remaining cases, uki,j+1 < uki,j or

uki,j−1 > uki,j , the product (uki,j − uki,j−1)(uki,j+1 − uki,j) is negative such that (34) holds in all
cases.

As adding (32) and (34) yields the hypothesis of Case 1, we see that (31) contradicts the
condition of Case 2, which completes the proof of (30).

Further, we have by the hypothesis of Case 2 that −c2 ≤ gki,j ≤ c2. Together with the
hypotheses from Proposition 5 on the range of g and the image range, one has

−c2 ≤
gki+1,j + gki,j

2
≤ c1 + c2

2
, − R

h21
≤
uki+1,j − uki,j

h21
≤ R

h21
,

−c2 ≤
gki−1,j + gki,j

2
≤ c1 + c2

2
, 0 ≤

uki−1,j − uki,j
h21

≤ R

h21
, (35)

−c2 <
gki,j±1 + gki,j

2
≤ c1 + c2

2
, − R

h22
≤
uki,j±1 − uki,j

h22
≤
uki−1,j − uki,j

h22
.

Inserting these into (21) gives

uk+1
i,j ≤ u

k
i,j + τ

(
c1 + c2

2h21
R+

c1 + c2
2h21

(uki−1,j − uki,j) + 2
c1 + c2

2h22
R

)
, (36)

uki−1,j − uk+1
i,j ≥ (uki−1,j − uki,j)

(
1− τ(c1 + c2)

2h21

)
− τ(c1 + c2)R

2

(
1

h21
+

2

h22

)
. (37)

The r.h.s. of (37) is certainly nonnegative if

τ ≤ 2h21
c1 + c2

·
uki−1,j − uki,j

uki−1,j − uki,j +R
(
1 + 2h21/h

2
2

) , (38)

for which by our initial estimate for uki−1,j − uki,j and monotonicity it suffices that

τ ≤ 2ω2h41h
4
2

(c1 + c2)
(
ω2h21h

4
2 + (h22 + 2h21)(h

2
1 + h22)

) . (39)

The bound from (39) is greater than ϑ from (22). To see this, notice that

c1 + c2 ≤ 2c1 , (40)

ω2h21h
4
2 ≤ 2ω2h21h

2
2(h

2
1 + h22) , (41)

(h22 + 2h21)(h
2
1 + h22) ≤ 2(h21 + h22)

2 . (42)

Inserting these into the r. h. s. of (39) yields

2ω2h41h
4
2

(c1 + c2)
(
ω2h21h

4
2 + (h22 + 2h21)(h

2
1 + h22)

)
≤ 2ω2h41h

4
2

2c1(h21 + h22)
(
2ω2h21h

2
2 + 2(h21 + h22)

) = ϑ . (43)
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As a result, for τ ≤ ϑ as required by (22) one has uk+1
i,j ≤ uki−1,j . This concludes the proof in

Case 2.

So far, the results of both Case 1 and Case 2 were based on the assumption that the
greatest neighbour of the pixel under consideration is a horizontal neighbour. If uki,j has
its greatest neighbour in vertical direction, analogous considerations lead to versions of the
estimates (28) and (39) with h1 and h2 exchanged, from which the sufficiency of the bound
(22) can be established in the same way as before. This concludes the proof.

Proof of Proposition 5. The preservation of the global maximum of u follows immediately
from Lemmas 2 and 3: Let U be the global maximum of uk, i.e. uki,j ≤ U for all (i, j) ∈ Γ .

We prove that uk+1
i,j ≤ U , too, holds for all (i, j) ∈ Γ .

If uki,j is a local maximum, Lemma 2 implies uk+1
i,j ≤ uki,j ≤ U .

If uki,j is not a local maximum, Lemma 3 ensures that uk+1
i,j ≤ max{uki±1,j , uki,j±1} ≤ U .

Analogous statements for minima arise by considering the evolution of the inverted image
−f . Thus, the maximum–minimum principle of the Proposition has been proven.

Remark 2. Unlike in the 1D case [35, Prop. 4], the statement that an extremum may not split
into two does not hold. Similar to ordinary homogeneous diffusion, a “dumbbell” configuration
with a narrow ridge between two more extended plateaus can serve as a counterexample; see
e.g. [14]. Note that for sufficiently small grey value differences between the ridge and the
adjacent plateaus all diffusivities in this region are positive.

5.2 Strict Lyapunov Condition

The maximum–minimum principle from Proposition 5 suggests the use of the difference be-
tween global maximum and global minimum of the image as a Lyapunov function to in-
vestigate the possible convergence of discrete FAB diffusion. Our proofs from the previous
subsection, however, still leave the possibility that the global maximum and minimum of the
image stay constant, and different from each other, forever.

To rule out this possibility, we will refine our analysis and construct a strictly decreas-
ing Lyapunov function by incorporating multiplicities of maxima and minima as additional
information. From now on, we require that τ is strictly smaller than the bound (22) from
Proposition 5. We introduce notations for the global extremal grey values of images with
their multiplicities, and an ordering for pairs of values with multiplicities.

Definition 3. For any image u = (ui,j)(i,j)∈Γ , let umax := max
i,j

ui,j , umin := min
i,j

ui,j denote

its maximal and minimal grey value, respectively, and nmax := #{(i, j) | ui,j = umax},
nmin := #{(i, j) | ui,j = umin} their multiplicities.

Definition 4. Let the relation ≺ on R× N be given by

(u1, n1) ≺ (u2, n2) :⇐⇒ (u1 < u2) or (u1 = u2 and n1 < n2) . (44)

Clearly, ≺ is a strict total order. We can now establish the maximum–minimum difference
with multiplicities as Lyapunov function for discrete FAB diffusion.
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Proposition 6 (Lyapunov Function for Discrete FAB Diffusion). Consider the fully discrete
FAB evolution from Definition 2. If the time step size is chosen as τ < ϑ with ϑ as in
Proposition 5, then

(uk+1
max − uk+1

min , n
k+1
max + nk+1

min ) ≺ (ukmax − ukmin, n
k
max + nkmin) (45)

holds, unless ukmax = ukmin.

Proof. Let uki,j be a local maximum of uk. As in the proof of Lemma 2, we have gki,j = c1.

Thus, the new value uk+1
i,j of that pixel will be a convex combination of the old grey values

of pixel (i, j) and its neighbours, with all neighbours having positive weights. Therefore,
uk+1
i,j = uki,j can happen only if all neighbours have the same value as ui,j in time step k.

As long as not all pixels of the image have the same value, there will be at least one pixel
uki,j = ukmax with a neighbour of smaller grey value.

Following the proof of Lemma 3 we see that for τ < ϑ the new pixel value uk+1
i,j remains

strictly below the old value of its largest neighbour uki−1,j . Thus, uk+1
i,j = ukmax cannot hold

for a pixel with uki,j < ukmax.

Combining both arguments, we see that the number of pixels attaining the value ukmax

decreases in time step k + 1. As a consequence, one has uk+1
max < ukmax (if no pixel with that

value remains), or nk+1
max < nkmax (if the maximal value remains equal).

Analogous reasoning for minima completes the proof.

5.3 Convergence to a Flat Steady State

An immediate consequence of Proposition 6 is the following statement.

Corollary 1 (Steady States of Discrete FAB Diffusion). The only fixed points of the discrete
FAB diffusion process (21), (20) are the flat images given for each û ∈ R by

ui,j = û for all (i, j) ∈ Γ . (46)

By average grey value invariance, the only steady state that could be reached from a given
initial image f is that for which û equals the average grey value of f , i.e. û = µ = 1

N

∑
(i,j)∈Γ

fi,j .

We will now prove convergence to this steady state.

Proposition 7 (Convergence of Discrete FAB Diffusion). Fully discrete FAB diffusion (21),
(20) with u0 = f and time step size τ < ϑ converges to the fixed point (46) where û = µ is
the average grey value of f .

Proof. Consider the strictly decreasing (w.r.t. ≺) sequences
(
(ukmax, n

k
max)

)
k∈N and(

(−ukmin, n
k
min)

)
k∈N from Proposition 6. These sequences are bounded from below by (fmin, N)

and (−fmax, N), respectively. By an easy adaptation of the standard argument for sequences
in R to sequences in R× N it follows that the sequences (ukmax), (ukmin) converge. Denote by
ū, u their respective limits.

Assume u < ū. By the maximum–minimum principle, uk ∈ [a, b]N holds for all k. Since
[a, b]N is compact, the sequence (uk) has an accumulation point. Because of the monotonicity
of (ukmax), (ukmin) each accumulation point satisfies u∗max = ū, u∗min = u.
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We choose one accumulation point u∗ and consider the FAB evolution (ũk)k∈N0 with
initial condition ũ0 = u∗. By Proposition 6, there exists a natural number K such that
ũKmax = max ũ < ū. Let therefore δ := ū− ũKmax > 0.

Moreover, the evolution (21), (20) satisfies a Lipschitz condition on [a, b]N with respect
to the maximum norm ‖ · ‖, i.e.

‖uk − ûk‖ < B ⇒ ‖uk+1 − ûk+1‖ < LB (47)

with some Lipschitz constant L > 0. Since u∗ is an accumulation point of (uk), we can
choose k such that ‖uk −u∗‖ < δ/LK . Consequently, ‖uk+K − ũK‖ < δ, and by the triangle
inequality it follows that

uk+Kmax ≤ ũKmax + ‖uk+K − ũK‖ < ū− δ + δ = ū , (48)

contradicting the convergence of (ukmax) to ū. Thus, our assumption u < ū must be wrong,
and we have u = ū, i.e. convergence to a flat steady state.

6 Efficient Numerics for FAB Diffusion

Based on the stability result from Proposition 5 it is possible to compute FAB diffusion by a
stable explicit scheme. The limit (22) on the time step size, however, leads to time step sizes
that are much too small for most practical application.

In fact, (22) is an a priori estimate for the time step size which is obtained by the
combination of several worst-case estimates in the proofs in Subsection 5.1. It is very common
for this kind of estimates that the worst-case estimates involved will in general be reached
only at a few pixel locations within a larger image, and also rarely apply simultaneously.
Indeed, in practical computation one notices that even with drastically larger time step sizes,
violations of the maximum–minimum principle occur only in some time steps, affect only a
few pixels, and the bounds are exceeded only by small amounts.

This motivates us to devise explicit schemes for FAB diffusion with adaptive step-size
control based on a posteriori estimates of the time step size.

6.1 A Stable Explicit Scheme with Global Step Size Adaptation

We start by equipping the explicit scheme (21), (20) with a step-size control that provides in
each iteration for a global time step τ which prevents violations of stability. Our theory from
Section 5 already contains the blueprint for such a step-size control, as the criteria formulated
in Lemma 2 and Lemma 3 can immediately be used to obtain the desired a posteriori estimate.

To this end, notice that our explicit scheme (21) can be written as uk+1
i,j = uki,j + τ u̇ki,j

where the finite-difference approximation u̇ki,j of div(g∇u) at pixel (i, j) in time step k can
be precomputed via the diffusivities (20) independent of the time step size τ .

Our first criterion, non-enhancement of extrema, is stated in Lemma 2. To ensure this
criterion, the time step size bound from Lemma 2 can be applied directly. This time step
size limit is the same as for standard forward diffusion processes and does not constitute a
limiting factor here.

The more severe limitation comes from the second criterion, local monotonicity preserva-
tion, see Lemma 3. It requires that a non-extremal pixel must not become larger than its
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largest neighbour, or smaller than its smallest neighbour, within one time step. Instead of
using the restrictive a priori time step limit from Lemma 3, local monotonicity preservation
can be enforced directly in each time step of an explicit scheme. First one computes the dif-
fusivities (20) and the values u̇ki,j for all pixels. Then one checks for each non-maximal pixel

uki,j and its maximal neighbour uki′,j′ whether the condition uk+1
i,j ≤ uk+1

i′,j′ could be violated
for large time step sizes τ , and limits the time step size accordingly. An analogous check is
performed for non-minimal pixels with regard to their minimal neighbours. The global time
step size is then set to the most restrictive bound among all pixels.

Unfortunately, the classification of pixels as non-maximal or non-minimal is sensitive to
numerical roundoff errors. As a result, it can happen that for neighbouring pixels which are
almost equal and actually represent the same discrete local extremum, a local monotonicity
violation is anticipated, and a very small spurious time step limit is computed. To overcome
this problem, the a priori estimate from Proposition 5 itself is used: Whenever a time step
bound less than that of (22) is computed, it is discarded because we know that no local
monotonicity violation can occur up to (22).

In Table 1 we formulate the complete algorithm for one explicit time step uk → uk+1

with global step-size adaptation. Its inputs are the image uk, the upper time step limit τmax

computed from (24), and the lower time step limit τmin := ϑ from (22).

6.2 Parallel GPU Implementation

Explicit schemes for PDEs of image processing are often excellent candidates for highly parallel
computation, due to the fact that computations within each iteration are structured in few
steps, each of which can be performed independently for each pixel. This is also the case for
our explicit scheme for FAB diffusion.

We describe here a parallel implementation suitable for implementation on a pro-
grammable GPU.

Steps 1., 2., and 4. of the algorithm presented in the previous subsection can immediately
be parallelised by assigning pixels to different threads. For example, an implementation in
the CUDA framework can perform each of these steps by a kernel that is launched in a grid
of parallel threads.

The step that requires closer consideration is Step 3, i.e. the adaptive step size control.
The sequential formulation of the previous subsection cannot be implemented efficiently in a
parallel framework. Instead, the step-size limits for all pixels are computed independently.
The minimum of all these step sizes is then determined by a dyadic cascade of aggregation
steps, a standard strategy for computing commutative and associative aggregation operations
across a grid in parallel computing with logarithmic time complexity. The cascade proceeds
by a sequence of steps. In each step of the cascade, the number of threads is halved. Those
threads which continue aggregate two values each by a minimum operation, then all threads
are synchronised.

As a result, Step 3 of the sequential algorithm is replaced with the Steps 3a and 3b given
in Table 2.

The so modified Step 3 is suitable for parallelisation. In a practical CUDA implementation,
the dyadic cascade in Step 3b will actually be carried out within each block of synchronous
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Table 1: Time step of explicit scheme for FAB diffusion with global adaptive step size control

Input: uk, τmax, τmin

1. Diffusivity computation: For each pixel (i, j), compute the diffusivity gi,j
according to (20):

gki,j = g

(
max

(
uki+1,j − uki,j

h1
·
uki,j − uki−1,j

h1
, 0

)

+ max

(
uki,j+1 − uki,j

h2
·
uki,j − uki,j−1

h2
, 0

))
.

2. Flow computation: For each pixel (i, j), compute the right-hand side u̇ki,j via
(21):

u̇ki,j =
gki+1,j + gki,j

2
·
uki+1,j − uki,j

h21
−
gki,j + gki−1,j

2
·
uki,j − uki−1,j

h21

+
gki,j+1 + gki,j

2
·
uki,j+1 − uki,j

h22
−
gki,j + gki,j−1

2
·
uki,j − uki,j−1

h22
.

3. Step-size determination: Let τ := τmax.

For each pixel (i, j),

• If (i, j) is not a discrete local maximum, let (i′, j′) be its maximal neighbour.

If uki,j + τ u̇ki,j > uki′,j′ + τ u̇ki′,j′ , set τ∗ := −
uki′,j′ − uki,j
u̇ki′,j′ − u̇ki,j

.

If τ∗ ≥ τmin, let τ = τ∗.

• If (i, j) is not a discrete local minimum, let (i′, j′) be its minimal neighbour.

If uki,j + τ u̇ki,j < uki′,j′ + τ u̇ki′,j′ , set τ∗ := −
uki′,j′ − uki,j
u̇ki′,j′ − u̇ki,j

.

If τ∗ ≥ τmin, let τ = τ∗.

4. Global update: For each pixel (i, j), compute uk+1
i,j := uki,j + τ u̇ki,j .
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Table 2: Modification for GPU implementation of the time step from Table 1

3a. Pixel-wise step-size determination: For each pixel (i, j),

• Let τi,j := τmax.

• If (i, j) is not a discrete local maximum, let (i′, j′) be its maximal neighbour.

If uki,j + τi,j u̇
k
i,j > uki′,j′ + τi,j u̇

k
i′,j′ , set τ∗ := −

uki′,j′ − uki,j
u̇ki′,j′ − u̇ki,j

.

If τ∗ ≥ τmin, let τi,j = τ∗.

• If (i, j) is not a discrete local minimum, let (i′, j′) be its minimal neighbour.

If uki,j + τi,j u̇
k
i,j < uki′,j′ + τi,j u̇

k
i′,j′ , set τ∗ := −

uki′,j′ − uki,j
u̇ki′,j′ − u̇ki,j

.

If τ∗ ≥ τmin, let τi,j = τ∗.

3b. Global step-size determination: Compute τ = min
i,j

τi,j by a dyadic cascade of

minimum operations.

threads. The final aggregation of step sizes across all blocks involves a comparatively small
number of values and is usually implemented sequentially.

6.3 A Randomised Two-Pixel Scheme with Local Step-Size Adaptation

In Subsection 6.1 we have used our theoretical findings to obtain a global time step τ in each
iteration of the otherwise unchanged explicit scheme (21), (20). We obtain a higher efficiency
by following a radically localised approach: The diffusion flow u̇ki,j in (21) is composed of four
two-pixel flows, each between the location (i, j) and one of its neighbours. Each of these flows
appears with opposite signs in the flows of its two participating pixels, which ensures that the
average grey value conservation property of the continuous diffusion process is exactly fulfilled
also in its discretisation (21). In order to maintain this conservation property, we choose the
two-pixel flows as the elementary units for our scheme; compare also the proceeding in [4, 28]
and related ideas based on four-pixel interactions [36].

Starting from an approximation uk pertaining to evolution time kτmax, a global time step
of size τmax is carried out by updating two-pixel flows in random order, each one with an
appropriate time step. In the case of forward diffusion the time step size is chosen so that the
two interacting pixels preserve their monotonicity order. In the case of backward diffusion it
is chosen such that they are prevented from growing above the maximum, or decreasing below
the minimum of their respective neighbourhoods. Updated values ui,j enter immediately the
computation of other pixels. This is repeated until all flows have reached the new time level,
yielding the new approximation uk+1.

The time step k 7→ k + 1 is summarised in Table 3. It starts by initialising an evolution
time account for each pair of neighbouring pixels with τmax. Then pixel pairs are randomly
selected and updated until all time accounts reach zero, indicating that we have progressed
from sync time kτmax to (k + 1)τmax.
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Table 3: Time step of randomised two-pixel scheme for FAB diffusion with locally adaptive
step size control

Input: uk, τmax

Initialisation: For each pair of neighbouring pixels, {(i, j), (i′, j′)} with
(i′, j′) = (i+ 1, j) or (i′, j′) = (i, j + 1), let Ti,j;i′,j′ := τmax.

Asynchronous update: Repeat the following steps 1–5 until all Ti,j;i′,j′ are zero.

1. Random selection: Select a pixel pair {(i, j), (i′, j′)} randomly, with the
probability of each pair to be selected being proportional to Ti,j;i′,j′ .

2. Diffusivity computation: Compute gi,j and gi′,j′ as in (20); let
g := 1

2(gi,j + gi′,j′).

3. Flow computation: Compute the flow u̇ := g · (ui′,j′ − ui,j)/h2, using h = h1 for
horizontal or h = h2 for vertical neighbours.

4. Step-size determination: Let τ∗ := Ti,j;i′,j′ .

• If g > 0 and τ∗ >
h2

2g
, reduce τ∗ to

h2

2g
.

• If g < 0 and (i, j) is not a discrete local maximum, let (i∗, j∗) be its maximal
neighbour.

If ui,j + τ∗u̇ > ui∗,j∗ , reduce τ∗ to τ∗ :=
ui∗,j∗ − ui,j

u̇
.

• If g < 0 and (i, j) is not a discrete local minimum, let (i∗, j∗) be its minimal
neighbour.

If ui,j + τ∗u̇ < ui∗,j∗ , reduce τ∗ to τ∗ :=
ui∗,j∗ − ui,j

u̇
.

• If g < 0 and (i′, j′) is not a discrete local maximum, let (i∗, j∗) be its
maximal neighbour.

If ui′,j′ − τ∗u̇ > ui∗,j∗ , reduce τ∗ to τ∗ :=
ui∗,j∗ − ui′,j′

−u̇
.

• If g < 0 and (i′, j′) is not a discrete local minimum, let (i∗, j∗) be its minimal
neighbour.

If ui′,j′ − τ∗u̇ < ui∗,j∗ , reduce τ∗ to τ∗ :=
ui∗,j∗ − ui′,j′

−u̇
.

5. Two-pixel flow update: Update ui,j and ui′,j′ by replacing them with the new
values ũi,j := ui,j + τ∗u̇ and ũi′,j′ := ui′,j′ − τ∗u̇. Decrease Ti,j;i′,j′ by τ∗.
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Our theoretical results from Section 5 imply that this process terminates: The calculation
of the time step size τ∗ in each step is based on local evaluations of the same inequality
conditions that were used in the proof of Proposition 5 via Lemmas 2 and 3. Worst-case
estimates led to the conclusion that for τ = ϑ as given in (22), these conditions are globally
satisfied. Therefore, the local evaluations of the same conditions will always result in τ∗ ≥ ϑ.
As a result, each individual flow needs not more than dτmax/ϑe update steps to reduce its
Ti,j;i′,j′ from τmax to 0.

6.3.1 Consistency of the Scheme

Our scheme is conditionally consistent. To understand this, let us assume for simplicity
h1 = h2 = h. The forward difference approximation in t and central difference approxima-
tions in the spatial domain generate approximation errors of O(τ +h2) as in conventional ex-
plicit schemes. Additional approximation errors result from the asynchronous update process.
When computing a two-pixel flow u̇ = g ·(ui′,j′−ui,j)/h2, the value ui,j is the sum of uki,j from
the previous synchronisation time and several independent updates of the flows between (i, j)
and its neighbours. Thus, ui,j carries an approximation error of O(ux ·τ/h+uy ·τ/h); similarly
for ui′,j′ . Each two-pixel flow therefore incurs an approximation error due to asynchronicity
of O(τ/h3), making the overall approximation error of our scheme O(τ + h2 + τ/h3). This
yields a conditionally consistent approximation to the FAB diffusion PDE if τ/h4 is bounded
by a constant when τ, h→ 0.

On the other hand, sending the grid size h to 0 is not necessarily what one does in typical
image processing applications. If one keeps the grid size constant and is only interested in
the limit τ → 0, our randomised two-pixel scheme gives an O(τ) approximation to the space-
discrete FAB process. In that respect, it has the same consistency quality as the explicit
scheme.

6.3.2 Efficient Random Selection and Time Accounting

For an efficient implementation of the algorithm, the performance of the selection in Step 1
is crucial. To this end, the bookkeeping of time step accounts Ti,j;i′,j′ is done within a binary
tree structure as follows.

Data Structure. Let M = (m − 1)n + m(n − 1) be the number of pairs {(i, j), (i′, j′)} of
neighbouring pixels. Let P = 2p be the smallest power of two greater than M . We index pixel
pairs by indices ` ∈ {0, . . . ,M − 1} from which the corresponding i, j, i′, j′ can be computed
in constant computation time as follows:

• If ` < (m− 1)n, create a horizontal neighbour pair by

i :=

⌊
`

n

⌋
+ 1 ∈ {1, . . . ,m− 1} ,

j := `− n(i− 1) + 1 ∈ {1, . . . , n} ,
i′ := i+ 1 , j′ := j .

(49)
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Figure 2: (a) Binary tree used for the time accounting of two-pixel flows in the randomised
scheme, schematic for P = 16, and its representation in an array s with additional entry
s15. (b) Same binary tree with entries corresponding to M = 13 (e.g. for a 2× 5-image) and
T` = 0.1 for ` = 0, . . . , 12.

• If ` ≥ (m− 1)n, create a vertical neighbour pair by

`′ := `− (m− 1)n ∈ {0, . . . ,m(n− 1)− 1} ,

i :=

⌊
`′

n− 1

⌋
+ 1 ∈ {1, . . . ,m} ,

j := `′ − (n− 1)(i− 1) + 1∈ {1, . . . , n− 1} ,
i′ := i , j′ := j + 1 .

(50)

Denote by T` the time account value for the flow indexed by `, for ` = 0, . . . ,M−1, and T` = 0
for ` = M, . . . , P−1. To store the extended sequence (T0, . . . , TP−1), we use a complete binary
tree with P − 1 nodes (thus, with p levels). The nodes can be stored by in-order traversal
in the first P − 1 entries of a plain array s = (s0, . . . , sP−1), leaving sP−1 unused so far. In
this representation, the tree structure is simply encoded in the binary representation of the
indices: Let ` ∈ {0, . . . , P − 2} be an index in s, and let its binary representation be

` =

p−1∑
q=0

bq · 2q (51)

with all bq ∈ {0, 1}. Let q∗ be the smallest index with bq∗ = 0 (i.e. the position of the least
significant 0-bit). Then p− 1− q∗ gives the level of the node corresponding to `: If ` is even,
it represents a leaf, with level number p − 1. The index ` = P/2 − 1, with p − 1 − q∗ = 0,
represents the root of the tree. For any non-root node ` (with q∗ < p− 1) its parent has the
index `∧ := `+ 2q

∗ − bq∗+12
q∗+1, whereas for any inner node ` (with q∗ > 0) its children have

the indices `± := ` ± 2q
∗−1. Formally we can also compute `∧ = P − 1 for the root node

` = P/2− 1, and `− = P/2− 1 for ` = P − 1. All these index computations can be done very
efficiently by logical bit operations.

An exemplary tree for P = 16 (p = 4) is shown in Fig. 2 (a). As an example, for node
` = 5 = (0101)2 we have q∗ = 1. Indeed, the node is on level p− 1− q∗ = 2 counted from the
root. Further, `∧ = 5 + 21 − 1 · 22 = 3 is the parent node, whereas `± = 5± 20 yields the two
children `− = 4 and `+ = 6.
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Now we store in each s`, 0 ≤ ` ≤ P − 1, the sum of T` itself and all T`′ where `′ belongs
to the left sub-tree below the node of `. Additionally, sP−1 is used to hold the sum of all T`.
A simple example is shown in Fig. 2 (b).

This data structure allows to perform all operations required for the time accounting in the
algorithm of Table 3 in not more than logarithmic time w.r.t. M per two-pixel flow update. As
at least one update is needed per two-pixel flow in the global time step k 7→ k+ 1, this means
that the overall complexity of the time accounting is O(M logM), thus also O(N logN), per
global time step. Let us detail in the following the exact operations needed in our algorithm;
these occur in the initialisation (once per global time step) and in Steps 1 (random selection)
and 5 (two-pixel flow update).

Random Selection. To select a two-pixel flow, with the remaining diffusion times as prob-
abilities (Step 1 of the algorithm in Table 3, a single uniformly distributed random number
z ∈ [0, sP−1] is needed, with sP−1 being the current total of the time accounts for all flows.
By binary subdivision of the interval using the threshold values stored in the search tree, the
flow index ` with

`−1∑
`′=0

T`′ < z ≤
∑̀
`′=0

T`′ (52)

is determined. In detail, this is done by the following algorithm:

1. Compute a (pseudo-) random number r with uniform distribution in [0, 1].
Let z = r · sP−1, and ` = P/2− 1.

2. If z ≤ s`, let β := 0, otherwise β := 1.

3. If ` is even, select the flow with index `+ β, stop.

4. If β = 0, replace ` with its left child index `−.
if β = 1, decrease z by s`, then replace ` with its right child index `+.

5. Repeat from Step 2.

As an example, let the tree from Fig. 2 be given. With the pseudo-random number r = 0.45
we get z = r · s15 = 0.585. Starting from ` = 7 we compare z = 0.585 ≤ s7 = 0.8, so descend
to the left sub-tree, setting `− = 3 as the new `. The next comparison z = 0.585 > s3 = 0.4
sends us down the right sub-tree, setting `+ = 5 as new `, and z − s3 = 0.185 as new z.
Due to z = 0.185 ≤ s5 = 0.2 we replace ` with `− = 4 to descend to the left again. Now,
z = 0.185 > s4 = 0.1 implies that β = 1, and ` + β = 5 is returned as index of the selected
pixel pair. Indeed, in the example

∑4
`′=0 T`′ = 0.5 < 0.585 ≤

∑5
`′=0 T`′ = 0.6 holds. Assuming

m = 2, n = 5, the index ` = 5 would be translated via (50) into the pixel pair {(1, 1), (1, 2)}.

Updating of the Time Accounts. After updating the flow with index ` by the diffusion
time chunk τ∗, its time account must be updated (in Step 5 of the algorithm in Table 3).
This means that all partial sums of time accounts stored in s which include T` as summand
must be decreased by τ∗. This is done as follows.
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1. Decrease s` by τ∗.

2. If ` = P − 1, Stop.

3. Determine `∧.

If ` is the left child of `∧, i.e., (`∧)− = `, replace ` with `∧ and go to Step 1.

Otherwise replace ` with `∧ and go to Step 2.

Alternatively, one can generate a set of indices {`0, . . . , `p−1} where `0 := `, and each `q+1

is obtained by flipping the bq bit of `q to 1. For each index `′ in the set, the corresponding
s`′ is decreased by τ∗. Note that whenever `q+1 = `q, these count as a single set element, and
the decrement is done only once.

Continuing the previous example, an update of the pixel pair belonging to ` = 5 would
trigger updates of the entries s5, s7 and s15.

Initialisation of the Data Structure. In the initialisation step of Table 3 that is per-
formed once per global time step, the initial entries s` must be computed. In the simplest
case this is done by filling s with zeros, and performing one update with −τmax per flow.
The cost of these operations is O(M logM). Further algorithmic optimisations allow to re-
duce the effort to O(M). We do not pursue this optimisation here because of the marginal
contribution of the initialisation to the total computational expense, and the fact that the
random selection and two-pixel updates do not allow to reduce the overall complexity of time
accounting below O(M logM) anyway.

6.4 Deterministic Two-Pixel Scheme with Local Step-Size Adaptation

The O(τ/h3) contribution to the approximation error that limits the conditional consistency
of the scheme from Table 3 results from the asynchronicity in the flow updates entering the
values ui,j , ui′,j′ in the computation of each next upcoming two-pixel flow u̇. The order of this
approximation error can be improved by one factor h if it is ensured that all flows contributing
to each of the pixels ui,j , ui′,j′ are updated to a synchronous time level, and by another factor
h if the time levels of both pixels are synchronous when the new two-pixel flow is computed.
To this end, we devise another variant of an explicit two-pixel scheme with local time step
adaptation.

Overview of the New Scheme. One synchronisation step of our new scheme is sum-
marised in Tables 4–5. Here, Table 4 describes the initialisations, and Table 5 contains
the(loop for asynchronous updates.

In this scheme, time accounting is done for individual pixels: each pixel (i, j) is assigned
a time account ti,j that starts from zero, and must reach τmax at the end of the asynchronous
update loop. Pixel intensities are always updated with the total velocities incorporating all
two-pixel flows that affect these pixels.

As a rule, updates are still carried out for pairs of neighbouring pixels, and by time steps
that are governed by expiry times that guarantee that no violations of local stability conditions
occur within a time step. These expiry times are precomputed and determine the order of
updates to be performed. There are two kinds of stability conditions that are naturally
associated with pairs of neighbouring pixels and single pixels, respectively. Therefore we will
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Table 4: Time step of deterministic two-pixel scheme for FAB diffusion with locally adaptive
step size control, first part (continued in Table 5)

Input: uk, τmax

Initialisation:

1. Time levels for pixels: For each pixel (i, j), let ti,j := 0.

2. Diffusivity computation: For each pixel (i, j), compute gi,j as in (20).

3. Two-pixel flow computation: For each pair of neighbouring pixels, {(i, j), (i′, j′)} with
(i′, j′) = (i+ 1, j) or (i′, j′) = (i, j + 1), compute

ϕi,j;i′,j′ :=
gi,j + gi′,j′

2
·
ui′,j′ − ui,j

h2
, (53)

using h = h1 for horizontal or h = h2 for vertical neighbours.

4. Pixelwise total velocity computation: For each pixel (i, j), compute the right-hand
side u̇i,j as in (21):

u̇i,j = ϕi+1,j;i,j − ϕi,j;i−1,j + ϕi,j+1;i,j − ϕi,j;i,j−1 . (54)

5. Flow expiry times: For each pair of neighbouring pixels, {(i, j), (i′, j′)} with
(i′, j′) = (i+ 1, j) or (i′, j′) = (i, j + 1),

• Let Ti,j;i′,j′ := τmax.

• If ui,j 6= ui′,j′ and sgn (u̇i,j − u̇i′,j′) = −sgn (ui,j − ui′,j′) and
|ui,j − ui′,j′ | < Ti,j;i′,j′ |u̇i,j − u̇i′,j′ |, let

Ti,j;i′,j′ := −
ui,j − ui′,j′
u̇i,j − u̇i′,j′

.

6. Pixel expiry times: For each pixel (i, j),

• Let Ti,j := τmax.

• If u̇i,j > 0, let umax := max{ui,j , ui′,j′ | (i′, j′) ∈ N (i, j)}. If ui,j + Ti,j · u̇i,j > umax, let

Ti,j :=
umax − ui,j

u̇i,j
.

• If u̇i,j < 0, let umin := min{ui,j , ui′,j′ | (i′, j′) ∈ N (i, j)}. If ui,j + Ti,j · u̇i,j < umin, let

Ti,j :=
umin − ui,j

u̇i,j
.

7. Priority queue: Establish a priority queue Q of all neighbour pairs {(i, j), (i′, j′)} and
pixels (i, j) with priorities −Ti,j;i′,j′ and −Ti,j , respectively, thus associating highest
priority with lowest expiry time.
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Table 5: Time step of deterministic two-pixel scheme for FAB diffusion with locally adaptive
step size control, second part (continued from Table 4)

Asynchronous update: Repeat the following steps 1–7 until all ti,j are equal to τmax.

1. Priority-based selection: Select from Q the pixel pair {(i, j), (i′, j′)} or pixel (i, j) with highest
priority (lowest flow expiry time Ti,j;i′,j′ or pixel expiry time Ti,j). Let T ∗ be the expiry time of
the selected pixel pair or pixel.

If a pixel pair {(i, j), (i′, j′)} has been selected, let I1 := {(i, j), (i′, j′)} be the two-pixel set. If a
pixel (i, j) has been selected, let I1 := {(i, j)} ∪ N (i, j) be the set containing the selected pixel
and its neighbours.

In both cases, let I2 := I1 ∪
⋃

(i∗,j∗)∈I1 N (i∗, j∗) be the set containing all pixels from I1 and their
neighbours. (Except at the image boundaries, I2 will consist of eight pixels if a pixel pair has
been selected, or of thirteen pixels if a pixel has been selected.)

2. Pixel updates: For each (i∗, j∗) ∈ I2,

• Update ui∗,j∗ by replacing it with the new value ũi∗,j∗ := ui∗,j∗ + (T ∗ − ti∗,j∗)u̇i∗,j∗ .
• Update ti∗,j∗ by replacing it with T ∗.

3. Diffusivity computation: For each (i∗, j∗) ∈ I1, recompute gi∗,j∗ as in (20).

4. Two-pixel flow computation: For each pair of neighbouring pixels {(i∗, j∗), (i∗∗, j∗∗)} with
(i∗, j∗) ∈ I1 and (i∗∗, j∗∗) ∈ I1, recompute ϕi∗,j∗;i∗∗,j∗∗ as in (53).

5. Pixel velocity computation: For each pixel (i∗, j∗) ∈ I1, recompute u̇i∗,j∗ according to (54).

6. Flow expiry time updates: For each pair {(i∗, j∗), (i∗∗, j∗∗)} of neighbouring pixels with
(i∗, j∗) ∈ I2 and (i∗∗, j∗∗) ∈ I2,

• Let τ∗ := τmax − ti∗,j∗
• If ui∗,j∗ 6= ui∗∗,j∗∗ and sgn (u̇i∗,j∗ − u̇i∗∗,j∗∗) = −sgn (ui∗,j∗ − ui∗∗,j∗∗) and
|ui∗,j∗ − ui∗∗,j∗∗ | < τ∗ |u̇i∗,j∗ − u̇i∗∗,j∗∗ |, let

τ∗ := −ui
∗,j∗ − ui∗∗,j∗∗

u̇i∗,j∗ − u̇i∗∗,j∗∗
.

• Let Ti∗,j∗;i∗∗,j∗∗ := ti∗,j∗ + τ∗.

• Correct the priority of {(i∗, j∗), (i∗∗, j∗∗)} in Q according to the new value −Ti∗,j∗;i∗∗,j∗∗ .

7. Pixel expiry time updates: For each pixel (i∗, j∗) ∈ I1,

• Let τ∗ := τmax − ti∗,j∗
• If u̇i∗,j∗ > 0, let umax := max{ui∗,j∗ , ui∗∗,j∗∗ | (i∗∗, j∗∗) ∈ N (i∗, j∗)}. If
ui∗,j∗ + τ∗ · u̇i∗,j∗ > umax, let

τ∗ :=
umax − ui∗,j∗

u̇i∗,j∗
.

• If u̇i∗,j∗ < 0, let umin := min{ui∗,j∗ , ui∗∗,j∗∗ | (u∗∗, j∗∗) ∈ N (i∗, j∗)}. If
ui∗,j∗ + τ∗ · u̇i∗,j∗ < umin, let

τ∗ :=
umin − ui∗,j∗

u̇i∗,j∗
.

• Let Ti∗,j∗ := ti∗,j∗ + τ∗.

• Correct the priority of (i∗, j∗) in Q according to the new value −Ti∗,j∗ .
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assign expiry times to pairs of neighbouring pixels as well as to single pixels. Both kinds of
expiry times will be collected in a joint priority queue from which we select always the next
item for update based on earliest expiry time.

Whenever the next item for update is a two-pixel flow {(i, j), (i′, j′)},

• both pixels and all their neighbours are updated to a common target time with their
respective total velocities; the common target time is determined by the expiry time of
the two-pixel flow;

• the diffusivities gi,j and gi′,j′ are recomputed;

• with these new diffusivities, the flow ϕi,j;i′,j′ := g · (ui,j − ui′,j′)/h2 between the two
pixels is recomputed, and the total velocities u̇i,j and u̇i′,j′ are updated;

• the flow expiry times for the two-pixel flow between (i, j) and (i′, j′) and all two-pixel
flows between (i, j), (i′, j′) and their neighbours are updated as well, and so are the
pixel expiry times of (i, j) and (i′, j′).

Whenever the next item for update is a single pixel (i, j), the update step is essentially
the combination of updates of all flows adjacent to this pixel with the same target time. This
means that

• the pixel (i, j) and its neighbours up to second order are updated to the common target
time determined by the expiry time of the pixel;

• the diffusivities of pixel (i, j) and its immediate neighbours are recomputed;

• the flows ϕi,j;i′,j′ between (i, j) and its neighbours are recomputed, and the velocities
of (i, j) and its neighbours are updated;

• the expiry times of pixel (i, j) and its neighbour pixels and of all flows adjacent to these
are updated.

As is evident from this outline, the scheme differs from the previous one in several impor-
tant details which we will now discuss one by one. We discuss in detail the update of a pixel
pair {(i, j), (i′, j′)}.

Pixel Updating by Total Velocities. From the randomised two-pixel scheme of Subsec-
tion 6.3, we retain the principle of asynchronous updates for two-pixel flows between neigh-
bouring pixels, where the maximal evolution time updates are determined such that stability
conditions are warranted. However, whereas in Section 6.3 the isolated flows ϕi,j;i′,j′ were
used for updating pixels (i, j), (i′, j′), we use now total velocities: Each update to a pixel
ui,j is made using the total velocity u̇i,j that incorporates the contributions ϕi,j;i′′,j′′ from all
neighbours (i′′, j′′) of (i, j). The same goes for pixel (i′, j′).

The use of total velocities for pixel updates ensures that at each intermediate step, each ui,j
is an approximation of u at location (i, j) and time kτmax + ti,j , where kτmax ≤ kτmax + ti,j ≤
(k + 1)τmax, and improves the approximation error by a factor h from O(τ/h3) to O(τ/h2).
Time levels ti,j for individual pixels are tracked in the algorithm.
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Flow Expiry Times. The first restriction that must be obeyed so that an update step of
pixels does not violate the stability condition of Lemma 3 is that neighbouring pixels must
not change their order within one update step. This condition is evaluated for each pair of
neighbouring pixels and gives rise to a time limit that is naturally attributed to the pixel pair.
We will denote it by Ti,j;i′,j′ and call it the flow expiry time. Depending on the current values
ui,j , ui′,j′ and velocities u̇i,j , u̇i′,j′ , we compute Ti,j;i′,j′ as the time at which the intensities of
pixels (i, j) and (i′, j′) evolving with their current velocities would become equal, or the time
τmax of the next global synchronisation step, whatever is earlier.

Pixel Expiry Times. The second restriction for the time step size of local updates relates
to both Lemma 2 and Lemma 3. Within one update step, a pixel ui,j must not increase
in excess of the maximum of intensities of the pixel and its immediate neighbours. (If the
maximum intensity is that of pixel (i, j) itself, it must not grow at all, thus ensuring the
condition of Lemma 2; otherwise this restriction implements the condition of Lemma 3.)
Analogously, it must not decrease below the minimum of intensities of the pixel and its
neighbours. This condition needs to be evaluated for each pixel and implies a time limit
that is naturally associated with the pixel itself. We will denote it by Ti,j and call it the
pixel expiry time. Based on the current intensities of pixel (i, j) and its neighbours as well
as the current velocity u̇i,j , we compute Ti,j as the time at which the intensity of pixel (i, j)
with its current velocity would leave the range bounded by the current minimal and maximal
intensities within its neighbourhood, or τmax, whatever is earlier.

In each update step, we select the pixel pair or single pixel with earliest expiry time,
whatever comes first.

Once a flow ϕi,j;i′,j′ is computed, it is used until either its underlying pixel pair or one
of the two pixels expires. Thus, it enters all possible recomputations of u̇i,j and u̇i′,j′ as
long as ti,j , ti′,j′ < min{Ti,j;i′,j′ , Ti,j , Ti′,j′}. Recomputation of a neighbouring flow ϕi,j;i′′,j′′ or
ϕi′,j′;i′′,j′′ with (i′′, j′′) 6= (i, j), (i′, j′) does not trigger a recomputation of ϕi,j;i′,j′ . However,
the flow expiry time Ti,j;i′,j′ as well as one of the pixel expiry times Ti,j and Ti′,j′ are adjusted
in this case.

Updating Two-Pixel Flows and Total Velocities. After updating the flow between two
neighbouring pixels (i, j), (i′, j′) to its expiry time, it is necessary to recompute the isolated
flow ϕi,j;i′,j′ between these two pixels, and the total velocities u̇i,j , u̇i′,j′ . With regard to the
above discussion of the approximation error, we should ensure that for the computation of
ϕi,j;i′,j′ all participating pixels share the same time level. This means that we cannot restrict
the pixel updates for the flow {(i, j); (i′, j′)} to the two pixels (i, j), (i′, j′) but must even
update all their neighbours (i′′, j′′) to the same time level, ti′′,j′′ = ti,j = ti′,j′ . Note that we
have selected {(i, j), (i′, j′)} as the pixel pair with earliest expiry time. Therefore, the updates
to both pixels and their neighbours can safely be done within the expiry times of all these
pixels and their adjacent flows.

After synchronising in this way all participating pixels, we compute new values gi,j , gi′,j′

and a new ϕi,j;i′,j′ . The synchronisation of all pixels entering the computation of ϕi,j;i′,j′

warrants a further improvement of the approximation error by a factor h from O(τ/h2) to
O(τ/h).
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Adjusting Expiry Times. It is worth noticing that despite the update of all neighbouring
pixels (i′′, j′′) of (i, j) and (i′, j′), the flow ϕi,j;i′,j′ is the only one that is updated. The flows
ϕi,j;i′′,j′′ and ϕi′,j′;i′′,j′′ to neighbours (i′′, j′′) 6= (i, j), (i′, j′) are left unchanged, despite the fact
that they depend on gi,j , gi′,j′ , too. However, their recomputation would require updates to
further neighbour pixels, and entail total velocity updates for further pixels, and by recursion
finally lead to a synchronous time step for the entire image. By updating only ϕi,j;i′,j′ , total
velocity updates are limited to the two pixels (i, j), (i′, j′).

We must, however, adjust the flow expiry times Ti,j;i′′,j′′ , Ti′,j′;i′′,j′′ for all neighbour pairs
{(i, j), (i′′, j′′)} and {(i′, j′), (i′′, j′′)}, because these depend on the total velocities u̇i,j , u̇i′,j′

that have changed.

Moreover, we must update the pixel expiry times Ti,j , Ti′,j′ . In some cases, the new expiry
time of one of these pixels will be equal to the time level of the current update step. Then,
an update step for this pixel with recomputation of all adjacent flows will follow immediately.
By this mechanism, further neighbour pixels are updated to the extent necessary to guarantee
stability but avoiding unnecessary recursion across the entire image.

Comparison with Randomised Two-Pixel Scheme. As mentioned above, we have to
select two-pixel flows to update in a priority order given by their expiry times. Thereby, the
selected flow always has an expiry time less than or equal the expiry times of all neighbouring
pairs.

The necessity to update flows in priority order implies that our new scheme is deter-
ministic. The randomisation of the update order that served to avoid directional bias in
Subsection 6.3 is not feasible here. However, there is also no need for such a measure here:
Since each two-pixel diffusivity is recomputed if and only if it has expired, the order of updates
among flows with equal expiry times does not change the intensities computed.

A final point to consider is that the conservation property of discretised diffusion was
ensured in the randomised two-pixel scheme by always applying a two-pixel flow to both
participating pixels at the same time. In our new scheme, these updates may be distributed
to different iterations of the asynchronous update. However, each particular value of the
two-pixel flow ϕi,j;i′,j′ lives for a well-defined time interval [t1, t2]. It is computed when both
pixels (i, j), (i′, j′) are synchronised at time level ti,j = ti′,j′ = t1, and expires finally at a time
level t2. All updates of ui,j and ui′,j′ until they are both synchronised at ti,j = ti′,j′ = t2 use
the same value of ϕi,j;i′,j′ , which again guarantees the conservation property.

6.4.1 Consistency of the Scheme

Adapting our argument from Section 6.3.1, we see that in the computation of ui,j , asyn-
chronicity takes place only between the time levels of the approximations of flows ϕi,j;i′,j′

between (i, j) and its neighbours (i′, j′). As these flows approximate g · ux/h for horizontal
or g · uy/h for vertical neighbours, the resulting approximation error of u̇i,j due to the asyn-
chronicity is O((ux + uy)τ/h) = O(τ/h). As a result, the scheme from Tables 4–5 has an
approximation error of O(τ + h2 + τ/h). This ensures a conditionally consistent approxima-
tion to the FAB diffusion PDE if τ/h2 is bounded by a constant when τ, h → 0. However,
this is always satisfied by the stability conditions of our automatic time step size adaptation.
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6.4.2 Efficient Time Accounting and Flow Selection

Time accounting occurs in this algorithm in two forms: on one hand the evolution times
reached by the individual pixels have to be tracked; on the other hand two-pixel flows are
equipped with expiry times. Each of the two sets of time variables can be stored in an array.

However, it is crucial for the algorithm that the selection of the next two-pixel flow to
be updated, namely the one with earliest expiry time, is performed efficiently. This requires
an efficient implementation of the priority queue Q that stores pixel pairs with their expiry
times. For this purpose, a binary heap can be used, see e.g. [16, Ch. 6]. Each heap element
stores the index of the flow pair by which its expiry time can be accessed by O(1) array access.
The initialisation of Q can be performed in O(M) where M is the number of pixel pairs as
before (note that the number of pixels N is also within O(M)). In the asynchronous update
cycle, the highest-priority entry can be determined in O(1).

As it is necessary to adjust priorities during the operation of the algorithm, the implemen-
tation must be extended into an addressable priority queue. As heap elements already store
the indices of their flow pairs, this is easily achieved by establishing an array addressed by the
flow pairs, which stores for each pair a pointer to the corresponding heap element. During
heap operations, these pointers must be kept current. This does not change the asymptotic
complexities stated before. The heap order corrections needed to adjust the priority of an
element require not more than O(logM) operations.

Data Structure. For convenience, we shortly describe how the priority queue Q is realised
in our algorithm, adapting the binary heap construction from [16, Ch. 6]. First, the expiry
times Ti,j;i′,j′ , Ti,j are stored in an array T of size M + N , where each flow is identified
by a unique flow index l = li,j;i′,j′ ∈ {1, . . . ,M}, and each pixel by a unique pixel index
l = li,j ∈ {M + 1, . . . ,M + N}, and T [l] for l ∈ {1, . . . ,M + N} stores the respective expiry
time. The heap array H of size M + N , addressed by heap indices k running from 1 to
M + N , stores a permutation of the indices 1, . . . ,M + N . A third array P , addressed by
flow/pixel-indices, stores for each l the corresponding heap index P [l] = k that addresses l in
the heap array, such that H[P [l]] = l and P [H[k]] = k for all k, l. Whenever entries of H are
permuted, P must be updated accordingly.

For two flow/pixel indices l, l′ we define l � l′ if and only if T [l] ≤ T [l′], i.e. flow/pixel
l expires not later than flow/pixel l′. The array H is in heap order (w.r.t. the expiry times
T ) if and only if H[bk/2c] � H[k] for all k ∈ {2, . . . ,M + N}. By requiring the � relation
between entries bk/2c and k, the array H is implicitly equipped with a binary tree structure
where H[1] is the root, and each H[k] has the children H[2k] and H[2k + 1] as long as these
are inside H. Each node is required to be less or equal each of its children w.r.t. �. As a
consequence, the root H[1] is the minimal element w.r.t. �. The binary tree has the minimal
possible depth, with dlog2(M +N)e as the maximal distance of a node from the root.

Priority Queue Operations. As mentioned before, the flow l with minimal expiry time
is given by H[1], and can therefore be selected in O(1) time. This is exactly what is needed
in the priority-based selection step of our algorithm (asynchronous update, Step 1).

In the course of the algorithm, we need furthermore to establish the heap order (in the
initialisation Step 6), and to correct the priority of an individual flow l after a change of T [l]
(end of asynchronous update, Step 5).
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The latter task is accomplished by two recursive procedures called sift-up and sift-down.
The procedure sift-up takes a heap index k as argument. Its pre-condition is that the heap
order in H holds with the possible exception that element H[k] may violate this order by
being placed “too low” in the tree. Then, sift-up acts by swapping H[k] up the tree until
complete heap order of H is restored:

sift-up(k) :

1. If k = 1, stop.

2. Let k′ = bk/2c.
Check if H[k′] � H[k]. If this is the case, stop.

3. Swap H[k] and H[k′].
Update P [H[k]] = k and P [H[k′]] = k′.
Call sift-up(k′).

The other procedure, sift-down, too, takes a heap index k as argument. Contrary to sift-
up, it has the pre-condition that the heap order in H holds in the sub-trees below k (i.e. the
roots of which are the children of k) but H[k] may violate the heap order by being placed
“too high” in the tree. Then, sift-down extends the heap order to the complete tree rooted
at k by swapping H[k] down the tree as far as necessary:

sift-down(k) :

1. If 2k > M +N , stop.

2. If 2k + 1 ≤ M + N and H[2k + 1] � H[2k], let k′ = 2k + 1; otherwise, let
k′ = 2k.

3. Check if H[k] � H[k′]. If this is the case, stop.

4. Swap H[k] and H[k′].
Update P [H[k]] = k and P [H[k′]] = k′.
Call sift-down(k′).

As the recursion in both sift-up and sift-down visits each depth-plane of the binary tree
at most once, the complexity of each is O(log(M + N)) = O(logM). The correction of the
priority of a two-pixel flow (Step 5 of Table 5) is done by calling either sift-down or sift-up,
depending on whether the expiry time has been increased or decreased.

The remaining task is to establish the heap order to initialise the priority queue. To this
end, H is filled by an arbitrary permutation of {1, . . . ,M +N} (initially just (1, . . . ,M +N),
in later time steps just the left-over from the previous iteration). Then one calls sift-down(k)
for k = b(M + N)/2c, . . . , 1 in descending order. As the heap order condition is trivially
satisfied in each single-node subtree, the heap order in H holds right of k before the call to
sift-down(k), and holds from k on to the right after this call. Analysis of the run time, see [16,
Ch. 6], shows that the complexity of establishing the heap order on H is O(M +N) = O(M).

Final Remark. For our algorithm, the binary heap structure as described offers a fair bal-
ance of simplicity and efficiency. Further (slight) performance gains can possibly be achieved
by using more sophisticated implementations of addressable priority queues; see [16, Ch. 6].
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7 Experiments

For our experiments below, we use test images with quadratic pixels, where we assume unit
grid size h1 = h2 = 1. The greyscale range lies in the interval [0, 255]. We have implemented
our methods in ANSI C and compiled the code with a GNU gcc compiler (version 5.4.0). The
parallel algorithm from Section 6.2 was implemented in CUDA C, and compiled using the
Nvidia R© CUDA compilation tools (version 8.0.44). Compiler optimisation was set to -O2 in
all cases, CUDA architecture was set to 6.1. No advanced code optimisations took place.

For CPU algorithms, we report run times on a single core of a workstation with an Intel R©

CoreTM i7-6800K CPU running at 3.40 GHz. CUDA computations were performed on the
same machine, using a Zotac GeForce GTX 1080 graphics card with 8 GB RAM and 2560
compute units.

7.1 Standard vs. Nonstandard Discretisation

In our first experiment we compare two implementation of our explicit scheme (21): one with
the standard discretisation (19), the other one with the nonstandard discretisation (20). We
use the diffusivity function (5). Fig. 3 shows the results for a standard test image that is
processed with FAB diffusion with λ = 4, κ = 2.5, and stopping time t = 10. We observe
that an explicit scheme with standard discretisation is unstable, even for very small time step
sizes (Fig. 3(b)). Thus, it is not considered any further.

Equipping the explicit scheme with the nonstandard discretisation enables a stable result,
provided that the time step size limit (22) is obeyed (Fig. 3(c)). For the diffusivity (5) with
λ = 4 and κ = 2.5, the constant ω in (22) is given by ω = 0.009568. Together with the
grid sizes h1 = h2 = 1 this yields a time step size restriction of τ ≤ 1.14 · 10−5. Choosing
τ := 1 · 10−5 requires as many as 1 million iterations to reach a stopping time of t = 10. The
corresponding CPU time was approx. 50 minutes. Since this is too slow for most applications,
let us have a look at our various acceleration strategies.

Table 6: Run times (in seconds) for the computation of the results in Fig. 3 by CPU and CUDA
implementations. CUDA-d refers to a version with double precision, whereas in CUDA-df the
diffusivities g are computed in single precision. For CUDA, upright numbers show the gross
run time of the program, whereas numbers in italics show the net computation time without
system overheads.

Algorithm CPU CUDA-d CUDA-df

explicit/standard discr. 2784
explicit/nonstandard discr. 3004 42.5 26.3

36.3 19.9
global time step adaptation 24.1 0.84 0.79

0.30 0.23
randomised two-pixel 8.6 — —
deterministic two-pixel 6.0 — —
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7.2 Faster Algorithms

The remaining images (d)–(f) in Fig. 3 show the results for three accelerations of the ex-
plicit scheme with nonstandard discretisation: global step size adaptation (Subsection 6.1),
the randomised two-pixel scheme (Subsection 6.3), and its deterministic variant (Subsection
6.4). We observe that all approaches are visually of the same quality than its nonaccelerated
counterpart. However, as evident from Table 6, they offer substantial speed-ups:

• The scheme with global time step adaptation and a maximal time step size of 0.24
requires only 4710 iterations to reach the stopping time of t = 10. Thus, its average
time step size is approximately 0.0021, i.e. about 210 times larger than the baseline
scheme. This shows that our time step size restriction (22) based on a priori estimates is
indeed very pessimistic. On the other hand, in the course of the iterative computation
a few time steps with sizes close to the theoretically estimated value 1.14 × 10−5 do
indeed occur which confirms that no substantially larger time step size could be used
in a non-adaptive regime.

With 24 seconds, the computation time has reduced by a factor of about 120. Comparing
this to the factor 210 for the time step size, the additional expense of the time step
adaptation is visible.

• For the randomised two-pixel variant of the explicit scheme with nonstandard discreti-
sation we use a sync step size of τmax = 0.1. Thus, only 100 sync steps are necessary
to reach a stopping time of t = 10. This requires a CPU time of 8.6 seconds, i.e. a
speed-up of 2.8 compared to the scheme with global time step adaptation, or about 350
compared to the explicit scheme with constant time step size.

The fact that the average time step size of 0.0991 is very close to the sync step size
of = 0.1 demonstrates that time step size reductions for stability reasons are very rare
events.

• The deterministic two-pixel scheme with a sync step size of τmax = 0.1 is even faster
than its probabilistic counterpart: Its run time comes down to 6.0 seconds, amounting
to a speed-up of 1.4 over the scheme from Section 6.3, of 4 over the scheme with global
time step adaptation, and of 500 over the scheme with fixed time steps.

The average time step size for the pixel updates amounts to 0.0551 which indicates that
time steps are split finer than in the randomised scheme but not dramatically so.

CUDA implementations were done for the explicit scheme with nonstandard discretisation,
and for the scheme with global time step adaptation. Asynchronous schemes with local time
step adaptation do not lend themselves to a straightforward parallelisation. The explicit
scheme with standard discretisation could easily be parallelised but is not worth the effort
due to its instability. A word of care should be said about numerical precision. Unlike in
many diffusion-based algorithms in image processing, where single-precision float numbers are
accurate enough, double precision is necessary in all of our algorithms due to the extremely
small time steps that occur. Whereas on modern CPUs there is no noticeable difference in run
times between single and double precision, precision still matters for performance on graphics
cards. Our comparison therefore includes two variants of the CUDA implementation: one in
which all numerical computations are performed in double precision (CUDA-d in Table 6),
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and one in which double precision is used for u, u̇ and time steps, whereas the diffusivities
g are computed only in single precision, as a closer analysis reveals that the higher precision
is not necessary for g (CUDA-df in Table 6). Numerical deviations between the CPU and
both CUDA implementations for each algorithms were negligible (note that differences in the
order of machine precision occur regularly between CPU and CUDA).

For the CUDA implementations, we report in Table 6 the gross run times of the program
run and (in italics) the net computation times. The latter exclude some system overheads
that occur due to the management of the graphics card, and contribute considerably to the
overall program run time. For CPU computations, such system overheads are not observed.

As expected, the CUDA implementations allow further accelerations of the two first algo-
rithms. With 42 (36 ) seconds for the explicit scheme with fixed time steps, and 0.84 (0.30)
seconds for the scheme with global time step adaptation, the double-precision implementa-
tion CUDA-d provides for an 80-fold speed-up over CPU computation, from which some is
chipped away by the system overheads. With the mixed-precision implementation CUDA-df
the speed-up of the actual computation raises to about 150 for the scheme with fixed time
steps, or 100 for the scheme with global time step adaptation, which is again diminished by
system overheads. The reason why the adaptive scheme does not profit as much from the
CUDA-df implementation as the non-adaptive one is that the computations for the very time
step adaptation fully add to the double-precision part of the code (as high precision is needed
for accurate time step accounting).

These experiments demonstrate that exploiting adaptivity, locality and parallelism are
essential mechanisms to turn a prohibitively slow scheme into efficient algorithms that offer
speed-ups by three orders of magnitude.

7.3 Scale-Space Behaviour

Since our accelerated algorithms are highly efficient, they can also be used for long term
computations, arising e.g. in scale-space analysis [11, 39]. Fig. 4 depicts the temporal evolution
of a noisy test image when the scale-space is governed by FAB diffusion with diffusivity (5),
and the deterministic two-pixel scheme is employed. We observe the high robustness of the
FAB scale-space in spite of the fact that its diffusities may become negative. Moreover, the
experiment confirms convergence to a flat steady state for t→∞. This is in full accordance
with our theoretical results.

7.4 Denoising Qualities

Since scale-spaces are simplifying evolutions with smoothing properties, it appears plausible
that they also offer certain denoising qualities. While Fig. 4 has already confirmed this for a
synthetic image, Fig. 5 studies the denoising capabilities of FAB diffusion for a highly textured
real-world image: We have degraded the classical barbara test image with additive Gaussian
noise. Although FAB diffusion has not been designed to be a noise removal method, we
observe that it has clear denoising qualities which resembles those of a classical Perona–Malik
filter. While this may appear suprising at first glance for an evolution which is of backward
diffusion type in a certain gradient range, there is a simple explanation: In extrema, FAB
diffusion always shows a forward diffusion behaviour, and our nonstandard discretisation takes
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Figure 3: Influence of the numerical scheme on the result of FAB diffusion (λ = 4, κ = 2.5,
t = 10). (a) Top left: Test image, 256 × 256 pixels. (b) Top middle: Explicit scheme
(21) with standard discretisation (19). Computing 1 million iterations with time step size
τ = 10−5 requires 2784 seconds, while the result is unstable. (c) Top right: Explicit scheme
(21) with nonstandard discretisation (19). Performing 1 million iterations with τ = 10−5

takes 3004 seconds. (d) Bottom left: Explicit scheme with nonstandard discretisation and
globally adaptive time step size control. It requires 4717 iterations, which are performed in
24.1 seconds. (e) Bottom middle: Randomised two pixel scheme with 100 iterations with
sync time step size τmax = 0.1, leading to a run time of 8.6 seconds. The average time step
size is 0.0991. (f) Bottom right: Deterministic two-pixel scheme, using 100 iterations with
synchronisation step size τmax = 0.1. This requires 6.0 seconds. The average time step size is
0.0551.

care of its adequate algorithmic realisation. Thus, noise pixels which create local outliers are
identified as extrema and attenuated accordingly.

7.5 Different Types of FAB Diffusivities

The crucial assumption for our theory is that g(0) > 0, which ensures that extrema undergo
forward diffusion.

Thus, we do not necessarily require the diffusivity to take positive values for large gra-
dients. Our framework can handle even diffusivities tending to negative limits for infinite
gradients. An example is shown in Figure 6(g). For gradients going to infinity, the corre-
sponding penaliser functions always decrease unboundedly; see the example in Figure 6(h).
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t = 0 t = 6 t = 40

t = 200 t = 800 t = 3000

Figure 4: Temporal evolution of FAB diffusion (λ = 2, κ = 2.5), applied to a noisy synthetic
test image with 256 × 256 pixels. The computations have been done with the deterministic
two-pixel scheme with sync step size τmax = 0.1.

Figure 5: Denoising qualities of FAB diffusion for a real-world image. (a) Left: Test image
barbara with 512× 512 pixels. (b) Middle: With additive Gaussian noise, where the result
is trucated outside [0, 255]. (c) Right: Restoration with FAB diffusion (λ = 2, κ = 2.5,
t = 120). We have used the deterministic two-pixel scheme with sync step size τmax = 0.1.
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(a) Diffusivity, Type I (b) Penaliser corresponding to (a)
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(c) Diffusivity, Type II (d) Penaliser corresponding to (c)
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(e) Diffusivity, Type II (f) Penaliser corresponding to (e)
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(g) Diffusivity, Type III (h) Penaliser corresponding to (g)

Figure 6: Forward-and-backward diffusivity functions g(s2) of Type I, Type II (two cases)
and Type III, and corresponding penaliser functions Ψ(s2). The horizontal axis shows s, the
vertical axis function values.
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Let us now focus on three main classes of diffusivities:

Type I. Diffusivities similar to that from [9] that take positive values for large gradient
magnitudes and tend to zero in the limit of infinite gradient magnitudes; see Figure 6(a).

Diffusivities of this kind can be associated to triple-well potentials, as shown in Fig-
ure 6(b). Some of these potentials are bounded from below by convex functions, which
admits the application of some theoretical results in the space-continuous case.

Type II. Diffusivities similar to those from [26] that take negative values for large gradient
magnitudes and tend to zero in the limit of infinite gradient magnitudes; see Figure 6(c)
and (e).

The penaliser functions

Ψ(s2) :=

s2∫
0

g(t) dt (55)

corresponding to these diffusivities may have positive or negative horizontal asymptotes,
as shown in Figure 6(d) and (f), or even decrease unboundedly in other cases.

Type III. Diffusivities that tend to a negative limit for gradient magnitudes going to infinity;
see Figure 6(g).

For gradient magnitudes going to infinity, the corresponding penaliser functions always
decrease unboundedly, see the example in Figure 6(h).

Specific representatives for these three types of diffusivities are presented in Table 7, where we
see that our FAB diffusivity (5) is of Type II. We compare the impact of the three diffusivity
types experimentally in Fig. 7. We observe that our deterministic two-pixel scheme can indeed
handle all three scenarios. As expected, the Type I diffusivity reveals the strongest smoothing
behaviour. The Type III diffusivity leads to the most extreme enhancement: Its pronounced
backward diffusion along the edge contour produces fairly jagged edges. Nevertheless, since
all three diffusivity types are compatible with our theory, their corresponding FAB evolutions
will finally lead to a flat steady state.

8 Summary and Conclusions

Backward diffusion suffers from an extremely bad reputation of being a highly ill-posed pro-
cess. We have seen in our paper that it can be turned into a highly stable evolution, provided
that some essential requirements are met:

First of all, it must be stabilised at extrema in order to avoid under- and overshoots. The
FAB diffusion paradigm does take care of this. Our discrete analysis is based on a smooth
FAB diffusivity that attains a positive diffusivity in zero which is larger than the moduli
of all negative diffusivities. Under these mild model assumptions we were able to establish
well-posedness, a maximum–minimum principle, and convergence to a flat steady state for
space-discrete FAB diffusions with a nonstandard discretisation of the gradient magnitude.
These properties carry over to the fully discrete case with an explicit scheme, if one adheres
to a very restrictive time step size limit.
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Type I (λ1=4, λ2=10) Type II (λ=4, κ=2.5) Type III (λ=4)

Zoom into Type I Zoom into Type II Zoom into Type III

Figure 7: Comparison of the influence of the diffusivity functions. We use the diffusivities from
Table 7. All computations are performed with the deterministic two-pixel scheme applied to
the test image from Fig. 3(a) with sync step size τmax = 0.1 and stopping time t = 10.

Table 7: Specific representatives for our three types of FAB diffusivities.

Diffusivity
Type

Explicit Formula Parameters

Type I g(s2) =
cos(π y(s))

1 + (y(s))2
, λ1 > 0,

y(s) =
5

2

(
(λ22 − 6λ21) s− (λ2 − 6λ1) s

2

4λ1λ2(λ2 − λ1) + (λ22 − 6λ21) s− (λ2 − 6λ1) s2

)
λ2 >

√
6λ1

Type II g(s2) = 2 exp

(
−κ

2 ln 2

κ2 − 1
· s

2

λ2

)
− exp

(
− ln 2

κ2 − 1
· s

2

λ2

)
λ > 0, κ > 1

Type III g(s2) =
3

2
exp

(
− ln 3

λ2
s2
)
− 1

2
λ > 0
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In order to make this concept practically viable, we came up with a number of novel
schemes that exploit adaptivity or parallelism. In the simplest case, this adaptivity was
applied globally by varying the time step size during the evolution. Allowing even space-
variant time step sizes by splitting the diffusion process into two-pixel interactions is the
most consequent and the most powerful implementation of the concept of adaptivity. To our
knowledge this is the first time in PDE-based image analysis where the idea of space-variant
time step sizes is used. We showed that this allows to accelerate FAB diffusion by up to three
orders of magnitude.

We hope that our results may help to improve the reputation of backward parabolic
processes, since they can offer some very attractive image enhancement properties that have
hardly been explored so far, mainly because of the lack of stable numerical schemes. In our
ongoing work we are looking into other PDE-based image enhancement methods that suffer
from ill-posed continuous formulations.
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