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Abstract

We study a class of numerical schemes for nonlinear diffusion filtering that offers
insights on the design of novel wavelet shrinkage rules for isotropic and anisotropic
image enhancement. These schemes utilise analytical or semi-analytical solutions
to dynamical systems that result from space-discrete nonlinear diffusion filtering on
minimalistic images with 2 x 2 pixels. We call them locally analytic schemes (LAS)
and locally semi-analytic schemes (LSAS), respectively. They can be motivated from
discrete energy functionals, offer sharp edges due to their locality, are very simple
to implement because of their explicit nature, and enjoy unconditional absolute
stability. They are applicable to singular nonlinear diffusion filters such as TV
flow, to bounded nonlinear diffusion filters of Perona—Malik type, and to tensor-
driven anisotropic methods such as edge-enhancing or coherence-enhancing diffusion
filtering. The fact that these schemes use processes within 2 x 2-pixel blocks allows
to connect them to shift-invariant Haar wavelet shrinkage on a single scale. This
interpretation leads to novel shrinkage rules for two- and higher-dimensional images
that are scalar-, vector- or tensor-valued. Unlike classical shrinkage strategies they
employ a diffusion-inspired coupling of the wavelet channels that guarantees an
approximation with an excellent degree of rotation invariance. By extending these
schemes from a single scale to a multi-scale setting, we end up at hybrid methods that
demonstrate the possibility to realise the effects of the most sophisticated diffusion
filters within a fairly simplistic wavelet setting that requires only Haar wavelets in
conjunction with coupled shrinkage rules.
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1 Introduction

Methods for image denoising that respect discontinuities and other semantically
important features are of fundamental importance in digital image processing. Non-
linear diffusion filters [42] and wavelet shrinkage [24] are two widely used classes of
methods to achieve this goal.

Diffusion filtering is a continuous concept that relies on partial differential equa-
tions (PDEs). It can easily incorporate invariances such as shift and rotation in-
variance. In order to be applicable to digital images, diffusion filters require dis-
cretisations. Typical numerical schemes proceed with a certain time step size and
are iterated in order to end up with some result worth striving for. Anisotropic fil-
ters with a diffusion tensor instead of a scalar-valued diffusivity have been proposed
to allow direction-dependent filtering along image edges and to enhance coherent,
flow-like structures [54].

Wavelet shrinkage, on the other hand, uses specific discrete filters with vanishing
moments. Usually it is used in a noniterative way that achieves its denoising capa-
bilities by means of a multi-scale setting. Incorporating shift invariance and approx-
imating rotation invariance requires some extra efforts; see e.g. [17, 33]. Also in the
wavelet community many efforts have been made to incorporate anisotropy in order
to represent and process oriented structures in a better way, e.g. by contourlets [21],
ridgelets [23], curvelets [9, 8] and shearlets [34]. In general they form frame elements
that exhibit very high directional sensitivity and are highly anisotropic.

Since PDE-based methods and wavelet shrinkage serve the same purpose, it is
not surprising that intensive research has been performed on analysing connections
between these filters. Most of them analyse the continuous framework [4, 6, 12, 13,
16, 15, 38, 47, 48] or focus on designing methods that use wavelet shrinkage and
PDE-based denoising methods in combination [10, 14, 18, 27, 26, 36, 37].

Work on the relations between wavelet shrinkage and PDE-based denoising in the
discrete framework includes a paper by Coifman and Sowa [19] where they proposed
total variation (TV) diminishing flows that act along the direction of Haar wavelets.
In our previous work [51] we have established connections between space-discrete
diffusion filtering and shift-invariant Haar wavelet shrinkage in the one-dimensional
case. The starting point of this analysis was the consideration of a simplistic signal
with only two pixels. It allowed to derive an identical analytic solution for both
processes. This local analytic solution formed the building block of a numerical
scheme for 1-D signals of arbitrary length. We call such methods locally analytic
schemes (LAS).

The goal of the present paper is to derive and investigate locally analytic schemes
in the higher-dimensional setting. For several reasosns, the higher-dimensional case
is significantly more complicated than the 1-D scenario: First of all, in two and more
dimensions one has more degrees of freedom in the selection of specific discretisations
for diffusion filters. Moreover, specific problems arise that are not present in the
1-D case: They include questions on how to design filters with a high degree of
rotation invariance. Another challenge consists in the fact that it is possible to
design anisotropic filters that adapt their directional behaviour to the underlying
image structure. They are notoriously difficult to discretise in the diffusion setting,



since discretisations usually suffer from blurring artifacts and sometimes even from
stability problems.

The locally analytic schemes that we consider in the present paper are based on
an analysis of images of size 2 x 2 pixels. While it is possible to derive analytical
solutions for the corresponding dynamical systems in the isotropic case for specific
singular diffusivities such as the total variation diffusivity, this cannot be done for
the widely used bounded diffusivities, and it is also not possible for the diffusion
tensors of anisotropic diffusion filters. However, if one assumes that the diffusivity
or the diffusion tensor does not change in time, it is possible to find an analytic
solution for the corresponding dynamical system. We call numerical techniques that
use these processes as building blocks locally semi-analytic schemes (LSAS). We
shall see that both LAS and LSAS are numerical methods that offer a number of
interesting properties.

On the wavelet side, decompositions of an image into four-pixel blocks inspire
a way to express a diffusion filter in terms of Haar wavelet shrinkage on the finest
scale. In contrast to the 1-D setting, however, higher-dimensional diffusion filtering
gives rise to novel shrinkage rules that employ a coupling of the different wavelet
channels. Such a coupling provides an elegant way to incorporate rotation invariance
into the wavelet shrinkage, since it approximates a rotationally invariant continuous
diffusion process. Moreover the shrinkage rules can be incorporated into the typical
wavelet multi-scale framework.

Organisation of the paper. Our paper is organised as follows. In Section 2 we
briefly sketch the basic structure of nonlinear diffusion filters, and we survey the
essential properties of the locally analytic two-pixel solutions in the 1-D case. We
start our two-dimensional considerations in Section 3, where we derive the dynamical
four-pixel systems for space-discrete nonlinear diffusion filters as gradient descent of
discretised energy functionals. This is done in the isotropic case with a scalar-valued
diffusivity and in the anisotropic setting with a diffusion tensor. In Section 4 we
investigate these dynamical systems in detail and derive their solutions that give
rise to locally (semi-)analytic schemes for nonlinear diffusion filtering. Section 5 is
devoted to establishing formal connections between these numerical schemes and
shift-invariant Haar wavelet shrinkage in the single-scale scenario, and it presents
experiments in the single scale and multi-scale setting. The paper is concluded with
a summary in Section 6.

Related work. The idea to split up a diffusion process into local interactions has
also proved to be fruitful in other fields. In the context of fluid dynamic problems,
related schemes have been formulated by Richardson, Ferrell, and Long [45]. These
authors, however, use multiplicative splittings; i.e. they first compute an analytic
solution for a given partition into small cells. The result is then used as the initial
state for a subsequent diffusion in a shifted cell partitioning. In a general nonlinear
setting, such a scheme would not be shift invariant. Our approach computes the
diffusion of all four-pixel cells in parallel and averages afterwards. This additive
splitting guarantees shift invariance. The splitting into four-pixel interactions also
distinguishes our schemes from other additive operator splittings such as the ones



in [35, 57]. They use directional splittings along the coordinate axis.

We notice that constructing numerical methods for PDE-based filters from an-
alytic solutions of simpler systems is also a feature of the method of short-time
kernels, see e.g. [50], where a locally linearised diffusion equation is solved by Gaus-
sian convolution. For singular diffusion equations, our LAS approaches can also be
regarded as alternatives to the finite difference schemes in [7], the finite element
scheme in [28], and the level set approach considered in [20].

Early schemes for anisotropic, tensor-driven diffusion filtering did not pay specific
attention to the problem of rotation invariance and avoidance of blurring artifacts
[31, 44, 54]. Weickert and Scharr [56] addressed these problems by a scheme for
coherence-enhancing diffusion filtering that uses optimised, Sobel-like approxima-
tions of all first order spatial derivatives. However, no stability theory was presented,
and experiments showed only conditional stability. The same holds for the modified
scheme of Wang [53] who used Simoncelli’s derivative approximations [49] instead.
Moreover, both schemes require stencil sizes of at least 5 x 5 pixels, while the scheme
in the present paper is unconditionally absolutely stable and comes down to a more
local 3 x 3 stencil.

With respect to novel, diffusion-inspired shrinkage rules for Haar wavelet shrink-
age, our work extends results of Mrdzek et al. for the 1-D case [40] and the isotropic
2-D framework [39] to the anisotropic 2-D setting. Moreover, our approach is based
on absolutely stable locally (semi-)analytic schemes, while the relations in [40, 39]
are established for explicit (Euler foward) discretisations that have to respect fairly
strict stability limits.

We have reported some preliminary results with locally (semi-)analytic four-pixel
schemes in two recent conference papers, one for the isotropic case [58], and one for
the more complicated anisotropic framework [59]. In our present paper we extend
these conference contributions in several ways: We introduce a unified framework for
both isotropic and anisotropic processes. This framework is derived from discrete
variational principles and covers a larger class of discretisations than the ones in
[568, 59]. We also generalise them to higher-dimensional and vector-valued data sets,
and we consider connections to shift-invariant Haar wavelet shrinkage not only in the
single scale case, but extend our experiments to the practically relevant multi-scale
setting as well.



2 Prerequisites

In this section we sketch the basic structure of nonlinear diffusion filtering, and
we review a LAS method in the 1-D case. These concepts are essential for the
subsequent considerations.

2.1 Nonlinear Diffusion Filtering

Isotropic nonlinear diffusion. Let Q C R? denote a rectangular image domain.
Then an isotropic nonlinear diffusion filter! [42, 11] regards a greyscale image f :
Q — R as initial state of the diffusion equation

Bu = div (g(|VuU|2) Vu) on 0 x (0, 00) 1)
with homogeneous Neumann boundary conditions:
Opu =10 on 09 x (0,00) . (2)

Here V = (0;,0,)" and div denote the spatial gradient and divergence operators,
resp., and n is the outer unit normal to the image boundary 0€2. The diffusion
time t steers the amount of simplification of the evolving image u(z,y,t). The dif-
fusivity function g(|Vus|?) is a nonincreasing nonnegative function, and u, denotes
a smoothed image u, := K, * u with a Gaussian K, of standard deviation o (or
uy = u for o = 0). If the diffusivity decreases in its gradient magnitude, blurring
of edges is inhibited while diffusion within flat areas is encouraged. Incorporating
Gaussian smoothing within the diffusivity may be used for rendering the filter more
robust under noise [11].

It is not surprising that the choice of a suitable diffusivity function has a strong
impact on the result of the diffusion filter. Often one uses bounded diffusivities such
as [42, 54]

1

Vig|’) = ——g 3
o(Vuol') = o 0

1, Vu[? =0 ,
o(|Vuo ) = { Vol

4
1 —exp(—3.31488 X8/ |[Vu, ), |Vu,|* >0, )

where A > 0 serves as contrast parameter: It provides a threshold for distinguishing
between edges (|Vu,| > A) and the interior of a region (|Vus| < A).

More recently there has been a growing interest in unbounded diffusivities that
become singular in zero [3, 20, 28, 32, 43]. This includes the family

1

2y _

(p=0). ()

These diffusivities offer the advantage that they do not require to tune any image
specific contrast parameters (note also that no pre-smoothing is involved here, so

1 . . .
Sometimes these processes are already denoted as anisotropic; see e.g. [42]. In our nomenclature,
this notion is reserved for processes driven by matrix-valued diffusion tensors.



o = 0). Moreover, they lead to scale invariant filters [1], for which even some
analytical results have been established [52]. For p = 1 one obtains the total variation
(TV) diffusion [3, 20], the diffusion filter that corresponds to TV minimisation [46].
TV diffusion offers a number of interesting properties such as finite extinction time
[2] and shape-preserving qualities [5]. For p > 1 the diffusion does not only preserve
edges but may even enhance them. A diffusivity with p = 2 has been considered in
[32] for the so-called balanced forward-backward (BFB) diffusion filtering.

Anisotropic nonlinear diffusion. In a number of applications it is desirable to
apply diffusion filters that allow direction-dependent behaviour. Such anisotropic
filters require a matrix-valued diffusion tensor instead of a scalar-valued diffusivity.
A class of anisotropic nonlinear diffusion equations is given by [54]

o = div(D(J) - Vu) , (6)

where D(J) is an anisotropic diffusion tensor that depends on the image via the
structure tensor [30]

J = Jp(Vu,) := K, * (Vuy Vuy) . (7)

The structure tensor is a positive semidefinite matrix whose eigenvectors point in
the preferred local image directions, and the eigenvalues measure the contrast along
these directions. As before, K, denotes a Gaussian and u, = K, * u. By varying
the scales ¢ and ¢ and the way that D depends on the structure tensor J, this
equation can be adjusted to model a large class of anisotropic diffusion processes,
including edge-enhancing diffusion (EED) and coherence-enhancing diffusion (CED)
[54]. They will be described in more detail in Section 4.

2.2 LAS in the One-Dimensional Case

In [51], discretisations of total variation (TV) diffusion on 1-D signals have been
investigated. The following results are of particular interest here because the present
paper provides 2-D analogs for them.

1. On a very simplistic signal (f1, f2) consisting of only two pixels, it is possible
to state an analytic solution for the TV flow equation. As opposed to the use
of reflecting boundary conditions in [51] we give this solution here for a two-
pixel signal (u1,us) with periodic boundary conditions. The TV flow equation
then reduces to 41 = 2sgn (ue — u1), Ue = 2sgn (u; — ug) and has the analytic
solution

ui(t):{u+(1—4t/|fz—f1|)(fi—u), 0<t<|fa=fil /4,

u, t2|f2_f1|/45 (8)

where p := (f1 + f2)/2. (In fact, in [51] even an analytic solution for N-pixel
signals with reflecting boundary conditions was given.)



2. An unconditionally absolutely stable and computationally simple numerical
scheme for 1-D TV diffusion can be based on these two-pixel analytic solutions.
One time step of this scheme for pixel 7 reads as follows, assuming that uf is
the value of pixel 7 in the old time step k:

e Consider the two-pixel cells (i — 1,7) and (7,7 + 1) containing pixel 4.

e For each of these cells, compute the analytic solution (8), with (uf ;,u¥)

and (uf,ufﬂ), resp., as initial values, up to the desired time step size.

k+1 k+1

For pixel i, this gives two new values u; " and u; .
bl b

o Average: uft! .= %(uffl —I—uff).

=

3. The novel numerical scheme is equivalent to shift-invariant soft Haar wavelet
shrinkage with threshold depending on the diffusion time, if the Haar wavelet
shrinkage process is limited to a single (the finest) scale.

We remark also that these results possess obvious generalisations to the case of
singular 1-D nonlinear diffusion processes with the diffusivities (5).

3 Discrete Variational Models

While many diffusion filters can be regarded as steepest descent methods of contin-
uous energy functionals, it is less common to derive their space-discrete approxima-
tions from discrete energy functionals. Since this, however, is a conceptually clean
way of incorporating a correct treatment of boundary conditions and of showing op-
timality of the discrete solution, we prefer this approach. First we treat the isotropic
case, than we extend the framework to the anisotropic setting.

3.1 The Isotropic Case

Let the image u be discretised on a rectangular grid of grid size 1 and with integer
coordinates.

It is known from the continuous theory that diffusion processes of type (1) with
o = 0, i.e. without pre-smoothing of the gradient field, can be represented as gradient
descents for energy functionals of the type?

Elu] = %/\II(|VU|2)dJ;dy. (9)

Q

Here, ¥ denotes an increasing function on ]R(')" with ¥/ = g.

Discrete energy function. We want to generate a discrete energy function by
discretising (9) in a way that introduces as little numerical blurring as possible, and
compute the corresponding discrete gradient descent. The best locations to discretise
the integrand most locally are inter-pixel points (i + %, i+ %) where i, j are integers.
In this case, it is possible to approximate the squared gradient magnitude using

2For o # 0, no energy functional is known that has (1) as gradient descent.



only the four surrounding pixels. Qur discrete energy function will therefore have
the form )
o 2
Bw) = 5 30 (V1 5.1) - (10)
0,

1 is some discretisation of the squared gradient magnitude |Vu/|?
within the four-pixel cell {4,741} x {j,7 + 1}, and the outer sum runs over all such
four-pixel cells.

2

Discretisation of |Vu|?. Tt remains to discretise the squared gradient magnitude
|Vu|? at cell midpoints (i + 3,7+ 3). We will do this in a twofold way. For the sake
of later generalisation, we set v = u. To simplify notation, we fix 1 = j = 1.

We have in standard coordinates |Vo|* = (8,v)? + (9,v)?. We can approximate
0zv and Oyv by arithmetic means of central difference approximations,

(Ozv)3 s ~ T(va2 +vo1 —vi2 —v11) a1
11
(ay’u)%,% i~ %(’02,2 —v21 + V12 — 'Ul,l)
which leads to
( |V’U|2 ) %,% ~ %((’02,2 — ?]1,1)2 + (’02,1 — ’1)1,2)2) . (12)

Since, however, computing the gradient magnitude in fact relies on the squares
of the partial derivatives, we can replace the averaging of central difference approx-
imations of the derivatives themselves in (11) by averaging the squared derivatives,
which gives

((3zv)2) ~ 1 ((112,2 - 111,2)2 + (v2,1 — ’01,1)2) )

33 ™3
N 2 2 (13)
((9yv) )g,g ~ 5 ((v22 —v2,1)* + (v12 —v11)%) ,
and thereby a new approximation for the gradient magnitude,
(IVol*)ss = 3( (v22 —v12)* + (v20 —v1)? 14)
+ (v2,2 = v2,1)% + (1,2 — v1,1)%) -
Each of the approximations (12), (14) and their convex combinations
2
(IVo]*)s 5 = (Da(v)s,2)*
a
= 9 ((’02,2 - ’01,2)2 + (v2,1 — 111,1)2
(15)

+ (v22 — ’02,1)2 + (v12 — ’01,1)2)
l-«o
2

((’02,2 - '01,1)2 + (vg,1 — 01,2)2) )

a € [0,1], can be used in (10).
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Figure 1: The four-pixel cells contributing to u; ;.

Discrete gradient descent. Via the chain rule we compute the partial derivative
of the energy E with respect to some particular variable u; ;:

2
oF . 1 ' 2 8[|Vu| ]’L"‘F%,j’—k%
Ouij 22" <[|Vu| ]i’+%=ﬂ"+%) Ous,j (16)

i il
V)

where [|Vu|2]i+%,j+% denotes the chosen discretisation of |Vu|? at (i + i+ 1.

Then the corresponding gradient descent is

for all 4,7 , (17)

Uiyj = —
Uij

where we have denoted differentiation with respect to the time ¢ by a dot. For
given (7, 7), the sum on the right-hand side has four possibly nonzero contributions
belonging to the cells 2 x 2-pixel cells

(=) {i-Lapx{i-14}, (+=): {ii+1}x{j-1Lj},

() -LxUi+l),  (0: GityxGiy, O

which contain the pixel (7, j); see also Figure 1.
It remains to compute 9| Vul|*]

) i/+%,j,+%/8ui,j. With the discretisation (15) we
ave
A .
~uy " 5 (2uig — iy —ugj) + —5— (Ui — ui-15-1)
oVuPloy a 1—a
é = —(2“i,j = Ui+1,5 — ui,j—l) + —(ui,j — ui_|_1,j_1) ,
O0u; j 2 2 (1)
ANV) sy _a, o
~ou, 5( Uij — Wi1,j — Uijy1) + T(ui’j — Uis1j+1)
8[|VU|2](++) o' 1—a
T owy; 5 (Ui — i1y — Uig) + —5— (Ui — Uir1g41)

where the indices (——), (+—), (—+), (++) refer to the cells (18), compare Fig. 1.



Inserting these expressions into (17), we obtain the dynamical system

Ujj = %( i—1j-1 (auim1j +ouij1+ (1= eJui-1j-1 — (1 + ajuy)
+ ‘1’;+ i (Otuz'+1,j +ouij1+ (1= auiprj1 — (1+ a)uiy)
> (20)
+ 01 (@i F ot + (1 - @uicygen — (14 @)uig)
0 (@i e + (1 - @Juiprge — (1 a)ui,j))
2’

with @/, ., =¥ ([|Vu|’

) as our final gradient descent equation.
Z+§a]+§

i+3.0+3
Neumann boundary conditions. For a rectangular image domain equipped
with a regular grid, Neumann boundary conditions are realised by mirroring the
pixels of the marginal rows and columns of the image. In this setting, the gradi-
ent descent equations (20) can be applied without change to the boundary pixels,
guaranteeing that no net flux across the image boundary takes place.

Extension to multi-channel images. The space-discrete framework developed

here for grey-value images admits a straightforward extension to images whose values

are tuples of real numbers, like colour images, vector- or matrix-valued images. This

includes particularly tensor-valued images arising from diffusion tensor magnetic res-

onance imaging and several other applications in e.g. geology and civil engineering.
A discrete energy function for such a multi-channel image is given by

- %E‘I’ (Z[\vukﬁ]i%ﬂ;) (21)
,] k

where the inner summation extends over the image channels uy, (i.e. colour channels,
vector components, or matrix entries). For the discretisation of |Vuy|? one simply
uses (15) with v = u.

The corresponding gradient descent reads

2

(U - ! 2 2
Wkitj = 8u1czg a qu (Z Vel ]i'+%’j'+%) Oug;i;j @

where wuy,; ; refers to the value of image channel k at pixel (i,j). Note that the

partial derivative 8[| Vuy|* li T /Ouy; ; is computed within the image channel &,

while the diffusivity ¥’(-) aggregates in its argument all image channels and thereby
couples the evolutions of all channels.

3.2 The Anisotropic Case

Similar to the link between diffusion and energy minimisation mentioned at the begin
of Subsection 3.1, there is also a relation between anisotropic diffusion processes with
0 = 0 = 0 and energy minimisation? [56]. However, for scalar-valued images (6) with

3For ¢ # 0 and o # 0, no energy functional is known that warrants (6) as gradient descent.

10



o = 0 = (0 degenerates into an isotropic process. In contrast, these parameters still
admit a truly anisotropic process for multi-channel images, like colour images, vector
or matrix fields.

An energy functional for this case reads [55]

Bfu] — % / tr U (J (V) dz dy (23)
Q

with the structure tensor J(Vu) that with ¢ = o = 0 simplifies to the sum of outer
products

J(Vu) =) VuVuy . (24)
k

The summation here extends over all channels (colour channels, vector components
or matrix entries) of the multi-channel image. By ¥ we denote an increasing function
on ]R(')F which is applied to its symmetric positive semidefinite matrix argument as
usual by acting on the eigenvalues and leaving the eigenvector system intact.

Anisotropic discrete energy function. Analog to the isotropic case, we want to
discretise (23) into a discrete energy function and derive its space-discrete gradient
descent. In order to reduce as much as possible numerical blurring effects, we choose
again the locations (i + 1,/ + %) with integers i and j for the discretisation of the
structure tensor ), VukVu;cF. Our energy function thus reads

E(u) := %Ztr\P (Z[VukVug]H_%’H_%) (25)
2] k

where [VukVuE]i +1g+l denotes an approximation of the outer gradient product
VurVul at (i + %, Jj+ %) The outer sum runs over all these locations while the

inner sum again extends over all channels.

Discretisations of the structure tensor. It remains to discretise the structure
tensor J which we will again do in two ways. For abbreviation we set v := wug
throughout this paragraph, and write down the discretisations for ¢ = j = 1. The
most direct approach to discretising J is to discretise the gradients Vv according to
(11) from which we obtain the components of the outer product VoVoT:

(va)%,% ~ t(vop +vo1 —vip —v1,)?
(831“)2%,% ~ i(’vz,z — V21 + V12 — v1,1)2 (26)
(viayv)% 8 R %(’02,2 + w91 — 12 — v1,1) (V22 — Vo1 + V12 — V1,1)

= 1 ((v22 —v1,1)* = (v21 —v12)?) .
Summation over image channels yields the approximated structure tensor field.
As an alternative, one can use one-sided finite differences at each of the four
pixels of the cell for approximation. At (1,1), one obtains the approximations
(G011 = (w21 —v11)

2 27
(Byv)11 = 3(vi2 — v1,1) - 27)

11



From these an approximation of the outer product VoVo™ at (1,1) is calculated. At
the other three pixels, analogous approximations are made using left- or right-sided
differences such as to stay within the given four-pixel cell. Taking the arithmetic
mean of the four outer product approximations yields the second-order approxima-
tion

(awv)%,% ~ 2 ((va2 —v12)2 + (v2,1 — v1,1)?)
(0,0)5 3 = 3((va2 = v2,1)" + (v1,2 — v11)°) (28)
(0r00yv)3 5 ~ (a2 —v11)? = (v21 —v1,2)7) -

Note that the two approximations (26) and (28) differ only in the main diagonal
entries of the structure tensor.
Once more, one can also use convex combinations of (26) and (28), i.e.

(0:0)3 5 ~ 7 ((v22 + 021 = V12 = v1,1)" + V2 — Va1 — V12 +011)°)
(ayv)%’% ~ L((va2 —vo,1 +v12 —v1,1)% + alvop —vo1 — V12 +v1,1)%) . (29)
(Oav0yv)2 s = 1 ((v22 —v1,1)” = (v2,1 = v12)?)
for a € [0, 1].

An easy calculation shows that the trace (0,v)3 5 + (9yv)% s of the so discre-
272 272

tised outer product equals the discretised square gradient magnitude (15) from the

isotropic case. By summation over channels, the same holds for tr J and the squared

gradient magnitude 3 |[Vug|? of a multichannel image. Even the one-sided differ-
k

ence procedure used to obtain (28) could equally be used in the isotropic case to
derive (13) in a different way.

Gradient descent for anisotropic discrete energy. According to the chain
rule, the partial derivative of the energy E with respect to some particular variable
Ug;;,; 18 given by

OVurVull,

- _Zt 14 Z[Vu A S S (30)
a’u,]”] N : l z—|— J+2 8uk;i,j ’

the corresponding gradient descent by

oF
8uk;i’j

uk;i,j = — for all i,j,k . (31)
For given (i,j), the sum on the right-hand side has again four possibly nonzero
contributions belonging to the cells (18); compare Figure 1. We need to compute
OVurVuy | PRSP /Ouys; ;. To simplify the equations, we do this separately for the
two discretisations (26), (28). We also abbreviate v := uy in equations which do not
contain explicit interactions of image channels.

12



First, by discretising the outer product according to (26), we find that

B[V’UVUT](__) _ Vi,j —Vi-1,j—1 11 i Vij—1—Vi—1,5
0v; 4 11 4
B[VUVUT](+_) _ Vi~ Vi-1,5-1 11 n Vi j—1—Vi—1,j
ov; ; 4 11 4
B[VUVUT](_+) _ Vi~ Vi-1,j-1 11 n Vi, j—1—Vi—1,j
ov; ; 4 11 4

B[VUVUT](++)_vi,j—vi_1,j_1 11 +'Ui,j—1—’Uz'— j
ov; ; o 4 11 4

where we have used again the cell abbreviations from (18).
the right-hand side of (31) and evaluating the trace expression, we obtain

where

1 (1 0
0 -1/’
Li (1
0
i (1 0
0o -1)”°
i (1 0
0 -1

By plugging this into

. 1
01 = 7 (= (6 + b+ 20 )(vij — vie15-1)
—(a—— = b__)(vij—1 —vi—1y)
+ (aq- — b+_)('Ui+1,j - Ui,j—l)
+(a4— + by — 204 2) (D151 — vig) (33)
= (a—4 = b—y) (Vi1 — vi—1)
—(a—g +b_y —2c_)(vij —vi—1,541)
+ (@44 + bt + 204 4) (Vig1,541 — viy)
+ (@44 — byy) (Vi1 — Vi) -
a__ C__
\IJI(Z[VukVuE]Z_; J—%) = (C__ b__> ’
k
T a4 Cq—
\P'(Z[VukVuk]H_l J_%) = (c+ b+> )
k (34)
. a_4 C—4
\P/(Z[VukVuk]z_%J+%) = (c_ b_+> )
k
/ T _. [ O++ O+t
\ (zk:[VukVUk]H;,jJr;) - (C++ b++> )

If we use instead (28) in discretising the structure tensor, (32) is replaced by

oVovel]) 1 (2('01',3' —Vi—1;5) Vij — 'Ui—l,j—l)

Qvi,; 4 \vij —vi-1-1 2(vij —vij-1))’
8[VUVUT]H*) _1 ( (vij —vit15)  —vij+ Uz‘+1,j—1>

Ovij T4\ v+ vipi-1 2(vi —vigo1) ) (35)
OVuVoT—4) _ 1 ( (vij —vim14)  —vij +Ui—1,j+1>

0v; 4\ v +vici 41 2(vij —vigy1) ) ]
o[VovoT Jer) _ 1 ( Vij — Vit1j) Vij — 'Ui+1,j+1>

i, 4 \vij = vit1r1 2(vig — vijt1)

13



which implies as gradient descent
bij = 3(—a——(vij—vi-17) —b__(v; ) —c——(v;, )
+2( ay—(vig1,—vij) — by (’U — V1) — C4— ('Uz+1,j—1_'Ui,j))
+3(—a_y(vij—vi_1y) ( ) +e+( )
)
(

Vi ’Ui,j 1
+ b4 (vij+1—0ij Vi,j —Vi—1,j+1
+ ++('Uz,g+1—'Uz,g)+C++(’Uz+1,y+1 vij)) -

29), the gradient descent will be the corresponding
convex combination of (33) and (36).

+%( a++(vz+1]_")zg

For a convex combination

Neumann boundary conditions. As in the isotropic case, Neumann boundary
conditions for a rectangular domain can be ensured simply by mirroring boundary
rows and columns. Note that the antidiagonal terms in both discretisations (26)
and (28) of the structure tensor vanish at the midpoints of cells crossing the domain
boundary, aligning the eigensystem of the structure tensor with the boundary tan-
gent and normal directions. As a consequence, the gradient descent equations (33)
and (36) admit no net flow across the image boundaries and ensure identical evolu-
tion for boundary pixels and their mirrored counterparts. This stands in contrast
to other discretisations of anisotropic processes which require a special adjustment
for boundary pixels.

4 Discretisations for Diffusion Filtering Using Four-Pixel
Cells

In this section, we want to use the discretisations derived from the variational models
to 2-D nonlinear diffusion processes in more generality. The discretisation of a
diffusion process of type (1) or (6) consists of two components. First, there is a
discretisation of the divergence form div(* - Vu) of diffusion, where * denotes either
the diffusivity field g or the diffusion tensor field D, which is treated in this context
as “black box”. Second, there is the discretisation of g or D itself. This distinction
also makes sense since, in the general case, g or D does not depend on the gradient
Vu itself but on the smoothed version Vu,.

4.1 Isotropic Nonlinear Diffusion

We start with the isotropic nonlinear diffusion processes (1).

4.1.1 Space Discretisation

In accordance with the setting adopted in Subsection 3.1, we assume that the dif-
fusivity field g is discretised in the cell midpoints (i + %, + 3). In the variational
model, U’ plays the role of the diffusivity field g.

Discretisation of the diffusivity field. The discretisation of g boils down to dis-
cretising the squared gradient magnitude |Vug|2 and applying the diffusivity func-
tion g(-) to this approximation. The equations (15) with v = u, provide exactly the
desired approximation.

14



Discretisation of isotropic diffusion with given diffusivity. With a pre-
scribed diffusivity field, a discretisation of the divergence form results by simply
substituting ¥’ in (20) with g. For any « € [0,1] this gives

Uij = %( i1 -1 (ot +ouija+ (1 - a)uimyja — (1+ @)uij)

+ g1 (it + o -1+ (1 — @)uirij—1 — (1 + @)uiy)

25.7_7

(37)
+ iyt (i + o + (1= @uioa g — (14 a)uig)

iyt gt (Quigyy +auijn + (1 - Quipy g — (T+ a)ui,j)>

as an approximation of (1).

Since each summand on the right-hand side contains only quantities from one of
the four-pixel cells (18), we can rewrite (37) as average of four dynamical systems
each of which contains only interactions within one cell. One such system, written
down for simplicity for the cell {1,2} x {1,2}, reads

11 = 29% s - (—(1+ a)ur1 + augy +aurg + (1 — @)uge) ,

Ug,1 = 29% s - (aui — (1 + @)ugy + (1 — a)ure + augo) , (38)
U1 = 29% s - (aurg + (1 = @ug1 — (1 + @)ui g + auzg) ,

Ugo = 29% s - (1—-a)ui1 +oug; +oaure — (1+ @)uge) -

We stress that (38) also coincides with the application of (37) to a 2 x 2-pixel
image with periodic boundary conditions, because these boundary conditions sur-
round each pixel with four identical (up to reflections) 2 x 2 cells. In this sense, the
decomposition is in full analogy with the 1-D case.

To maintain consistency with our variational model, it is important to choose
the same parameter o € [0, 1] both in the divergence expression (37) (or (38)) and
in the argument (15) of the diffusivity function.

4.1.2 Locally Analytic Scheme for Singular Isotropic Diffusion

We strive now to use our four-pixel discretisations for the computation of isotropic
diffusion processes. We start with the special case of the singular diffusivities (5),
and choose a = 1/2 in the discretisations (37) and (15).

Analytic solution for singular diffusion. With these settings, we obtain the
following dynamical system for the four-pixel cell {1, 2} x {1,2} which describes the
simultaneous evolution of the image u and diffusivity field g:

=g (—3uig +ug1 +ui2 + ugo),
Ug1 =g (u1,1 — 3ugg +ur2 + ug2) , (39)
Up =g (u,1 +u21 —3uie +ug2) ,
Ugo = g - (u1,1 + u2,1 + u12 — 3ug2)
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with

9=9(t) = (Dy2(u))"". (40)
In the following we abbreviate D /o(u) by D(u). With the average grey value y :=
}I(fl,l + fa1 + fi1,2 + fa,2) the system (39) simplifies to

Uij =49 (B —uij), 1,7=12. (41)

This is a dynamical system with discontinuous right hand side, because of the singu-
larity of g at zero. This discontinuity can be handled in the same way as in [51], see
also [29], by considering (u; ;(t));; as a solution of (41) if it is absolutely continuous
for all ¢, and differentiable whenever the right-hand side is continuous in ¢.

The system (41) can then be solved analytically in the following way. There
exists a differentiable function h with h(0) = 1 such that, for 7,5 = 1,2,

= wig(t) = h(t) - (- fig) - (42)
Differentiation yields t; ; = —h - (u — fij), which after insertion into (41) leads to
—h (1~ fig) = 4g - (n — i) (43)
and by (42) finally to .
h=—dgh. (44)

From (41) and (42) it is clear that i and h always have opposite signs such that
the absolute value of h can never decrease. Consequently, since h(0) = 1, we see
that h(t) > 0 for t > 0. Taking this into account, we obtain by (15) and (42) that
D(u) = h(t)D(f). With (5) it follows that

h(t) = —4(D(f)) P h(t)' 7. (45)

This equation has the solution

1/p
_ Di)P
ay = (1= o) o 0<e< 2EE (46)
0 b @Y
7 s D *

Finally, by (42), the analytical solution of (41) is given for 7,57 = 1,2 by

P

4 1/p D
M+(1—ﬁ) (fig—m), 0<t< ZDE

uij(t) = b (47)
f p
i, /> @y
For the TV diffusion case p = 1, particularly, (47) simplifies to
1— 2 (fii—p), 0<t< 2D
’ K, t> 20

and shows a linear evolution which can be written in a slightly different form as

uij(t) = fij + %(M - fi;j) min{l, %Z)} , 1,7 =1,2. (49)
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For BFB diffusion, p = 2, we have the analytical solution

/ (D()?
+ 1- 7 ) 0 S < == )
u; () = : D(f) 7 i =10 (D(f))’ ’ (50)

B, t2> 8

Let us now use these analytical solutions as building blocks in a numerical scheme.

Numerical scheme for singular isotropic diffusion. We recall that the dy-
namical system (37) in the case under consideration is represented by the average
of four dynamical systems of type (39). Using the notations

'u’écaja—— = i(uf 1,5 +u§€,j71 + uécfl] 1 + U’Z]) y
'ui'c:]'rl-— = }I(uf—kl,] +ufj—1 + u§+1j 1+ u ) , (51)
pb oy = Fl g g )
e = glufin g +uf i ubiy jo +ul g) ;

we could therefore discretise (37) in time via an explicit Euler scheme and obtain
the naive scheme

k 1 k
,;— = uz] + ng 1 (/‘z,],ff ) + TgH- J— (:u'z,], z',j) (52)
k

+ ng'—é,j+§ (g g~ uig) + ng'+§,j+§ (1 ey —uby)

Here 7 denotes the time step size and u* = (uiC ;)i,; the approximate solution at pixel
(,7) and time k7. Unfortunately, due to the singularity of g at zero, this scheme be-
comes instable with respect to the maximum-minimum principle for arbitrary small
time steps if neighbouring pixel values become arbitrary close. We use therefore a
different approximation.

Due to the decomposition of (37) into the average of four 2 x 2-pixel systems, its
solution is approximatively the average of the solutions of the four smaller systems.
By (47) we know these analytical solutions. This inspires a simple algorithm to com-
pute one time step of a numerical scheme. Since this scheme is based on composing
analytic solutions for small image patches, we will call it a locally analytic scheme
(LAS). Its structure is depicted in Figure 2.

Stability Analysis. The values of the analytical solution (47) at arbitrary time
t > 0 are convex combinations of its initial values. By its construction from the an-
alytical solution (47) the novel scheme in Figure 2 therefore satisfies the maximum-—
minimum principle. Consequently, it is absolutely stable for each time step size 7.
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LAS Algorithm for Singular Isotropic Diffusion

e For each four-pixel cell {i,i + 1} x {j,7 + 1}, compute one
time step of singular isotropic diffusion according to (47).

e For each pixel (x) with coordinates (i,j), consider the
four cells

X X * X

(--) (+-) (-+) (++)

which lead to four approximations

kbt k+1 uk k+1
i;ja__’ i’j1+_’ i7j5_+, Za]’++ )
Average:
k+1 _ 1, k+1 k+1 k+1 k+1
Il {0 R o T I T S T O

Figure 2: One time step of the locally analytic scheme for a singular isotropic diffu-
sion process, where u¥, u**1 refer to the old and new time step, respectively.

Consistency Analysis. To analyse consistency, let us for simplicity focus on the
TV flow, i.e., p = 1. Then, by (48) our final scheme reads
k+1 L

— ok (uk — k) mi 1
uZyJ - uza.] + Tgi—%,j—% (/jlzaja__ uza.]) min {1’ 4’Tgi_% J—%

k k :
+ Tgl'f’%’]_% ) (y‘ivjv'f'_ o qu]) min {1’ 4’7’g

k k .
+ 7914+t (Hij—y — ui;) min {L Y

k k :
7911541 (Bijq — i) min {1’ TR } .
This scheme can be considered as a stabilisation of the explicit scheme (52). It
coincides with (52), and is therefore a consistent approximation for TV diffusion, if
each of the four minimum operations on its right-hand side selects the value 1. This

consistency condition is fulfilled for

1 1 1
OSTSmin{ L } (54)

? b b
49i15-2 it -1 i it Ainted

For larger 7 it is easy to see that linear diffusion dyu = Aw is approximated. This
happens in regions where the gradient is already close to zero. In this case, however,
the visual differences between linear diffusion and TV diffusion are small.
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Figure 3: Left to right: (a) Original image, 93 x 93 pixels. (b) TV diffusion
with standard explicit scheme, where TV diffusivity is regularised with ¢ = 0.01,
7 = 0.0025, 10000 iterations. (c) TV diffusion computed with LAS without regu-
larisation of diffusivity, 7 = 0.1, 250 iterations.

Figure 4: Left to right: (a) One quadrant of a rotationally invariant test image,
64 x 64 pixels. (b) TV diffusion with standard explicit scheme, ¢ = 0.01, 7 = 0.0025,
12000 iterations. (c¢) TV diffusion with our LAS algorithm, 7 = 0.1, 300 iterations.

Conditional consistency is a characteristic property that can be observed for ab-
solutely stable explicit schemes. A typical example for this behaviour is the DuFort—
Frankel method [25].

Experiments. We illustrate our LAS approach by three experiments. First, in
Figure 3, we contrast the regularisation-free LAS for TV diffusion with a standard
explicit discretisation. In the latter scheme, TV diffusivity is approximated by the
regularised TV diffusivity 1/4/|Vu|? 4+ 2. Since the stability condition for explicit
schemes imposes the upper limit €/4 on the time step size, a high number of iterations
is needed for a reasonably small €. It can be seen that the LAS based on four-pixel
discretisations and the unregularised TV diffusivity — which cannot be used in the
explicit scheme — considerably reduce blurring effects caused by the discretisation.

Figure 4 shows that the LAS approach also behaves well in terms of rotation
invariance.

Figure 5 illustrates the behaviour for balanced forward-backward diffusion. With
equal parameters, it can be seen again that the LAS looks sharper by preserving
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Figure 5: Left to right: (a) Original image from Figure 3, 93 x 93 pixels. (b)
Balanced forward-backward diffusion with standard explicit scheme, ¢ = 0.1, 7 =
0.0025, 160000 iterations. (c¢) BFB diffusion with our LAS, 7 = 0.1, 4000 iterations.

finer details. Moreover, it is worth mentioning that in all LAS experiments we used
a time step size that exceeded the largest admissible step size of the explicit scheme
by a factor of 40.

4.1.3 Locally Semi-Analytic Scheme for Isotropic Nonlinear Diffusion

Analytic solutions with frozen diffusivity. For arbitrary diffusivity functions
9(|Vus|?), we do in general not have an analytic solution in the sense of (47) which
incorporates the dynamics of g. Nevertheless, for a fixed diffusivity field g, we can
still solve analytically the dynamical system (38) which governs the diffusion process
within one four-pixel cell.

To this end it is useful to introduce new variables w; ; by

W := HUH , (55)

where

1
U :— (“1,1 U2,1> W= (wl,l w2,1) OH = — (1 1) . (56)
Uul2 U2.2 wi2 W22 v\l -1
In terms of the new variables, (38) can be rewritten in a simpler way:

w1 =10, wo 1 = —4gwa 1 ,

(57)

w2 = —4gwi s , wo 9 = —8agws s ,

where we have set g := g3 3 for the sole diffusivity value involved. The solution of
272

(57) is clear: While w,; stays constant, the other variables are subject to indepen-
dent exponential decays,

wi,1(t) = w1,1(0) , wa,1(t) = ¢ (0) (58)
wip(t) = e 'wi(0) wa2(t) = €2 w5(0) .
Via the inverse transform of (55),
Ut)=HW (@) H, (59)

this solution can be rewritten in terms of the original variables.
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LSAS Algorithm for Isotropic Diffusion

e Compute the pre-smoothed image v := K, * u* by convo-
lution.

e For each four-pixel cell {i,7 + 1} x {j,j + 1}, compute the
squared gradient |Vv|* according to (15), and the diffu-
sivity g = g(|Vol®).

e For each four-pixel cell, compute one time step of
isotropic diffusion via the analytical solution (55), (58),
(59).

e For each pixel (x) with coordinates (i,j), consider the
four cells

X X * X

(--) (+-) (-+) (++)

which lead to four approximations

uktl k+1 - k+1 k+1
Z;]a__’ Z’]1+_’ 27.75_+, Za]’++ )
Average:
k+1 1, k+1 k+1 k+1 k+1
wijo =gy Fupiy Fugy Fug)

Figure 6: One time step of the locally semi-analytic scheme for a nonlinear isotropic
diffusion process.

Numerical scheme in the case of arbitrary diffusivity. Similar as in Sub-
section 4.1.2, the solution given by (55), (58), (59) can be used as an approximation
to the solution of the dynamical system (38). Consequently, four solutions of this
kind can again be used to approximate the solution of (37). As a difference to the
previous case, it is now necessary to compute in each time step the pre-smoothed
image v = u, and the diffusivity field g(|Vv|?). One time step of the so adapted
scheme is given in Figure 6. Note that this scheme can be used for every « € [0, 1].

In analogy to semi-implicit schemes that keep the diffusivity fixed at the previous
time level while discretising the remainder in an implicit fashion, we will call this
scheme a locally semi-analytic scheme (LSAS). Its structure is detailed in Figure 6.

Stability. Substituting (59) into (58) one checks that, as in the LAS case, the

values of the analytical solution for u for any ¢ > 0 are convex combinations of the
initial values. Via the averaging procedure this guarantees a maximum-minimum
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Figure 7: Left to right: (a) Original image from Figure 3, 93 x 93 pixels. (b) Pro-
cessed by nonlinear isotropic diffusion, contrast parameter A = 3, noise scale ¢ = 0.5,
with standard explicit scheme, time step size 7 = 0.25, N = 1600 iterations. (c) Pro-
cessed by nonlinear isotropic diffusion, same parameters as (b), with LSAS, a = 0.5,
T =0.25, N = 1600.

Figure 8: Left to right: (a) One quadrant of a rotationally invariant test im-
age, 64 x 64 pixels. (b) Nonlinear isotropic diffusion, contrast parameter A = 2.8,
smoothing scale ¢ = 1, with LSAS, time step size 7 = 0.5 and N = 20 iterations.
The discretisation parameter in the LSAS is @ = 0. (c¢) Same as in (b) but with
a =0.5. (d) Same as in (b) but with a = 1.

principle, and absolute stability of our LSAS for arbitrary time step size 7.

Consistency. Similar to the LAS case, the LSAS scheme is conditionally consis-
tent: It is easy to see that for 7 — 0o, the scheme creates constant 2 x 2 patches.
Averaging them approximates linear diffusion with a constant diffusivity.

Experiments. We illustrate the performance of the LSAS for isotropic nonlinear
diffusion by two experiments. In both cases we use (4) as diffusivity function. Fig-
ure 7 shows the denoising capability of nonlinear isotropic diffusion implemented by
a standard explicit scheme and by our LSAS method. The enhanced sharpness of
the LSAS result is visible.

Figure 8 demonstrates the rotational invariance properties of the LSAS for non-
linear isotropic diffusion and the effect of different choices of the parameter « in
our discretisation. The images filtered with & = 0, @ = 0.5 and o = 1 are largely
comparable and display a good rotational invariance. A closer look reveals that
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the scheme with a = 1 slightly prefers diagonal directions, while for o = 0 faint
checkerboard artifacts appear in homogeneous regions. Mixing both discretisations
as in Figure 8(c) reduces both phenomena.

4.1.4 Multi-Channel and 3-D Images

Multi-channel images. The procedure outlined at the end of Subsection 3.1
admits to directly extend our numerical schemes to colour images, vector- or matrix-
valued images. For a multi-channel image v = (v ;)i jk, One uses

(Da(v))” == (Da(vy))” (60)

k

with (D4 (vg))? given by (15) as squared gradient approximation in the argument
of g. With the resulting channel-aggregated diffusivity field, one uses then for each
channel separately the divergence discretisation (37) or any of the derived schemes.

Three-dimensional images. The natural extension of our ideas to three-dimen-
sional images involves dynamical systems for eight-pixel (2x2x2) bricks. Neighbours
of a pixel within such a brick now come in three types: they can be adjacent via
an edge, a face diagonal or a volume diagonal, adding degrees of freedom to the
discretisation procedure. For simplicity, we restrict ourselves to generalising the
important case @ = 1/2 which underlies our LAS from Subsection 4.1.2. In this
case, we have (D, /2(1)))2 which is just the quarter sum of squared differences of all
pixel pairs in the four-pixel cell, and the dynamical system (41). It is easy to check
that in the case of an eight-pixel cell (u; ;)i ji=1,2 the expression

1
(D(v))? =15 > Wiga— i) (61)
R TR

is a consistent approximation for ( \V'u|2) 3, while
2

33
2 b 2 b

Uiy =49 - (b —uije), %45,0=12, (62)
with y denoting the arithmetic mean of the eight initial values, consistently approxi-
mates u; = div(g-Vu). Derivation from these approximations of a LSAS or, with the

diffusivity (5), even a LAS for 3-D isotropic nonlinear diffusion based on eight-pixel
bricks is straightforward.

4.2 Anisotropic Nonlinear Diffusion
We turn now to considering the nonlinear anisotropic diffusion equation (6) with
anisotropic diffusion tensor D(J) depending on the structure tensor (7).

4.2.1 Spatial Discretisation

As in the isotropic case, the discretisations developed in Subsection 3.2 give rise to
discretisations of both the divergence form and the structure tensor field. Since p
and ¢ are no longer bound to be zero, grey-value images can be treated as well as
multi-channel images.
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Discretisation of the diffusion tensor field. Discretising D at the cell mid-
points (i+ %, 7+ %) reduces to computing approximations for the structure tensor J.
Inserting v = u, into (29) results in a discretisation of the outer product matrices
Vu,Vul which by subsequent convolution with K, o yields the discretised structure
tensor field.

Discretisation of anisotropic diffusion with given diffusion tensor field.
To discretise the diffusion process with fixed diffusion tensor field, we have simply
to replace (34) with

_fa—— c__ a4 4
Dy 11— ( b> o Dty = (c+ b+) !
(63)
_. [0+ C—+ . [0+ C++
where D, 1 TER! etc. are values of the given diffusion tensor field. With the so defined

aiy, biy, c1q, and v = u, (in the case of grey-value images), the equations (33),
(36) and their convex combinations are the desired approximations.

As before, each of these equations can be split up into the average of four dy-
namical systems localised in the four-pixel cells (18). Denoting the diffusion tensor
3 3
272
tem corresponding to (1 — «) - (33) + « - (36) for the cell {1,2} x {1,2}. With the
abbreviations

discretised in (2, 2) simply by D = (Z IC)>’ we state the four-pixel dynamical sys-

do =1+ a)a+(1-a),
re = (1—a)a+(1+a)b, (64)
(

it reads _
01,1 = galug1 —u1,1) ( )+ Salu22 —u1,1)

Ug,1 = qa(u1,1 —ug) + Ta(u2,2 —ug1) — sa(ul,z —ug1) ,

U2 = qalu22 — u12) + ra(ur ) — Sa(u2 )

U = Qa(U1,2 —ug2) + T'a(uz,l —ug2) + Sa(U1,1 — Ug2) -

U2 — U1 ;

(65)

— U1,2 Sa —ui2),

Inserting the isotropic diffusion tensor D = gss 1, where I is the 2X2 unit matrix,

into (65) yields exactly the system (38) which underlines that our discretisation of
anisotropic diffusion is a natural extension of the isotropic case.

4.2.2 Locally Semi-Analytic Schemes for Anisotropic Diffusion

Analytic solution with frozen diffusion tensor field. Similar to the proceed-
ing in Subsection 4.1.3, we note that the system (65) has a fairly simple analytic
solution under the assumption that the diffusion tensors D are kept fixed during the
image evolution.

To derive this solution, we rewrite (65) via the variable transform (55) as

wy =0, wo,1 = —4dawsy 1 — 4cw o ,
—4a(a + db)wa s .

w2 = —4dcwe 1 — 4bwi 2 , w22
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This system decomposes into independent evolutions for w1, which is constant, for
w2 which follows a one-dimensional linear dynamical system with the solution

w(t) = ey 5(0) (67)
(in particular, for a = 0 it is constant) and the two-dimensional system

w=—-4Dw . (68)
for w := (w1, wl,g)T. Let the eigendecomposition of D be given by D = )\1e1e1T +
Aoesel with eigenvalues Ao = (a + b+ y/(a — b)2 + 4c?) and orthonormal eigen-
vectors e, e2. Then, remembering that D is kept constant, the solution of (68)
is
w(t) = e Mt(elTw(0))e; + e (el w(0))es . (69)
Via the inverse transform (59) the analytic solution given by (67), (69) can easily
be expressed with respect to the original variables.

Numerical scheme for anisotropic diffusion. In an analogous manner as done
in Subsection 4.1.3 we can employ the explicit solutions (67), (69) to construct locally
semi-analytic schemes for anisotropic diffusion. To this end, we use the splitting of
(1 —a)-(33) + - (36) into the contributions from four-pixel cells. For these, our
analytic solution is evaluated with evolution time equalling the time step size 7.

For the anisotropic diffusion processes in question, the diffusion tensor D, whose
entries are needed to evaluate (67) and (69), depends on the structure tensor J,.
In each time step, the evaluation of the dynamical systems has therefore to be
preceded by recomputing D and its eigendecomposition from the current data wu.
This completes our LSAS, one step of which is summarised in Figure 9.

Stability. From (59) one easily sees that tr(U(t)U(t)") = tr(W ()W (¢)T) for all
t. With the analytical solution (67), (69), it is seen that tr(WW™) decreases mono-
tonically in ¢ (note that A, Ay > 0). Since tr(UUT) is the Euclidean norm of the
2 x 2 image, it follows that, within each four-pixel cell, our scheme is [?-stable for
any time step size. By the averaging procedure, this /2-stability holds also for the
LSAS on the entire grid.

Consistency. The favourable stability property again comes in conjunction with
conditional consistency: For fixed spatial grid size and a time step size tending
to infinity, a scheme based on the case @ = 0 approaches a local averaging on
a checkerboard decomposition of our grid. For a > 0, the averaging involves all
pixels of the grid, though for @ < 1 the averaging is faster within each checkerboard
component than between them.

Experiments. In Figure 10 we use our scheme to perform edge-enhancing diffu-
sion [54]. This process has been designed to perform diffusion along edges, while
reducing smoothing across them. In this case, there is no integration over the outer
products, so ¢ = 0. The diffusion tensor D has the same eigenvectors as the outer
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LSAS Algorithm for Anisotropic Diffusion

Compute the pre-smoothed image v := K, * u* by convo-
lution.

For each four-pixel cell {i,i + 1} x {j,j + 1}, compute the
approximation of the tensor product VoVv"' according to
(29).

Compute the structure tensor field J = K, * (VoVv!) by
convolution.

For each four-pixel cell, compute the diffusion tensor D =
D(J).

For each four-pixel cell, compute one time step of
anisotropic diffusion via the analytical solution (55), (67),
(69), (59).

For each pixel (x) with coordinates (i,j), consider the
four cells

* * * *

(=-) (+-) (= (++)
which lead to four approximations

k+1 k+1
uivjaff’ uivja"'i’

k+1 k+1

ui7j77+’ Za.]7++ ’

Average:

k+1 _ 1/, k+1 k+1 k+1 k+1
uZ)] - 4(ui7j177 + uiajv‘i'* + uivjvf’i’ + ulv]a++) :

Figure 9: One time step of the locally semi-analytic scheme for anisotropic diffusion.

product J = VoVoT, namely Vv and its orthogonal Vut. The eigenvalue in direc-
tion Vv = Vu, is given by the same function (4) with threshold parameter A > 0
that has already been used in Subsection 4.1.3, which means that g is applied to the

first eigenvalue of .J. The eigenvalue of D in direction Vo= is fixed to 1.

The noisy image from Figure 10(a) is denoised with a standard explicit scheme

with central spatial differences, and with the locally semi-analytic scheme.

observed that the denoising result with our new scheme is slightly sharper. Moreover,
a look at the parameters shows that the effective evolution time used by the new
scheme is six times larger than with the explicit scheme which demonstrates how
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Figure 10: Left to right: (a) Test image with impulsive noise, 128 x 128 pixels.
(b) Denoised by edge-enhancing diffusion, A = 5, 0 = 1.8, o = 0, with standard
explicit scheme, 7 = 0.166, N = 200 iterations. (c) Denoised by edge-enhancing
diffusion, same parameters as in (b), but with LSAS, o = 0, 7 = 1, N = 200

iterations.

Figure 11: Left to right: (a) Test image from Figure 8, 64 x 64 pixels. (b) Exact
solution for coherence-enhancing diffusion, ¢ = 0.001, C =1, ¢ = 0.5, p = 4, at
time ¢ = 250. (c) Filtered with the nonnegativity scheme [54] with 7 = 1/6, and
N = 1500 iterations. Average absolute error: 17.99. (d) Processed with our LSAS
algorithm, same parameters. Average absolute error: 3.81.

much the latter is indeed dominated by numerical blurring artifacts.

In our next experiment, Figure 11, we consider coherence-enhancing diffusion
(CED) [54]. It uses an integration scale p that is considerably larger than o, thereby
introducing into J a smoothing over eigenvector systems. If the structure tensor
has the eigendecomposition J = ulelerlr + ,uzege;F with g1 > po, then the diffusion
tensor D(J) has the decomposition D(J) := A\jejei + lseseq with eigenvalues

)\1 =&,
N € if 11 = po, (70)
2T et (I1—e)exp (ﬁ) else,

some small regularisation parameter ¢ > 0 and a contrast parameter C' > 0. This
process smoothes along flow-like structures. For our rotationally invariant test image
only radial linear diffusion with diffusivity € takes place. Hence, the exact solution
at time ¢ is given by a convolution with a Gaussian of standard deviation v/2¢t. By
comparing the solutions of the so-called nonnegativity discretisation from [54] with
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Figure 12: Left to right: (a) Fingerprint image, 100 x 100 pixels. (b) Filtered
with CED, ¢ = 0.001, C =1, o0 = 0.5, p = 4, using the nonnegativity scheme [54]
with 7 =1/6 and N = 60 iterations. (¢) Processed with our LSAS scheme (« = 0)
for CED, same parameters. (d) LSAS scheme with 7 = 1 and N = 10 iterations.

Figure 13: Left to right: (a) Test image from Figure 8(a) filtered by coherence-
enhancing diffusion, ¢ = 0.001, C = 1, ¢ = 0.5, o = 4, with LSAS, 7 = 0.166
and N = 300. The discretisation weight in the LSAS is @ = 0 (b) Same but
with discretisation weight & = 1. (c) Detail (28 x 28 pixels) from Figure 10(c),
where the grey-values have been rescaled to raise contrast. (d) Corresponding detail
from LSAS filtering result for CED with same parameters as in Figure 10(c) except
a = (0.01.

our LSAS algorithm and the exact solution, we see that the LSAS does not suffer
from visible blurring artifacts. It preserves rotation invariance very well and creates
significantly lower errors than the nonnegativity scheme.

These quantitative findings are also confirmed in the fingerprint example in Fig-
ure 12. We observe that the LSAS scheme gives much sharper results, and that it
yields still realistic results for time step sizes far beyond the stability limit 1/6 of
the nonnegativity scheme.

Finally, we investigate the effect of different discretisation parameters « in our
LSAS for anisotropic diffusion. The comparison of the CED filtering results in
Figure 13(a) and (b) reveals that, unlike in the isotropic case, the choice @ = 0
is clearly superior to a = 1 in terms of both sharpness and rotational invariance.
However, from Figure 13(c) and (d) it can be seen that introducing a small amount
of the second discretisation (1...2 percent) allows to suppress the checkerboard
artifacts that are inherent to the o = 0 method.
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5 Link to Haar Wavelet Shrinkage

In this section we want to interpret our LAS/LSAS schemes for isotropic and
anisotropic diffusion in the context of Haar wavelet shrinkage. In the one-dimen-
sional setting, a link between explicit nonlinear diffusion schemes and Haar wavelet
shrinkage was shown in [51, 40]. We start by considering four-pixel images.

5.1 Haar Wavelet Shrinkage on Four-Pixel Cells

Let us explain how f := ( fi,j)? =1 changes under two-dimensional Haar wavelet
shrinkage. One cycle of Haar wavelet shrinkage consists of the following three steps.

1. In the analysis step, the four-pixel image f is transformed by applying low and
high pass Haar filters to the rows and columns of f, more precisely

f:=HfH (71)
with H defined by (56).

2. In the shrinkage step, we modify the high-pass coefficients by reducing the
absolute values of some or all of them. To this end, we apply a shrinkage
function Sy depending on a threshold parameter 8 to the high-pass filtered
coefficients, i.e. we compute S@(fm), Sg(fg,l), S@(fz,z) and let the low-pass
coefficient Sg(fl,l) = f1,1 fixed.

3. In the synthesis step, we perform the inverse transform of step 1 on the
shrunken coefficients, and end up with

fO =HSy(f)H . (72)

In conventional wavelet shrinkage, the threshold depends on the individual coeffi-
cients f; ;. For example, soft shrinkage [22] shrinks the coefficients towards 0 by an
amount that is given by a threshold parameter 6:

fij—0sen(fij) if |fi;] >0,
0 otherwise .

So(fij) = { (73)

In the following, we introduce shrinkage rules such that the Haar wavelet shrin-
kage produces exactly the analytic solutions of our small dynamical systems (41),
(57) and (66). In contrast to ordinary wavelet shrinkage our diffusion-inspired
shrinkage rules couple the three high-pass components in an appropriate way. We
will see that this simple coupling trick will help to improve even the rotation in-
variance of multi-scale Haar wavelet schemes. To our knowledge, the first coupled
isotropic shrinkage rule was proposed in [39].

Isotropic case with singular diffusivity. By straightforward computation we
see that D2 (v) ~ |Vv|? determined in (15) coincides with

D (v) = 77%,1 + 77%,2 + 2 63,2 . (74)
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First we consider the solution of the dynamical syste (41) according to the sin-
gular diffusivity (5). Then, with D(f) := Dys(f) = (2, + f2, + f32)"/?, the
corresponding shrinkage rule is given for (i,7) € {( 2),(2,1),(2,2)} by

_ 1/ A' '
Solfeg) = {(1 SO g DO @0

0, D(f) < (4p0)*7 .

In other words, the inverse Haar transform applied to the shrunken coefficients
So(fi;) in (75) produces for § = t exactly the solution (47) of our dynamical sys-
tem (41).

Isotropic case with arbitrary diffusivity. In case of arbitrary diffusivity func-
tions, the shrinkage rule follows immediately from (58), namely

~

So(fo,1) := e_4gef2,1 )
So(fr2) =€ 4 f15, (76)
(f2 9) == Sga9f2,2 ;

where g = g(D?(v)) and § = t. We remark that the shrinkage rules proposed in [39]
equal the first-order terms of (76).

Anisotropic case. First of all, the approximation of the coefficients of the struc-
ture tensor VoVoT in (29) can be written in wavelet terms as

(020)> m 051 + b3y, (Oyv)> R U1+ abdsy, O Oyv & G101 - (77)

In accordance with (67) and (69) our shrinkage function couples the reduction of
the antidiagonal coefficients fl 5 and f2 1 while shrinking f2 2 independently:

foa\\ o (e M0 0 ) T <f2 1)
% ((fl 2)) < ( 0 )9 fiz (78)
50(f2,2) =€ 4a(a+b)9f2,2 )

where Q) := (e, e2) denotes the eigenvector matrix of D which can be computed from
(77). Again, in order to get equivalent schemes, we have to identify the threshold
parameter 6 with the diffusion time .

5.2 Single-Scale Haar Wavelet Shrinkage

Having identified the analytical solutions of our small dynamical systems with ap-
propriate Haar wavelet shrinkage procedures, we can describe their incorporation
into the diffusion of the whole N x M image. In the following, we reformulate our
LAS and LSAS schemes in wavelet language. Consider an arbitrary image f. The
two-dimensional decimated Haar wavelet transform acts naturally on subsequent
2 x 2-pixel tiles of an image. Unfortunately, this process is not shift invariant. How-
ever, it is easy to check that the (——), (+—), (—+), (++) averaging procedures in
our LAS/LSAS methods describe exactly the process of cyclic spinning in wavelet
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shrinkage [17]. Cyclic spinning of the decimated wavelet transform at a single scale
is equivalent to applying the undecimated wavelet transform. This undecimated
transform is shift invariant and we will refer to it as shift invariant Haar transform.
More precisely, let

110 00 1 -1 0 0 0

1 {o11 ...00 1lo 1-1 ...0 o0
HO(T)5:E : . o aHl("')5:% : . | )

0 00 ... 11 0O 0 0 ... 1 -1

denote the Toeplitz matrices of size r x (r + 1) corresponding to the undecimated
Haar low and high pass filters. In the following, they will be used with different sizes
r. Since the size is always evident from the matrix multiplications, we will omit the
sizes from the notations and write only Hy and Hi. Since i (Ho(r)Ho(r +1) —
Hi(r)Hi(r +1)) = I, we use 3Ho(r) and —1H;(r) for the inverse shift invariant
Haar transform.

In the following, we assume Neumann boundary conditions. Let U denote the
(N +2) x (M + 2)-pixel image obtained by mirroring the k-th time iterated image
Uk € RV*M at the boundaries by one pixel.

LAS for isotropic singular diffusion. With the preceding considerations the
scheme from Figure 2 reads in wavelet fashion as follows:

1. Compute the transformed images ﬁi,j of size (N 4+ 1) x (M + 1) according to

U1 :=HUHy , Usi:=HyUHT, (80)

Ui:=H UHy , Uso:=H UH{.

2. Compute D(U) := (022’1 + [712,2 +ﬁ22,2) Y2 and apply the shrinkage function (75)
with threshold 0 = ¢ to obtain S; ; := Sy(U; ;) for (4,5) € {(2,1),(1,2),(2,2)}.
All operations are meant componentwise.

3. Compute the N x M image
1 A
Uk+1 = Z (Ho U1’1H(r)r — Hy SQJHlT — Hy SLQHOT + Hy SQ’QH1T> . (81)

LSAS for isotropic diffusion. In the LSAS case, we have to modify the first
and second step of the algorithm. Let V' denote the (N + 2) x (M + 2)-pixel image
obtained by mirroring the convolved k-th iteration V¥ = K, * U* at the boundaries
by one pixel.

Then the LSAS algorlthm for isotropic diffusion computes in step 1 additionally
the values V; 2, VQ 1 and Vg 9. The shrinkage step 2 uses the shrinkage rule (76) with
g —9(V12+V21+204V22)

LSAS for anisotropic diffusion. Finally, the LSAS for anisotropic diffusion

applies in step 2 the shrlnkage rule (78), where (@ and the values A1, Ao and a,b are
computed from 1% 2, VQ 1 and Vs .2 based on (77).
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5.3 Multi-Scale Haar Wavelet Shrinkage

Typically, the wavelet transform has multi-scale character. The shift invariant multi-
scale transform can be simply performed by the algorithm & trous [36]. To this end,
we have only to introduce 2° — 1 zeros between the coefficients of the high and low
pass filters at level s, i.e. we use

(1,0,...,0,1,0,...,0) and (1,0,...,0,—1,0,...,0) (82)
S—— S——

25—1 25—1

(s)

as first column in the Toeplitz transform matrices H(gs) and H 15 , respectively. These
are 7 X (r + 2%)-matrices, again with r determined by the occurring matrix multipli-
cations.

Let m denote the desired decomposition level. Then we mirror U, respectively
VE in case of an LSAS scheme, at the beginning of the procedure by 2™ — 1 pixels
at the boundaries to obtain the (N + 2™ —2) x (M + 2™+ — 2)-pixel images Ul(ol)

and Vl(ﬁ). Now our multi-scale LAS/LSAS algorithm reads as follows:
1. For s =1,2,...,m compute
o) = a1 O e, o) = a1V o o)

00 = B OIS, O = e 0 )

(83)

g

In case of an LSAS scheme compute additionally Vl(j), 172(’51), V(,SQ) and 172(752) in
the same way.

2. Perform componentwise the appropriate shrinkage rule

e (75) for LAS,
e (76) for isotropic LSAS,
e (78) for anisotropic LSAS

to obtain S for (i, ) € {(2,1),(1,2), (2,2)}.

3. Set U™ .= 01(’7?) and compute for s=m,m—1,...,1

S— 1 S§— S S— §— S S—
e = 2 (HS VU @ES )T - B sgl e o)

(84)
— B SEEE )T+ HEY S e

As result we obtain the N x M-pixel image Uk+! := (0.

We want to add some remarks concerning this multi-scale algorithm. First of all,
in the case of anisotropic diffusion we have to make sure that we use the & trous

(s)

Gaussian convolution with K, to compute the structure tensor at level s. Next,

we may replace the computation of V1(,51) in the LSAS algorithms by the convolution

A

V) = K« 0 (85)

o )
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Figure 14: Left to right: (a) Original rotationally invariant test image. (b) Shift
invariant soft Haar wavelet shrinkage with threshold 8 = 5, 6 scales and 5 iterations.
(c) Soft shrinkage in Kingsbury’s algorithm with (9,7)-tap and 14-tap filters, 6
scales, threshold @ = 15 and 5 iterations. (d) Multi-scale LAS for total variation
diffusion with threshold 8 = 15, 6 scales and 5 iterations.

of Ijl(sl) with the & trous Gaussian K. This requires more effort than the original
computation and introduces an additional smoothing. Finally, one may apply scale
adapted shrinkage parameters 6, a topic which is not further discussed in this paper.

Experiments. In the following, we examine the performance of our multi-scale
LAS and LSAS algorithms by numerical examples. We start with multi-scale LAS
for isotropic diffusion. More precisely, we want to demonstrate the improved rotation
invariance by our coupled shrinkage rule (75) for the TV diffusivity, i.e. p = 1. In
Figure 14, we compare the performance of our multi-scale LAS with shift invariant
soft wavelet shrinkage and with Kingsbury’s algorithm with (9,7)-tap and 14-tap
filters [33] (http://www-sigproc.eng.cam.ac.uk/ " ngk) which is known for good rota-
tion invariance. Our experiments confirm the good approximate rotation invariance
of the LAS method.

Next we are interested in the effect that the multi-level extension has on our
LSAS method for anisotropic diffusion. We use the same experimental settings as
in Section 4.2. We start with LSAS for edge-enhancing diffusion and use the same
test image as in Figure 10 with the same parameters A =5, 0 = 1.8, 0 =0, a =0,
7 =1, but only 100 iterations to underline the differences between several numbers
of levels. The results are shown in Figure 15. For one scale (b) we have our original
LSAS scheme. As expected the images become smoother in flat regions when more
scales are used (c, d). At the same time we observe that vertices are increasingly
rounded. This is partially due to the fact that the same number of iterations with a
higher number of scales realises a larger effective diffusion time, cf. also [41]. This is
confirmed by image (e) where 400 iterations were performed on one scale, leading to
a comparable rounding as in (c). The last image (f) demonstrates the performance
of the modified algorithm with additional smoothing (85).

Finally, Figure 16 gives a clue how our multi-scale LSAS behaves for coherence-
enhancing diffusion. We have transformed the whole “mandrill” image and clipped
to the top left 256 x 256 pixels afterwards to make the smoothing process better
visible.
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Figure 15: Top left to bottom right in rows: (a) Noisy test image from Fig-
ure 10. (b)—(d) Application of multi-scale LSAS for edge-enhancing diffusion with
A=5,0=180=0,a =0, 7 =1, N = 100 iterations and 1, 2, 3 scales. (e)
Single-scale LSAS with N = 400 iterations. (f) Processed with two-scale LSAS and
modified smooth computation (85).

6 Conclusions

In the present paper we have introduced a novel class of schemes for nonlinear
isotropic and anisotropic diffusion filters. They average over analytical or semi-
analytical solutions to the dynamical systems of 2 x 2-pixel image patches. Since
these methods are highly local and less dissipative than most other finite difference
schemes, they hardly suffer from blurring artifacts at image edges. Their imple-
mentation is as simple as for explicit schemes, but they offer unconditional abso-
lute {®-stability in the isotropic case, and unconditional absolute [2-stability in the
anisotropic setting. While they are conditionally consistent, one can use significantly
larger time step sizes than for the widely used conditionally stable explicit schemes.
Compared to well-performing implicit methods such as AOS schemes, they are less
complicated to implement and they can be applied directly to a larger class of filters,
in particular anisotropic ones and singular diffusion processes with unbounded diffu-
sivities. Their locality makes them attractive for parallel and distributed computing
and their simple structure would even suggest to implement them in hardware.
Another interesting applications of these schemes is their interpretation in terms
of Haar wavelet shrinkage. This has led to novel shrinkage rules with coupling of the
coefficients and a high degree of rotation invariance. Our results also demonstrate
that sophisticated concepts such as ridgelets and curvelets are not the only way
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to perform advanced anisotropic wavelet-based shrinkage. Even the most elemen-
tary class of wavelets, namely Haar wavelets, are sufficient for implementing highly
anisotropic filters in a rotationally invariant fashion. We hope that this novel connec-
tion can help to fertilise further research on simple, structure-adaptive anisotropic
wavelet concepts and to gain new insights into the design of coupled shrinkage rules.

Acknowledgements. Partial funding by the Deutsche Forschungsgemeinschaft
(DFQG) is gratefully acknowledged. The first author also thanks Emory University,
Atlanta, and the Institute for Mathematics and its Applications, Minneapolis, for
their hospitality during part of his work on this paper.
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Figure 16: Top left to bottom right in rows: (a) Original image, 512 x 512
pixels. (b) Part of the original image of size 256 x 256. (c¢) Coherence-enhancing
diffusion by LSAS scheme with a =0, e =0.001, C =1, 0 = 0.5, p = 2, 7 = 0.166,
20 iterations and one scale. (d) Processed with two scales. (e) Processed with three
scales. (f) Processed with one scale but 80 iterations.
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A Locally (Semi-) Analytic Schemes as Splitting Schemes

In this appendix, we will explain how the locally analytic and semi-analytic schemes
fit into the framework of additive splitting schemes. We start by a short description
of splitting schemes for the numerical solution of PDEs.

Consider an autonomous dynamical system

= B(u)u (86)

where u is a spatially discretised image evolving in time ¢, the dot denotes the
derivative w.r.t. ¢, and B(u) is a matrix which depends on u. Systems of this type
arise naturally as spatial discretisations of PDE-based image filters. We assume for
now that B is bounded and depends continuously on u. However, the principles
laid out here can often be transferred to cases with discontinuous right-hand sides
provided the discontinuities are accounted for by an adequate concept of solution,
as mentioned in Subsection 4.1.2.
The image evolution over the time interval [t1, ¢2] is then given by

to
u(ty) = exp ( / Blu(t)) dt) u(ty) (87)
t1

However, this is an implicit description due to the occurrence of u(t) in the integrand
on the r.h.s., and an explicit computation of this solution is generally impossible.
Instead, one resorts to numerical time-stepping schemes that rely on different ap-
proximations of (87) for a short time interval of length to —t; = 7.

One possible simplification results if the matrix B(u) admits a decomposition

B(u) = %> Br(u) (88)

into an average of operators B, whose actions, expressed by the dynamical systems
v = B,(v)v, r=1,...,R, (89)

and their solutions are simpler to control than (87) itself. Numerical methods that
capitalise on such decompositions are splitting schemes in a fairly general sense.

We mention here two important splittings of B. The additive operator splitting
(AOS) scheme of [57], see also [35], uses a directional splitting where R equals the
number of dimensions of the image domain (2 in a usual planar image), and the B,
correspond to 1-D diffusion processes in the basis directions. This paper, instead,
relies on a decomposition of B into R = 4 matrices, each of which combines the four-
pixel dynamics of the disjoint four-pixel cells of one of the four possible tilings of
the grid with such cells. For instance, one of these matrices combines the dynamical
systems of all cells {24,2i + 1} x {24,25 + 1}. Each B, can therefore be written (in
a suitable ordering of rows and columns) as a block-diagonal matrix consisting of
4 x 4 blocks.
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Using (89) one can rewrite (87) as

to R
u(ts) = exp ( / =3 Bt dt)um)
= exp ( Z/ ) (t1)

rlt

which can be approximated using the Baker—-Campbell-Hausdorff formula by

to

Zexp (/ ())dt) (t1) + e (91)

with an error term e; = O((ta — t1)?). The use of this additive decomposition of
exp ( J B(u) dt) characterises additive splitting methods.

Still, each summand on the r.h.s. contains the evolving image u(t) and thereby
depends on the full evolution (87). A further approximation step replaces B, (u(t))
by By (u()(t)) where u(,)(t) denotes the modified image evolving by the dynamical
system

Uy = Br(uy)ugy , tE€ [t to], (92)
with the initial condition u(ry(t1) := u(t1). By Gronwall’s Lemma, one proves that
|y () — u(t)|| = O(t — t1) for t € [t1,t2] and therefore

1 & 7 1 & 7
N E Z:lexp (/B (u(t)) dt) u(t) - ;exp (/Br(u(r)(t)) dt)u(tl)
1 & 1
33 exp(/Bu)dt)—exp(/B )'-nu(tl)n
Rt
=7 2| [ (B - Bty @) e+ 0 - tﬂ?)” (e

t1

< = (o) Z / 1B [ult) — ugry®)]] dt -+ O((ts — 11)?)

r= 1t1

R
< =t 32t — 1) By Ol — 1) + O((t2 — 1)?)
R r=1
=O((ta — 11)?) .
(93)
Since both e; and ey are error contributions related to the splitting itself, they
can be denoted as splitting errors.

For a time-stepping scheme, one uses approximations of one time step of size
7(=to — t1) of (92), and averages them in each time step into a new approximation
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of u(t2) which then takes the role of u(t1) in the next time step. Additive splitting
methods use different ways to approximate the numerical solutions of the systems
(92).

Semi-implicit schemes. If in (92) the matrix B, (u(,)(t)) is approximated by

B, := B;(u(t1)), a linear dynamical system is obtained. An implicit Euler discreti-
sation approximates exp (—(t2 —t1)B, dt) in the solution

€Xp (—(tg — tl)Br)’U,(r) (tg) = u(tl) (94)
by I — (to — t1) B, 4+ O((ta — t1)?), thus leading to a system of linear equations,
(I - (t2 - tl)Br)ﬂ(r)(t2) = u(ty) , (95)

whose solution 4 ,(t2) approximates u()(t2). Note that of the two splitting error
contributions discussed above, only e; is encountered here, since ey is replaced by
the (generally larger) error e3 that results from keeping B(,) constant, and the
linearisation error ey.

The semi-implicit approach underlies the (directional) additive operator split-
ting (AOS) scheme [35], [57] where the summands B, correspond to discretised
one-dimensional diffusion processes, as mentioned above. The resulting systems of
equations are tridiagonal and admit a very efficient exact solution.

The same procedure can be applied to our local splitting. For example, in the
case of isotropic nonlinear diffusion this would mean to linearise (38) or, simpler,
(57) in time as

L k1 k L k1 k k, k+1

;(wﬁr _w1,1):0> ;(WQ,J{ —w2,1):—4g WQI ) (96)
Lowt1 & k. k41 Lokt1 & k. k41

;(wfzr —wyo) = —4g w1,J2r ; ;(%,er —wy,) = —8ayg wz,er ;

where k and k + 1 refer to the old and new time step, resp., and 7 is the time step
size. Since the linear equations in the transformed variables w; ; decouple, one reads
the solution direct from the equations:

w151
k+1 _ & k+1 _ )
Wy = Wi, Wy = )
1+47g (97)
k k

g+l W12 k+1 . W2p
Wig = ) W = T a -

’ 1+ 4rg ’ 1+ 8arg

By using simply (97) in place of (58), our LSAS from Subsection 4.1.3 would be
converted into a locally semi-implicit scheme for isotropic nonlinear diffusion.

Semi-analytic schemes. Using the same constant approximation B, for
By (ur(t)) one obtains

’U,(T) (t2) = eXp ((tQ - tl)B,«)u(tl) . (98)
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If it is possible to compute the analytic solution for the r.h.s. of this system, a semi-
analytic scheme results. Our LSAS algorithms in Subsections 4.1.3 and 4.2.2 are of
this kind. Here we have R = 4 and the matrices B, correspond to the four possible
tilings of the image plane with disjoint four-pixel cells, thereby making these schemes
locally semi-analytic.

Again, only e; occurs as splitting error, while eg is replaced by the same error
e3 mentioned for the semi-analytic scheme. No linearisation error e4 is incurred.

Analytic schemes. If an analytic solution can be given even for the system (92),
without additional approximation, we have an analytic scheme. Naturally, this is
the most special case, and consequentially our LAS method in Subsection 4.1.2 had
to be designed for a specific class of diffusivity functions.

Here, the splitting error comprises e; and ey, while no errors es and e4 occur.
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