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Abstract. A constrained variational deconvolution approach for multi-
channel images is presented. Constraints are enforced through a repara-
metrisation which allows a differential geometric reinterpretation. This
view point is used to show that the deconvolution problem can be formu-
lated as a standard gradient descent problem with an underlying metric
that depends on the imposed constraints. Examples are given for bound
constrained colour image deblurring, and for diffusion tensor magnetic
resonance imaging with positive definiteness constraint. Numerical re-
sults illustrate the effectiveness of the methods.

1 Introduction

Blurring occurs in practically every image acquisition process, due to a variety
of reasons like camera and object movement, defocussing, atmospheric pertur-
bations, optical aberrations, etc. Removing this blur and restoring undegraded
images – deblurring – is therefore a crucial task in many application contexts, for
which numerous methods have been developed. Often blurring can be described
or approximated as convolution of the unknown sharp image with a fixed kernel,
the point-spread function (PSF). In this case, deblurring is also called deconvo-
lution. A further distinction is between deconvolution with known and unknown
PSF, the latter being called blind deconvolution.

Variational deconvolution methods aim at reconstructing the sharp image by
minimising an energy functional that encodes the convolution relation between
the given and sought images together with regularity assumptions on the sought
image. Since typical deconvolution problems are ill-posed inverse problems, it is
highly desirable to use any additional information that is available to support the
sharpening process. One condition that can often be derived e.g. from physical
considerations is given by inequality constraints: In a grey-value image whose



values are proportional to radiance, they are bounded from below since radiance
cannot take negative values. Sometimes also an upper bound can be derived
from the image acquisition parameters.

A similar situation occurs in the context of diffusion tensor magnetic res-
onance imaging (DTMRI), a recent three-dimentional medical imaging modal-
ity that measures, in each voxel, a symmetric 3 × 3 matrix that encodes the
direction-dependent diffusion behaviour of water molecules in tissue. DTMRI
data are highly valuable in detecting connectivity within the brain white matter
which is very useful in schizophrenia or stroke studies; another potential field of
application is given by heart-muscle tissue. The physical nature of the measured
diffusion tensors implies that they must be positive (semi-)definite, which is an
inequality constraint, too.

In this paper, we present an approach for non-blind variational deconvolu-
tion under inequality constraints. Its main component is a reparametrisation
of the image range which allows a differential geometric reinterpretation. The
reparametrisation principle has been used before in the context of a discrete
deconvolution model [9]. We also present the extension of our framework to
multi-channel images. The capabilities of the approach are demonstrated by ex-
periments on photographic images with positivity constraints and DTMRI data
with the positive definiteness constraint.

Related work. Blind or non-blind variational deconvolution has been studied
by many authors, see [4, 7, 15, 1]. Though considered in a slightly different set-
ting in 1995 [16], robust data terms have attracted broader attention recently
[1], see also [14] for extensions to spatially variant PSFs and [2] for an explicit
formulation with colour images. Reparametrisation has been used to impose a
positivity constraint on a discrete deconvolution model in [9]. A differential geo-
metric framework for gradient descent constrained to submanifolds (i.e. equality
constraints) has been discussed in [5].

2 Variational Deconvolution with Constraints

Basic Deconvolution Model. We start from a general model for variational decon-
volution of grey-value or multi-channel (colour, vector- or matrix-valued) images
with spatially invariant point-spread function which is based on minimising the
energy functional

E[u] =

∫

Ω

(

Φ
(

∑

k∈J

(fk − uk ∗ h)2
)

+ α Ψ
(

∑

k∈J

|∇uk|2
)

)

dx (1)

where u = (uk)k∈J is the image to be determined, f = (fk)k∈J is the given
blurred image, the index set J enumerates the image channels (|J | = 1 for
grey-value images), and h is the uniform point-spread function for all channels.
Further, Φ and Ψ are monotonically increasing functions from IR+

0 to IR. The first
summand in the integrand is the data term which favours images u with small
reconstruction error f −u∗h. The second summand, the regulariser, encourages
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smoothness of the deblurred image, see also [13] for additional discussion. The
regularisation weight α > 0 balances the influences of both contributions.

If Φ grows slower than Φ(s2) = s2, one speaks of a robust data term [1] since
it reduces the influence of large residual errors (outliers) on E[u] compared to a

least-squares term. A typical choice is the regularised L1-norm Φ(s2) =
√

s2 + β2

with small β > 0. Robust data terms considerably improve the performance of
variational deconvolution approaches in the presence of noise [1] or data that
fulfil model assumptions imperfectly, including imprecise PSF estimates [14].

As to the regulariser, non-quadratic choices like (regularised) total variation
Ψ(s2) =

√
s2 + ε2 (ε > 0) [7, 4, 1] or even the non-convex Perona–Malik term

Ψ(s2) = λ2 ln(1 + s2/λ2) [13] are generally favoured in the image processing
literature for their edge-preserving or even edge-enhancing capabilities.

Note that in our model the channels uk are coupled by quadratic summation
in the arguments of both Ψ and Φ. While this is well-established in practice in
the regulariser [11] the situation in the data term is more delicate and depends
on the characteristics of noise and perturbations across the channels. A separate
robustification

∑

k Φ((fk − uk ∗ h)2) as advocated in [2] can be adequate when
noise is independent in the different channels, while channel-coupled noise calls
for the joint robustification of (1). Due to the image acquisition procedures the
latter will often apply to colour images and practically always to diffusion tensor
images. Perturbations due to imperfect fulfilment of model assumptions also tend
to be channel-coupled. For a discussion of joint versus separate robustification
in a different context (optic flow) see also [3, p. 38].

One way to compute a minimiser of (1) is via the gradient descent

∂tuk = α div

(

Ψ ′

(

∑

l∈J

|∇ul|2
)

∇uk

)

+

(

Φ′

(

∑

l∈J

(fl−ul∗h)2
)

(fk−uk∗h)

)

∗h̃ (2)

where h̃(x) := h(−x) denotes the PSF reflected at the origin. Starting from
a suitable initial condition, which will often be the blurred image f itself, the
process converges to a minimiser of (1).

We next consider how the model (1) can be modified to incorporate con-
straints on the solution.

Constraints for Greyvalue Images. Assume for a moment the single channel case,
where the pixels represent grey-value intensities. Since negative intensities do not
physically make sense, we would like to modify (1) to constrain the grey-values to
be nonnegative. One obvious approach is to add a penalty for negative values,
with the drawback of not strictly enforcing the inequality. Another approach,
which has been shown to be very effective for discrete deconvolution problems [9],
reparametrises the greyvalues via u = exp(z) with a new image function z whose
values are unconstrained in IR, and calculates the gradient descent for z. Slightly
generalising, we substitute u = ϕ(z) with a smooth invertible function ϕ : IR →
IR into (1) and obtain

Ẽ[z] =

∫

Ω

(

Φ
(

(f − ϕ(z) ∗ h)2
)

+ α Ψ
(

(

ϕ′(z) |∇z|
)2

)

)

dx . (3)
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The gradient descent is now computed for z, after which z can be eliminated by
the inverse function z = ϕ−1(u). This gives the new gradient descent

∂tu = ϕ′(ϕ−1(u))

(

α div
(

Ψ ′
(

|∇u|2
)

∇u
)

+
(

Φ′
(

(f−u∗h)2
)

(f−u∗h)
)

∗h̃

)

(4)

which differs from (2) (with one channel) only by the factor ϕ′(ϕ−1(u)) on the
right-hand side.

A positivity constraint is imposed by ϕ(z) = exp(z), thus ϕ′(ϕ−1(u)) = u.
This can easily be generalised to an interval constraint a < u < b by using a

sigmoid function such as ϕ(z) = a exp(−z)+b
exp(−z)+1 , leading to ϕ′(ϕ−1(u)) = (u−a)(b−

u)/(b − a).

Constraining Colour Images. Going from a single grey-value to multi-channel
images, one notes first that constraints that act separately on the channels can be
handled easily. For example, positivity or interval constraints for the channels of
colour images are imposed by setting uk = ϕk(zk) for k ∈ J . The corresponding
gradient descent in channel k is given by equation (2) with the right-hand side
multiplied by ϕ′

k(ϕ−1
k (uk)).

Geometric Reinterpretation. We now show that it is possible to interpret the
reparametrisation approach geometrically, and this leads to a very convenient
form in which more general constraints can be easily incorporated into the
model. Let us consider once more grey-value images with positivity constraint,
i.e. ϕ′(ϕ−1(u)) = u. A short calculation then reveals that the right-hand side
of (4) expresses the negative (variational) gradient of the original energy func-
tional E[u] according to (1) in a function manifold whose metric is constructed
from the well-known hyperbolic metric dhu := du/u on the range of grey-values u,
instead of the usual (Euclidean) metric. We can therefore represent our modified
gradient descent process as standard gradient descent with a different underly-
ing metric! From this viewpoint, zero and negative greyvalues are avoided simply
because the hyperbolic metric puts them at infinite distance from any positive
values. A similar reinterpretation is possible in the interval constraint case: Now
both interval ends are pushed away to infinite distance.

Positive Definiteness Constraint in Matrix-Valued Images. As a consequence
of our geometric reinterpretation, we no longer need to rely on an explicit
reparametrisation of our image range to compute a constrained gradient descent.
Instead, it is sufficient to calculate the gradient descent of (1) with respect to a
suitably chosen metric on the image range.

This observation immediately enables us to formulate a gradient descent
for variational deconvolution of matrix-valued images with positive definiteness
constraint. To this end, we use the Riemannian metric on the cone of positive

definite matrices that is given by dSA2 =
∥

∥A−1/2 dA A−1/2
∥

∥

2

F
with ‖ · ‖F denot-

ing the Frobenius norm, see [12, 6]. This metric has recently been investigated
intensively in the context of DTMRI data processing, see e.g. [8, 10].
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Denoting the matrix-valued image by U = (uk)k∈J , J = {1, 2, 3}× {1, 2, 3},
the gradient descent for (1) with respect to the metric dS is given by

∂tU = U1/2 G U1/2 (5)

where G is the matrix of all the right-hand sides of (2) for channels k ∈ J .

3 Experiments

In our experiments, we consider a deconvolution problem for a colour image
using the gradient descent (4) with ϕ(z) = exp(z), and a deconvolution problem
for DTMRI data with gradient descent given by (5). We always use robust L1

data terms. As in the case of the unconstrained gradient descent (2), a straight
forward numerical implementation is through an explicit time-stepping scheme
which is stopped when the updates fall below some small positive threshold.
Some speedup is possible by more sophisticated schemes, but this does not affect
the behaviour of the solution, which is the main focus of this paper. Also, we do
not focus on experiments with additional noise since the robustness of variational
deconvolution with robust data terms under e.g. impulsive noise has already been
demonstrated in [1, 14].

In our first experiment (Fig. 1), we demonstrate deconvolution of a colour
photograph with positivity constraint. Note that the exact PSF is unknown and
slightly space-variant while a space-invariant PSF estimated from an impulse
response in the image has been used for deconvolution. The ability of the method
to cope with these violations of model assumptions underlines its robustness. It
is evident that the positivity constraint significantly reduces oscillatory (Gibbs)
artifacts along edges. Interestingly, this includes not only undershoots to negative
values which are suppressed directly, but also overshoots in the positive range,
due to the convolution in the data term that links over- and undershoots. We
can therefore reduce the regularisation weight in the constrained deconvolution
and thereby achieve reconstruction of finer details.

Our second experiment (Fig. 2) demonstrates deconvolution of matrix-valued
data with positive definiteness constraint. One 2D slice of a DTMRI data set
consisting of symmetric 3×3 matrices has been synthetically blurred by iterative
box filtering approximating a Gaussian of standard deviation 2, and deconvolved
by our method, using a Gaussian PSF of the same standard deviation.

It can be seen that many structures in the DTMRI image are nicely re-
constructed by the deconvolution process, e.g. the highly anisotropic diffusion
tensors of the corpus callosum region, and the sharp edges between corpus cal-
losum and the large isotropic tensors in the adjacent ventricle. A limitation of
the current method that can be seen from the figures is that very thin details
with a width of only one or two voxels are still smoothed in the deconvolved im-
age. Due to the low resolution this effect is more relevant in DTMRI data than
elsewhere, and further work will be devoted to improve reconstruction quality
for such details.
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Fig. 1. Top left: Paris from Eiffel tower at dusk, colour photograph blurred by camera
movement (480 × 480 pixels). Inserted: estimated point-spread function (enlarged).
Top right: Variational deconvolution result with robust data term, Perona–Malik
regulariser (λ = 26), regularisation weight α = 0.03, with positivity constraint. Middle

left: Detail (240 × 90 pixels) of deconvolution with the same regulariser, α = 0.06, no
constraint. Middle right: Same with α = 0.06 and positivity constraint. Bottom

left: α = 0.03, no constraint. Bottom right: α = 0.03, positivity constraint.

4 Conclusion

In this paper, we have proposed an energy minimisation approach to image de-
convolution that incorporates inequality constraints, such as bounds on pixel
values. Constraints are modelled either by a reparametrisation of the image val-
ues, or in a differential geometric way by modifying the metric on the image
values in which a gradient descent is carried out. Particularly the second formu-
lation allows to realise fairly general constraints on multi-channel images.

Our experiments on positivity-constrained colour image deconvolution and
positive definite deconvolution of DTMRI data demonstrate the broad applica-
bility and performance of the model.
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Fig. 2. Top left: One 2D slice from a DTMRI data set of a human brain. The 3×3 tiles
represent the matrix components, with middle grey representing 0. Top right: Detail
from the corpus callosum region visualised by ellipsoids. Directions and lengths of the
principal axes correspond to eigenvectors and eigenvalues, resp. Middle row: Blurred
by iterated box filtering, approximating convolution with a Gaussian of standard devia-
tion 2. Bottom row: Variational deconvolution with robust data terms, total variation
regulariser, regularisation weight 0.03, and positive definiteness constraint.
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