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Introduction

This monograph is concerned with mathematical models and algorithms for the pro-
cessing of digital images. It is a cross-section through the author’s work in this field
over a period of approximately five years. The author’s activities during this time
have been directed to a number of different problems, such as nonlinear methods
for matrix-valued image denoising, space-discrete analysis of PDE-based image filters
and design of new numerical algorithms for such PDE filters, differential geometric
models, image sharpening, generalised morphological scale spaces etc.

Although not all of these appear within this work, the three dominant topic areas
have been included: median filters and M-smoothers for multi-channel data, space-
discrete analysis and numerical schemes for PDE-based image filters, and variational
approaches to the sharpening of blurred images. This is already a fairly heteroge-
neous collection as far as one considers the types of problems, of models, and of
results: While multi-channel M-smoothers are modeled and implemented on a fully
discrete level, the work on deblurring models presented here consequently follows a
space-continuous paradigm. The investigation of multi-channel M-smoothers is fo-
cussed on a theoretical foundation and involves axiomatic considerations leading to
a definition, and a detailed study of the so obtained concept. In contrast, the empha-
sis of the work on space-discrete analysis of PDE-based filters is very much on the
numerical side of filters that are already well established. In deblurring, instead, the
main goal is on the development of models and their comparison on realistic image
material.

What unites these topics, nevertheless, are guiding principles that relate to the au-
thor’s approach to image processing problems in general. As these concepts penetrate
the entire work presented, they have also been chosen to entitle it.

Dynamics. Many image filters are formulated as processes that in a sequence of
discrete steps or possibly by advancing on a continuous scale successively transform
an image from its given initial state towards the desired filtered image. It is natural
and common to interpret such a filter as an evolution in (discrete or continous) time,
where the notion of time is that of an artificially introduced parameter, in contrast

7
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to the natural concept of time in image sequences (videos/movies) that is in fact an
additional dimension of the image domain.

As time-dependent processes are mathematically modelled by dynamical systems, it
is possible to consider also all kinds of image filters that admit such a time-dependent
formulation from a dynamical systems point of view. At times this may be a mere
reformulation, while at other times it brings about substantial benefits, when quali-
tative or quantitative results on dynamical systems can be transferred.

Most image filters regarded in this work come in a time-dependent formulation,which
makes the dynamical systems viewpoint a continuous theme of the work. It is moved
to the foreground specifically in the part on space-discrete analysis and numerics of
PDE filters.

The potential of dynamical systems in image processing is not exhausted in the present
work. An important direction that is not covered is formed by oscillatory diffusion-
reaction systems, see [168, 186].

Geometry. Most images are acquired by the measurement of, or otherwise repre-
sent spatially distributed physical quantities. Meaningful processing of images must
therefore be consistent with their physical semantics. This firstly implies that im-
ages cannot be thought without the geometric structure of a suitable model of space.
Secondly, in most cases the variety of data values themselves possesses naturally a geo-
metric structure, which may or may not be interwoven with the geometric structure
of the underlying domain. Both aspects imply that a geometric interpretation of im-
age data is valuable in guiding the selection and use of mathematical models. Analytic
concepts that allow a sensible processing of image data should also be accessible by
geometric interpretation.

A central role in modern geometry is played by invariances. This is also a fruitful
approach in image processing.

Mathematics has developed well-developed geometrical frameworks that image pro-
cessing can capitalise on if it is done on a consequent geometric foundation. Regard-
ing space-continuous models, differential geometry is a particularly adequate choice,
see e.g. [175]. A collection of discrete geometric approaches to image processing can
be found in [25].

Related work. An impressive literature has emerged on mathematical image anal-
ysis mainly during the last two decades. The topics treated in this work refer to dif-
ferent sectors of this big edifice. For this reason, it appears reasonable to place the
discussion of related work in the introductory sections of the single chapters.
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Structure

This work consists of four parts. While the first part presents some preliminaries
which are used continually in the remainder of the book, each of the other three
parts focusses on one specific area of my research in image processing.

The introductory Part I is divided into two chapters. Chapter 1 collects some basic
concepts about digital images and their mathematical representation, focussing on
those types of images which will play a role throughout this work. Chapter 2 contains
a short overview of diffusion filter models for images, which are used continually
during later chapters, and introduces the relevant nomenclature and notations.

Part II with its single Chapter 3 is devoted to M-smoothers for multi-channel data,
with emphasis on matrix-valued images. M-smoothers are an interesting, simple non-
linear filter class for scalar-valued images that contains the median as one particu-
larly interesting and well-studied example. The extension of the median concept to
multi-channel data stands in the centre of the chapter, followed by an investigation
of relevant properties and extensions. The generalisation is consequently built on ge-
ometric principles: a geometric interpretation of the multi-channel image data, and
invariances motivated from the underlying physical models.

More specifically, the multi-channel median definition is based on the minimisation
of a geometrically motivated objective function which measures the sum of distances
of a variable matrix to the given data matrices. Unlike some other approaches, this
approach does not require by definition that the median has to be one of the given
data values. Notwithstanding, in many cases this happens to be the case. As a conse-
quence, multi-channel median filters possess root signals similar to their scalar-valued
counterparts.

Like their scalar-valued counterparts, multi-channel median filters show excellent ca-
pabilities for structure-preserving denoising. This is demonstrated for the matrix-
valued situation by experiments on diffusion tensor imaging, fluid dynamics and ori-
entation estimation data. The latter examples give rise to a new variant of a robust
adaptive structure tensor.

By generalising the idea of the multi-channel median filters, a variety of other local
filters for multi-channel images is designed. These include a one-parameter family of
M-smoothers, mid-range filters, but also weighted medians and α-quantiles. Links to
fundamental operations of matrix morphology are discussed.

With exception of a short excourse, all these filters are considered in a space-discrete
setup. In this case, iterated median filters are a nonlinear iterated function system,
thus a time-discrete dynamical system. Some important properties of single- and
multi-channel median filters can be translated into qualitative statements about the
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corresponding dynamical system: Invariance under geometric transformations trans-
lates into symmetries of the dynamical system, while root signals are (nontrivial)
steady states of it. In this sense, particularly Chapter 3 integrates dynamic and geo-
metric ideas.

Part III with Chapters 4 and 5 is concerned with time-continuous dynamical sys-
tems consisting of ODEs, which form spatial discretisations of PDE-based image fil-
ters. When also a further time discretisation is considered, one obtains time-discrete
dynamical systems.

This dynamic approach can be exploited in different directions. On one hand, it
enables to analyse important theoretical properties of image filters. The transition
from a space-continuous PDE to a space-discrete ODE or space-time-discrete iterated
function system alleviates the analysis, and at the same time it creates a setup which
immediately reflects the way filters are practically used, that is on discrete images.
The interactions between pixels are explicitly modelled. On the other hand, it is
possible to devise suitable discretisations with desired properties. In particular it can
be ensured that features of the continuous models are also present in their discretised
counterparts, e.g., conservation properties or invariances.

Chapter 4 is devoted to a space-discrete analysis of linear, isotropic nonlinear and
anisotropic nonlinear diffusion filters and the design of a class of numerical schemes
with favourable properties for image processing applications. The core idea here is
to found the analysis on minimalistic signals and images consisting of two (in the
1D case) or four (in the 2D case) pixels. It is demonstrated that this idea can be ap-
plied in great generality to a broad variety of diffusion filters, covering virtually all
kinds of diffusion filters that are established in contemporary image processing. Also
the popular total variation (TV) flow and similar singular diffusion processes can be
treated by this approach, handling their singularities in a better way than in com-
mon algorithmic realisations. Moreover, the framework transfers in a clear way to
higher-dimensional and multi-channel settings.

Though nonlinear diffusion filters can locally act structure-enhancing, diffusion fil-
ters as studied in Chapter 4 are primarily smoothing filters. Chapter 5 instead focusses
at the well-posedness analysis of algorithms whose primary purpose is the enhance-
ment of structures and which in particular in their continuous forms are known to
suffer from instabilities and ill-posedness. This characterisation adumbrates a more
heterogeneous class of methods which can hardly be exhausted by analysis. Therefore
three filters are investigated, each of which is exemplary for one type of structure-
enhancing PDE filter proposed in image processing literature, either in pure form
or as building block in more complex algorithms: firstly, a simple shock filter as
proposed by Osher and Rudin; secondly, a stabilised inverse linear diffusion process
which can be seen as prototype of inverse diffusion processes used in some advanced
numerical methods; and thirdly, the so-called forward-and-backward (FAB) diffusion,
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a diffusion process featuring (isotropic) direct and inverse diffusion at different loca-
tions. For all three filters, analysis is currently restricted to the 1D situation, reflecting
the fact that this research is still at an earlier stage.

Part IV with Chapters 6 and 7 investigates models for the deblurring of images. Blur-
ring is a ubiquitous problem in image acquisition, arising from such different sources
as atmospheric perturbations, limitations of the optical (or other sensing) systems,
object and camera motion during the image acquisition process. Therefore the re-
moval of blur from acquired images, thus deblurring, is a desideratum in many appli-
cation fields, creating a strong demand for suitable algorithms.

In simple cases blurring can be modelled as convolution of a sharp image with some
convolution kernel. Accordingly, deblurring is also called deconvolution, a term that
is also used beyond the mentioned special cases. A great variety of deconvolution
methods are proposed in the extensive literature of the field. They differ in their
assumptions, means, and generality, but due to the severe ill-posedness of deconvolu-
tion problems, no existing method can adequately serve all needs.

Deconvolution methods discussed in this work belong to the class of variational ap-
proaches. Their evaluation gives rise to deblurring PDEs. At one point we extend
the view slightly to include closely related PDEs which are not strictly derived from
variational models. The focus of study is on the variational modelling for deconvo-
lution.

Chapter 6 presents a fairly general framework for variational deconvolution of im-
ages with known point-spread function. Its core component are variational func-
tionals that can be chosen convex or non-convex, and which lead to diffusion-reaction
PDEs that can act edge-preserving or even edge-enhancing during the sharpening pro-
cess. Specific ingredients are robust data terms that allow for much more insensitivity
with respect to noise, model violations and imprecise estimation of the point-spread
function, and non-convex regularisation terms leading to edge-enhancing diffusion
of Perona-Malik type. The study also includes tensor-driven anisotropic diffusion
terms for regularisation. The boundary treatment and strategies for steering the reg-
ularisation weight are discussed. Experiments are presented that allow a visual, and
to some degree, quantitative comparison of deconvolution methods.

Chapter 7 is concerned with a useful modification of this framework. It shows how
inequality constraints, such as bounds on pixel values, can be incorporated into the
variational model. Constraints are modelled either by a reparametrisation of the im-
age values, or in a differential geometric way by modifying the metric on the im-
age values in which a gradient descent is carried out. Particularly the latter formula-
tion allows to realise fairly general constraints on multi-channel images. Experiments
on positivity-constrained colour image deconvolution and positive definite deconvo-
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lution of matrix-valued image data demonstrate the broad applicability and perfor-
mance of the model.

While the design of models throughout Part IV is driven by a geometric sight, Chap-
ter 7 adds a different geometric aspect when metrics on the range of image values (and
the induced ones on image spaces) are used to enforce inequality constraints. This is
a striking example how genuinely geometric ideas can be made fruitful in designing
models of immediate practical relevance.

Revision Note

The original version of this work has been submitted to the Department of Mathe-
matics of Saarland University, Saarbrücken, Germany, in November 2007.

Since then, I have made available revisions in July 2013 and February 2016 (this one).
In these revisions, I have corrected a few wrongful statements and proofs (as listed
below), and several minor mistakes and typos. Many of them have been brought
to my attention by the reviewers of the thesis and other readers, which I gratefully
acknowledge. I’d like to thank particularly to Mila Nikolova, Joachim Weickert, and
Tobias Becker for helpful comments.

The sections where wrongful statements have been corrected are

• Section 4.5: here the original version contained a mistake which has been cor-
rected with substantial new arguments and estimates (revised July 2013);

• Section 3.2.2.3: Statement (b) of Proposition 3.9 was corrected; its proof has
been replaced with a reference to a publication that contains a corrected proof
(revised February 2016);

• Section 3.5.2: the original version of Proposition 3.15, its supporting state-
ments and the subsequent Corollary 3.16 were flawed by omitting contribu-
tions from mixed-derivative terms in the Taylor expansion of the evolving func-
tion (provisorially revised February 2016 by removing or restricting wrongful
statements; full revision upcoming).

Apart from these sections, the revised version reflects the state of research at the time
of submission of the original thesis. Neither new scientific material has been intro-
duced, nor have references been updated with newer literature.
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Chapter 1

Single- and Multi-Channel Images

In this work, we are concerned with mathematical models and algorithms for the
processing of images. By an image we mean an arrangement of values of uniform
type on a suitable domain. This domain can either be continuous, in which case it is
typically some domain in IR2 or IR3, or discrete. In the latter case the most common
setting is a regular grid in IR2 or IR3. In practice digital images are necessarily given
on a discrete domain, but in most cases this is considered as a subset of a continuous
(physical) domain. The measurement process that extracts the data on the discrete
domain is called sampling.

Though in practice images are available only in sampled form, and digital image pro-
cessing algorithms need to be devised finally for discrete-domain images, we con-
sciously include the case of a continuous domain. The reason for this is that a dis-
crete image domain is typically obtained by discretising a continuous physical do-
main, and a variety of mathematical models that are of great use in image processing
are formulated on continuous domains. This includes particularly models based on
partial differential equations (PDEs). Continuous-domain modelling often facilitates
the representation of physically required properties of the data. The most important
property of this kind is rotational invariance. Its fulfilment is inherent to any PDE-
based model, while fully discrete methods that are popular in nowadays computer
vision, like graph-cut methods, often perform poor in this respect.

The range of the image data, on the other hand, can also be continuous, like IRd or a
compact subset of it, or discrete. The process that reduces a continuous image range
to a discrete subset such that data values need to be approximated by the available dis-
crete set is called quantisation, the approximation error incurred herein is the quan-

tisation error. Stored digital images are frequently quantised on integer scales, which
leads to a quantisation error that needs consideration. Image processing algorithms,
however, can be implemented using float values such that further quantisation errors
during the computation are negligible.

17
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Figure 1.1: Grey-value images. Left: (a) Black-and-white photograph (office image).
Right: (b) One slice of a magnetic resonance data set of a human head. MR measure-
ment by O. Gruber, I. Henseler, Saarland University Hospital, Homburg.

We mention that our fairly general definition includes also image types with discrete
ranges that are not subsets of continuous ranges (with a meaningful embedding). One
example are label maps that assign a label from a finite set to each pixel, without
meaningful arithmetic operations in the label set. Many segmentation algorithms
(see e.g. [41, 141]) generate this type of images. In the present work, however, these
image types will not be considered any further.

1.1 Grey-Value Images

In the simplest type of images the image values are simply brightness values, com-
monly denoted as grey-values. The prototype of such an image is a digital black-and-
white photograph, see Figure 1.1(a).

There exist, of course, digital images with other scalar-valued types of image data.
One important example are X-ray densities in digitised X-ray radiography or com-
puterised tomography, which latter application gives raise to three-dimensional im-
age domains. Further we mention magnetic resonance (MR) images in whose most
wide-spread basic variant the scalar data encode the density of hydrogen atoms in
tissue, modulated by their chemical environments. These, too, arise naturally as
3D data sets. A third example is given by ultrasound images in which the scalar-
valued data represent a second directional derivative (in beam direction) of the acous-
tic impedance.

As arbitrary scalar-valued quantities can be visualised as brightness data, it is common
to denote all kinds of scalar-valued images as grey-value images, see Figure 1.1(b).
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Figure 1.2: From left to right: Colour photograph, 240×320 pixels, and its red, green,
and blue channels.

1.2 Colour Images

The visual system of most humans distinguishes a three-dimensional gamut of
colours, which can be represented as a region in a three-dimensional space spanned by
axes corresponding roughly to red, green, and blue colour perception. Accordingly,
also technical systems which acquire and process colour image data, are designed to
use three-dimensional colour spaces, with the RGB colour space based on the basic
colours red, green and blue as the most prominent representative, see Figure 1.2.

An RGB colour image is mathematically represented by an IR3-valued function on
its image domain. Often such images are already called vector-valued, for a twofold
reason. Firstly, in computer science the term vector is commonly used to denote a
data structure that represents a tuple of data of equal type. Secondly, the RGB colour
space can indeed be equipped with a vector space structure. A caveat about this termi-
nology is that it can be confused with vector fields (see below). We refrain therefore
from using this term in the sequel. Instead, our general term for IRd -valued images in-
dependent of additional structures specified on the image range will be multi-channel

images.

Colour image processing examples in this work (especially Chapters 6 and 7) use also
the RGB colour space, notwithstanding the possibility to adapt the methods being
discussed to other colour spaces.

1.3 Vector Fields

Though vector fields will not play a role in this work, we shortly mention them as a
type of multi-channel images with additional structure. In analogy to the mathemat-
ical concept of a vector field we denote a multi-channel image as a vector field if the
dimensionality of the image range equals that of the image domain, and the semantics
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of the image values is that of vectors in the tangential space of the image domain. For
digital images, of course, this means the tangential space of the underlying continuous
space.

As a consequence, geometric transformations of the image domain entail changes of
image values. For example, if such an image is rotated, one has to rotate its vectorial
values in the same sense: The image transforms as a contragredient tensor of first
order. This is in clear contrast to, e.g., colour images whose rotation does not affect
the image values. One example of this image type are optic flow fields, see e.g. [40,
45, 141].

1.4 Matrix-Valued Images

In contemporary image processing, there is an increasing interest in processing second-

order tensor fields. They appear as physical quantities which are measured e.g. by
diffusion tensor magnetic resonance imaging (DTMRI) [163], or computed, as in com-
putational fluid dynamics, or as derived quantities like the structure tensor [91]which
plays an important role in fields like motion detection, texture analysis or segmenta-
tion [27, 97, 139, 169]. Fields of application also include geophysics, material science
and civil engineering.

Sampled second-order tensor fields which are obtained either from measurement or
computation come in the form of matrix-valued images, i.e., images whose values are
symmetric matrices. Similar to the previous discussion about vector fields it should
be noted that “matrix-valued” and “second-order tensor” aren’t synonymous – a ten-
sor field requires that the matrix indices refer to a coordinate basis of the image do-
main space. Thus, tensors have a characteristic transformation behaviour: If the im-
age is rotated, the matrix values must be transformed accordingly.

While it is possible to construct matrix-valued images without this tensor semantics,
matrix-valued images in this work will in fact always be representations of tensor
fields. In particular, diffusion tensor magnetic resonance imaging (DTMRI) will oc-
cupy a broad space; therefore the following three subsection will give a brief descrip-
tion of DTMRI data and two methods to visualise these which will be used in this
work.

This work can neither give a full account of DTMRI measurement techniques, nor of
the physical background, nor of all current visualisation techniques. More informa-
tion can be found in the edited book [213] which gives a broad overview over tensor
field processing and visualisation techniques, and the references therein.
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1.4.1 Diffusion Tensor Images

Magnetic resonance imaging (MRI) in its most widespread form is basically a tech-
nique to detect water molecules (more precise, hydrogen nuclei, i.e., protons) with
spatial resolution. By a modification of the measurement technique – diffusion

weighted magnetic resonance imaging (DWMRI) – it allows even to determine the rate
at which water molecules at a certain location diffuse, projected to some direction.

Repeating this measurement for different direction (under the assumption that the
diffusion properties do not change between measurements) enables the construction
of an angularly resolved representation of the diffusion behaviour.

The simplest model for the anisotropic diffusion of water molecules assumes a ran-
dom Brownian motion in which the motion vectors of a molecule during subsequent
time intervals are independent and identically distributed, and this property remains
valid for any refinement of the subdivision of the time axis into sub-intervals. Under
this assumption, it is clear that the probability density of motion vectors for a time
interval of duration τ is necessarily a three-dimensional Gaussian. Equivalently, this
probability density function describes the spatial distribution of water molecules ini-
tially located at the origin (x , y, z) = (0,0,0) after time τ. This Gaussian distribution
is given by the equation

p(x) =
1

8 (πτ)3/2 (det D)1/2
e
−
x

TD−1
x

4τ (1.1)

where x ∈ IR3, and D is the covariance matrix of the Gaussian distribution, cf. [163,
2]. The latter is a positive definite symmetric 3× 3 matrix which is characterised
by its transformation behaviour under Euclidean transformations as a second-order
tensor. It is denoted in this context as diffusion tensor [163].

In a DWMRI measurement, a special MR sequence is used to record the average dis-
placement of water molecules within each voxel in a particular direction due to dif-
fusion over a short time interval (approx. 10ms). Up to a scalar factor depending on
the diffusion time, the result is a value

b (e) = b0w(e) = b0 · eTDe (1.2)

where e is a unit vector denoting the diffusion direction measured, b0 is the proton
density of the voxel measured, and D the diffusion matrix. The value w(e) is called
directional diffusivity.

To measure diffusion tensors by magnetic resonance, six directional diffusion-
weighted measurements are required, together with the direction-insensitive proton
density measurement b0 for reference. From these data, the six independent entries of
D can be computed. A standard choice for the six diffusion directions to be measured
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is given by the unit vectors

e1 =
1p
2
(1,1,0)T , e2 =

1p
2
(1,0,1)T , e3 =

1p
2
(0,1,1)T ,

e4 =
1p
2
(1,−1,0)T , e5 =

1p
2
(1,0,−1)T , e6 =

1p
2
(0,1,−1)T

(1.3)

which are symmetrically arranged on the sphere S2, thereby providing an equally
spaced angular sampling. Given the diffusivities wi := w(ei ), i = 1, . . . , 6 measured
in these six directions, the matrix components of D = (di j )i , j=1,2,3 can be computed
via

d11 =
1
2
( w1+w2−w3+w4+w5−w6)

d22 =
1
2
( w1−w2+w3+w4−w5+w6)

d33 =
1
2
(−w1+w2+w3−w4+w5+w6)

d12 = d21 =
1
2
(w1−w4)

d13 = d31 =
1
2
(w2−w5)

d23 = d32 =
1
2
(w3−w6) .

(1.4)

It is worth mentioning that neither the six matrix entries, nor even the diffusiv-
ity components in three orthogonal directions are measured independently during
this process. In the matrix representation, measurement noise will therefore display
inter-channel correlation. For a more detailed discussion of noise in DTMRI images,
see [101].

1.4.2 Tiled Grey-Value Visualisation

It is beyond the scope of this work to discuss visualisation aspects in an exhaustive
manner. Much intensive research has been done in this field, see e.g. [200, 22] and
further references therein. This and the following subsection are dedicated to describe
in compact form the visualisations that will be used in this work.

One way to visualise matrix-valued images in 2D is to show each channel, i.e., each
matrix entry, in a separate grey-value image, and to arrange these grey-value images
into one frame in the same way as the corresponding matrix entries are arranged in a
matrix. Thereby, each sub-image has the pixel dimensions of the entire matrix-valued
image.
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Figure 1.3: Diffusion weighted data measured in DTMRI imaging. Top left: b0 data
for one planar (sagittal) section (127× 127 voxels). Other frames: Six directional dif-
fusion images bi for the same section and the diffusion directions from (1.3). The
amplitude of data in b0 is about 6.37 times as wide as that in b1, . . . , b6. For better
visibility, the greyvalue conversion scale for the latter has therefore been stretched
by the same factor. Measurements by O. Gruber, I. Henseler, Saarland University
Hospital, Homburg.

Since positive and negative matrix entries need to be represented, a middle grey-tone
is chosen to represent zero; in our visualisation, this value is fixed to 128 out of a
range [0,255].

Note that in this representation the upper right and lower left sub-images are equal
because of the symmetry of the matrices. For positive semidefinite tensor data such
as DTI, the main diagonal entries in the upper left and lower right sub-image contain
only nonnegative values while the off-diagonal entries can be of either sign but have
smaller variation. While this visualisation is simple and can be generated straightfor-
ward from the data, it is negligent of the physical and geometric properties of matrix-
valued data that represent tensors. Anisotropy of the tensors is not represented in
a uniform and easy-to-interpret way in these images, and rotating a tensor in space
changes the corresponding pixel in the tile images in a complex and non-intuitive
manner.

1.4.3 Ellipsoid Visualisation

An alternative way to visualise symmetric positive semidefinite matrix images that is
more adequate to the physical and geometric semantics of second order tensors is to
use ellipses (in 2D) or ellipsoids (in 3D). Actually, this is a special case of glyph-based

visualisation, see [22]. Each glyph (ellipse or ellipsoid) represents the matrix value of



(c) Martin Welk 2007–2016. All rights reserved.

24 Chapter 1. Single- and Multi-Channel Images

Figure 1.4: Tiled grey-value visualisation of matrix-valued images. Top: (a) Sagittal
slice (127× 127 voxels) of DTMRI data computed from the diffusion-weighted im-
ages shown in Figure 1.3. Structures outside the skull contours are aliasing artifacts
caused by the specific scanning parameters. Bottom left: (b) One 82× 66 voxel hor-
izontal (transversal) slice excised from the same DTMRI data set, slightly above eye
level (looking to the right). The selected plane cuts through the ventricles (visible as
bright structure in the middle of the main diagonal tiles) and the corpus callosum (in
the hollow of the fork-like endings of the ventricle section to the left and right). The
folded cortex structure is also visible. Bottom right: (c) 2D data set (124×101) of 2×2
matrices representing computed deformation tensors from a fluid dynamics simula-
tion. These matrices are symmetric but can have positive and negative eigenvalues.
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a single pixel or voxel. The exact correspondence is discussed in more detail below,
together with some useful modifications.

In the 2D case, ellipses are rendered directly; in contrast, ellipsoids representing 3×3
matrices need to be shown in some shaded perspective view to make their 3D orien-
tation and shape recognisable.

A visualisation of this type allows a direct visual interpretation: Anisotropy can im-
mediately be judged from the shape of the glyph, while rotation of a matrix is repre-
sented by the same rotation applied to the glyph.

A disadvantage is that the representation of glyphs in a size that allows to recognise
their geometric features clear enough imposes tight limits on resolution. Only image
regions with diameters of some tens of pixels can be displayed in a reasonable way. In
3D data sets, even tighter limitations apply in depth direction since already a few lay-
ers of ellipsoids arranged one behind the other lead to visual clutter in the perspective
representation. Animations can alleviate this problem but are of course not feasible
in print. In this work, we will therefore mostly restrict display to single layers.

1.4.3.1 Standard Representation

In all cases, a positive symmetric matrix is represented by an ellipse or ellipsoid whose
principal axis directions coincide with the eigenvector directions of the matrix.

In the simplest case, the lengths of the principal axes are just the eigenvalues (in a
suitable scaling).

Mathematically, this means that the positive symmetric matrix A is represented by
the ellipse or ellipsoid with the equation

xTA−2x = 1 . (1.5)

By enabling a direct visual comparison of eigenvalues, this representation supports
the judgement of anisotropy of single diffusion tensors.

1.4.3.2 Isosurface Representation

Looking specifically at the case of diffusion tensors A= D whose physical meaning
is characterised by the anisotropic diffusion equation (1.1), it becomes clear that the
visual representation can be brought into a closer relation to the physics of diffusion
if the equation

xTA−1x = 1 (1.6)
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Figure 1.5: Glyph-based visualisation of positive definite matrix-valued images. Left:

(a) Detail from the corpus callosum region in Figure 1.4(b), with 3× 3 matrices vi-
sualised by ellipsoids. Right: (b) A 2× 2-tensor data set has been generated from the
top left four entries of the DT-MRI matrix data, which refer to the tensor compo-
nents within the section plane. The 2×2 matrices from the same region as before are
visualised by ellipses.

is used to generate glyphs instead of (1.5). In this case, for example, the ellipsoid rep-
resenting a 3×3 diffusion tensor depicts an isosurface for the probability distribution
of the location of water molecules starting at 0 after a short diffusion time.

The principal axis lengths of such a glyph correspond to the square roots of the eigen-
values of the matrix represented.

While the immediate physical interpretability of the glyphs is advantageous, the anisotropy
of diffusion tensors appears less emphasised in this representation, see Figure 1.6(a).
For visualisation purposes, preference is therefore given to the previously mentioned
model.

1.4.3.3 Range-Compressed Representations

Another disadvantage of the standard elliptic glyph visualisation is that sets of ma-
trices with large variations in the magnitude of their eigenvalues are difficult to rep-
resent. Depending on the scaling, either glyphs representing small eigenvalues are
shrunk too much, or glyphs representing large eigenvalues begin to overlap with their
neighbours.

This situation typically occurs in DT-MRI images of brain structures adjacent to ven-
tricles.
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Figure 1.6: Glyph-based visualisation of positive definite matrix-valued images. Left:

(a) Representation from Figure 1.5(a) repeated. Same set of matrices as in Fig-
ure 1.5(a), represented by iso-surfaces. Notice the much less pronounced represen-
tation of anisotropy. Right: (b) Range-compressed visualisation: Glyphs from (a) are
rescaled such that their largest principal axes correspond to 0.333-th powers of largest
eigenvalues.

The isosurface representation would alleviate this problem but at the cost of making
anisotropy less visible. Alternatively, one could think of masking out or explicitly
shrinking the large eigenvalues in ventricle regions.

Another approach is a range compression. Here, the glyphs of the standard repre-
sentation are shrunk or enlarged such that their differences in size are reduced. One
possibility is to base this resizing on volume. In this case one would for example scale
glyphs such that their volumes correspond no longer to their determinants but only
to the γ -th power of it, 0≤ γ < 1.

The glyph for the symmetric positive definite d × d -matrix A is then given by the
equation

(detA)
2
d
(1−γ )xTA−2x = 1 . (1.7)

A difficulty with this approach is that the glyphs of highly anisotropic matrices with
one or two eigenvalues close to zero are heavily enlarged and tend to clutter with
neighbouring glyphs. Singular matrices can not at all be represented. To overcome
these problems, one can also rely on the maximal eigenvalue for resizing. Glyphs are
then scaled such that their largest principal axes are proportional to the γ -th powers
of the largest eigenvalues, 0< γ < 1. In this case, the glyph for matrix A is given by

(‖A‖(∞))2(1−γ )xTA−2x = 1 . (1.8)

We show an example for range compression using (1.8) in Figure 1.6(b).

Since the shrinkage or enlargement acts isotropically, anisotropy remains clearly vis-
ible. At the same time, the absolute size of glyphs varies less within the image (even
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Figure 1.7: A 32× 32 region from the 2D tensor field from Figure 1.4(c) represented
by ellipses. Since the matrices have positive and negative eigenvalues, they are repre-
sented as deformations of a unit disc.

not at all for γ = 0). What is lost comparing to the standard representation is the
possibility for direct visual comparison of eigenvalues of different matrices, but this
may be among the least important features in the inspection of the data.

1.4.3.4 Deformation-Based Representation for Indefinite Matrices

Matrix-valued images that contain indefinite or negative definite matrices do not ad-
mit an ellipsoid visualisation as discussed so far. However, the idea of this visuali-
sation can be extended to symmetric matrices with eigenvalues of arbitrary sign by
using a different motivation from physics: If we interpret these matrices as stress-
strain tensors – which can have positive and negative eigenvalues, corresponding to
strain and stress, respectively – , we can show their deformation effects on probe ob-
jects, like isotropic balls. A spherical probe of unit radius is then deformed by the
forces corresponding to the stress-strain tensor A into an ellipsoid whose principal
axis directions coincide with those of A, with principal axis lengths 1+ ǫλ where λ
is the corresponding eigenvalue of A and ǫ a small positive constant that represents
deformability of the material. Thus, positive eigenvalues of A express expansion,
negative ones compression.

For our visualisation, this means that we simply replace A by Ã := I + ǫA and use
for Ã the same glyphs as in Fig. 1.5. Note that in this case, it is in accordance with
the physical model to use (1.5). Of course, the physical deformation model holds
only for small deformations, i.e., small ǫ. For visualisation, however, one will prefer
stronger deformations, just small enough that the eigenvalues of all Ã in a data set are
bounded sufficiently far away from zero.
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Diffusion Filter Models for Single-

and Multi-Channel Images

In the subsequent chapters of this work we will be concerned in several ways with
diffusion-based image processing methods. The purpose of this chapter is therefore
to review the basic concepts and notations around diffusion, introducing them in the
form that will be used later.

Diffusion is originally a physical process that equilibrates a physical quantity within
some region. This quantity can be, e.g., the concentration of some substance, or heat
energy.

Its use in image processing [206] goes back at least to the work of Iijima [110, 111] and
serves mainly the goals of denoising and structure simplification. Here, grey values
or colour values take the role of the quantities being equilibrated.

The diffusion process is modulated by the rate at which the evolving quantity is trans-
ferred at each place and time, which is generally determined by properties of the
medium in which diffusion takes place. Since the diffusion process consists in a redis-
tribution of the quantity being regarded, the total amount of this quantity within the
considered domain cannot change except due to transport across the domain bound-
aries. This means, the total amount of the quantity is conserved. In physics, this
conserved quantity can be the mass of the substance, or the total heat energy within
the volume. In image processing, it will usually be the average grey value.

2.1 Linear Diffusion

Mathematically, diffusion is described by a partial differential equation called diffu-

sion equation or, alluding to its second important context, heat equation. We start by

29
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considering the simplest case, in which the diffusion is homogeneous – i.e., it does not
vary across space – and isotropic – i.e., it shows no variation with spatial direction.

2.1.1 Basic Model

A homogeneous isotropic diffusion process in IRd is described by a partial differential
equation, the linear diffusion equation

∂t u(x , t ) =∆u(x , t ) (2.1)

for a function u :Ω×[0,∞)→ IRon a spatial domainΩ ⊂ IRd , with initial conditions

u(x , 0) = f (x) (2.2)

where f is a given function onΩ, and suitable boundary conditions on ∂ Ω×[0,∞).
In (2.1),∆ denotes the Laplace operator in the d spatial dimensions.

It is useful for our further considerations to decompose (2.1) into the two first-order
differential equations it actually results from: firstly, Fick’s Law

j =∇u (2.3)

which describes how the gradient of u , i.e., the local differences in the quantity u ,
gives rise to a flux j (a vector field), and secondly, the continuation equation

∂t u = div j (2.4)

which describes the changes in the distribution of values of u that take place if the
flux j acts as a transport of this quantity.1 The conservation of mass or average grey
value under linear diffusion is in fact a consequence of (2.4).

2.1.2 Variational Interpretation

Linear diffusion can be considered as a gradient descent for the energy functional

E[u] =
1
2

∫

Ω

|∇u |2 dx (2.5)

whereby a link between diffusion and variational regularisation approaches is estab-
lished. The gradient descent property can easily be verified by calculating the varia-
tion of E . For similar derivations in image processing context see [120, 1.1].

1The sign convention used here is rather common in mathematical literature. In the physical litera-
ture, j is usually taken with opposite sign, leading to minus signs in both equations (2.3) and (2.4).
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Variation of E . Let us assume that w = u + ǫv is substituted for u in E , where v

is a smooth function on Ω which vanishes on the boundary. We calculate
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v + (∂xi
v)2
����
ǫ=0

dx

=

∫

Ω

∑
i

∂xi
u · ∂xi

v dx

=
∑

i

∫

Ω

∂xi
u · ∂xi

v dx . (2.6)

Using integration by parts we obtain
∫

Ω

∂xi
u · ∂xi

v dx =−
∫

Ω

∂xi

�
∂xi

u
�
· v dx (2.7)

and therefore the first variation of E

d
dǫ

E[u+ ǫv]

�����
ǫ=0

=−
∫

Ω

∆u · v dx . (2.8)

The variational gradient (also called variational derivative or Gateaux derivative) which
plays the role of the gradient of E w.r.t. u in the function space from which u is
chosen, is defined as the function g for which (2.8) equals 〈g , v〉 for each admissible
function v , with respect to the inner product 〈 · , · 〉 of the underlying function space.

With the L2 inner product, we need only to drop the integral and multiplication by
v and find the variational derivative

δ

δu
E[u] =−∆u . (2.9)

Gradient descent. With the variational gradient, a gradient descent for the energy
functional E[u] is given by

∂t u =− δ
δu

E[u] (2.10)

which, by inserting (2.9), becomes exactly (2.1).
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2.1.3 Multi-Channel Linear Diffusion

A straightforward generalisation of the energy functional (2.5) to multi-channel im-
ages u = (uk)k∈Γ is given by

E[u] =
1
2

∫

Ω

∑
k∈Γ
|∇uk |2 dx (2.11)

from which one easily obtains as gradient descent

∂t uk(x , t ) =∆uk(x , t ) , (2.12)

i.e., channel-wise linear diffusion.

2.2 Isotropic Nonlinear Diffusion

A more general class of diffusion processes is obtained by dropping the assumption of
homogeneity, while still retaining the isotropy requirement. In physics, this would
mean to consider a medium in which the transport of heat or the diffusing substance
takes place at different rates depending on the location, but still at equal speed in all
directions at a given place. To reflect this, equation (2.1) is modified into

∂t u = div(g (x)∇u) (2.13)

where g , the diffusivity, describes the spatially variant rate of diffusion. As for linear
diffusion, the product j := g (x)∇u is called flux.

By (2.13), an inhomogeneous linear diffusion process is described. If the rate of diffu-
sion g is not simply a function of space but is modulated by the diffusing quantity
itself, the diffusion process becomes nonlinear.

In image processing, the primary motivation to consider such processes is to improve
the preservation of discontinuities, i.e. edges. While in special contexts inhomoge-
neous linear diffusion processes may be used, the main candidate for this purpose is
isotropic nonlinear diffusion with the diffusivity determined by the local gradient,
which we will therefore concentrate on in what follows.

2.2.1 Basic Model

We consider the isotropic nonlinear diffusion [161, 54, 206] governed by the equation

∂t u = div
�
g (|∇uσ |2)∇u

�
on Ω× (0,∞) (2.14)
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where the diffusivity function g (|∇uσ |2) is a nonincreasing nonnegative function of
the (squared) gradient magnitude, and uσ denotes a smoothed image uσ := Kσ ∗ u

with a Gaussian Kσ (or uσ = u for σ = 0).

Initial and boundary conditions for (2.14) are chosen as for (2.1).

A popular choice for g is

g (s2) =
1

1+ s2/λ2
(2.15)

introduced in [161]which leads to the so-called Perona–Malik diffusion. Other promi-
nent examples include the so-called Charbonnier diffusivity [62, 63]

g (s2) =
1p

1+ s2/λ2
(2.16)

and Weickert diffusivity [206]

g (s2) =

¨
1 , s2 = 0 ,

1− exp
�−3.31488
(s/λ)8

�
, s2 > 0 .

(2.17)

Terminology: Isotropic versus anisotropic. Concerning terminology, we men-
tion that in part of the literature these processes are already called anisotropic; see e.g.
[161]. This can be motivated by a specific decomposition of the diffusion PDE. To
see this, assume that the image domain is two-dimensional, and consider a process
without pre-smoothing, i.e., with σ = 0. Let η denote the unit vector∇u/ |∇u |, and
ξ a unit vector perpendicular to η. Then (2.14) can be rewritten as

∂t u = g (|∇u |2) · ∂ξ ξ u +
�
g (|∇u |2)+ 2 |∇u |2 g ′(|∇u |2)

�
· ∂ηηu . (2.18)

In this representation with respect to a local coordinate frame aligned to the gradient
direction, the process is the combination of diffusion in gradient direction (repre-
sented by ∂ηηu) and perpendicular to it, i.e., in level line direction (represented by

∂ξ ξ u). The different intensities g and g + 2 |∇u |2 g ′ of these two components moti-
vate to call them anisotropic.

In contrast, we prefer to follow the terminology established in [206] and many other
works that uses the divergence form of a diffusion process to determine whether it is
isotropic or anisotropic. We stick therefore with the name isotropic diffusion as long
as the diffusivity function g is simply a scalar and not dependent on directions; in
particular, the resulting flux is aligned with the gradient direction ∇u everywhere.
In contrast, the notion of anisotropic diffusion is reserved for processes driven by
matrix-valued diffusion tensors, see 2.3.
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Forward versus backward diffusion. The representation (2.18) is useful in another
way: Though one usually requires g to be nonnegative (compare, however, 5.3 for a
process with negative diffusivity), the weight g (|∇u |2)+2 |∇u |2 g ′(|∇u |2) of the dif-
fusion in gradient direction can take negative values. Thus, one has always ordinary
(forward) diffusion in level line direction while a time-reverted (backward) diffusion
might act in gradient direction. A closer look reveals that

g (|∇u |2)+ 2 |∇u |2 g ′(|∇u |2) = d
ds
(g (s2) · s ) = j ′(s ) , (2.19)

i.e., the sign of the derivative of the flux w.r.t. the local gradient determines whether
forward or backward diffusion takes place in gradient direction.

For example, the Perona-Malik diffusivity (2.15) leads to j ′(s ) = 1−s 2/λ2

(1+s 2/λ2)2
. Thus,

pure forward diffusion is encountered in regions with small gradients |∇u |< λ, while
backward diffusion occurs where |∇u |> λ.

2.2.2 Variational Interpretation

Like linear diffusion, also the isotropic nonlinear diffusion process (2.14) can be rep-
resented as gradient descent for an energy under some conditions: Provided that
the diffusivity g depends on an unsmoothed gradient magnitude |∇u | (i.e., the pre-
smoothing parameter σ is set to zero), and g ≡ Ψ ′ for a monotonically increasing
differentiable function Ψ : IR+0 → IR, we can consider the energy functional

E[u] =
1
2

∫

Ω

Ψ
�
|∇u |2

�
dx . (2.20)

The function Ψ can be interpreted as a penaliser function that determines how much
some gradient magnitude encountered at a point in the image domain contributes to
the energy E .

We will show that (2.20) possesses the gradient descent

∂t u = div
�
Ψ ′
�|∇u |2�∇u

�
, (2.21)

i.e., (2.14) with g ≡ Ψ ′ and σ = 0. To this end, we will calculate again the variation
of E[u].

Variational derivative calculation. Substitute w = u + ǫv for u in E , where v is
assumed to be a smooth function on Ω which vanishes on the boundary. We have
then

d
dǫ

E[w]

�����
ǫ=0

=
d
dǫ

�
1
2

∫

Ω

Ψ
�
|∇w|2

�
dx

������
ǫ=0
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=
1
2

∫

Ω

Ψ ′
�|∇u |2� ·

∑
i

d
dǫ
(∂xi

w)2
���
ǫ=0

dx

=
1
2

∫

Ω

Ψ ′
�
|∇u |2

�
·
∑

i

d
dǫ

�
∂xi

u+ ǫ∂xi
v
�2���
ǫ=0

dx

=
1
2

∫

Ω

Ψ ′
�
|∇u |2

�
·
∑

i

d
dǫ

�
(∂xi

u)2+ 2ǫ∂xi
u · ∂xi

v + (∂xi
v)2
����
ǫ=0

dx

=

∫

Ω

Ψ ′
�
|∇u |2

�
·
∑

i

∂xi
u · ∂xi

v dx

=
∑

i

∫

Ω

Ψ ′
�
|∇u |2

�
· ∂xi

u · ∂xi
v dx . (2.22)

Integration by parts yields
∫

Ω

Ψ ′
�
|∇u |2

�
· ∂xi

u · ∂xi
v dx =−

∫

Ω

∂xi

�
Ψ ′
�
|∇u |2

�
· ∂xi

u
�
· v dx (2.23)

and therefore

d
dǫ

E[u + ǫv]

�����
ǫ=0

=−
∫

Ω

div
�
Ψ ′
�
|∇u |2

�
∇u

�
· v dx (2.24)

Dropping as before the integral and multiplication by v , we arrive at the variational
gradient

δ

δu
E[u] =−div

�
Ψ ′
�
|∇u |2

�
∇u

�
. (2.25)

Inserting (2.25) into (2.10) leads exactly to (2.21), which proves our assertion.

By (2.20), nonlinear isotropic diffusion is also linked to non-quadratic regularisation
methods [62, 63, 154, 181, 182].

2.2.3 Role of Pre-Smoothing

While the derivation by gradient descent given in the previous section always leads to
an isotropic nonlinear diffusion process without pre-smoothing (σ = 0 in (2.14)), it
is often useful and sometimes inevitable to pre-smooth the gradient in the argument
of the diffusivity g , see [54]. This has two effects: Firstly, it improves the stability
properties of the process. For example, it has turned out that Perona-Malik diffusion
is instable without pre-smoothing, but is stabilised by pre-smoothing. Secondly, the
removal of small-scale noise can be accelerated.

Presently, no energy functional is known that has (2.14) with σ 6= 0 as its gradient
descent.



(c) Martin Welk 2007–2016. All rights reserved.

36 Chapter 2. Diffusion Filter Models for Single- and Multi-Channel Images

2.2.4 Special Singular Diffusivities

An important special case of (2.14) is constituted by the family of singular diffusivity
functions [8, 73, 88, 116, 162, 197]

g (|∇u |2) = 1
|∇u |p (p ≥ 0) (2.26)

which are unbounded and singular at zero. They include for p = 1 the well-known to-

tal variation (TV) diffusion, while for p = 2 the so-called balanced forward–backward

(BFB) diffusion is obtained. Note that no pre-smoothing is involved here, so σ = 0.

2.2.4.1 Total Variation Diffusion

Setting p = 1 in (2.26) leads to the diffusivity

g (|∇u |2) = 1
|∇u | (2.27)

and thereby to the diffusion process [174]

∂t u = div
� ∇u

|∇u |

�
(2.28)

which is known as total variation diffusion or total variation flow (TV flow) [6, 8,
73]. This flow arises also as gradient descent for the total variation regularisation (TV

regularisation) functional [174, 1, 153]

E[u] =

∫

Ω

|∇u | dx . (2.29)

The latter also relates to the half-quadratic functionals [154, 181, 182] and Charbon-
nier functionals [62, 63], in which however the singularity is removed.

Total variation flow and total variation regularisation are frequently used in image
processing and computer vision applications, either alone or as components of more
complex dynamics or energy functionals. They have been the object of intensive
theoretical investigation during the last 15 years [3, 7, 8, 21, 73]. Their favourable
qualitative properties have also been confirmed by theoretical results, e.g., finite ex-
tinction time [7], shape preserving properties [21], edge preservation for these and
other singular diffusivities [197].

The functional (2.29) displays the weakest growth that is possible for a convex pe-
nalisation of the gradient∇u . Correspondingly, total variation flow is distinguished
among isotropic diffusion processes as the one with the fastest decrease in diffusiv-
ity that still does not involve backward diffusion – note that we have constant flux
j (s ) = 1 and therefore j ′(s ) = 0, compare (2.19).
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2.2.4.2 Balanced Forward-Backward Diffusion

Another interesting special case of (2.26) is obtained for p = 2. The corresponding
diffusion process

∂t u = div

�
∇u

|∇u |2

�
(2.30)

is called balanced forward-backward diffusion (BFB diffusion) and has been studied by
Keeling and Stollberger [116]. Unlike TV flow, it admits backward diffusion in re-
gions of high gradients. It shares with TV flow the advantage to be free of parameters
that need to be tuned to the image material, and the disadvantage of the singularity
that makes it difficult to handle numerically.

To understand the name given to this process, we resort to the decomposition (2.18)
which for BFB diffusion becomes

∂t u =
1

|∇u |2
(∂ξ ξ u − ∂ηηu) . (2.31)

It is evident that the diffusion in gradient direction is always of backward type, and
the intensity of this backward diffusion equals that of the forward diffusion along the
level lines, establishing a “balance” between both contributions.

In dimensions other than 2, the representation (2.31) holds in modified form where
∂ξ ξ has to be replaced by a sum over all directions perpendicular to the local image
gradient.

2.2.5 Multi-Channel Isotropic Nonlinear Diffusion

Similarly as in 2.1.3, we want to generalise the energy functional (2.20) to a multi-
channel setting. Remembering what was said about the nature of Ψ in 2.2.2, one con-
siders a penaliser function Ψ that determines how much the multi-channel gradient
(∇uk)k∈Γ encountered at some point contributes to the energy. Using the Euclidean
norm in the vector space of multi-channel gradients, we arrive at the functional

E[u] =
1
2

∫

Ω

Ψ

�∑
k∈Γ
|∇uk |2

�
dx . (2.32)

This formulation of the energy functional can be found, e.g., in [196] and for the total
variation case in [31]. A calculation analogous to (2.22) shows that (2.22) possesses
the gradient descent

∂t uk = div

�
Ψ ′
�∑

l∈Γ
|∇ul |2

�
∇uk

�
. (2.33)
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Comparing this result to (2.21) shows that we have a nonlinear isotropic diffusion
process in which all channels are diffused simultaneously using the same diffusivity
Ψ ′( · ) that depends on data from all channels. This channel coupling for diffusion
has been established in [92, 176, 204].

This is also plausible when the diffusion process is considered as a transport of in-
formation within the image domain: The coupled diffusivity makes sure that the data
tuples (uk(x))k∈Γ from different locations x ∈ Ω enter the transport process as a
whole, and their averaging due to the diffusion process takes place in accordance with
the vector space structure of IRΓ .

The latter observation justifies to generalise (2.14) to the multi-channel setting in anal-
ogy to (2.33) as

∂t uk = div

�
g
�∑

l∈Γ
|∇ul ;σ |2

�
∇uk

�
(2.34)

where ul ;σ := Kσ ∗ ul .

2.3 Anisotropic Nonlinear Diffusion

A further generalisation is obtained if the intensity of diffusion does not only depend
on the location in the image domain but also on the direction. This bears considerable
advantages e.g. for denoising images: While isotropic diffusion can only slow down
the entire diffusion process near an edge, it is now possible to suppress diffusion across

the edge, thus preserving it, while keeping upright a smoothing along the edge which
still effectively reduces noise (edge-enhancing diffusion, [206]).

To achieve such an anisotropic diffusion, the scalar-valued diffusivity is replaced by a
matrix-valued quantity, the diffusion tensor. The diffusion flow then depends on the
gradient via a matrix-vector multiplication, such that its direction can differ from the
gradient direction. The dependency of the diffusion tensor on the image structures
is mediated by the structure tensor [91], which is basically a smoothed outer product
tensor of the image gradients.

2.3.1 Basic Model

Anisotropic nonlinear diffusion. A class of anisotropic nonlinear diffusion equa-
tions is given by [206]

∂t u = div(D(J ) · ∇u) (2.35)
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where D(J ) is an anisotropic diffusion tensor which depends on the image via the
structure tensor [91]

J = J̺(∇uσ ) := K̺ ∗ (∇(Kσ ∗ u)∇(Kσ ∗ u)T) . (2.36)

Here, K̺ and Kσ denote Gaussian convolution kernels. Initial and boundary condi-
tions are chosen in analogy to the previously discussed cases.

By varying the parameters ̺, σ and the way D depends on the structure tensor J , this
equation can be adjusted to model a large class of anisotropic diffusion processes, in-
cluding edge-enhancing diffusion (EED) [206] and coherence-enhancing diffusion (CED)

[207].

2.3.1.1 Edge-Enhancing Diffusion

In this method, the diffusion tensor D has as its eigenvalues the gradient∇uσ of the
pre-smoothed image and its orthogonal ∇uT

σ . The eigenvalue in direction ∇uσ is

set to g (|∇uσ |2) where g is a nonincreasing nonnegative function with g (0) = 1,
e.g. the Perona–Malik function g (s2) = (1+ s2/λ2)−1. Thereby the diffusion across
edges is reduced depending on the contrast like in the isotropic diffusion model. The
eigenvalue in direction∇uT

σ is fixed to 1, ensuring that unattenuated diffusion takes
place along an edge.

The diffusion tensor can therefore be expressed as

D(J0) =D(∇uσ∇uT
σ ) = g

�
∇uσ∇uT

σ

�
, (2.37)

i.e., dependent on the structure tensor for̺= 0. In this notation of D , we have made
use of the fact that the application of a real-valued analytical function on a symmetric
matrix is carried out by application to the eigenvalues, while leaving the eigenvectors
unchanged.

2.3.1.2 Coherence-Enhancing Diffusion

This method [207] is designed to enhance line-like structures in images, which are
characterised by strong coherence of local gradient directions without respect to ori-
entation. While opposite gradients on both sides of a line in u cancel out when a
larger σ is used to smooth∇uσ , they amplify each other if not∇u itself is smoothed
by Gaussian convolution but the outer product ∇u∇uT. Therefore one computes
here the structure tensor J = J̺(∇uσ∇uT

σ ) with small σ (that just provides a moder-
ate denoising and stabilisation of the direction information) and significantly larger ̺
(that determines the scale on which directional information is aggregated). Its eigen-
vector directions correspond to an averaged gradient orientation and its orthogonal,
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while its anisotropy measured by difference or ratio of its eigenvalues is the higher,
the stronger orientation is locally present in the image.

The diffusion tensor D(J ) inherits its eigenvector system from J . Its eigenvalue cor-
responding to the dominant (smoothed) gradient orientation is kept at a small fixed
ǫ > 0 acting as a regularising “background diffusivity”, while diffusion perpendicular
to gradients – thus, along detected lines – is intensified by raising the corresponding
eigenvalue, the more anisotropic J is.

More specifically, if J =µ1e1e
T
1 +µ2e2e

T
2 withµ1 ≥µ2 ≥ 0 is the eigendecomposition

of the structure tensor, one sets D(J ) := λ1e1e
T
1 +λ2e2e

T
2 with

λ1 := ǫ,

λ2 :=

¨
ǫ if µ1 =µ2

ǫ+ (1− ǫ) exp
� −C
(µ1−µ2)

2

�
else,

(2.38)

where C > 0 is a contrast parameter.

2.3.2 Multi-Channel Anisotropic Nonlinear Diffusion

The extension of the anisotropic diffusion model to the case of multi-channel images
follows the pattern from the isotropic model: The diffusion process in the individual
channels is coupled by the use of one and the same diffusion tensor that depends on
all channels simultaneously. As before, this ensures that the diffusion of image values
u(x) ∈ IRΓ is consistent with the vector space structure of Γ . The multi-channel
anisotropic diffusion model therefore reads [208]

∂t uk = div(D(J ) · ∇uk ) (2.39)

where the structure tensor of the multi-channel image u = (uk)k∈Γ reads

J = J̺(∇uσ ) := K̺ ∗
�∑

k∈Γ
∇(Kσ ∗ uk)∇(Kσ ∗ uk)

T
�

. (2.40)

A difference compared to the single-channel case is that, due to the summation of the
structure tensor over channels, even forσ = 0 and̺= 0 the eigenvector system of J is
in general no longer aligned with the gradient directions∇uk of the individual chan-
nels. Therefore, true anisotropy is possible in (2.39) even without pre-smoothing.

2.3.3 Representation as Gradient Descent

Similar like its isotropic counterpart, anisotropic diffusion can be represented as a
gradient descent of an energy functional if no smoothing operations are involved,
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i.e., for σ = 0 and ̺ = 0.2 However, such a process is not really anisotropic if a
single-channel image is evolved; we therefore restrict our considerations here to the
multi-channel case. We consider the energy functional

E[u] =
1
2

∫

Ω

tr Ψ
�∑

k∈Γ
∇uk∇uT

k

�
dx (2.41)

where Γ is again the index set of image channels, compare [211]. Here, Ψ is again
understood as a decreasing function on IR+0 which is applied to the matrix argument
J0(∇u) =

∑
k∈Γ
∇uk∇uT

k
in the canonical way, i.e., by applying it to each eigenvalue

while retaining the eigenvector system of J0(∇u). This implies that if ei denotes the
i -th unit eigenvector of J = J0(∇u) (at some location), we have the identities

tr Ψ (J ) =
d∑

i=1

e
T
i Ψ (J )ei (2.42)

and

e
T
i Ψ (J )ei = Ψ

�
e

T
i J ei

�
. (2.43)

Variational gradient. To verify our assertion on anisotropic diffusion as gradient
descent, we turn now to calculate the variation of E[u] as given in (2.41). In the
derivation, we will make use of the identities (2.42) and (2.43). We substitute the
vector-valued image u with w = u+ ǫv , where v is a vector-valued smooth function
that vanishes on the domain boundary ∂ Ω. For component k we have then

d
dǫ

E[w]

�����
ǫ=0

=
d
dǫ

�
1
2

∫

Ω

tr Ψ
�∑

k∈Γ
∇wk∇wT

k

�
dx

������
ǫ=0

=
1
2

∫

Ω

d
dǫ

�
d∑

i=1

e
T
i Ψ

�∑
k∈Γ
∇wk∇wT

k

�
ei

������
ǫ=0

dx

=
1
2

∫

Ω

d
dǫ

�
d∑

i=1

Ψ
�∑

k

�
∇wT

k ei

�T�∇wT
k ei

��������
ǫ=0

dx

=
1
2

∫

Ω

d∑
i=1

�
Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�∑
l∈Γ

d
dǫ

��
∂
ei

wk

�2����
ǫ=0

�
dx

=
1
2

∫

Ω

d∑
i=1

�
Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�·

∑
l∈Γ

d
dǫ

��
∂
ei

uk

�2
+ 2ǫ∂

ei
uk · ∂ei

vk + ǫ
2�∂

ei
vk

�2�����
ǫ=0

�
dx

2No energy functional is known so far that has an anisotropic diffusion process of type (2.35) with
σ 6= 0 or ̺ 6= 0 as gradient descent.
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=

∫

Ω

d∑
i=1

�
Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�∑
l∈Γ
∂
ei

ul · ∂ei
vl

�
dx

=
∑
l∈Γ

d∑
i=1

∫

Ω

Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�
∂
ei

ul · ∂ei
vl dx . (2.44)

Integration by parts
∫

Ω

Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�
∂
ei

ul · ∂ei
vl dx =−

∫

Ω

∂
ei

�
Ψ ′
�∑

k∈Γ

�
∂
ei

uk

�2�
∂
ei

ul

�
· vl dx (2.45)

transfers this into

d
dǫ

E[u+ ǫv]

�����
ǫ=0

=−
∫

Ω

∑
l∈Γ

�
div
�
Ψ ′
�∑

k∈Γ
∇uk∇uT

k

�
∇ul

�
· vl

�
dx . (2.46)

Remembering that the inner product in the function space that we are considering
now reads

〈u , v〉=
∫

Ω

�∑
l∈Γ

ul vl

�
dx , (2.47)

we drop integration, summation over image channels and multiplication by the factor
vl such that the sought variational derivative reads

δ

δul

E[u] =−div
�
Ψ ′
�∑

k∈Γ
∇uk∇uT

k

�
∇u

�
. (2.48)

Inserting this into (2.10) yields an anisotropic diffusion process of type (2.39) with
σ = 0, ̺= 0 and the diffusion tensor D = Ψ ′(J ). Note that this also restricts the free-
dom in how the diffusion tensor may depend on the structure tensor: Each eigen-
value of D must depend exclusively on the corresponding eigenvalue of J , and the
dependence must follow the same function Ψ ′ for all eigenvalues.
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Chapter 3

M-Smoothers and Related Filters

for Multi-Channel Images

Pollution of measured or computed multi-channel images with noise makes it a desider-
atum to provide an efficient and robust denoising filters for such data that do not de-
stroy essential image features, like discontinuities (edges). A natural approach to this
is to generalise existing filters for scalar-valued images.

Median filters lend themselves as a good choice because of their simplicity, efficiency
and robustness. However, the straightforward approach to apply a scalar filter to
the matrix components separately, which works fine for linear filters like Gaussian
convolution, is not viable for non-linear filters like median filters.

Therefore we discuss here a matrix-valued median concept that takes its starting point
from geometric and axiomatic considerations. A crucial point in this approach is to
abandon rank orders which are inadequate for multi-channel data in favour of a mini-
mality condition as defining property of medians. This concept has been introduced
in the tensor image processing context in our work [218], and we have extended it in
[217, 219, 225] to include mid-range filters and the more general class of M-smoothers
with penaliser functionψ(s ) = s p , p > 0, as well as quantiles and weighted medians.
Also, as alternatives to the originally considered Frobenius norm we included the
spectral and nuclear norms. The present chapter integrates these contributions and
partially follows the mentioned publications.

For the numerical computation of our matrix-valued filters, we present the gradient
descent based algorithm proposed in [218]. As an attractive alternative to this, a
convex optimisation framework has been presented in [217] and [225], which allows
to take advantage of interior-point algorithms. This framework has been developed
by F. Becker and C. Schnörr. I am also indebted to F. Becker for developing and

45
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implementing experiments on smoothing structure tensors by median filtering which
are presented in 3.1.9.4.

As already mentioned in [225], matrix-valued quantiles also relate to the matrix-
valued morphological filters established in [47, 48]which rely on suitable supremum
and infimum notions for sets of symmetric matrices.

Related work. Median filtering in signal processing has been established by Tukey
[198] and has now become a standard technique in scalar-valued image processing,
see Dougherty and Astola [78] or Klette and Zamperoni [122].

Denoising techniques for tensor data have been under intensive investigation recently,
mainly in connection with DTI data, see the linear approaches by Westin et al. [229]
or the nonlinear ones by Hahn et al. [102]. Nonlinear filters need to take into account
the inherent relations of data matrices, either by channel coupling as in Tschumperlé
and Deriche [195], or by working on derived quantities like eigendecompositions
[72, 166, 195] or fractional anisotropy [159, 236].

Our matrix-valued median definition stands in the context of earlier attempts to
vector-valued median filtering, see e.g. [17, 124]. In an image processing context, we
mention Astola et al. [9] and Caselles et al. [53]. We stress that both definitions are
built on the property of the median to be one of the given vectors, with a slight exten-
sion by admitting also their arithmetic mean in [9]. This property is also required in
[18] by Barni et al. who otherwise use Euclidean distance sum minimisation similar
to [218]. Surprisingly, for 2-D vectors already Austin’s 1959 paper [10] proposes the
exact analog of our definition given in [218]. Austin also gives a graphical algorithm
which can be considered a direct predecessor of the gradient descent algorithm in
[218]. Seymour’s 1970 reply [183] to Austin discusses algorithmical difficulties and
improvements of this procedure. Moreover, vector-valued medians and mid-range
values (often by the name of 1-centres) have also been investigated in the literature
on facility location problems, see the papers by Megiddo [140], Fekete et al. [87] and
the references therein.

The convex optimisation numerics relies on concepts which can e.g. be found in the
book by Boyd and Vandenberghe [34]. For applications in image processing contexts
we mention Keuchel et al. [117].

The structure tensor has been established by Förstner and Gülch [91]. It is con-
structed by Gaussian smoothing of the outer product matrices∇u∇uT of the image
gradient. To adapt better to orientation discontinuities, a modification called non-
linear structure tensor has been proposed by Weickert and Brox [41, 211]. Here,
Gaussian smoothing is replaced by a nonlinear diffusion process. Nonlinear struc-
ture tensors have proven their use in texture segmentation [27, 41, 173] and motion
analysis [43]. Another way to introduce structure adaptivity into the structure ten-
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sor has been opened by van den Boomgaard and van der Weijer [199] who proposed
a concept of robust structure tensor which is also linked to matrix-valued medians.
For both adaptive structure tensor concepts, see also [42].

3.1 Median

3.1.1 Scalar-Valued Median

Let us first recall basic facts about scalar-valued median filtering.

Given a finite set of real numbers, their median is defined as the middle element in the
sequence that contains these numbers ordered according to size. It can be considered
as a robust average since it is insensitive to outliers in the given data set. The median
operation commutes with monotone transformations of the data.

Without any reference to ordering, the median of the n-tuple S = (a1, . . . ,an) can be
characterised as the minimiser of the convex function

ES(x) :=
n∑

i=1

|x − ai | (3.1)

where |x − a| is the Euclidean distance of real numbers.

If the number n of given data values is odd, this minimiser is uniquely defined; if n

is even, all real numbers in the convex hull of the two middle data values (according
to size) are minimisers with equal value. Often the convention is used to choose the
arithmetic mean of the two values as median in this case; however, this introduces a
metric notion that is actually foreign to the median concept. We adopt here the view
that each minimiser can be considered as a median. At any rate, this detail is of little
importance to our subsequent considerations.

The median concept gives rise to a local image filter with interesting properties. Me-

dian filtering requires the specification of a neighbourhood for each pixel which is
commonly chosen either as a (2k+1)× (2k+1) square or a discretely approximated
disc centred at the pixel. The new grey-value of a pixel is obtained as the median of
the old grey-values within the neighbourhood.

Median filtering can be iterated and so constitutes a discontinuity-preserving denois-
ing process. The insensitivity of medians to outliers enables median filtering to cope
even with extreme types of noise like uniform or impulse noise.

Unlike Gaussian smoothing, median filtering possesses non-constant steady states
called root signals. Although for discrete median filtering not each initial image con-
verges to a root signal – a counter-example is given by an image made up of alternating
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black and white rows of pixels – the ability of iterated median filtering to preserve dis-
continuities is one of its most interesting properties. For a more detailed discussion
of root signals, see e.g. [82].

For a space-continuous variant of median filtering, Guichard and Morel [99] have
proven that it approximates mean curvature flow [3, 4, 118], thereby establishing a
remarkable link between a nonlinear local filter and a PDE-based image evolution.
Guichard and Morel’s result actually covers a larger filter class. We recall it here only
restricted to the median case:

Let f : IR2 → IR be a continuous function of bounded variation, and let B̺ be a closed

disk of radius ̺ for ̺> 0. Let the function u be obtained by median filtering of f with

structure element B̺ as follows: For each (x , y) ∈ IR2 let u(x , y) be the 0.5-quantile of the

(continuous) histogram of

f ((x , y)+B̺) := { f (ξ ,η) | (ξ − x ,η− y) ∈ B̺} . (3.2)

Then one has

lim
̺→+0

u(x , y)− f (x , y)

̺2/6
= |∇ f |div

� ∇ f

|∇ f |

�
. (3.3)

Remark. This means that one median filtering step with structure element B̺ approx-
imates an (explicit forward) time step of the partial differential equation of (mean)
curvature motion

∂t u = |∇u |div
� ∇u

|∇u |

�
(3.4)

with initial condition u(t = 0) = f and time step size τ = ̺2/6.

3.1.2 Multi-Channel Median Definition

We turn now to generalising median filtering to matrix-valued images. The main
task in doing so is to give an appropriate notion of medians for matrices since the
construction of the local image filter by applying the median to input values from a
neighbourhood transfers straightforward.

While not all properties of scalar-valued medians can be retained by such a generali-
sation, the following requirements are essential from the modeling viewpoint:

Preservation of symmetry. The median of symmetric matrices must again be a sym-
metric matrix.

Scaling invariance. For a real number λ, the median med should satisfy

med(λA1, . . . ,λAn) = λ med(A1, . . . ,An) (3.5)
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for arbitrary input matrices A1, . . . ,An .

Rotational invariance. Rotating all input matrices by the same rotation matrix R

should result in equal rotation of the median:

med(RTA1R, . . . , RTAnR) = RT med(A1, . . . ,An)R . (3.6)

Embedding of scalar-valued median. If all input matrices are scalar multiples of the
same non-zero matrix A, the median should reduce to the scalar median:

med(λ1A, . . . ,λnA) =med(λ1, . . . ,λn)A . (3.7)

Preservation of positive semidefiniteness. Since positive semidefiniteness is an in-
dispensable property of some sorts of matrix data, such as DTI or structure
tensor fields, a sensible filter for such data should not destroy it.

Remark. If the matrix data being processed represent a tensor field, the rotational
invariance condition given here appears more restrictive than necessary in the light
of our discussion in 1.4 since it applies to rotations of the matrix data independent
on transformations of the underlying image domain. This is a consequence of the
median filter setting which selects the data values from some neighbourhood and dis-
regards their spatial arrangement within that neighbourhood. A less restrictive con-
dition referring only to physically meaningful rotations of the tensor field – such that
rotate values in accordance with the transformation of the underlying image domain
– would require to modify the neighbourhood filter concept in a suitable way. While
we do not study such modifications in the present work, they clearly constitute an
interesting direction for further research.

The constraints of positive semidefiniteness preservation and rotational invariance
narrow drastically the range of possible definitions. In particular, the naive idea of
taking the scalar median in each matrix component is ruled out easily: Let the three
positive definite matrices

�
5 2
2 1

�
,

�
1 2
2 5

�
, and

�
1 0
0 1

�
(3.8)

be given. Their component-wise median

�
1 2
2 1

�
(3.9)

is indefinite. By a rotation of the given matrices, one obtains

�
5 −2
−2 1

�
,

�
5 2
2 1

�
, and

�
1 0
0 1

�
, (3.10)
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whose component-wise median �
5 0
0 1

�
(3.11)

is positive semidefinite. We see that neither rotational invariance nor preservation of
positive semidefiniteness is achieved in this way.

Further, since matrices lack a linear ordering, a rank-order approach to defining ma-
trix medians is impractical. Instead, we generalise the minimising property (3.1).

Definition 3.1 Given a tuple S = (A1, . . . ,An) of matrices of equal size, the minimiser

of

ES(X ) =
n∑

i=1

‖X −Ai‖ , (3.12)

where ‖ · ‖ is a matrix norm , is called median of S and denoted by med(S).

Remark. The definition can easily be generalised even further by replacing ‖X −Ai‖
with some metric d (X ,Ai ). We refrain from further considerations in this generality
and stick with metrics derived from norms.

Clearly, ES is convex for any norm ‖ · ‖. In some cases it may not be strictly convex,
such that besides the desirable situation of a unique minimiser also convex closed sets
of minimisers can occur.

However, rotational invariance and semidefiniteness preservation restrict the choice
of ‖ · ‖ more radically. Before discussing possibilities, let us notice one property of
the median which is independent of the norm.

Lemma 3.1 Let X =med(A1, . . . ,An). If each Ai is replaced by A′i := X + ki (Ai −X )

with real ki > 0, then X is also the median of A′1, . . . ,A′n .

Accordingly, the matrices Ai can be shifted along the rays from X to Ai without af-
fecting the median. The statement follows directly from the scaling property ‖kA‖ =
|k| ‖A‖, k ∈ IR. It can be considered a restricted form of the independence on outliers
known from the scalar-valued median.

3.1.3 Choice of Norms

In the following, we discuss one possible norm for the case of vector fields and three
norms for d × d -matrices. All of the latter are constructed from the eigenvalues
λ1(A), . . . ,λd (A) of A, which guarantees rotational invariance.
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3.1.3.1 Vector-Valued Case: Euclidean Norm

For vector fields, the Euclidean norm

‖v‖(2) =

√√√√ d∑
j=1

v2
j (3.13)

enjoys clear preference for its rotational invariance.

For our later investigations, the convexity properties of the Euclidean norm are im-
portant. Firstly, ‖ · ‖(2) is a convex function in IRd , i.e.,

‖αv1+ (1−α)v2‖(2) ≤ α‖v1‖(2)+ (1−α)‖v2‖(2) (3.14)

holds for v1, v2 ∈ IRd and 0≤ α≤ 1.

Secondly, ‖ · ‖(2) is strictly convex along every straight line except on half-lines start-
ing at the origin. This means that besides the trivial cases v1 = v2 or α = 0 or α = 1
equality holds in (3.14) only if v1 and v2 are nonnegative multiples of each other.

We remark that the convexity of ‖ · ‖(2) as well as the non-strictness along half-lines
starting at the origin are consequences of the defining properties of a norm.

3.1.3.2 Matrix-Valued Case: Frobenius Norm

As the matrix analogue of the Euclidean norm, we consider the Frobenius norm
which can also be computed directly from the matrix entries a j k , j , k = 1, . . . , d ,
of A,

‖A‖(2) =

√√√√ d∑
j=1

|λ j (A)|2 =

√√√√ d∑
j ,k=1

a2
j k . (3.15)

With respect to convexity, all that has been said about the Euclidean norm holds
equally for the Frobenius norm.

3.1.3.3 Matrix-Valued Case: Spectral Norm

Second, we have the spectral norm

‖A‖(∞) = max
j=1,...,d

|λ j (A)| . (3.16)

It is the operator norm with respect to the action of matrices as operators on vector
spaces. Its computation is comparably expensive. One possibility is an eigendecom-
position; however, since only the eigenvalue with largest modulus is relevant, there
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are cheaper alternatives like van Mises’ algorithm that relies on iterated matrix-vector
multiplications.

For the spectral norm, non-strict convexity occurs not only in those cases which
are required by the norm properties and which are observed for the Euclidean or
Frobenius norm: Consider a fixed eigenvector system in IRd . The space of symmetric
d×d matrices with this eigenvector system then decomposes into domains in each of
which the spectral norm is linear, thus non-strictly convex. Since this linearity within
one domain in fact only depends on the equal orientation of one eigenvector (that for
the largest eigenvalue), it is easy to give even hyperplane segments, i.e., domains with
codimension 1 in the space of symmetric d×d matrices, within which linearity holds.

3.1.3.4 Matrix-Valued Case: Nuclear Norm

Our last norm for matrices is the so-called nuclear norm which is given by

‖A‖(1) =
d∑

j=1

|λ j (A)| (3.17)

For positive semidefinite matrices, we have ‖A‖(1) = tr(A), which allows an efficient
computation in this case. Typically, however, even when the Ai are positive semidef-
inite, the differences X −Ai aren’t.

We remark that the Frobenius and nuclear norms are examples of the family of norms

‖A‖(p) =
�

d∑
j=1

|λ j (A)|p
�1/p

, p ≥ 1 (3.18)

(namely, p = 1 for the nuclear and p = 2 for the Frobenius norm), which also includes
the spectral norm as limit case p→∞.

The nuclear norm is linear and thus non-strictly convex in large domains of the space
of symmetric matrices, one of them being the entire cone of positive semidefinite
symmetric matrices (since it equals the trace there).

3.1.4 Frobenius Median

In the following, we study the properties of multi-channel medians in more detail for
the case of matrix-valued data with the three norms enumerated in Section 3.1.3. For
brevity, we shall refer to medians defined via these norms as Frobenius median med2,
spectral median med∞, and nuclear median med1.



(c) Martin Welk 2007–2016. All rights reserved.

3.1. Median 53

We start our discussion of the Frobenius median with a remark on uniqueness. Since
the Frobenius norm is strictly convex along almost all lines (see 3.1.3), the energy
ES(X ) in the definition of the Frobenius median is strictly convex everywhere except
if all given data A1, . . . ,An lie along one straight line. In this case, the situation is the
same as for the scalar median. Otherwise there is always a unique minimiser.

Another useful observation is given in the following proposition.

Proposition 3.2 The Frobenius median med2(S) of a tuple S = (A1, . . . ,An) of d × d

matrices is a convex combination of A1, . . . ,An .

Proof. The Frobenius norm coincides with the Euclidean norm if the d×d matrices
are interpreted as vectors in IRd 2

. We identify therefore matrices with vectors and
denote by 〈 · , · 〉 the corresponding Euclidean scalar product. Assume now that X

is a matrix outside the convex hull of A1, . . . ,An . Then a hyperplane h separates X

from A1, . . . ,An . Let Y be the orthogonal projection of X onto h , i.e., X − Y is
perpendicular to h . Then 〈X −Y ,Y −Ai 〉 is positive for i = 1, . . . , n. Hence,

〈X −Ai ,X −Ai 〉− 〈Y −Ai ,Y −Ai 〉
= 〈X ,X 〉− 2 〈X ,Ai 〉− 〈Y,Y 〉+ 2 〈Y,Ai 〉
= 2 〈X −Y ,Y −Ai 〉+ 〈X −Y ,X −Y 〉> 0

(3.19)

which proves that X is not the minimiser of (3.12). �

Since convex combinations of positive semidefinite matrices are positive semidefinite,
the following corollary is obvious.

Corollary 3.3 The Frobenius median med2(S) of a tuple S = (A1, . . . ,An) of positive

semidefinite symmetric d × d matrices is positive semidefinite.

The matrix–vector identification used in the proof of Proposition 3.2 shows that
this median definition is not restricted to square matrices but works equally on non-
square matrices, including vectors, for which it seems more adequate to speak of Eu-

clidean median. For IR2, Austin’s bivariate median [10] is recovered.

This simple planar Euclidean case of 2-dimensional vectors allows us to illustrate sim-
ple geometric properties of our median concept. Three points in the plane which
span a triangle with all angles smaller than 120 degrees have as their median the so-
called Fermat–Torricelli or Steiner point. From this point, each connecting line be-
tween two of the given points appears under a 120 degree angle (see Figure 3.1(a)). If
instead one angle of the triangle is larger or equal 120 degrees, then its vertex is the
median (see Figure 3.1(b)). In the case of four points spanning a convex quadrangle,
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A1

3A

120o
120o

120o

A2

X

A1
A2

X=A3

>120o

Figure 3.1: Median X of three non-collinear points A1, A2, A3 in the Euclidean plane.
Left: (a) If no interior angle of the triangle A1A2A3 is greater than 120◦, then X is
the Fermat–Torricelli point, or Steiner point. This is the unique point from which
each side of A1A2A3 appears under a 120◦ angle. Right: (b) If the triangle A1A2A3 has
an interior angle greater than 120◦, then the vertex of this angle is the median (here,
X =A3).

3AA4

A2

A1

X

A1

3A

A2

X=A4

Figure 3.2: Median X of four points A1, A2, A3, A4 (no three collinear) in the Eu-
clidean plane. Left: (a) If the four points span a convex quadrangle (here, A1A2A3A4),
then X is the intersection points of the diagonals (here, A1A3 and A2A4). Right: (b)

If the convex hull of the four points is a triangle (here, A1A2A3), then the one point
which is not a vertex of this triangle is the median (here, X =A4).

the median is the intersection point of the diagonals (Figure 3.2(a)). The median of
four points whose convex hull is a triangle is the one of the points which is not a
corner of this triangle (Figure 3.2(b)).

Combinatorial and geometric complexity prevents similar elementary geometric con-
siderations for more points or higher dimensions. It is evident, though, that although
our definition does not force the median to be one of the given data points, this still
happens to be true in many generic cases. Only if none of the given values is located
sufficiently well in the middle of the data set, a new value is created.

It can therefore be expected that multi-channel median filters behave similarly robust
with respect to outliers as their scalar-valued counterparts, and that even root signals
arise since after some iterations of the median filter the local distribution of values is
changed such that almost always one of the given values is selected as median. Our
experimental results presented later confirm this expectation.
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3.1.5 Nuclear Median

With the nuclear norm, the energy (3.12) displays non-strict convexity in a broader
range of configurations, leading to non-unique minimisers. Our result on semidefi-
niteness is therefore weaker than before.

Proposition 3.4 Let a tuple S = (A1, . . . ,An) of positive semidefinite d × d matrices be

given, and consider the objective function ES with the nuclear norm. If ES is minimised

by a matrix which is not positive semidefinite, then there exists also a positive semidefinite

argument for which ES attains the same value.

Proof. We consider a symmetric matrix X whose smallest eigenvalue µ is negative.
The difference matrix X −Ai for any Ai has two eigenvalues λ1 ≥ λ2 where λ2 ≤ µ.
The matrix X −µI −Ai has the same eigensystem as X −Ai , with both eigenvalues
shifted by µ. From λ2 ≤µ it follows that

‖X −µI −Ai‖(1) = |λ1−µ|+ |λ2−µ|
≤ |λ1|+ |µ|+ |λ2| − |µ|= ‖X −Ai‖(1) .

(3.20)

This proves the statement of the proposition. �

As another remarkable property of the nuclear median, we mention that it reveals an
insensitivity w.r.t. outliers which goes beyond the one described in Lemma 3.1 and
is in fact close to the corresponding property of its scalar-valued counterpart.

Lemma 3.5 Let X =med1(A1, . . . ,An). Assume that for the data matrix Ai , the differ-

ence X −Ai is positive or negative definite. If Ai is replaced by some other A′i for which

X−A′i has the same (positive or negative) definiteness as X−Ai , then X is also the nuclear

median of A1, . . . ,A′i , . . . ,An .

A consequence of this behaviour is that the orientation of the median X depends
exclusively on those Ai for which X −Ai is indefinite. Since this can lead to orien-
tations of the nuclear median matrix that do not represent well the orientation set
of the given data, this feature put nuclear median filtering at some disadvantage as
compared to the Frobenius alternative.

3.1.6 Spectral Median

Though the convexity of the spectral norm is non-strict in domains of hyperplanes,
the energy ES in the spectral median definition is strictly convex for sufficiently large
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generic data sets S since the principal eigenvector directions of X −Ai will often not
coincide for all i . So, if non-uniqueness takes place for the spectral median, the sets
of minimisers are smaller than in case of the nuclear median.

We describe in detail the situation for symmetric 2× 2 matrices.

Lemma 3.6 Let n symmetric 2× 2-matrices A1, . . . ,An be given whose spectral median

is X . Assume that Ai =

�
ai ci

ci bi

�
, i = 1, . . . , n, and X =

�
x z
z y

�
. Then the following

are true:

• The trace of X is a scalar median of the traces of A1, . . . ,An (in the sense that it

minimises (3.1)).

• The vector (x−y, 2z)T is the bivariate median w.r.t. Euclidean norm of the vectors

(ai − bi , 2ci ), i = 1, . . . , n.

Proof. We calculate the energy expression ES(X ) =
∑

i
‖X −Ai‖(∞) explicitly. The

eigenvalues of X −Ai are given by

λ± =
1
2

�
x− ai + y − bi ±

Æ
(x − ai − y + bi )

2+ 4(z− ci )
2
�

. (3.21)

Clearly, we have
��λ+

��≥ ��λ−
�� if x − ai + y − bi ≥ 0, and vice versa, thus

‖X −Ai‖(∞) =
1
2

�Ç�
(x − y)− (ai − bi )

�2
+ (2z − 2ci )

2

+
�
(x + y)− (ai + bi )

�
sgn

�
(x + y)− (ai + bi )

�� (3.22)

and finally

∑
i

‖X −Ai‖(∞) =
1
2

n∑
i=1

‖(x − y, 2z)T− (ai − bi , 2ci )
T‖(2)

+
1
2

n∑
i=1

|trX − trAi | .
(3.23)

The two sums on the right-hand side can be minimised separately, which gives us
exactly the two conditions stated in the Lemma. �

We see that in the case of n odd (which is of practical relevance as it occurs in any cen-
trally symmetric discrete structure element) the spectral median is always uniquely
determined.

Unfortunately, the spectral median deviates from the previously discussed matrix-
valued median concepts in that it does not always preserve positive semidefiniteness.
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To demonstrate this, we use Lemma 3.6 to compute the (uniquely determined) spec-
tral median of the three positive definite 2× 2 matrices

�
2.95 0.42
0.42 0.07

�
,

�
2.95 −0.42
−0.42 0.07

�
,

�
4 0
0 0.01

�
. (3.24)

Their traces are 3.02,3.02,4.01 such that 3.02 is also the trace of the sought spec-
tral median. Furthermore, the three points (2.88,0.84)T, (2.00,−0.84)T, (3.99,0.00)T

form an isosceles planar triangle. Its Steiner point lies on the symmetry median (the
first coordinate axis); the line from the Steiner point to (2.88,0.84)T encloses a 120◦

angle with the positive symmetry axis. Thus, the Steiner point is (2.88+0.84/
p

3,0)T

leading to the median

�
2.95+ 0.14

p
3 0

0 0.07− 0.14
p

3

�
≈
�

3.2425 0
0 −0.1925

�
(3.25)

which is indefinite.

3.1.7 Numerics: Gradient Descent with Stepsize Adaptation

Only in simple cases it is possible to compute matrix medians directly. In general
numerical approximation methods are required.

The Fermat Problem, i.e., the Euclidean median of IRd -valued data, has been consid-
ered among others by Weiszfeld [216] and Austin [10]. Both authors also proposed
algorithms: Weiszfeld’s algorithm is an iterative numerical computation suitable for
arbitrary dimension d while Austin formulated a graphical method for d = 2 which
can be translated into a sort of gradient descent. Both algorithms encounter difficul-
ties: Kuhn [126] pointed out that Weiszfeld’s iteration can be trapped in non-minima,
while Seymour [183] criticised problems in Austin’s method related to the determi-
nation of a proper step size.

The algorithm that we will discuss now is related to both previously presented meth-
ods, and it underlies most of the experiments on matrix-valued medians presented in
this chapter. Though in the case of Frobenius medians it may be less efficient than
e.g. Weiszfeld’s method, it enjoys the advantage of greater generality since its strictly
local approach adapts easily to different norms or metrics.

3.1.7.1 Frobenius Median

In computing Frobenius medians of matrices (or Euclidean medians of vector data),
the convexity of ES(X ) and its differentiability except at X =Ai motivate the use of
gradient descent techniques. One difficulty has to be overcome: Since the gradient
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vector∇‖Ai −X ‖(2) has equal length for all X 6= Ai , it lacks any information about
the distance to Ai . This deficiency is inherited by the gradient of ES . Though clearly
indicating the direction for descent, it is useless in determining how far to go in one
step. A remedy for this is to use an adaptive step-size control which uses information
from the over- and undershoots encountered during iteration.

For simplicity of notation, let us define∇‖X −A‖(2) := 0 if X =A, such that∇ES (X )

is defined everywhere. Our algorithm in its basic form then reads as follows.

1. Find the index j ∈ {1, . . . , n} for which ES(Aj ) is minimal. If the inequality


∇∑
i 6= j
‖X −Ai‖(2)




 ≤ 1 holds for X =Aj , then Aj is also the global minimiser

– stop. Otherwise proceed to step 2.

2. Let X0 :=Aj , k := 0 and choose an arbitrary initial step size s0 > 0.

3. Compute the gradient ∇ES(Xk). If the norm of this gradient is below a given
threshold ǫ > 0, consider Xk as approximate median – stop.

4. Perform one step of gradient descent

Xk+1 :=Xk − sk∇ES (Xk) . (3.26)

5. To detect over- and undercorrections and to adapt the step size, compute the
indicator

r :=
〈∇ES(Xk−1),∇ES (Xk)〉
〈∇ES (Xk),∇ES (Xk)〉

(3.27)

which measures the projection of ∇ES (Xk) onto ∇ES(Xk−1). If r < 0, we
assume that an overshoot has occurred, while r >> 0 signals an undershoot.

6. Let sk+1 = sk/(1− r ).

7. If r < rcrit with a fixed rcrit ∈ (−1,0), let sk := sk+1 and go back to step 4 (i.e.,
roll back the last iteration step, and repeat it with reduced step size).

8. Increase k by one, and proceed with step 3.

In practice, it is useful to refine the update rule for the step size in step 6 of the al-
gorithm e.g. by projecting r onto the interval [−1/2, 2] first in order to avoid large
jumps in the step size.

3.1.7.2 Spectral Median

While the Frobenius norm is differentiable everywhere except at zero, the spectral
norm displays additional singularities along the hypersurfaces of matrices with mul-
tiple eigenvalues. The energy expression ES (X ) for the spectral median inherits these
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hypersurface-singularities which arise from the maximum operation applied on two
differentiable functions f1(X ) and f2(X ), namely the absolute values of different eigen-
values.

We use therefore an approximation to ES(X )which is differentiable everywhere out-
side the Ai . It is obtained by replacing max( f1(X ), f2(X ))with w f1(X )+(1−w) f2(X )

where w = w( f1(X )− f2(X )) is a smoothed Heaviside function. The function w can
for instance be generated by convolution of the Heaviside function H with a Gaus-
sian Kǫ or a B-spline B k

ǫ of order1 k ≥ 2 with support [−ǫ,ǫ], i.e., w = Kǫ ∗H or
w(s ) = Bǫ ∗H . The gradient descent algorithm then works as before.

3.1.7.3 Nuclear Median

Similarly, the nuclear norm is non-differentiable at singular matrices. This time,
hypersurface-singularities arise directly from taking the absolute values of eigenval-
ues. Denoting by f1(X ) and f2(X ) an eigenvalue and its negative, the same smoothing
procedure as for the spectral median can be applied to make the gradient descent al-
gorithm applicable.

3.1.8 Numerics: Convex Optimisation

Another attractive method to compute matrix medians which bypasses elegantly the
difficulties of the gradient descent starts directly from the optimisation form of our
definition. By a chain of transformations, the median definition is translated into
a convex optimisation problem that admits the use of established and efficient inte-
rior point algorithms. This approach has been contributed mainly by the work of
F. Becker and C. Schnörr, and it is documented in [20, 217, 225].

1Here, we use the notation B k
ǫ = B 0

ǫ/(k+1) ∗ . . . ∗B 0
ǫ/(k+1)︸ ︷︷ ︸

k + 1 convolution factors

where B 0
δ

is a unit-weight box function sup-

ported on [−δ ,δ]. Clearly, B k
ǫ is (k − 1) times continuously differentiable.
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3.1.9 Experimental Evaluation

3.1.9.1 Filtering Synthetic Matrix Data

To demonstrate basic features of matrix-valued median filtering, we start by a sim-
ple experiment on a synthetic image consisting of symmetric positive definite 2× 2
matrices, see Figure 3.3.

The data set in Figure 3.3(a) contains one discontinuity along a diagonal line while
the values vary smoothly elsewhere. In Figure 3.3(b) it has been filtered by a few
Frobenius median iterations with reflecting boundary conditions. It can be seen that
the discontinuity is nicely preserved. Close to the image boundaries, the disconti-
nuity is slightly displaced due to the reflecting boundary conditions. They let the
discontinuity appear as a corner in those regions, which is rounded off such that the
discontinuity is bent towards the boundary normal.

In Figure 3.3(c) the eigenvalues of the matrices from (a) have been changed by adding
Gaussian noise (with cutoff at zero and an upper bound) while the eigenvector di-
rections have been retained. The median filtered image (d) demonstrates the effective
denoising as it differs from (b) only by a moderate decay in anisotropy of the matrices
(such that the ellipses appear rounder), while the discontinuity is clearly preserved.

3.1.9.2 Smoothing DT-MRI Data

In Figures 3.4–3.7 results of median filtering of DT-MRI data are shown. For visu-
alisation purposes and because the median filter behaves fully analogous in higher
dimensions, we demonstrate again the filtering of 2× 2 matrices in a planar image
domain. The original data set shown in Figure 3.4(a) consists of the upper left four
components of the transaxial brain section shown in Figure 1.4(a), which correspond
to the diffusivity components within the transaxial plane.

To investigate the denoising capabilities of median filtering, matrix-valued impulse
noise has been added in Figure 3.4(b) with a ratio of 30% noise pixels. All median
filtering procedures have been applied to this noisy image.

The further frames of Figure 3.4 show results of Frobenius median filtering with 3×3
stencil and increasing iteration counts. After about 30 iterations, there are almost no
further changes – the filter has reached practically a root signal. Figure 3.5 shows a
detail from the corpus callosum region of the original image, noisy image and the
first two filtering results in ellipse visualisation.

Figure 3.6 illustrates the effect of increasing stencil size with constant iteration count
(3 iterations). Filtering results with more iterations of larger stencils have not been
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Figure 3.3: Discontinuity-preserving filtering of matrix data. Top left: (a) A field of
positive definite matrices with a discontinuity, visualised by ellipses. Top right: (b)

Filtered by 5 iterations of Frobenius median with 5× 5 stencil. Bottom left: (c) Image
(a) degraded by Gaussian noise applied to the eigenvalues. The eigenvector directions
are unchanged. The square represents one matrix whose eigenvalues are too large to
be displayed. Bottom right: (d) Image (c) filtered by Frobenius median as in (b).

included since at the moderate image resolutions of the DTMRI data e.g. a 7×7 stencil
is already way too large for most of the interesting image features, leading to constant
or almost constant images after some tens of iterations.

Finally, we contrast in Figure 3.7 median filters based on the three different norms
discussed before. It is evident that in spite of their theoretical differences, the three
variants show hardly any visible distinction on our real-world data.
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Figure 3.4: Frobenius median filtering of 2D DTMRI data. Top left: (a) One slice
from a DTMRI brain scan. Only tensor components belonging to the cut plane are
shown. Top right: (b) 30% of the matrices of (a) have been replaced with uniform
noise (uniform in directions and uniform in both eigenvalues). Middle left: (c) Image
(b) filtered by Frobenius median, 3×3 stencil, 1 iteration. Middle right: (d) Frobenius
median, 3× 3 stencil, 3 iterations. Bottom left: (e) 10 iterations. Bottom right: (f) 30
iterations.

3.1.9.3 Smoothing Fluid Dynamics Data

Our second example in Figure 3.8 uses a deformation tensor set from computational
fluid dynamics. Here, the eigenvalues of the tensors are of different signs. The
structure-preserving smoothing effect of the median filter is again visible.
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Figure 3.5: Frobenius median filtering of 2D DTMRI data visualised by ellipses. Top

left: (a) Detail of the original image, Figure 3.4 (a), featuring corpus callosum (centre)
and part of the ventricle. Top right: (b) Corresponding detail from the noisy image,
Figure 3.4 (b). Bottom left: (c) Detail from Frobenius median filtered image, 1 itera-
tion, 3× 3 stencil. Bottom right: (d) 3 iterations, 3× 3 stencil.

Remember that we have to use here the deformation-based ellipse visualisation in
which a zero matrix is represented as a circle of medium size (compare again Sec-
tion 1.4.3).

3.1.9.4 Robust Structure Estimation

As a discontinuity-preserving matrix smoother, the matrix median can be used to
smooth orientation information that is extracted from textured images via structure
tensors. This application has been exposed in [20, 217].
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Figure 3.6: Frobenius median filtering of 2-D DTMRI data. Top left: (a) Noisy image
from Figure 3.4 (b). Top right: (b) Filtered by Frobenius median, 3 × 3 stencil, 3
iterations. Bottom left: (c) 5× 5 stencil, 3 iterations. Bottom right: (d) 7× 7 stencil, 3
iterations.

Structure tensors [91] are computed by Gaussian smoothing of the outer product
matrices∇u∇uT of an image u . They encode local orientation estimation integrated
within a neighbourhood on the scale of the Gaussian which is used.

A matrix median filtering step can now be employed for a robust filtering of these
structure tensors. This is demonstrated by Figure 3.9. Pursuing this idea further,
the Gaussian smoothing can even be omitted; one then applies the median filtering
directly to the rank one outer product matrices. When processing structure informa-
tion from images with no or moderate noise, see e.g. Figure 3.10 a favourable smooth-
ing is achieved which keeps discontinuities in the orientation field fairly sharp.

For images contaminated with stronger noise, see Figure 3.11, the quality of the re-
sults is still less satisfactory. Improvements of the orientation estimation are made us-
ing two modifications which can be used separately or combined. First, since we are
only interested in directional information, the gradients (or, equivalently, the outer
product matrices) can be normalised before median filtering. Second, median fil-
tering itself can be iterated. The experiments in Figure 3.12 reveal that in case of



(c) Martin Welk 2007–2016. All rights reserved.

3.1. Median 65

Figure 3.7: Median filtering of 2-D DTMRI data with different norms. Top left: (a)

Noisy image from Figure 3.4 (b). Top right: (b) Filtered by Frobenius median, 3× 3
stencil, 3 iterations. Bottom left: (c) Nuclear median, 3×3 stencil, 3 iterations. Bottom

right: (d) Spectral median, 3× 3 stencil, 3 iterations.

Table 3.1: Average angular errors (AAE) measured in orientation estimation.
Method-specific parameters in brackets include stencil diameter and iteration count
for median, m and s (see [199]) for Boomgaard–Weijer tensor. From [225].

Method AAE AAE AAE
undisturbed impulse noise Gaussian noise

gradient direction 3.387◦ 20.612◦ 31.429◦

Frobenius median 1.591◦ (7, 1) 1.914◦ (9, 4) 3.207◦ (9, 5)
Frobenius median, norm. 1.312◦ (7, 1) 1.655◦ (5, 5) 3.434◦ (15, 4)
Boomgaard–Weijer 1.634◦ (0.1, 3) 1.489◦ (0.05, 5) 3.657◦ (0.05, 9)

impulse noise, each of these ideas is capable of sharpening the discontinuity. For
Gaussian noise, iterated median filtering gives the greater gain in performance. The
combination in this case does not pay off significantly. Table 3.1 juxtaposes quality
measurements based on average angular errors for the different methods.
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Figure 3.8: Frobenius median filtering of a tensor field containing indefinite matri-
ces. The data are deformation tensors originating from a fluid dynamics simulation.
Left to right: (a) Initial data, 124× 101 pixels. (b) 10 iterations, 3× 3 stencil. (c) 100
iterations. (d) 1000 iterations. Bottom, left to right: (e)–(h) Detail from the top row
visualised by ellipses. Adapted from [219].

Figure 3.9: Left to right: (a) Image containing oriented texture with inhomogeneities.
(b) Structure tensors computed by smoothing the outer products∇u∇uT with 15×15
Gaussian. Gradients have been calculated by 3× 3 derivative-of-Gaussian filtering.
The final matrix field has been subsampled for visualisation. (c) Result of Frobenius
median filtering of (b) with 7× 7 stencil, subsampled. Image: F. Becker, from [217].

Robust structure tensors. To end this section, we want to point out another as-
pect. The classical structure tensor smoothes outer product matrices by means of the
Gaussian scale space which is simple and efficient but insensitive to features. In [211],
compare also [42], Weickert and Brox have replaced Gaussian smoothing, which is
in fact a linear diffusion process, by a feature-preserving nonlinear diffusion process,
yielding a nonlinear structure tensor. Assigning the role of the smoothing process
to iterated median filtering, which also constitutes a scale space, stands in analogy to
this procedure and can be seen as construction of a robust structure tensor.
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Figure 3.10: Left to right: (a) Synthetic image with oriented textures, inspired
by [199]. (b) Local orientations computed via derivatives of Gaussians. Orientations
have been mapped to grey-values. Note that the orientations represented by black
and white are close neighbours. (c) Orientations after median filtering of the orienta-
tion matrices with Frobenius norm and a disk-shaped structure element of diameter
7. (d) Same with structure element of diameter 9. (e) Spectral norm median filtering,
diameter 9. Image: F. Becker, from [217].

Figure 3.11: Top, left to right: (a) Test image with 20% impulse noise. (b) Orientation
field of (a). (c) Structure tensor orientation obtained by Gaussian smoothing of the
outer product matrices with standard deviation 19. (d) Same after median filtering
with Frobenius norm and disk-shaped structure element of diameter 9. (e) Median
filtering of (a) with Frobenius norm and disk-shaped structure element of diameter 19.
Bottom, left to right: (f) Test image perturbed by Gaussian noise of standard deviation
0.2 (where grey-values vary between 0 and 1). (g) Orientation field of (f). (h) Structure
tensor orientation as in (c). (i) Median filtering as in (d). (k) Median filtering as in (e).
Image: F. Becker, from [217].

The notion of robust structure tensor has also been used by Boomgaard and Wei-
jer in [199], see also [42]. They propose the minimisation of an objective function
which leads to a (noniterated) weighted median, compare Sec. 3.2.1 below. Since the
weights are defined by a Gaussian, the Boomgaard–Weijer tensor in fact combines
median and diffusion operations in one filter. We include orientation estimates with
the Boomgaard–Weijer tensor in Figure 3.12 and Table 3.1.
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Figure 3.12: Top row: Modified local orientation filtering for the impulse-noise im-
age, Figure 3.11 (a). Left to right: (a) Frobenius median filtering of normalised outer
product matrices with disk-shaped stencil of diameter 9. (b) As (a) but with stencil
of diameter 19. (c) Four iterations of the median filter from Figure 3.11 (d). (d) Five
iterations of median filter with normalisation, stencil diameter 5. (e) Orientation
estimate from the Boomgaard–Weijer robust structure tensor, parameters (see [199])
m = 0.05, s = 5. Bottom, left to right: Filtering of Figure 3.11 (f). (f) Frobenius median
filtering with normalisation and stencil of diameter 9. (g) Same with diameter 19. (h)

Median filtering as in Figure 3.11 (i), five iterations. (i) Four iterations of median filter
with normalisation, stencil diameter 15. (k) Boomgaard and Weijer’s robust structure
tensor, m = 0.05, s = 9. Image: F. Becker, from [217].

3.2 Median–Related Filters

In this section, we discuss two close relatives of the median concept that can easily be
obtained by slight variations of the same minimisation idea. Due to the close analogy,
the convexity and uniqueness details need not be discussed again since they transfer in
all cases straightforward from the corresponding median definitions (with the same
matrix norm).

3.2.1 Weighted Median

As demonstrated before, matrix median filtering allows an efficient and edge-preser-
ving denoising. However, fine details which are smaller than the stencil size still
experience a degradation even by a single iteration of median filtering. When denois-
ing images which contain only moderate amounts of noise, the preservation of small
details can be improved.

We achieve this by using weighted medians. Unweighted scalar median filtering changes
each pixel which has not exactly the middle value within its neighbourhood. If in-
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Figure 3.13: Weighted Frobenius median. The noisy DTMRI image has been fil-
tered using 3 iterations of a 3×3 stencil with different weights w of the central pixel.
The remaining pixel weights were fixed to 1. Top left: (a) The noisy image from Fig-
ure 3.4 (a). Top right: (b) Filtered by Frobenius median, i.e. w = 1. Middle left: (c)

Weighted with central pixel weight w = 2. Middle right: (d) w = 2.2. Bottom left: (e)

w = 2.5. Bottom right: (f) w = 5.

stead the central pixel is repeated more than once within the ordered sequence, its
value survives even if it is just close to the middle position. Only pixels whose val-
ues are close to the extrema within their neighbourhood are treated as outliers and
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therefore changed. The transfer of this idea to the energy minimisation formulation
is obvious and is formulated in the following definition right away for matrices.

Definition 3.2 Given a tuple S = (A1, . . . ,An) of d × d matrices, a vector of nonneg-

ative weights w = (w1, . . . , wn) and a norm ‖ · ‖. The weighted median med(S , w) is

defined as the minimiser of

E(S ,w)(X ) =
n∑

i=1

wi ‖X −Ai‖ . (3.28)

Figure 3.13 demonstrates denoising of tensor images by weighted matrix median fil-
tering. We use a 3× 3 stencil in which the weight of the central pixel is varied. It
can be seen that fine structures can be retained that are removed by unweighted me-
dian filtering even with small stencils. The admissible weight for the central pixel de-
pends sensitively on the noise level. In our noisy test image, a weight of 2 or slightly
above for the central pixel considerably enhances structure preservation while higher
weights lead directly to stronger noise.

3.2.2 Matrix-Valued Quantile Filtering

The possibility to transfer the notion of median, thus a 50%-quantile, to matrix data
motivates us to check whether even other quantiles can be defined for this type of
data. Indeed, the α-quantile quα(S), 0 < α < 1, of a real data tuple S = (a1, . . . ,an)

admits a characterisation by a minimisation property similar to that for the median.

3.2.2.1 Scalar-Valued Quantiles

One has that quα(S) minimises the convex function

ES ,α(x) :=
n∑

i=1

fα(x − ai ) (3.29)

where fα(z) is a piecewise linear but asymmetric (except for α= 1/2) function replac-
ing the absolute value,

fα(z) := |z |+ (1− 2α)z =

¨
(2− 2α) |z | , z ≥ 0,

2α |z | , z < 0.
(3.30)

3.2.2.2 Matrix-Valued Quantile Definition

In defining matrix-valued quantiles, we require again the properties of scaling and ro-
tational invariance as well as the embedding property for the scalar-valued quantiles.
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The way of generalising is mostly analogous to the median case. However, a matrix
equivalent of fα has to be used.

Definition 3.3 Let S = (A1, . . . ,An) be a tuple of symmetric d × d matrices, 0 < α <
1, and let a norm ‖ · ‖ be given. The α-quantile quα(S) of S w.r.t. ‖ · ‖ is defined as

minimiser of the convex function

ES ,α(X ) :=
n∑

i=1

‖ fα(X −Ai )‖ (3.31)

with the function fα defined in (3.30).

As usual, the operation of fα on a symmetric matrix Y is defined by action on the
eigenvalues. More explicitly, if Y =Q diag(λ1, . . . ,λd )Q

T with orthogonal Q, then

fα(Y ) :=Q diag
�

fα(λ1), . . . , fα(λn)
�

QT . (3.32)

For ‖ · ‖ one might consider again nuclear, Frobenius and spectral norm. However,
the necessity to apply fα to the matrices by diagonalisation prevents any generalisa-
tion of this quantile definition to other than symmetric square matrices.

3.2.2.3 Quantile Limits for α→ 0 and α→ 1

Scalar α-quantiles can be considered to include the minimum and maximum of a tu-
ple of real numbers as special cases for α = 0 and α = 1. It needs, however, to be
noticed that the minimisation characterisation via minimisation of (3.29) is insuffi-
cient for α= 0 or α= 1 since e.g. ES ,0(x) is equally minimised by all lower bounds of
the given scalar data. Similarly, the characterisation of matrix-valued quantiles from
Definition 3.3 becomes deficient for α = 0 or α = 1, admitting as minimisers all X

for which X −Ai are uniformly negative (positive) semidefinite. A proper definition
therefore requires an additional criterion that selects among all these lower bounds.

Recap of matrix supremum and infimum definitions. It is worth comparing this
with the situation in [47, 48] where supremum and infimum notions for matrix sets
were established in order to introduce morphological filters. We recall first the or-
derings used there to characterise upper bounds of a given set of matrices:

• In [48], the so-called Loewner (semi-)ordering´1 was used which is defined for
symmetric matrices A,B as follows:

A´1 B if and only if B −A is positive semidefinite. (3.33)
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• In [47, Sec. 4], a semi-ordering´2 for positive semidefinite symmetric matrices
A,B was introduced by

A´2 B if and only if the ellipse xTA−2x = 1
is contained in the ellipse xTB−2x = 1.

(3.34)

At first glance, these definitions look fairly different. Notice, however, that ´2 was
introduced by reference to the ellipses

xTA−2x = 1 (3.35)

(cf. (1.5)) which underly the standard visualisation in Section 1.4.3. As we remarked
there, the ellipse

xTA−1x = 1 (3.36)

(cf. (1.6)) stands in a more natural relation to the symmetric positive definite matrix
A as it represents in the case of diffusion tensors an isosurface for the probability
distribution of diffused particles. In order to obtain a physically more meaningful
semi-ordering relation, it is therefore natural to replace the ellipses (3.35) by (3.36) in
(3.34), leading to the definition

A´1′ B if and only if the ellipse xTA−1x = 1
is contained in the ellipse xTB−1x = 1

(3.37)

for symmetric positive semidefinite matrices A,B .

The definition can easily be restated for symmetric matrices without positive definite-
ness condition by using the deformation representation from Section 1.4.3, in which
deformed unit circles take the role of the ellipses to be related:

A´1′′ B if and only if the ellipse xT(I + ǫA)−2x = 1
is contained in the ellipse xT(I + ǫB)−2x = 1
for all ǫ ∈ (0,ǫ∗) with a small ǫ∗ > 0.

(3.38)

We will now prove the following equivalence that clarifies the geometric motivation
of ´1 and its close relation to the earlier definition ´2.

Proposition 3.7 Let A,B be symmetric d × d matrices.

(a) The relation A´1 B holds if and only if A´1′′ B holds.

(b) If A,B are positive definite, then A´1 B holds if and only if A´1′ B holds.

In the proof, we will use the following statement.

Lemma 3.8 Let A,B be symmetric positive definite d×d matrices. Then B−Ais positive

semidefinite if and only if A−1−B−1 is positive semidefinite.
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Proof. Assume the converse were true, i.e., without loss of generality, A−1 − B−1

were positive semidefinite but B −A were not.

Then we would have that

xT(A−1−B−1)x ≥ 0 for all x (3.39)

and
yT(A−B)y > 0 for some x . (3.40)

In this case, let z :=A1/2y such that (3.40) becomes

zT(I −A−1/2BA−1/2)z > 0 (3.41)

while applying (3.39) to x :=A1/2 z yields

zT(I −A
1/2B−1A

1/2)z ≥ 0 . (3.42)

Combining (3.41) and (3.42) we find

0> zT(A−1/2BA−1/2− 2I +A
1/2B−1A

1/2)z

= zT(B
1/2A−1/2−B−1/2A

1/2)T(B
1/2A−1/2−B−1/2A

1/2)z
(3.43)

contradicting the positive semidefiniteness of the inner product. �

Proof of the Proposition. Consider first the case (b). In fact one has for posi-
tive definite A,B that A´1′ , i.e., the ellipse xTA−1x = 1 is completely contained in
xTB−1x = 1 if for every x with xTA−1x = 1 the inequality xTB−1x ≤ 1 holds, and
by rescaling generally

xTB−1x ≤ xTA−1x for all x , (3.44)

which is equivalent to

xT(B−1−A−1)x ≤ 0 for all x , (3.45)

i.e., positive semidefiniteness of A−1−B−1. Lemma 3.8 ensures equivalence to A´1 B .

For (a), notice that for sufficiently small ǫ > 0, both I + ǫA and I + ǫB are positive
definite. Similarly as in the previous proof, the geometric inclusion condition that
defines ´1′′ is equivalent to

xT�(I + ǫA)−2− (I + ǫB)−2�x ≥ 0 (3.46)

and by Lemma 3.8 to

0≤ xT�(I + ǫB)2− (I + ǫA)2�x
= xT �2ǫ(B −A)+ ǫ2(B2−A2)

�
︸ ︷︷ ︸

=:C

x . (3.47)
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As ǫ > 0 goes to 0, the sign of xTC x is determined by xT(B −A)x , except if
xT(B −A)x = 0.

If B 6=A, the latter holds only in a subspace (possibly 0), which contains no open set
of IRd ; continuity then ensures that the sign of xTC x for these x cannot be opposite
to a uniform sign for all other x , such that for sufficiently small ǫ, the matrix C is
positive semidefinite if and only if B−A is. On the other hand, if B =A, then B2 =A2,
too, such that C vanishes as well. In all cases, we have that A´1′′ B holds if and only
if A´1 B holds. �

Let us for brevity denote by Upp1(S) and Upp2(S) the sets of upper bounds of the
given matrix tuple S with respect to the partial orderings ´1 and ´2, respectively,
i.e.,

Uppp (S) := {X ∈S d | Ai ´p X for all i} , p = 1,2 . (3.48)

In both cases [47, 48] an additional criterion had to be used to select among all upper
bounds from Upp2(S), Upp1(S), respectively. In [47] a lexicographic ordering of
eigenvalues plays this role, such that a supremum sup2(S) for a set S of positive definite
symmetric d × d matrices is defined as follows:

sup2(S) := argmin
X∈Upp2(S)

�
λ1(X ), . . . ,λd (X )

�
, (3.49)

where the eigenvalue tuples are written in decreasing order λ1 ≥ . . . ≥ λd > 0, and
argmin is taken w.r.t. their lexicographic ordering.

Looking at the leading eigenvalue λ1, it becomes clear that the lexicographic ordering
means to select a matrix with minimal spectral norm, with sensible handling of non-
unique cases. Unfortunately, this definition cannot avoid discontinuities in some
situations.

In [48], the unique matrix with smallest trace is selected from the upper bound set:2

sup1(S) := argmin
X∈Upp1(S)

tr(X ) (3.50)

In the case of positive semidefinite matrices, this can also be interpreted as minimising
the nuclear norm.

Matrix suprema and infima as limits of quantiles. In the quantile framework, the
limit processα→ 1−0 (α→ 0+0) lends itself as a way to disambiguate the supremum
(infimum). Depending which norm is chosen for the α-quantiles, different suprema
arise as limits.

2In the penumbra cone model of [48], this criterion is encoded in the step of picking among all cones
that cover the given set the one whose tip has smallest vertical coordinate in the chosen reparametrisa-
tion. This vertical coordinate is exactly the trace of the matrix.
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Proposition 3.9 Let a tuple S = (A1, . . . ,An) of symmetric d×d matrices be given, and

denote by qu1,α(S), qu2,α(S), qu∞,α(S) the α-quantiles of S with respect to the nuclear,

Frobenius, and spectral norms, respectively. Then the following statements describe the

limits of these quantiles for α→ 1− 0:

(a) With the nuclear norm, we have

qu1,1(S) := lim
α→1−0

qu1,α(S) = argmin
X∈Upp1(S)

tr(X ) , (3.51)

i.e., the matrix supremum sup1(S) from (3.50). Moreover, there is an ǫ̂= ǫ̂1(n)> 0
such that qu1,α(S) = sup1(S) for all α > 1− ǫ̂.

(b) Revised 2016-02: This statement (b) in its original form contained an error.

The following is a corrected version published first in [Theorem 1][237].

With the Frobenius norm, we have

qu2,1(S) := lim
α→1−0

qu2,α(S) = argmin
X∈Upp1(S)

n∑
i=1

‖X −Ai‖(2) . (3.52)

(c) With the spectral norm, we have

qu∞,1(S) := lim
α→1−0

qu∞,α(S) = argmin
X∈Upp1(S)

n∑
i=1

|λ1(X −Ai )| (3.53)

where λ1(Y ) denotes the largest eigenvalue of the symmetric matrix Y . There exists

an ǫ̂= ǫ̂∞(n)> 0 such that qu∞,α(S) = qu∞,1(S) for all α > 1− ǫ̂.

Remark. It becomes evident that in the nuclear quantile case a robustness property
similar to Lemma 3.5 holds, which ensures the independency of the supremum on
those Ai ∈ S for which X −Ai is positive definite. The limit cases of Frobenius and
spectral quantiles, in contrast, depend in general on all matrices of S .

We remark also that Upp1(S) consists of positive (semi-)definite matrices if S con-
tains at least one positive (semi-)definite matrix, such that preservation of positive
(semi-)definiteness is guaranteed in all cases.

Proof. Throughout this proof, we set for abbreviation

λ j i := λ j (X −Ai ) , (3.54)

where λ1(Y )≥ λ2(Y )≥ . . .≥ λd (Y ) are again the eigenvalues of a symmetric matrix
Y in decreasing order.
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To prove (a), we start by defining the index sets

T := {1, . . . , n}× {1, . . . , d} ,
T+(X ) := {(i , j ) ∈ T | λ j i > 0} ,
T−(X ) := {(i , j ) ∈ T | λ j i < 0} .

(3.55)

The energy function (3.31) with nuclear norm for α := 1− ǫ becomes

E1−ǫ(X ) =
∑

(i , j )∈T−(X )

2(1− ǫ) |λ j i |+
∑

(i , j )∈T+(X )

2ǫλ j i

= 2ǫ
∑
(i , j )∈T

λ j i + 2
∑

(i , j )∈T−(X )

|λ j i |

= 2ǫ
n∑

i=1

tr(X −Ai )+ 2
∑

(i , j )∈T−(X )

|λ j i |

= 2ǫn tr(X )+ 2
∑

(i , j )∈T−(X )

|λ j i | − 2ǫn tr(Ā) . (3.56)

Let X ∗ =X ∗(ǫ) be the minimiser of E1−ǫ, and δ be any real number with

0<δ < min
(i , j )∈T−(X ∗)

|λ j i | . (3.57)

Then we have

E1−ǫ(X
∗+δI ) = 2ǫn tr(X ∗+δI )+ 2

∑
(i , j )∈T−(X ∗)

|λ j i +δ| − 2ǫn tr(Ā)

= E1−ǫ(X
∗)+ 4ǫδn− 2δ

��T−(X ∗)
�� (3.58)

with
��T−(X ∗)

�� denoting the cardinality of T−(X
∗). Since by the minimiser property

of X ∗ the value E1−ǫ(X
∗+δI ) must be greater or equal E1−ǫ(X

∗), we conclude that
4ǫδn− 2δ

��T−(X ∗)
��≥ 0, hence

��T−(X ∗)
��≤ 2ǫn . (3.59)

If therefore ǫ < 1/2n, it follows that T−(X
∗) is empty, thus X ∗ ∈ Upp1(S). Since for

X ∈Upp1(S), equation (3.56) simplifies to

E1−ǫ(X ) = 2ǫ tr(X )− 2ǫn tr(Ā) , (3.60)

we see that
X ∗(ǫ) = argmin

X∈Upp1(S)

tr(X ) for ǫ <
1

2n
(3.61)

which proves statement (a) with ǫ̂1(n) = 1/2n.

(Revised 2016-02: The proof of part (b) at this place has been deleted as it was

flawed. The proof for the corrected statement (b) is found in [237].)
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It remains to prove statement (c). Here we choose the index sets

T := {1, . . . , n} ,
T+(X ) := {i ∈ T | λd i ≥ 0 or ǫλ1i ≥−(1− ǫ)λd i ≥ 0} ,
T−(X ) := {i ∈ T | λ1i < 0 or (1− ǫ)λd i <−ǫλ1i < 0} .

(3.69)

Thus, T+(X ) indexes those matrices Ai for which the largest positive eigenvalue de-
termines the spectral norm of f1−ǫ(X −Ai ), while T−(X ) indexes those for which the
smallest negative eigenvalue plays this role.

With the spectral norm, (3.31) then takes the form

E1−ǫ(X ) = 2(1− ǫ)
∑

i∈T−(X )

|λd i |+ 2ǫ
∑

i∈T+(X )

|λ1i | . (3.70)

Denote again by X ∗ the minimiser of E1−ǫ, and choose a small positive δ such that
T+(X

∗+δI ) = T+(X
∗), T−(X

∗+δI ) = T−(X
∗). (This is achieved if on replacing X ∗

with X ∗+δI , all negative eigenvaluesλ j i stay negative, and for no indefinite X ∗−Ai ,
the order of ǫλ1i and −(1− ǫ)λd i changes.) Then we have

E1−ǫ(X
∗+δI ) = 2(1− ǫ)

∑
i∈T−(X ∗)

(|λd i | −δ)+ 2ǫ
∑

i∈T+(X
∗)

(λ1i +δ)

= E1−ǫ(X
∗)− 2(1− ǫ)δ

��T−(X ∗)
��+ 2ǫδ

��T+(X ∗)
�� ,

(3.71)

and this has to be greater or equal E1−ǫ(X
∗). Hence,

��T−(X ∗)
��≤ ǫ

1− ǫ
��T+(X ∗)

��≤ ǫ

1− ǫn . (3.72)

If ǫ < 1
n+1 , the last expression is less than 1, such that T−(X

∗) must be empty, i.e.
X ∗ ∈Upp1(S). For X ∈Upp1(S), equation (3.70) simplifies to

E1−ǫ(X ) = 2ǫ
n∑

i=1

|λ1i | , (3.73)

therefore X ∗ = argmin
X∈Upp1(S)

n∑
i=1
|λ1i |. Statement (c) follows, with ǫ̂∞(n) =

1
n+1 . �

Matrix infima, which can be defined analogously by the limit process α→ +0, also
obey statements corresponding to those of Proposition 3.9. Preservation of positive
(semi-)definiteness, however, cannot be guaranteed in all cases.3

3For example, the analog of sup1(S) would be inf1(S) which is the matrix X of greatest trace such
that all Ai −X are positive semidefinite. This matrix can happen to be indefinite. In [48], it is therefore
proposed to use instead

�
sup1(A

−1
1 , . . . ,A−1

n )
�−1, i.e., the matrix X for which all Ai−X and X are positive

semidefinite and for which tr(X−1) is smallest.
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Figure 3.14: Matrix-valued α-quantiles. The DTMRI image from Figure 3.4 (a) has
been filtered with a 5× 5 stencil, 1 iteration. Top row: α = 0.1. Middle row: α = 0.5
(i.e. median). Bottom row: α= 0.9. – Left column: Frobenius quantiles. Right column:

Nuclear quantiles.

Experiments. We demonstrate α-quantile filtering of DTMRI data in Figure 3.14.
It can be seen that for α close to 0 or 1 the nuclear quantile filters become similar to
morphological erosion and dilation operators.
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3.3 Midrange Filter

The minimisation approach underlying the matrix median definition can easily be
extended to a larger class of local image filters, cf. [219].

3.3.1 Scalar-Valued Midrange

Given a set S of real numbers, its mid-range value is simply the arithmetic mean of
their maximum and minimum. A mid-range filter is then obtained by taking the mid-
range value of the grey-values within a suitable neighbourhood of a pixel. Mid-range
filters are rarely used for denoising purposes since they perform reasonably only in
fairly special situations (noise distributions with “thin tails”). They can, however, be
used in the construction of more relevant filters.

Interestingly, the mid-range value can be seen as minimiser of the convex function

ES(x) = max
i=1,...,n

|x − ai | , (3.74)

which gives it a formulation very similar to that of the median.

3.3.2 Multi-Channel Midrange Definition

In analogy to our generalisation of the median from scalar to multi-channel data, the
mid-range for multi-channel data is defined as the minimiser of a convex function.

Definition 3.4 Given a tuple S = (A1, . . . ,An) of symmetric matrices, its mid-range

value midr(S) is the minimiser of the convex function

ES (X ) = max
i=1,...,n

‖X −Ai‖ (3.75)

with a matrix norm ‖ · ‖.

Based on similar requirements as for the median, suitable choices include once more
nuclear, Frobenius and spectral norm.

3.3.3 Properties of Multi-Channel Midrange Filters

3.3.3.1 Frobenius Midrange

We start again by considering uniqueness. Since for all matrix norms the energy ES

used in the definition of midrange values is convex, there is either a unique minimiser
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or a convex set of minimisers with equal values of ES . The latter case implies partic-
ularly that those matrix norms ‖X −Ai‖ which realise the maximum in ES for the
minimisers are constant along some straight line segment.

In the case of the Frobenius midrange, the convexity properties of the Frobenius
norm discussed in 3.1.3 rule out the existence of such a straight line segment, thereby
ensuring uniqueness of Frobenius midrange values in all cases.

Moreover, Proposition 3.2 transfers directly to the Frobenius midrange case, which
guarantees that the midrange value of positive semidefinite matrices is also positive
semidefinite.

3.3.3.2 Nuclear Midrange

Since the exceptions from strict convexity are significant for the nuclear norm, there
are also generic cases in which the nuclear midrange value is not uniquely defined.
We sketch such a situation: Let X be a minimiser of ES for some given data set S .
Assume that all those X −Ai whose norms attain the maximum in the definition of
ES are positive or negative definite. Then there is a hyperplane segment around X

consisting of matrices X ′with tr(X ′) = tr(X ) for which the corresponding X ′−Ai are
also positive or negative definite and for which the same Ai determine the maximum
in the definition of ES . All these X ′ are equally minimisers for ES as X is.

As a consequence, the “weak” positive semidefiniteness preservation stated in Propo-
sition 3.4 for the nuclear median translates also to the nuclear midrange.

3.3.3.3 Spectral Midrange

Also the spectral midrange value can be non-unique for certain input sets. This can
happen when only two input data values realise the maximum of ‖X −Ai‖ in (3.75)
for the midrange value X . Often, however, the maximum is realised by the corners of
a simplex in the input data space, i.e., by four input values (in the case of symmetric
2×2 matrices) or seven input values (in the case of symmetric 3×3 matrices), which
determine the midrange value uniquely.

3.3.4 Numerics

3.3.4.1 Gradient Descent Based Method

The gradient descent based algorithm from Section 3.1.7 can easily be adapted to cal-
culate mid-range values. However, due to the maximum operation the gradient at
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each location is dominated by one single matrix difference norm ‖X −Ai‖. This in-
duces additional hypersurface-singularities separating zones of dominance of the Ai .
The regularisation procedure described in Section 3.1.7 for the spectral and nuclear
norm case can be used to handle these singularities; as a consequence, regularisation is
necessary even in the Frobenius mid-range computation. For the spectral and nuclear
norms, their specific singularities as discussed in Section 3.1.7 have to be respected as
well. Moreover, the step-size control mechanism is indispensable in this case.

3.3.4.2 Convex Optimisation

A representation of the mid-range operator by a convex optimisation problem works
along the lines described for the spectral median, with the difference that only a scalar
auxiliary variable is needed. For details we refer to [20].

3.3.5 Experimental Evaluation

Mid-range filtering of 2D DTMRI data is shown in Figure 3.15. We display Frobe-
nius and spectral midrange filtering results for 3× 3 and 5× 5 stencils. The nuclear
midrange is less attractive since it suffers from the above-mentioned non-uniqueness
problem.
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Figure 3.15: Matrix-valued midrange filtering of the DTMRI image from Figure 3.4.
Top left: Frobenius midrange, 3× 3 stencil. Top right: Frobenius midrange, 5× 5
stencil. Bottom row: Same with spectral midrange filter.
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3.4 M-Estimators with Arbitrary Power Functions as Pe-

nalisers

In this section, we consider a class of filters that generalises and extends median and
midrange filters.

3.4.1 Scalar-Valued M-Smoothers and M-Estimators

Replacing the distances |x − ai | in the function (3.1) by some other function of |x − ai |
yields a more general class of nonlinear averages for real numbers. Minimisers of

ES(x) :=
n∑

i=1

ψ (|x − ai |) (3.76)

are called M-estimators [19]. Like the median and mid-range value, M-estimators give
rise to local image filters which are denoted as M-smoothers [194, 232].

An important choice for ψ on which we will concentrate in this work is the p -th
power,ψ(s ) = s p , p > 0.

Special cases of these M-estimators include the median for p = 1 but also, in the least-
squares case p = 2, the arithmetic mean. As limit case for p →∞, the mid-range
value as well fits into the framework.

The M-estimators for p < 1 are more difficult to handle since their objective func-
tions are no longer convex – instead, they have local minima at all input values and
are strictly concave in the remainder of the real line.4 Nevertheless, the correspond-
ing M-smoothers display attractive properties for applications since they exceed the
median filter in robustness and are able even to enhance edges.

3.4.2 Multi-Channel M-Smoothers and M-Estimators

By a straightforward extension of the matrix-valued median and mid-range concepts,
we are led to the following definition for matrix-valued M-estimators.

Definition 3.5 Let S = (A1, . . . ,An) be a tuple of symmetric d × d matrices, and p a

positive real number. A symmetric matrix which minimises the convex function

ES (X ) :=
n∑

i=1

ψ
�
‖X −Ai‖

�
(3.77)

4These M-estimators are often called modes. The usual mode value of a set, i.e., the most frequent
value, arises in the limit case p→ 0.
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with some matrix norm ‖ · ‖ and an increasing function ψ : IR+0 → IR+0 is a matrix-

valued M-estimator for S.

As in the scalar-valued case, we restrict our considerations to the caseψ(s ) = s p with
p > 0.

Clearly, the matrix-valued median is recovered for p = 1. For p > 1, there exists a
unique minimiser for ES because of the strict convexity of that function.

As in the scalar case, one faces a more complex situation for p < 1 which we discuss
here exemplarily for the Frobenius norm.

Lemma 3.10 Let a set S = {A1, . . . ,An} of symmetric d × d matrices be given, and

consider the function ES from (3.77) with Frobenius norm and ψ(s ) = s p , 0 < p < 1.

Then each matrix Ai is a local minimum of ES . Moreover, there is a bound ̺ > 0 such

that within no ̺-neighbourhood of any Ai there is another local minimum of ES .

Remark. The first part of the statement, i.e. that each of the given matrices Ai is a
local minimum of ES , is in full analogy to the scalar-valued case (see Section 3.4.1).
Unlike there, additional minima of the objective function can now exist in regions
where EX is smooth, but they are bounded away from the first type of minima by
the second assertion.

Proof. Only the second assertion needs to be proven. Since the gradient magnitude���∇(‖Y −Aj ‖p )
��� grows over all limits when Y approaches the singularity at Aj , there

exists for each p < 1 and given data set X a radius ̺ = ̺(p ,X ) such that, within a
̺-neighbourhood of Aj , the gradient ∇(‖Y −Aj ‖p ) dominates

∑
i 6= j∇(‖Y −Ai‖p )

guaranteeing Aj to be the only local minimum of EX within that neighbourhood.
�

In the design of an M-smoother with p < 1, the crucial question therefore arises
which minimum of EX should be chosen as the value of the M-estimator. We mention
two alternatives. The global minimum with its advantage of avoiding any artificial
assumptions has the drawback of being highly sensitive to changes in the input data.
An alternative is a focussing strategy that starts with the unique minimum at p = 1
and tracks its drifting while p decreases. Although this method reduces the set of
minima to be considered, instabilities of two kinds are still introduced into it by the
way how minima evolve with decreasing p . First, minima can split by bifurcations
where no obvious criterion tells which branch to follow. Second, minima can disap-
pear; then the focussing must jump into another minimum, chosen e.g. by gradient
descent. Besides that, the focussing method applied in the scalar setting would just
trivially lock in at the median.
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3.4.3 Numerical Aspects

3.4.3.1 Case 1< p <∞

For M-smoothers with 1 < p <∞, the gradient descent algorithm can be applied
similarly as for the median, taking care of the necessary regularisations in case of the
spectral norm. The nuclear norm does not require regularisations here since the p -th
power smoothes out the singularities in the absolute values of eigenvalues.

We mention that for p > 1, unlike for p = 1, the gradient magnitude is sensitive to
re-scaling of the data range and thus contains information about the distance to the
minimum. This information could be used to determine the step size instead of the
adaptive control mechanism described above. We do not elaborate this further.

3.4.3.2 Case p < 1

For p < 1 the missing convexity is the dominating problem. Depending on the de-
cision which of the multiple local minima should be the value of the M-estimator
(compare end of 3.4.2), different strategies are possible. If one is interested in the
global minimum, one option is a grid search within the convex hull of the input data.
In Figure 3.16, we present filtering results obtained in this way.

3.5 Multi-Channel Median and Mean Curvature Motion

In 3.1.1 we cited the approximation result established by Guichard and Morel that
links scalar-valued median filtering to a PDE-based image filter, namely mean curva-
ture motion (MCM).

A generalisation of mean curvature motion to matrix-valued data has been given in
[85, 86], see also [212]. This gives raise to the question whether the median—MCM
link can also be generalised to the matrix-valued setting. We conclude the present
chapter with an investigation of this question.

3.5.1 Multi-Channel Mean Curvature Motion

Given a scalar-valued image f on a closed domain Ω ∈ IR2, mean curvature motion
[3, 4, 118] is the image evolution u :Ω × [0,∞)→ IR described by the equation

∂t u = |∇u | div
� ∇u

|∇u |

�
on Ω× [0,∞) (3.78)
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Figure 3.16: Matrix-valued Frobenius M-smoothing of the DTMRI image from Fig-
ure 3.4 with penalisersψ(s ) = s p for different p . One filtering step with 3×3 stencil
has been performed in all cases. Top left: (a) Frobenius midrange as limiting case
p → +∞. Top right: (b) p = 3. Middle left: (c) p = 2, equivalent to box averaging.
Middle right: (d) p = 1, standard Frobenius median. Bottom left: (e) p = 0.5, global
minimiser in each pixel computed via grid search. Bottom right: (f) p = 0.1, grid
search.
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with the initial condition

u(x , 0) = f (x) for all x ∈Ω (3.79)

and suitable boundary conditions on ∂ Ω × [0,∞).

The process (3.78) can be restated as

∂t u = ∂ξ ξ u (3.80)

where for each (x , t ), the unit vector ξ is chosen such that v ⊥∇u(x , t ).

The latter description underlies the definition of multi-channel mean curvature mo-
tion which we will introduce now. This concept goes back to [55] and has been
adapted in [85, 86] for matrix-valued images.

Given a multi-channel image f = ( fk)k∈Γ with channels enumerated by Γ , we con-
sider the partial differential equation

∂t uk = ∂vv uk (3.81)

on a closed domain Ω ⊂ IR2 with initial condition

uk(x , 0) = fk (x) for all x ∈Ω (3.82)

where at each location x ∈ Ω and time t ≥ 0 the unit vector v is an eigenvector of
the multi-channel structure tensor (compare 2.3.2)

J = J0(∇uσ ) :=
∑
k∈Γ
∇(Kσ ∗ uk)∇(Kσ ∗ uk)

T (3.83)

corresponding to the smallest eigenvalue of J . In (3.83), Kσ denotes a Gaussian of
standard deviation σ .

3.5.2 Multi-Channel Median and PDE Evolutions

Revision upcoming 2016-02: Some statements in this section need corrections.

For now, flawed statements have been deleted; a revision is being prepared.

To investigate a possible generalisation of Guichard and Morel’s result to the multi-
channel setting, we assume now that a smooth multi-channel image f :Ω→ IRd with
image domainΩ ⊂ IR2 is given, and we define the median of f within a closed domain
D ⊂Ω via

med
D

f := argmin
z∈IRd

∫∫

D

‖ f (x , y)− z‖(2) dx dy . (3.84)

We have chosen the Euclidean norm here. However, it should be noted that this is not
such a strong restriction as it may appear since we are going to consider the median



(c) Martin Welk 2007–2016. All rights reserved.

88 Chapter 3. M-Smoothers and Related Filters for Multi-Channel Images

over sets D that converge to a point, thereby reducing the variation of function values
within D also towards zero such that different norms will yield basically the same
result in the limit.

Analogous to the scalar-valued case, we can define a partial differential equation that
is associated to the median filter. We say that a PDE

∂t u = F (∂x u ,∂y u ,∂x x u ,∂xy u ,∂yy u , . . .) (3.85)

is associated to the median filter if

lim
̺→+0

med
D̺(x ,y)

u − u(x , y)

̺2/6
= F (∂x u ,∂y u ,∂x x u ,∂xy u ,∂yy u , . . .) , (3.86)

where D̺(x , y) denotes the disk of radius ̺ around (x , y), i.e., if

med
D̺(x ,y)

u = u(x , y)+
̺2

6
F + o(̺2) . (3.87)

Note that the right-hand side F of our PDE does not depend on u itself since the
shift-invariance of the median rules out such a dependency. Also, our choice of ̺2/6
as time step size corresponding to a median filter with a disk of radius ̺ as structure
element is motivated by analogy to Guichard and Morel’s result which will naturally
reappear as a special case.

Simplification by symmetries. For simplicity, we investigate the location x = y =

0. Exploiting the translational and rotational invariance of the involved filtering pro-
cedures, we can assume that (1,0)T and (0,1)T are the eigenvectors for the larger and

smaller eigenvalue of the structure tensor
d∑

k=1
∇uk∇uT

k
. Since it follows then that

¬
∂x u,∂y u

¶
= 0, we can further achieve by rotations and translations in the image

range IRd that u(0,0) = 0, ∂x u(0,0) = (m, 0,0, . . .)T, ∂y u(0,0) = (0, n, 0, . . .)T with
m ≥ n ≥ 0.

Minimality condition. We reformulate condition (3.84) by taking partial deriva-
tives with respect to all median entries and conclude that for the multi-channel me-
dian value M = (M1, . . . , Md )

T the equations
∫∫

D

fk(x , y)−Mk√√√ d∑
j=1
( f j (x , y)−M j )

2

dx dy (3.88)

must hold for k = 1, . . . , d . Given the convexity of the median energy function,
fulfilment of (3.88) is also sufficient for M to be the sought median. The drawback
of using (3.88) is its singularity at M , which will require to split the integrals in the
course of our calculations.
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Special case. Let us clarify first the case m 6= 0, n = 0, in which the first derivative
of the multi-channel image along the local pseudo-level line vanishes. In this case
the original argument of Guichard and Morel transfers straightforward to the multi-
channel situation, leading to the following result.

Revision 2016-02: Last line of (3.89) restricted to uxy = 0.

Lemma 3.11 Let u be analytic and

u(0,0) = 0 , ∂x u(0,0) = (m, 0,0, . . .)T , ∂y u(0,0) = (0,0,0, . . .)T ,

∂yy u(0,0) = (2δ, 2ǫ, 2ζ1, 2ζ2, . . .)T ,

∂x x u(0,0) arbitrary, ∂xy u(0,0) = 0

(3.89)

with |m| ≥ |n|> 0. Then we have

lim
̺→+0

med
D̺(0,0)

u − u(0,0)

̺2
=

1
3




δ

ǫ
ζ1
ζ2
...



=

1
6
∂yy u(0,0) . (3.90)

This means that in this specific case iterated median filtering approximates curvature
motion even in the multi-channel setting.

Generic case. To study the situation if both first derivatives in pseudo-flow line
direction and pseudo-level line direction are different from zero, we introduce now
three real-valued functions which will be useful in the following. They arise as quo-
tients of elliptic integrals.

Definition 3.6 Let for λ ∈ IR\ {0}

Q1(λ) :=

∫∫

D1

ξ 2η2

�
ξ 2+λ2η2

�3/2
dξ dη

∫∫

D1

ξ 2�
ξ 2+λ2η2

�3/2
dξ dη

, Q2(λ) :=

∫∫

D1

η4

�
ξ 2+λ2η2

�3/2
dξ dη

∫∫

D1

η2�
ξ 2+λ2η2

�3/2
dξ dη

,

Q3(λ) :=

∫∫

D1

η2

�
ξ 2+λ2η2

�1/2
dξ dη

∫∫

D1

1�
ξ 2+λ2η2

�1/2
dξ dη

,

(3.91)
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Figure 3.17: Graphs of Q1, Q2, Q3 defined in (3.91).

as well as

Q1(0) =Q2(0) =Q3(0) :=
1
3

,

Q1(±∞) =Q2(±∞) =Q3(±∞) := 0 .
(3.92)

Remark. Some of the integrals involved in these definitions cannot be resolved in
closed form, while the remaining ones reduce to elliptic integrals. We do not fol-
low this line further since for our qualitative discussion it is more valuable to retain
the structural analogy between all cases. We remark that Q1, Q2 and Q3 are even
functions:

Q1(−λ) =Q1(λ) , Q2(−λ) =Q2(λ) , Q3(−λ) =Q3(λ) . (3.93)

We start now by considering important special cases.

Lemma 3.12 Let u be analytic and

u(0,0) = 0 , ∂x u(0,0) = (m, 0,0, . . .)T , ∂y u(0,0) = (0, n, 0, . . .)T ,

∂x x u(0,0) = (2α, 0,0, . . .)T , ∂xy u(0,0) = ∂yy u(0,0) = 0
(3.94)

with |m| ≥ |n|> 0. Then we have

lim
̺→+0

med
D̺(0,0)

u − u(0,0)

̺2
=




a0
0
...


 , (3.95)

where

a0 =

∫∫

D1

ξ 2 (nη)2�
(mξ )2+(nη)2

�3/2
dξ dη

∫∫

D1

(nη)2�
(mξ )2+(nη)2

�3/2
dξ dη

·α=Q1

�m

n

�
α . (3.96)



(c) Martin Welk 2007–2016. All rights reserved.

3.5. Multi-Channel Median and Mean Curvature Motion 91

Proof. In the given case, u is approximated around the origin by

u(x , y) =




mx+αx2

ny

0
...



+O(x2+ y2) . (3.97)

Clearly, only the first two dimensions of IRd are relevant in this case, so we will assume
d = 2. Assuming that

lim
̺→+0

med
D̺(0,0)

u− u(0,0)

̺2
=

�
a(̺)
b (̺)

�
=

�
a

b

�
, (3.98)

we obtain from (3.88) the conditions

0=
∫∫

D̺

mx+αx2− a̺2

q�
mx+ (αx2− a)̺2

�2
+ (ny − b̺2)2

dx dy

0=
∫∫

D̺

ny − b̺2

q�
mx+ (αx2− a)̺2

�2
+ (ny − b̺2)2

dx dy .

(3.99)

Considering the symmetry of the second equation with respect to the reflection y↔
−y and the convexity of the energy, it is evident that b = 0 must hold. Using this
and the substitution ξ := x/̺, η := y/̺, we find

0=
∫∫

D1

mξ + (αξ 2− a)̺q�
mξ + (αξ 2− a)̺

�2
+ (nη)2

dξ dη . (3.100)

Assuming ̺ << 1, we split the integration domain D1 into an inner disk of radius
̺3/5/n, an annulus with inner radius ̺3/5/n and outer radius ̺2/5 and the remaining
annulus.

1. For the inner disk we estimate

∫∫

D
̺

3/5/n

mξ + (αξ 2− a)̺p
(mξ + (αξ 2− a)̺)2+ (nη)2

dξ dη=O(̺6/5) (3.101)

since the absolute value of the integrand is bounded by 1.
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2/53/5

n
10

Figure 3.18: Partition of the integration domain D1 into three concentric regions.

2. For the middle annulus we find
∫∫

D
̺

2/5\D̺3/5/n

mξ + (αξ 2− a)̺p
(mξ + (αξ 2− a)̺)2+ (nη)2

dξ dη

=

∫∫

(D
̺

2/5\D̺3/5/n
)∩(IR+0 ×IR)

�
mξ + (αξ 2− a)̺p

(mξ + (αξ 2− a)̺)2+ (nη)2

+
−mξ + (αξ 2− a)̺p

(−mξ + (αξ 2− a)̺)2+ (nη)2

�
dξ dη

=O(̺6/5) (3.102)

since the integrand is bounded by O(̺2/5) according to

mξ+(αξ 2−a)̺p
(mξ+(αξ 2−a)̺)2+(nη)2

+
−mξ+(αξ 2−a)̺p

(−mξ+(αξ 2−a)̺)2+(nη)2

= mξ
�

1p
(mξ+(αξ 2−a)̺)2+(nη)2

− 1p
(−mξ+(αξ 2−a)̺)2+(nη)2

�

+ (dξ 2− a)̺
�

1p
(mξ+(αξ 2−a)̺)2+(nη)2

+ 1p
(−mξ+(αξ 2−a)̺)2+(nη)2

�

=

�
1È�

1+(αξ 2−a)
̺

mξ

�2
+
�

nη
mξ

�2
− 1È�

1−(αξ 2−a)
̺

mξ

�2
+
�

nη
mξ

�2

︸ ︷︷ ︸
O(̺2/5)

�

+ (dξ 2− a)
̺

mξ︸︷︷︸
O(̺2/5)

�
1È�

1+(αξ 2−a)
̺

mξ

�2
+
�

nη
mξ

�2
+

1È�
1−(αξ 2−a)

̺
mξ

�2
+
�

nη
mξ

�2

︸ ︷︷ ︸
O(1)

�

=O(̺2/5) , (3.103)

while the integration domain has volume O(̺4/5).
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3. For the outer annulus we use the expansion

(p + q)−1/2 = p−1/2

�
1− q

2 p
+O

�
q2

p2

��
(3.104)

to obtain

∫∫

D1\D̺2/5

mξ + (αξ 2− a)̺q�
mξ + (αξ 2− a)̺

�2
+ (nη)2

dξ dη

=

∫∫

D1\D̺2/5

mξp
(mξ )2+ (nη)2

dξ dη

︸ ︷︷ ︸
=0

+

∫∫

D1\D̺2/5

(αξ 2− a)̺
�
(mξ )2+ (nη)2

�3/2

�
(mξ )2+ (nη)2− (mξ )2

�
dξ dη+O(̺6/5)

=

∫∫

D1\D̺2/5

̺
(nη)2

�
(mξ )2+ (nη)2

�3/2
(αξ 2− a)dξ dη+O(̺6/5) . (3.105)

4. Finally, we have that

∫∫

D
̺

2/5

̺
(nη)2

�
(mξ )2+ (nη)2

�3/2
(αξ 2− a)dξ dη

=

∫∫

D
̺

2/5

̺
(nη)2

(mξ )2+ (nη)2︸ ︷︷ ︸
O(1)

· 1p
(mξ )2+ (nη)2

(αξ 2− a)dξ dη

=

̺2/5∫

0

2π∫

0

O(̺)O(r−1) · r dϕdr

=O(̺) ·
̺

2/5∫

0

dr =O(̺7/5) . (3.106)

5. Combining (3.100), (3.101), (3.102), (3.105) and (3.106) we have

0=
∫∫

D1

̺
(nη)2

�
(mξ )2+ (nη)2

�3/2
(αξ 2− a)dξ dη+O(̺6/5) , (3.107)
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thus

a ·
∫∫

D1

(nη)2
�
(mξ )2+ (nη)2

�3/2
dξ dη= α ·

∫∫

D1

ξ 2 (nη)2
�
(mξ )2+ (nη)2

�3/2
dξ dη+O(̺1/5) ,

(3.108)
from which the assertion follows. �

Lemma 3.13 Let u be analytic and

u(0,0) = 0 , ∂x u(0,0) = (m, 0,0, . . .)T , ∂y u(0,0) = (0, n, 0, . . .)T ,

∂x x u(0,0) = (0,2β, 0,0, . . .)T , ∂xy u(0,0) = ∂yy u(0,0) = 0
(3.109)

with |m| ≥ |n|> 0. Then we have

lim
̺→+0

med
D̺(0,0)

u − u(0,0)

̺2
=




0
b0
0
...




, (3.110)

where

b0 =

∫∫

D1

ξ 2 (mξ )2�
(mξ )2+(nη)2

�3/2
dξ dη

∫∫

D1

(mξ )2�
(mξ )2+(nη)2

�3/2
dξ dη

·β=Q2

�m

n

�
β . (3.111)

Lemma 3.14 Let u be analytic and

u(0,0) = 0 , ∂x u(0,0) = (m, 0,0, . . .)T , ∂y u(0,0) = (0, n, 0, . . .)T ,

∂x x u(0,0) = (0,0,2γ , 0, . . .)T , ∂xy u(0,0) = ∂yy u(0,0) = 0
(3.112)

with |m| ≥ |n|> 0. Then we have

lim
̺→+0

med
D̺(0,0)

u − u(0,0)

̺2
=




0
0
c0
0
...




, (3.113)

where

c0 =

∫∫

D1

ξ 2

�
(mξ )2+(nη)2

�1/2
dξ dη

∫∫

D1

1�
(mξ )2+(nη)2

�1/2
dξ dη

· γ =Q3

�m

n

�
γ . (3.114)
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The proofs of Lemmas 3.13 and 3.14 are analogous to the one of Lemma 3.12.

Analogous statements are obtained for cases in which ∂yy u(0,0) 6= 0 but ∂x x u(0,0) =
∂xy u(0,0) = 0 (note that |m| ≥ |n| did not enter the proof of Lemma 3.12).

Since the above considerations were based in all cases on linearisations, the contri-
butions of the different second derivative components superpose linearly. Thus we
have the following statement.

Revision 2016-02: Last line of (3.89) restricted to uxy = 0. Corrected version of

this proposition without the restriction being prepared.

Proposition 3.15 Let u be analytic and

u(0,0) = 0 , ∂x u(0,0) = (m, 0,0, . . .)T , ∂y u(0,0) = (0, n, 0, . . .)T ,

∂x x u(0,0) = (2α, 2β, 2γ1, 2γ2, . . .)T , ∂yy u(0,0) = (2δ, 2ǫ, 2ζ1, 2ζ2, . . .)T ,

∂xy u(0,0) = 0

(3.115)

with |m| ≥ |n|> 0. Then we have

lim
̺→+0

med
D̺(0,0)

u − u(0,0)

̺2
=




Q1(m/n)α+Q2(n/m)δ
Q2(m/n)β+Q1(n/m)ǫ
Q3(m/n)γ1+Q3(n/m)ζ1
Q3(m/n)γ2+Q3(n/m)ζ2

...




, (3.116)

where Q1(λ), Q2(λ), Q3(λ) are defined as in (3.91).

Transforming back to the general situation leads to the following conclusion.

Corollary 3.16 Revision 2016-02: Corollary removed for correction.

To summarise, we have seen that only if the first derivative of the multi- channel im-
age in pseudo-level line direction vanishes, the multi-channel median filter provides
an approximation to the curvature motion equation, see Lemma 3.11. The corollary
reveals, however, that on transition to the generic case m 6= 0, n 6= 0 one obtains not
only a mixture of the second derivatives in pseudo-level line direction v and pseudo-
flow line direction z , but the influence of ∂vv u is subject to different decay character-
istics for its components parallel to ∂v u , ∂z u and perpendicular to both, as described
by Q1(n/m), Q2(n/m), and Q3(n/m). An analogous decomposition applies to ∂zz u .

The different decay characteristics preclude a comparably simple PDE approximation
property for the multi-channel median filter as in the scalar-valued case.
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Chapter 4

Locally Analytic and

Semi-Analytic Schemes for

Diffusion Filters

In this and the following chapter, we are concerned with spatial discretisations of
time-parametrised partial differential equation processes that are used as image filters.
Spatial discretisation of a PDE on a grid leads naturally to a dynamical system of or-
dinary differential equations, with one variable for each pixel. This time-continuous
dynamical system turns further into a time-discrete dynamical system when the PDE
process is finally fully discretised.

Nevertheless, the time-continuous dynamical system representing the semi-discrete
(spatially discretised, time-continuous) filtering process lends itself as an excellent ob-
ject of study for several reasons. First, the ODE system mirrors many important
properties of the fully continuous process. Second, ODEs are simple enough to allow
substantial theoretical analysis, the potential of which has by far not been exhausted
up to now. Third, in image processing the spatial discretisation is often determined
by the image acquisition process and not disponible, while time discretisation is a
technical aspect of the image processing algorithm and within full control of algo-
rithmical design. In many application contexts therefore a time-continuous analysis
reveals the limits of what can be achieved given the available space-discrete data.

Another interesting aspect relates to the outstanding role of discontinuities in image
processing. Since discontinuities in image data often represent essential image fea-
tures, such as edges, they must not be treated as perturbations that are regularised
away by numerical means. On the other hand, discontinuities are difficult to handle
in partial differential equations. In contrast, ordinary differential equations with dis-
continuities can be analysed in important cases including those relevant for the image

99
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filters we want to study. There exists a well-developed theory [90] which we won’t
invoke in full extent in this work; instead, we will develop some simple notions here
which can be seen as special cases of concepts in [90].

Our semidiscrete dynamical system approach sketched above can be exploited in sev-
eral directions. In this chapter we focus on diffusion processes, including singular
ones, whose continuous formulation has been introduced in Chapter 2. We devise
and analyse an interesting class of numerical methods based on a splitting of the dy-
namical system into local neighbourhoods – cells just big enough to be capable of
representing the essential features of the diffusion process. The resulting schemes
combine favourable stability properties with algorithmic simplicity. Although these
advantages are bought at the price of having only conditional consistency, the nu-
merical dissipation is extraordinarily low such that on realistic data the accuracy of
computations, in particular the representation of fine details, is excellent and at least
competitive with some of the best pre-existing algorithms in this field.

At the same time, the minimalistic signals and images that are used as building blocks
for our numerical schemes stand in a close relation to Haar wavelets. Therefore, our
schemes can immediately be interpreted as Haar wavelet shrinkage on a single scale
with specific shrinkage rules [191, 221, 227, 228], which in the 1D case also inspired
the actual development of the LAS. Extending these shrinkage rules to a multiscale
wavelet setting leads also to novel multiscale image filters [221], which we do not
describe here.

We will start by an introductory discussion of the 1D case of total variation diffu-
sion. Many of the main ideas and design principles can be seen already in this simple
situation, some in even more perfect form (like equivalence instead of approximation
in some places). Then we develop the framework for isotropic nonlinear diffusion
in 2D as formulated in 2.2, followed by its extension to anisotropic nonlinear diffu-
sion in 2D, compare 2.3. Modifications for multi-channel images as well as higher
dimensional image domains will be discussed at the different stages of the exposition.

While the 1D considerations in this chapter are mostly based on [191, 146], the 2D
case has been treated in [221, 227, 228]. Among the co-authors of these papers, the
author wants to acknowledge particularly the work of G. Steidl and P. Mrázek on the
connections to wavelet methods. T. Brox and G. Steidl have substantially contributed
to the equivalence result for TV flow and TV regularisation in 1D.

Related work. The idea behind locally analytic schemes can be traced back at least
to the work of Richardson, Ferrell and Long [171] in computational fluid dynam-
ics. They use, however, multiplicative splittings, which does not enable fully shift-
invariant schemes for nonlinear processes. Another approach which uses analytic
solutions for simple localised sub-systems to construct numerical schemes for PDE-
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based image filters are short-time kernels, as in [189] where local linear diffusion
processes solved by Gaussian convolution are used to approximate nonlinear diffu-
sion.

Our analysis of the dynamical system for space-discrete singular diffusion is also re-
lated to the work of Pollak et al. [164, 165] on stabilised inverse diffusion equation
(SIDEs). Analytic considerations for a version of Perona–Malik diffusion have been
made by Esedoglu [83].

The locally (semi-)analytic schemes discussed here are alternatives to other numerical
schemes for the same diffusion processes. In the case of singular diffusion equations,
we mention here the finite difference schemes in [37], finite element schemes in [88],
and a level set approach in [73]. In the context of tensor-driven anisotropic diffusion,
early numeric approaches can be found in [112, 167, 206]. Later on, specific efforts to
achieve good rotational invariance and to suppress numerical dissipation have been
made by Weickert and Scharr [214] using Sobel-like derivative approximations, or
Wang [203] with Simoncelli’s derivative approximations [188].

As mentioned above, our schemes are linked to wavelet shrinkage methods [77], par-
ticularly their shift-invariant [68] versions and those with improved rotational in-
variance in 2D [121]. In the anisotropic situation, there are also wavelet families de-
signed specifically for the representation and processing of oriented structures, like
contourlets [74], ridgelets [76], curvelets [50, 51], and shearlets [128].

There also exists a rich literature on connections between wavelet shrinkage and PDE
methods, mostly in the continuous setting [11, 35, 56, 57, 66, 67, 142, 184, 185] but
also in the discrete situation [70]. Many authors have also devised algorithms com-
bining PDE and wavelet ideas [52, 61, 69, 80, 81, 133, 136, 137].
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4.1 Two-Pixel Approach to 1D Singular Differential Equa-

tions

Most of the ideas developed in this chapter originated from the analysis of discrete
1D signals. We therefore start our considerations with a prototypic 1D case, namely
the class of singular nonlinear diffusion equations with diffusivities given by (2.26).

4.1.1 Discretisation of 1D Total Variation Diffusion

We are concerned here with the 1D total variation (TV) diffusion equation

∂t u = ∂x

�
ux

|ux |

�
(4.1)

for the function u :Ω× IR+0 that depends on the 1D spatial variable x ∈Ω = [a, b ]⊂
IR and the time variable t ∈ [0,∞), with the initial condition u(x , 0) = f (x) and
Neumann boundary conditions ∂x u(a) = ∂x u(b ) = 0.

Spatial discretisation. We want to discretise (4.1) in space on a 1D regular grid
with mesh size h = 1 while retaining the continuous time variable. Without loss of
generality, we assume that the grid consists of the locations 1,2, . . . , n, and we denote
the function values at these locations by u1, . . . , un . Adapting to the terminology of
(2D) image processing, we will sometimes use the term “pixel” also to refer to the
samples of a 1D signal.

For the moment, we leave aside the problem of locations with ux = 0. Discretising
first the outer derivative by a central difference, we have then

�
∂x

�
ux

|ux |

��

i

≈
�

ux

|ux |

�

i+1/2

−
�

ux

|ux |

�

i−1/2

. (4.2)

On the other hand, ux can be discretised at the inter-pixel position i+1/2 by a central
difference, too, yielding

(ux )i+1/2 ≈ ui+1− ui (4.3)

where the right-hand side again consists of values at grid locations.

Since ux/ |ux | is basically the sign of ux , we can combine everything into the follow-
ing discretisation of (4.1) for an inner pixel i :

∂t ui =

�
∂x

�
ux

|ux |

��

i

≈ sgn
�
ui+1− ui

�
− sgn

�
ui − ui−1

�
. (4.4)

The latter expression is also applicable when ux vanishes. The exact treatment of this
case will become evident in the next paragraph, see (4.6).
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Neumann boundary conditions can be realised by setting u0 := u1 and un+1 := un

and using equation (4.4) also for i = 1 and i = n. We have therefore obtained the
following system of equations that discretises (4.1) on the grid {1, . . . , n}:

u̇1 = sgn(u2− u1)

u̇i = sgn(ui+1− ui )− sgn(ui − ui−1) , i = 2, . . . , n− 1,

u̇n =− sgn(un − un−1) .

(4.5)

Concept of solution. The system (4.5) is a dynamical system of ordinary differen-
tial equations with discontinuous right-hand sides. Before we can proceed, we have
therefore to clarify what functions will be considered as solutions of this system.

We will say that a function u = (u1, . . . , un)
T defined on IR+0 or a subinterval with

values in IRn is a solution of (4.5) if the following conditions are satisfied:

(I) The function u is absolutely continuous.

(II) For each t in the interval of definition for which u is differentiable, it satisfies
(4.5), where sgn is understood according to the following definition:

sgn(s ) :=+1 if s > 0 ,

sgn(s ) :=−1 if s < 0 ,

sgn(s ) ∈ [−1,+1] if s = 0 .

(4.6)

(III) Whenever u̇i (t ) and u̇i+1(t ) exist for the same t , and ui (t ) = ui+1(t ) holds,
the expression sgn(ui+1(t ) − ui (t )) that appears in both the right-hand sides
for u̇i (t ) and u̇i+1(t ) must take the same value in both expressions.

Remark. The conditions formulated here can be considered as a special case of the
procedure described in Filippov’s work [90]which allows to treat a more general class
of ODE systems with discontinuous right-hand sides. The pixel-merging behaviour
which we will encounter later on is a special case of a “sliding regime” as in [90].

Moreover, (4.6) can also be related with an interpretation of the underlying differen-
tial equation in terms of set-valued functions.

4.1.2 Total Variation Diffusion on Two Pixels

Turning back to the dynamical system (4.5), we can introduce a useful decomposi-
tion that reduces space-variant 1D total variation diffusion to a process that acts on
minimalistic signals with just two pixels, and which can easily be analysed.
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Decomposition of the discrete system. We see that the right-hand side of (4.5)
for u̇i consists of two nonlinear contributions, each of which depends on just two
neighbouring pixels: sgn(ui+1− ui ) and sgn(ui − ui−1). We can therefore consider
this equation as average of the two equations

u̇i = 2 sgn(ui+1− ui )

u̇i =−2 sgn(ui − ui−1) .
(4.7)

Of course, the same decomposition can be carried out for u̇i+1:

u̇i+1= 2 sgn(ui+2− ui+1)

u̇i+1=−2 sgn(ui+1− ui ) .
(4.8)

A two-pixel system. Combining the first equation of (4.7) and the second equation
of (4.8), we have a dynamical system which involves only the two pixels ui and ui+1
on both sides:

u̇i = 2 sgn(ui+1− ui )

u̇i+1=−2 sgn(ui+1− ui ) .
(4.9)

First of all, by the isolation of two pixels this system is even simpler than (4.5). Sec-
ond, it can be interpreted as discretisation of total variation diffusion analogous to
(4.5) for a two-pixel signal on {i , i + 1} with periodic boundary conditions: Inserting
ui−1 := ui+1 and ui+2 := ui into (4.4) gives exactly (4.9).1

Analytic solution. System (4.9) is a dynamical system with discontinuous right-
hand side involving only the two variables ui and ui+1. Keeping in mind our under-
standing of solution as pointed out in 4.1.1, it can be solved analytically: Setting for
simplicity i = 1, we can rewrite the system as

u̇2+ u̇1 = 0

u̇2− u̇1 =−4 sgn(u2− u1)
(4.10)

and by setting µ := 1
2 (u1+ u2), δ := u2− u1 as

µ̇= 0

δ̇ =−4 sgnδ .
(4.11)

1In [191], the decomposition of (4.5) into two-pixel systems was accomplished in a slightly different
way by representing the equation for u̇i as a sum, instead of an average, of two equations. At the end,
this led to the same system as (4.9) except for the factor 2 on the right-hand side. This system evolving
at half the speed of the one here could then be interpreted as TV diffusion on two pixels with Neu-
mann (reflecting) boundary conditions. The reason why we prefer the periodic setting here (as also
sketched in [221]) is that it can be generalised to higher dimensions and is then in accordance with our
2D considerations later in this chapter. In 1D the two interpretations are fully exchangeable.
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From the first equation we conclude immediately that µ is constant over time, while
the second equation ensures firstly that the absolute value ofδ decreases at a constant
rate as long as δ 6= 0. Secondly, as soon as δ happens to be zero, it remains zero:
Assume that there is a time interval [t0, t0+τ], τ > 0, such thatδ(t0) = 0 butδ(t )> 0
for t0 < t ≤ τ. It follows then that δ is differentiable in [t0, t0 + τ], and due to the
mean value theorem of differential calculus we have that

δ(t0+ τ)−δ(t0)

τ
= δ ′(t0+ϑτ) for some ϑ ∈ (0,1). (4.12)

Since at t = t0 +ϑτ we have δ(t ) > 0, it follows from (4.11) that δ ′(t0 +ϑτ) < 0.
On the other hand, δ(t0+ τ)−δ(t0) > 0 such that the sides of (4.12) have opposite
signs, which is not possible.

Consequently, the only possible evolution for δ is given by

δ(t ) =

¨
δ(0)− 4t sgn(δ(0)) , 0≤ t < 1

4 |δ(0)| ,
0 else

δ(0) = f2− f1

(4.13)

leading to the solution of (4.9):

ui (t ) =

¨
µ+

�
1− 4t
| f2− f1 |

�
( fi −µ) , 0≤ t < 1

4 | f2− f1| ,
µ , t ≥ 1

4 | f2− f1| .
(4.14)
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Locally Analytic Scheme for 1D TV Diffusion

• For each two-pixel cell (i , i + 1), compute the analytic solution of

TV diffusion according to (4.14), using (uk
i

, uk
i+1) as initial data,

up to time t = τ.

• For each pixel i , consider the two cells

(−) : (i − 1, i ) and (+) : (i , i + 1) ,

which yield two approximations

uk+1
i ,− and uk+1

i ,+ .

Average:

uk+1
i := 1

2 (u
k+1
i ,− + uk+1

i ,+ ) .

Figure 4.1: One time step of the locally analytic scheme for 1D total variation diffu-
sion, where uk , uk+1 refer to the old and new time step, resp.
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4.1.3 A Numerical Scheme for 1D Total Variation Diffusion

The analytic solution (4.14) can be used to construct a numerical scheme for TV
diffusion in 1D. To this end, the decomposition of the N -pixel dynamical system
(4.5) into two-pixel systems of type (4.9) is used, and in each time step the analytic
solution is used in each two-pixel cell to compute an approximation to the TV flow.
The resulting numerical scheme reads

uk+1
i
= uk

i + τ sgn(uk
i−1− uk

i )min
§

1,
1

4τ
|uk

i − uk
i−1|

ª

+ τ sgn(uk
i+1− uk

i )min
§

1,
1

4τ
|uk

i+1− uk
i |
ª (4.15)

One time step of the algorithm is depicted in Figure 4.1. We will also refer to this
scheme as two-pixel scheme. Since it uses analytic solutions on small signal patches,
we speak also of a locally analytic scheme.

Stability. With the abbreviations

m1 :=min
�

1,
4τ

|uk
i − uk

i−1|

�
, m2 :=min

�
1,

4τ
|uk

i+1− uk
i |

�
(4.16)

one can rewrite (4.15) as

uk+1
i
= m1uk

i−1+ (1−m1−m2)u
k
i +m2uk

i+1 . (4.17)

As one easily checks, m1, m2 ∈ [0, 1/4] holds for arbitrary τ such that the right-hand
side of (4.17) is a convex combination of uk

i−1, uk
i , uk

i+1. Thus, our two-pixel scheme
obeys the maximum-minimum principle and is absolutely stable for each τ.

Consistency analysis. To investigate the consistency of (4.15), we have to admit an
arbitrary spatial mesh size h instead of fixing it to 1. The adapted version of (4.15)
reads

uk+1
i
− uk

i

τ
=

1
h

sgn(uk
i−1− uk

i )min
§

1,
1

4τ
|uk

i − uk
i−1|

ª

+
1
h

sgn(uk
i+1− uk

i )min
§

1,
1

4τ
|uk

i+1− uk
i |
ª

.

(4.18)

Provided that

τ ≤ h

4
min

�
|uk

i+1− uk
i | , |uk

i − uk
i−1|

	
, (4.19)

both minimum expressions take the value 1. Then (4.18) is equivalent to the simple
explicit scheme

uk+1
i = uk

i +
τ

h
sgn(uk

i+1− uk
i )−

τ

h
sgn(uk

i − uk
i−1) (4.20)
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and therefore an O(τ + h2)-approximation to TV flow. For larger τ it is easy to
see that linear diffusion ∂t u = ∆u is approximated. We have therefore conditional
consistency with the condition (4.19).

The inconsistency that is encountered when the condition is violated appears in those
regions of the signal which are already nearly constant. In these regions the difference
between linear diffusion and TV flow is small, though.

Conditional consistency is a characteristic property that can be observed for abso-
lutely stable explicit schemes. A typical example for this behaviour is the DuFort–
Frankel method [79].

4.1.4 Other Singular Nonlinear Diffusion Processes in 1D

The preceding investigations can easily extended to the larger class of singular nonlin-
ear diffusion processes with diffusivity of type (2.26). In 1D such a diffusion process
for arbitrary p ∈ [1,∞) is given by the PDE

∂t u = div
�

ux

|ux |p
�

. (4.21)

This includes among others the case p = 2 which corresponds to balanced forward-
backward diffusion in higher dimensions.2

Discretisation and decomposition into two-pixel systems can be carried out in full
analogy to the TV case. The dynamical system that replaces (4.9) reads

u̇i =
2 sgn(ui+1− ui )

|ui+1− ui |p−1

u̇i+1=−
2 sgn(ui+1− ui )

|ui+1− ui |p−1 ,
(4.22)

and in analogy to (4.14) its analytical solution for i = 1 is

ui (t ) =

¨
µ+

�
1− 4pt

| f2− f1|p
�1/p

( fi −µ) , 0≤ t < 1
4p | f2− f1|p ,

µ , t ≥ 1
4p | f2− f1|p .

(4.23)

By plugging in this solution instead of (4.14) into the algorithm depicted in Figure 4.1
we obtain a locally analytic scheme for singular nonlinear 1D diffusion with diffusiv-
ity (4.21).

2The name balanced forward-backward diffusion seems however inadequate in the 1D case because
the forward diffusion component in (2.31) disappears completely.



(c) Martin Welk 2007–2016. All rights reserved.

4.1. Two-Pixel Approach to 1D Singular Differential Equations 109

4.1.5 Analytic Solution of 1D Total Variation Diffusion on n pixels

For the following considerations we return to the case of total variation diffusion,
i.e., p = 1. The 1D situation is particularly favourable in that it is possible to solve
analytically even the system (4.5) that describes spatially discrete 1D total variation
flow on the n-pixel signal (u1, . . . , un). This result does not only allow in principle a
direct computation of TV flow results on signals of arbitrary length. It will also lead
us to an important theoretical insight.

Proposition 4.1 The system (4.5) with initial condition u(0) = f has a unique solution

u(t ) in the sense of the conditions (I)–(III) from 4.1.1. This solution is characterised by the

following properties:

(i) Finite extinction time. There exists a finite time T ≥ 0 such that for all t ≥ T

the signal is constant:

ui (t ) =
1
n

n∑
j=1

f j for i = 1, . . . , n. (4.24)

(ii) Finite number of merging events. There exists a finite sequence 0 = t0 < t1 <
. . .< te = T such that for each j ∈ {0,1, . . . , e − 1} and i ∈ {1, . . . , n− 1} one has

either

ui (t ) = ui+1(t ) for all t ∈ [t j , t j+1) (4.25)

or

ui (t ) 6= ui+1(t ) for all t ∈ [t j , t j+1). (4.26)

(iii) Non-increasing contrast. For given i ∈ {1, . . . , n − 1} and j ∈ {0,1, . . . , e − 1}
the absolute difference

��ui+1(t )− ui (t )
�� is non-increasing throughout [t j , t j+1).

(iv) Analytical solution. Within each subinterval [t j , t j+1), constant regions of u(t )

undergo a linear evolution: For each given i ∈ {1, . . . , n} there exist uniquely

determined integers l ≥ 1, r ≥ 0 such that for all t ∈ [t j , t j+1) one has

ui−l+1(t ) = . . .= ui (t ) = . . .= ui+r (t )

ui−l (t ) 6= ui−l+1(t ) if i − l ≥ 1

ui+r (t ) 6= ui+r+1(t ) if i + r ≤ n− 1.

(4.27)

We call (ui−l+1, . . . , ui+r ) a constant region of size l + r . It follows then for each

t ∈ [t j , t j+1) that

ui (t ) = ui (t j )+
2(t − t j )

l + r
si ,t j

. (4.28)
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Here, we have for inner regions (i − l ≥ 1 and i + r ≤ n− 1)

si ,t j
=





+1 if ui =min{ui−l , ui , ui+r+1}
−1 if ui =max{ui−l , ui , ui+r+1}
0 else.

(4.29)

For boundary regions that do not cover the entire signal (i− l = 1 or i+ r = n−1
but not both) we have

si ,t j
=

¨
+1/2 if ui < ui−l or ui < ui+r+1

−1/2 if ui > ui−l or ui > ui+r+1

(4.30)

and finally for i − l = 1 and i + r = n− 1 (the region is identical with the entire

signal)

si ,t j
= 0 . (4.31)

Proof. We start by proving property (ii). Because of requirement (I), u is almost
everywhere differentiable. Let us assume that there is an interval [ t̂0, t̂1] such that u

is differentiable for all t ∈ ( t̂0, t̂1), and there are two pixels i , i + 1 such that

ui ( t̂0) = ui+1( t̂0)

ui (t )< ui+1(t ) for t̂0 < t ≤ t̂1.
(4.32)

We let v(t ) := ui+1(t )− ui (t ). Clearly, v is a differentiable function in [ t̂0, t̂1] with
v( t̂1)> v( t̂0). By the mean value theorem there exists some t ∗ ∈ ( t̂0, t̂1) such that

v ′(t ∗) =
v( t̂1)− v( t̂0)

t̂1− t̂0

> 0 . (4.33)

On the other hand, (4.5) implies

v ′(t ∗) = sgn(ui+2(t
∗)− ui+1(t

∗))− 2 sgn(ui+1(t
∗)− ui (t

∗))

+ sgn(ui (t
∗)− ui−1(t

∗))
(4.34)

where sgn(ui+1(t
∗)− ui (t

∗)) = 1 and, according to requirement (I), sgn(ui+2(t
∗)−

ui+1(t
∗))≤ 1 and sgn(ui (t

∗)−ui−1(t
∗))≤ 1. Combining these equalities and inequal-

ities, we conclude that
v ′(t ∗)≤ 0 (4.35)

contradicting (4.33).

Analog conclusions hold if ui (t ) > ui+1(t ) for t > t̂0 is assumed. Together with the
finite number of pixels in our signal, (ii) follows.

Assertion (iii) follows from a slight variation of the previous argument. Let some
time t be given at which u is differentiable. From (4.34) it follows for any two pixels
i , i + 1 with ui (t )< ui+1(t ) that u̇i+1(t )− u̇i (t )≤ 0.
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Addressing (iv), the existence of the integers l , r defining the constant region around
pixel i is clear from the preceding. It remains to show the evolution given by (4.28)–
(4.31). To this end, we set

s+ :=





+1 if i + r ≤ n− 1 and ui+r < ui+r+1

−1 if i + r ≤ n− 1 and ui+r > ui+r+1

0 else (i.e., if i + r = n− 1)

(4.36)

and analogously

s− :=





+1 if i + r ≤ n− 1 and ui−l < ui−l+1

−1 if i + r ≤ n− 1 and ui−l > ui−l+1

0 else (i.e., if i − l = 0).

(4.37)

Summing over the equations from (4.5) with left-hand sides u̇i−l+1, . . . , u̇i+r and tak-
ing into account requirement (III) from 4.1.1 we obtain

u̇i−l+1(t )+ . . .+ u̇i + . . .+ u̇i+r (t ) = s+− s− . (4.38)

Since we have ui−l+1 = . . . = ui = . . . = ui+r throughout the interval [t j , t j+1), it
follows that we have also u̇i−l+1(t ) = . . .= u̇i (t ) = . . .= u̇i+r (t ), thus

(l + r )u̇i = s+− s− . (4.39)

One easily verifies that in all cases, s+− s− = ai ,t j
. Division of (4.39) by (l + r ) and

integration over t gives (4.28)–(4.31).

Finally, we show (i). Whenever at some time t > 0 two pixels have different values,
the linear evolution (4.28)–(4.31) hold. They ensure that after finite time some pixels
in the signal merge, i.e., we have indeed t ∈ [t j , t j+1) where the times t j , t j+1 corre-
spond to merging events (or t j = 0). Since there are only finitely many pixels in the
signal, this process ends only when all pixels are merged into one constant region,
whose value then remains constant over time due to (4.28), (4.31).

Summation over all equations from (4.5) finally ensures that the average grey value
1
n

n∑
i=1

ui (t ) =
1
n

n∑
i=1

fi is conserved throughout the evolution. In the constant final

state, all pixels must therefore take exactly this value. �

Equivalence to TV regularisation. Like TV flow, also TV regularisation can be
solved analytically in the 1D spatially discrete situation. We will now sketch this
solution, too, and then compare it to our previously obtained 1D TV flow result.
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Total variation regularisation (compare (2.29)) of a 1D signal f = ( f1, . . . , fn) ∈ IRn

means to find a signal u = (u1, . . . , un) ∈ IRn that minimises the function

E (u) :=
n∑

i=1

(ui − fi )
2+ 2α

n−1∑
i=1

��ui+1− ui

�� (4.40)

with a regularisation parameter α > 0. Here, we have assumed again Neumann
boundary conditions (u0 = u1 and un+1 = un).

Since (4.40) is strictly convex in IRn, it has a unique minimiser. Moreover, (4.40) is a
continuous function of u and α. Therefore u depends also continuously on α. The
following proposition characterises this minimiser in dependence on α.

Proposition 4.2 The energy function (4.40) has a unique minimiser u(α). It is charac-

terised by the following properties:

(i) Finite extinction parameter. There exists a finite A≥ 0 such that for all α ≥ A

the signal is constant:

ui (α) =
1
n

n∑
j=1

f j for i = 1, . . . , n. (4.41)

(ii) Finite number of critical parameters. There exists a finite sequence 0 = α0 <
α1 < . . . < αe = A such that for each j ∈ {0,1, . . . , e − 1} and i ∈ {1, . . . , n − 1}
one has either

ui (α) = ui+1(α) for all α ∈ [α j ,α j+1) (4.42)

or

ui (α) 6= ui+1(α) for all α ∈ [α j ,α j+1). (4.43)

(iii) Non-increasing contrast. For given i ∈ {1, . . . , n − 1} and j ∈ {0,1, . . . , e − 1}
the absolute difference

��ui+1(α)− ui (α)
�� is a non-increasing function of α in the

interval [α j ,α j+1).

(iv) Analytical solution. Within each subinterval [α j ,α j+1), the values of constant

regions of u(α) are linear functions of α: For each given i ∈ {1, . . . , n} there exist

uniquely determined integers l ≥ 1, r ≥ 0 such that for all α ∈ [α j ,α j+1) one has

ui−l+1(α) = . . .= ui (α) = . . .= ui+r (α)

ui−l (α) 6= ui−l+1(α) if i − l ≥ 1

ui+r (α) 6= ui+r+1(α) if i + r ≤ n− 1.

(4.44)
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We call (ui−l+1, . . . , ui+r ) a constant region of size l + r . It follows then for each

α ∈ [α j ,α j+1) that

ui (α) = ui (α j )+
2(α−α j )

l + r
si ,α j

. (4.45)

Here, we have for inner regions (i − l ≥ 1 and i + r ≤ n− 1)

si ,α j
=





+1 if ui =min{ui−l , ui , ui+r+1}
−1 if ui =max{ui−l , ui , ui+r+1}
0 else.

(4.46)

For boundary regions that do not cover the entire signal (i− l = 1 or i+ r = n−1
but not both) we have

si ,α j
=

¨
+1/2 if ui < ui−l or ui < ui+r+1

−1/2 if ui > ui−l or ui > ui+r+1

(4.47)

and finally for i − l = 1 and i + r = n− 1 (the region is identical with the entire

signal)

si ,α j
= 0 . (4.48)

This result was proven in [44] to which we also refer for this proof. An algorithm
for 1D TV regularisation using similar ideas had also been developed in [165].

On comparing the two propositions, one easily detects the analogy between both
results which leads to the following equivalence result.

Corollary 4.3 In 1D, spatially discrete total variation flow (4.5) and spatially discrete

total variation regularisation (4.40) of n-pixel signals are equivalent in the sense that for

one and the same initial signal f ∈ IRn the solution of (4.5) at time t equals the minimiser

of (4.40) for the regularisation parameter α= t .

4.1.6 Haar Wavelet Interpretation

The numerical scheme (4.15) is closely related to wavelet-based denoising methods
known as wavelet shrinkage [77]. In particular, it is equivalent to shift-invariant soft
Haar wavelet shrinkage [68] on a single scale. To see this, we start by sketching the
procedure of Haar wavelet shrinkage in its standard form.
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Haar wavelet representation of a finite signal. Let f = ( f1, . . . , fn)
T be a discrete

1D signal (in vector notation) whose length is a power of two, n = 2ν , ν ≥ 1. The
Haar wavelet representation of f is then its representation

f = c ν0ϕ
ν
0+

m=1∑
ν

2ν−m−1∑
k=0

d m
k ψ

m
k (4.49)

in terms of the basis formed by the vectors

ϕν0, ψν0, ψν−1
0 , ψν−1

1 , . . . ,

ψm
0 , . . . , ψm

2ν−m−1, . . . ,

ψ1
0, . . . , ψ1

n/2−1

(4.50)

where

ϕν0 :=
1

2ν/2
(1, . . . , 1)T (4.51)

is called scaling function and

ψm
k :=

1
2m/2

(r0, . . . , rn−1)
T ,

r j =





+1 , 0≤ j − k · 2m ≤ 2m−1− 1 ,

−1 , 2m−1 ≤ j − k · 2m ≤ 2m − 1 ,

0 , else

(4.52)

are called wavelet functions.

The coefficients c ν0 , d m
k

can be computed by letting c0
k

:= fk+1, k = 0, . . . , n − 1, and
using the recursion

c m+1
k

:=
1p
2
(c m

2k + c m
2k+1) , d m+1

k
:=

1p
2
(c m

2k − c m
2k−1) (4.53)

for m = 0, . . . , ν − 1, k = 0, . . . , 2ν−m−1− 1. Vice versa, the recursive formulas

c m
2k :=

1p
2
(c m+1

k
+ d m+1

k
) , c m

2k+1 :=
1p
2
(c m+1

k
− d m+1

k
) (4.54)

allow to recover c0
k
, thus fk , if only c ν0 and all the d coefficients are given.

Haar wavelet shrinkage. To denoise a signal f = ( f1, . . . , fn), n = 2ν , one proceeds
in three steps.

1. Analysis step. The Haar wavelet decomposition (c ν0 , d ν0 , . . . , d 1
n ) of the signal is

computed using the recursion (4.53).
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2. Shrinkage step. A so-called shrinkage function Sθ is used to modify all the wavelet
coefficients,

d̃ m
k := Sθ(d

m
k ) , (4.55)

while c ν0 is left unchanged.

Examples for frequently used shrinkage functions are

Sθ(z) :=

¨
z , |z | ≥ θ ,

0 else
(hard shrinkage) (4.56)

Sθ(z) :=

¨
z − sgn(z)θ , |z | ≥ θ ,

0 else
(soft shrinkage). (4.57)

3. Synthesis step. The denoised signal is reconstructed from the scaling coefficient
c ν0 and the modified wavelet coefficients d̃ m

k
analog to (4.54).

Cycle spinning. While the shrinkage procedure is simple and fast, it displays a se-
vere disadvantage for the filtering of signals: It is not translation invariant. Its exact
behaviour at a given pixel position depends on the place of that pixel in the dyadic
hierarchy constituted by the recursive procedure (4.53).

To circumvent this problem, the cycle spinning procedure has been proposed. It
means to perform ordinary wavelet shrinkage on the original signal of length n as
well as on n−1 copies shifted cyclically by 1,2, . . . , n−1 pixels. The shrunken trans-
lates are shifted back and all N shrinkage results averaged to give the shift-invariant
filtering result. Using the cyclic shift operator Ck : IRn→ IRn given by

Ck : ( f1, . . . , fn) 7→ ( fk + 1, . . . , fn , f1, . . . , fk ) (4.58)

with inverse C−1
k
=Cn−k and abbreviating the complete shrinkage operation (includ-

ing analysis, shrinkage and synthesis step) by Σθ, shift-invariant shrinkage reads

Σ̄θ( f ) :=
n−1∑
k=0

(Cn−k ◦Σθ ◦Ck)( f ) . (4.59)

In this procedure, f is treated as a periodical signal which deviates from the reflect-
ing boundary conditions which are often used in image processing. However, if
the n-pixel signal f = ( f1, . . . , fn) is simply replaced with the 2n-pixel signal f ′ :=
( f1, . . . , fn , fn , . . . , f1), periodic boundary conditions on f ′ exactly simulate reflecting
boundary conditions on f .

Soft Haar wavelet shrinkage on a single scale. In the simplest case, when we have
a two-pixel signal ( f1, f2), the Haar wavelet representation boils down to a single scale,



(c) Martin Welk 2007–2016. All rights reserved.

116 Chapter 4. Locally Analytic and Semi-Analytic Schemes for Diffusion Filters

featuring one scaling coefficient and one wavelet coefficient. We apply soft Haar
wavelet shrinkage to this signal to obtain a filtered version ( f̃1, f̃2). By substituting
(4.53), (4.55) with (4.57) and (4.54), we see that

f̃1 = f1+max
�
θp
2

,
| f1− f2|

2

�
sgn( f2− f1) ,

f̃2 = f2+max
�
θp
2

,
| f1− f2|

2

�
sgn( f1− f2) .

(4.60)

Comparing to (4.14), one sees that f̃1 = u1(t ) and f̃2 = u2(t ) if t = θ

2
p

2
is used.

In the case of a larger signal of length n (for which it is now sufficient to be even),
we can easily carry out a single-scale wavelet transform by evaluating (4.53) only for
m = 0. Of course, a full representation of the signal then requires to keep all c1

k
and all d 1

k
. Modifying the d 1

k
by the shrinkage function and reverting the transform

gives a single-scale soft Haar wavelet shrinkage which is, however, still not translation
invariant, as only the odd–even neighbour pixel pairs ( f2k−1, f2k) are considered. To
obtain a translation invariant filter, one uses cycle spinning. Since in the single-scale
setting a shift by 2 pixels alrady leads to the same decomposition of the signal into
pixel pairs, cycle spinning here boils down to averaging just two ordinary shrinkage
results: one of the unshifted signal, and one preceded by a 1-pixel shift and followed
by the inverse shift.

For each single pixel fi this means that two filtered values f̃i ,+ and f̃i ,− are averaged,

where f̃i ,+ has been computed by shrinkage from the pixel pair ( fi , fi+1) while f̃i ,−
has been obtained from the pixel pair ( fi−1, fi ). (In this formulation, we are now
ready to drop even the requirement that n be even.) Obviously, this is the same
averaging procedure that was used to obtain the two-pixel scheme (4.15) from the
analytic solutions (4.14). Taking into account the equivalence of (4.14) and (4.60), it is
evident that shift-invariant soft Haar wavelet shrinkage with θ= 2

p
2τ is equivalent

to one time step of (4.15).

The link between our two-pixel scheme and wavelet shrinkage is not limited to total
variation diffusion. To formulate similar results, e.g., for the more general singu-
lar diffusion schemes from 4.1.4 requires just to use a different shrinkage function.
Equivalences between different shrinkage functions and diffusivities have been inves-
tigated by Mrázek et al. in [145].
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4.2 Four-Pixel Approach to Isotropic Nonlinear 2D Diffu-

sion

We will now turn from the 1D to the 2D situation which is of greater interest in the
image processing context. Following common practice in image processing, we will
assume throughout these considerations that the underlying spatial grid is regular
with equal mesh sizes h = 1 in x and y direction. An exception will be made in
consistency analysis where arbitrary h will be admitted. Transfer of the schemes
developed here to this case is easy; however, equal mesh sizes in x and y directions
are essential.

A degree of freedom that arises on transition to the 2D situation is the possibility of
anisotropic diffusion, i.e., diffusion with direction-dependent diffusivity, as discussed
in 2.3. We will consider this case in 4.3, while in the present section we will stick to
the isotropic situation, compare 2.2.

4.2.1 Discretisation of the Divergence Form

We start by discretising the diffusion equation (2.14) in space under the premise that
the diffusivity field g = g (|∇uσ |2) is known. For abbreviation we let v = uσ . So
what is discretised in this step is in fact the divergence form.

We assume again that the image u is sampled on a rectangular grid of mesh width
1 with integer coordinates. As to the diffusivity g , let us assume that its values are
given at the midpoints of cells containing 2× 2 grid points of u , i.e., at the points
(i + 1/2, j + 1/2) with integer i , j .

First approximation. In (2.14), we find two differential operators which need to
be discretised, namely the gradient ∇ and the divergence div. Expressing these by
partial derivatives w.r.t. the spatial coordinates x and y and approximating these by
central differences leads to�

div(g (|∇v |2)∇u)
�

i , j
≈ gi+1/2, j · (ui+1, j − ui , j )− gi−1/2, j · (ui , j − ui−1, j )

+ gi , j+1/2 · (ui , j+1− ui , j )− gi , j−1/2 · (ui , j − ui , j−1) .
(4.61)

Since we only want to work with the diffusivities at the cell midpoints, we use linear
interpolation for g and arrive at

�
div(g (|∇v |2)∇u)

�
i , j
≈ 1

2

�
gi+1/2, j+1/2 · (ui+1, j + ui , j+1− 2ui , j )

+ gi+1/2, j−1/2 · (ui+1, j + ui , j−1− 2ui , j )

+ gi−1/2, j+1/2 · (ui−1, j + ui , j+1− 2ui , j )

+ gi−1/2, j−1/2 · (ui−1, j + ui , j−1− 2ui , j )
�

(4.62)
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y

x

ξ

η

Figure 4.2: Unit vectors for standard coordinates x , y and
the 45◦-rotated coordinates ξ ,η.

as one consistent approximation.

Second approximation. However, this is not the only possibility. Let us study
now an alternative discretisation, which uses representations of div and ∇ in terms
of the 45◦-rotated coordinates ξ ,η where

�
ξ

η

�
:=H

�
x

y

�
, H :=

1p
2

�
1 1
1 −1

�
, (4.63)

see Figure 4.2. Note that H =H T =H−1. Thereby we find
�
div(g (|∇v |2)∇u)

�
i , j

≈ 1
2

�
gi+1/2, j+1/2 · (ui+1, j+1− ui , j )+ gi+1/2, j−1/2 · (ui+1, j−1− ui , j )

+ gi−1/2, j+1/2 · (ui−1, j+1− ui , j )+ gi−1/2, j−1/2 · (ui−1, j−1− ui , j )
�

(4.64)

as a second discretisation.

Convex combinations. Since both (4.62) and (4.64) are consistent approximations
of the right-hand side of (2.14), so are their convex combinations. For everyα ∈ [0,1]
therefore the dynamical system

u̇i , j =
1
2

�
gi+1/2, j+1/2 · (αui+1, j +αui , j+1+ (1−α)ui+1, j+1− (1+α)ui , j )

+ gi+1/2, j−1/2 · (αui+1, j +αui , j−1+ (1−α)ui+1, j−1− (1+α)ui , j )

+ gi−1/2, j+1/2 · (αui−1, j +αui , j+1+ (1−α)ui−1, j+1− (1+α)ui , j )

+ gi−1/2, j−1/2 · (αui−1, j +αui , j−1+ (1−α)ui−1, j−1− (1+α)ui , j )
�

(4.65)

where the dot denotes differentiation with respect to t , is an approximation of (2.14).

Representation as average. An interesting observation about this dynamical sys-
tem is that within each summand on the right-hand side, only quantities from one of
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Figure 4.3: The four-pixel cells contributing to ui , j .

the four-pixel cells

(−−) : {i − 1, i}× { j − 1, j } , (+−) : {i , i + 1}× { j − 1, j } ,
(−+) : {i − 1, i}× { j , j + 1} , (++) : {i , i + 1}× { j , j + 1} ,

(4.66)

see Figure 4.3, are combined.

This enables us to rewrite (4.65) as average of four dynamical systems each of which
contains only interactions within one cell. One such system, which we write down
for simplicity for the cell {1,2}× {1,2}, reads

u̇1,1 = 2g3/2,3/2 · (−(1+α)u1,1+αu1,2+αu2,1+ (1−α)u2,2) ,

u̇2,1 = 2g3/2,3/2 · (αu1,1+ (1−α)u1,2− (1+α)u2,1+αu2,2) ,

u̇1,2 = 2g3/2,3/2 · (αu1,1− (1+α)u1,2+ (1−α)u2,1+αu2,2) ,

u̇2,2 = 2g3/2,3/2 · ((1−α)u1,1+αu1,2+αu2,1− (1+α)u2,2) .

(4.67)

We stress that (4.67) also coincides with the application of (4.65) to a 2× 2-pixel im-
age with periodic boundary conditions, because these boundary conditions surround
each pixel with four identical (up to reflections) 2× 2 cells. In this sense, the decom-
position is in full analogy with the 1-D case.

4.2.2 Discretisation of Diffusivities

In order to apply the dynamical systems derived in the previous subsection to com-
pute nonlinear diffusion, we need to discretise the diffusivity g (|∇uσ |2) at cell mid-
points (i + 1/2, j + 1/2). This comes down to discretising the squared gradient magni-
tude |∇uσ |2, which we will again do in a twofold way.

First approximation. Abbreviating again v = uσ , we have in standard coordinates

|∇v |2 = (∂x v)2 + (∂y v)2. We can approximate ∂x v and ∂y v by arithmetic means of
central difference approximations,

(∂x v)i+1/2, j+1/2 ≈ 1
2 (vi+1, j+1− vi , j+1+ vi+1, j − vi , j )

(∂y v)i+1/2, j+1/2 ≈ 1
2 (vi+1, j+1+ vi , j+1− vi+1, j − vi , j )

(4.68)
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which leads to
�
|∇v |2

�
i+1/2, j+1/2

≈ 1
2

�
(vi+1, j+1− vi , j )

2+ (vi+1, j − vi , j+1)
2� . (4.69)

This expression can equally be obtained by using central difference approximations
in the ξ -η coordinates to represent |∇v |.

Second approximation. Since, however, computing the gradient magnitude in fact
relies on the squares of the partial derivatives, we can replace the averaging of central
difference approximations of the derivatives themselves in (4.68) by averaging the
squared derivatives, which gives

�
(∂x v)2

�
i+1/2, j+1/2

≈ 1
2

�
(vi+1, j+1− vi , j+1)

2+ (vi+1, j − vi , j )
2�

�
(∂y v)2

�
i+1/2, j+1/2

≈ 1
2

�
(vi+1, j+1− vi+1, j )

2+ (vi , j+1− vi , j )
2� (4.70)

and thereby a new approximation for the gradient magnitude,
�
|∇v |2

�
i+1/2, j+1/2

≈ 1
2

�
(vi+1, j+1− vi , j+1)

2+ (vi+1, j − vi , j )
2

+ (vi+1, j+1− vi+1, j )
2+ (vi , j+1− vi , j )

2� .
(4.71)

Each of the approximations (4.69), (4.71) and their convex combinations
�
|∇v |2

�
i+1/2, j+1/2

≈G2
α(v)i+1/2, j+1/2

:=
α

2

�
(vi+1, j+1− vi , j+1)

2+ (vi+1, j − vi , j )
2

+ (vi+1, j+1− vi+1, j )
2+ (vi , j+1− vi , j )

2
�

+
1−α

2

�
(vi+1, j+1− vi , j )

2+ (vi+1, j − vi , j+1)
2
�

,

(4.72)

α ∈ [0,1], can be used in computing the diffusivity g .

4.2.3 Variational Interpretation

In 2.2.2 we have seen that diffusion processes of type (2.14) with σ = 0, i.e., without
pre-smoothing of the gradient field, can be represented as gradient descents for suit-
able energy functionals. We will show now that for σ = 0 our discretised diffusion
processes are gradient descents for discrete energy functions.

We consider energy functions given by

E (u) :=
1
2

∑
i , j

Ψ
�
[|∇u |2]i+1/2, j+1/2

�
(4.73)
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where the outer sum runs over all such four-pixel cells. Here and in the following we
use square brackets to denote discretisations, i.e., [|∇u |2]i+1/2, j+1/2 is some discretisa-
tion of the squared gradient magnitude |∇u |2 within the four-pixel cell {i , i + 1} ×
{ j , j + 1}. As in Chapter 2, Ψ is an increasing function on IR+0 , whose derivative will
show up in the gradient descent equations in the role of a diffusivity, so Ψ ′ ≡ g .

The partial derivative of the energy E with respect to some particular variable ui , j is
computed via the chain rule:

∂ E

∂ ui , j

=
1
2

∑
i ′, j ′
Ψ ′
�
[|∇u |2]i+1/2, j+1/2

� ∂ [|∇u |2]i ′+1/2, j ′+1/2

∂ ui , j

. (4.74)

The corresponding gradient descent then is

u̇i , j =−
∂ E

∂ ui , j

for all i , j . (4.75)

For given (i , j ), the sum on the right-hand side has four possibly nonzero contribu-
tions belonging to the cells (4.66), compare Fig. 4.3. When specifying a discretisation
[|∇u |2]i ′+1/2, j ′+1/2 in (4.73), the same discretisation reappears in the argument of Ψ ′ in
(4.75). At the same time, it determines the expression for ∂ [|∇u |2]i ′+1/2, j ′+1/2/∂ ui , j .

With the discretisation (4.72) from Subsection 4.2.2, we have

∂ [|∇u |2](−−)
∂ ui , j

=
α

2
(2ui , j − ui−1, j − ui , j−1)+

1−α
2
(ui , j − ui−1, j−1) ,

∂ [|∇u |2](+−)
∂ ui , j

=
α

2
(2ui , j − ui+1, j − ui , j−1)+

1−α
2
(ui , j − ui+1, j−1) ,

∂ [|∇u |2](−+)
∂ ui , j

=
α

2
(2ui , j − ui−1, j − ui , j+1)+

1−α
2
(ui , j − ui−1, j+1) ,

∂ [|∇u |2](++)
∂ ui , j

=
α

2
(2ui , j − ui+1, j − ui , j+1)+

1−α
2
(ui , j − ui+1, j+1) ,

(4.76)

where we have used the cell abbreviations from (4.66). Inserting these into (4.75), we
obtain exactly (4.67) with g = Ψ ′ as gradient descent. Note that the same value of α
has to be used in (4.72) and (4.67).

4.2.4 Analytic Solutions

In investigating the dynamical system (4.67) that describes isotropic nonlinear diffu-
sion on a 2×2-pixel image patch, we turn first to a case in which the system can even
be solved analytically.
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Singular diffusivity. Let us consider the special case of the singular diffusivities
(2.26), and set α = 1/2 in the discretisations (4.65) and (4.72). By combining (4.67)
and (4.72), we can then write down the following dynamical system for the four-
pixel cell {1,2} × {1,2} which describes the simultaneous evolution of the image u

and diffusivity field g :

u̇1,1 = g · (−3u1,1+ u2,1+ u1,2+ u2,2) ,

u̇2,1 = g · (u1,1− 3u2,1+ u1,2+ u2,2) ,

u̇1,2 = g · (u1,1+ u2,1− 3u1,2+ u2,2) ,

u̇2,2 = g · (u1,1+ u2,1+ u1,2− 3u2,2)

(4.77)

with
g = g

�
(G1/2(u(t )))

2�= (G1/2(u))
−p . (4.78)

Let us from now on abbreviate G1/2(u) by G(u). We observe first that for the average

grey value µ := 1
4 (u1,1 + u2,1 + u1,2 + u2,2) the system (4.77) implies µ̇ = 0, thus

µ= 1
4 ( f1,1+ f2,1+ f1,2+ f2,2) at all times. Furthermore (4.77) simplifies to

u̇i , j = 4g · (µ− ui , j ) , i , j = 1,2 , (4.79)

which is again a dynamical system with discontinuous right hand side. In analogy to
the concept of solution introduced for TV flow in 1D on page 103 we require also
solutions of (4.79) to be absolutely continuous and satisfy the given ODEs wherever
the derivatives involved are defined. Similar to the dynamical system (4.9) describing
TV flow in 1D, (4.79) can then be solved analytically.

To see this, let us notice first that when all ui , j −µ are replaced with λ(ui , j −µ)with
the same λ > 0, then G(u) is also replaced with λG(u). In other words, G(u) is a
homogeneous function of the ui , j −µ as long as their signs remain unchanged. Con-
sider now a time interval [0,T ] during which the solution of (4.79) is differentiable.
Provided that G( f ) 6= 0, we can set

η̃(t ) :=
G(u(t ))

G( f )
(4.80)

which is then a differentiable function of t with η̃(0) = 1. Since each of the quantities
ui , j −µ fulfils the differential equation

ẏ =−4g (G( f )η̃(t )) · y , (4.81)

it follows that there is a differentiable function η with η(0) = 1 such that

µ− ui , j (t ) = η(t ) · (µ− fi , j ) (4.82)

for all i , j and t ∈ [0,T ]. Due to the above mentioned homogeneity of G(u) w.r.t.
ui , j −µ, it follows that η̃≡ η.



(c) Martin Welk 2007–2016. All rights reserved.

4.2. Four-Pixel Approach to Isotropic Nonlinear 2D Diffusion 123

Differentiation yields u̇i , j =−η̇ · (µ− fi , j ) which after insertion into (4.79) leads to

−η̇ · (µ− fi , j ) = 4g · (µ− ui , j ) (4.83)

and by (4.82) finally to
η̇=−4 g η . (4.84)

From (4.79) and (4.82) it is clear that η̇ and η always have opposite signs such that
the absolute value of η can never increase. Consequently, since η(0) = 1, we see that
η(t )≥ 0 for t ≥ 0. With (4.80) and (2.26) it follows that

η̇(t ) =−4(G( f ))−p η(t )1−p . (4.85)

This equation has the solution

η(t ) =

�
1− 4 p t

(G( f ))p

�1/p

, (4.86)

in the interval [0,T ]within which we have a differentiable solution. Since according
to (4.86) η becomes zero at t = (G( f ))

p

4p , this is the greatest T that can be chosen.

An argument using the mean value theorem as in 4.1.2 makes clear, however, that
once η(t ) has reached zero, and all ui , j have thus become equal, they remain equal
forever, such that the solution can be continued on [0,∞) by η(t ) = 0.

The solution for all t ≥ 0 therefore reads

η(t ) =

¨ �
1− 4pt

(G( f ))p

�1/p
, 0≤ t < (G( f ))

p

4p ,

0 , t ≥ (G( f ))p4p .
(4.87)

Finally, by (4.82), the analytical solution of (4.79) is given for i , j = 1,2 by

ui , j (t ) =

¨
µ+

�
1− 4pt

(G( f ))p

�1/p
( fi , j −µ) , 0≤ t < (G( f ))

p

4p ,

µ , t ≥ (G( f ))p4p .
(4.88)

For the TV diffusion case p = 1, particularly, (4.88) simplifies to

ui , j (t ) =

¨
µ+

�
1− 4t

G( f )

�
( fi , j −µ) , 0≤ t < G( f )

4 ,

µ , t ≥ G( f )
4 ,

(4.89)

and shows a linear evolution which can be written in a slightly different form as

ui , j (t ) = fi , j +
4t

G( f )
(µ− fi , j )min

�
1,

G( f )

4t

�
, i , j = 1,2 . (4.90)

For BFB diffusion, p = 2, we have the analytical solution

ui , j (t ) =

¨
µ+

Ç
1− 8t

(G( f ))2
( fi , j −µ) , 0≤ t < (G( f ))

2

8 ,

µ , t ≥ (G( f ))28 .
(4.91)
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LAS Algorithm for Singular Isotropic Diffusion

• For each four-pixel cell {i , i+1}×{ j , j+1}, compute one time step

of singular isotropic diffusion according to (4.88).

• For each pixel (∗) with coordinates (i , j ), consider the four cells

∗
(−−)

∗
(+−)

∗
(−+)

∗
(++)

which lead to four approximations

uk+1
i , j ,−−, uk+1

i , j ,+−, uk+1
i , j ,−+, uk+1

i , j ,++ .

Average:

uk+1
i , j
=

1
4 (u

k+1
i , j ,−−+ uk+1

i , j ,+−+ uk+1
i , j ,−++ uk+1

i , j ,++) .

Figure 4.4: One time step of the locally analytic scheme for a singular isotropic dif-
fusion process, where uk , uk+1 refer to the old and new time step, respectively.
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4.2.5 Locally Analytic Scheme for Singular Isotropic Diffusion Processes

We continue to consider the case of the singular diffusivities (2.26) with the discreti-
sation parameter α = 1/2. Combination of the results achieved so far enables us to
construct a novel numerical scheme for singular isotropic diffusion processes.

We recall that in the case under consideration the dynamical system (4.65) is repre-
sented by the average of four dynamical systems of type (4.77). Using the notations

µk
i , j ,−− := 1

4 (u
k
i−1, j + uk

i , j−1+ uk
i−1, j−1+ uk

i , j ) ,

µk
i , j ,+− := 1

4 (u
k
i+1, j + uk

i , j−1+ uk
i+1, j−1+ uk

i , j ) ,

µk
i , j ,−+ := 1

4 (u
k
i−1, j + uk

i , j+1+ uk
i−1, j+1+ uk

i , j ) ,

µk
i , j ,++ := 1

4 (u
k
i+1, j + uk

i , j+1+ uk
i+1, j+1+ uk

i , j ) ,

(4.92)

we could therefore discretise (4.65) in time via an explicit Euler scheme and obtain
the naive scheme

uk+1
i , j = uk

i , j + τ gi−1/2, j−1/2 · (µk
i , j ,−−− uk

i , j )+ τ gi+1/2, j−1/2 · (µk
i , j ,+−− uk

i , j )

+ τ gi−1/2, j+1/2 · (µk
i , j ,−+− uk

i , j )+ τ gi+1/2, j+1/2 · (µk
i , j ,++− uk

i , j ) .
(4.93)

Here τ denotes the time step size and uk = (uk
i , j )i , j

the approximate solution at pixel
(i , j ) and time kτ. Unfortunately, due to the singularity of g at zero, this scheme be-
comes instable with respect to the maximum-minimum principle for arbitrary small
time steps if neighbouring pixel values become arbitrary close. We use therefore a
different approximation.

Due to the decomposition of (4.65) into the average of four 2×2-pixel systems, its so-
lution is approximatively the average of the solutions of the four smaller systems. By
(4.88) we know these exactly. This inspires a simple algorithm to compute one time
step of a numerical scheme, in which uk serves as initial condition for computing
(4.88) within each four-pixel cell up to time τ. Since this scheme is based on compos-
ing analytic solutions for small image patches, we will call it a locally analytic scheme.
Its structure is depicted in Figure 4.4.

Stability Analysis. The values of the analytical solution (4.88) at arbitrary times
t ≥ 0 are convex combinations of its initial values. By its construction from the ana-
lytical solution (4.88), the novel scheme in Figure 4.4 therefore obeys the maximum–
minimum principle. Consequently, it is absolutely stable for each τ.

Consistency Analysis. For simplicity, we analyse consistency in the case of TV
flow, i.e. p = 1. While we have set the spatial step size to h = 1 throughout the
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derivation of the scheme, we have to admit variable spatial step size h here. Then, by
(4.89) our final scheme reads

uk+1
i , j
− uk

i , j

τ
=

gi−1/2, j−1/2

h2
· (µk

i , j ,−−− uk
i , j ) min

n
1, h2

4τ gi−1/2, j−1/2

o

+
gi+1/2, j−1/2

h2
· (µk

i , j ,+−− uk
i , j ) min

n
1, h2

4τ gi+1/2, j−1/2

o

+
gi−1/2, j+1/2

h2
· (µk

i , j ,−+− uk
i , j ) min

n
1, h2

4τ gi−1/2, j+1/2

o

+
gi+1/2, j+1/2

h2
· (µk

i , j ,++− uk
i , j ) min

n
1, h2

4τ gi+1/2, j+1/2

o
.

(4.94)

This scheme can be considered as a stabilisation of the explicit scheme (4.93). It coin-
cides with (4.93), and is therefore a consistent approximation of order O(τ+ h2) for
TV diffusion, if each of the four minimum operations on its right-hand side selects
the value 1. This consistency condition is fulfilled for

0≤ τ ≤min
§

h2

4gi−1/2, j−1/2

,
h2

4gi+1/2, j−1/2

,
h2

4gi−1/2, j+1/2

,
h2

4gi+1/2, j+1/2

ª
. (4.95)

For larger τ it is again easy to see that linear diffusion ∂t u = ∆u is approximated.
However, this happens in regions where the gradient is already close to zero. In this
case, the visual differences between linear diffusion and TV diffusion are small.

Boundary conditions. Neumann boundary conditions, also characterised as re-
flecting or zero-flux boundary conditions, which are the most common choice in
PDE-based image filtering, can easily be implemented in the LAS framework. As in
many discretisations of total variation flow and other isotropic diffusion filters, it is
sufficient in the case of a rectangular N×M image domain to mirror before each time
step the first and last rows and columns of the image and apply the same time step as
for inner pixels also for boundary pixels with the so prepared neighbourhood.

For instance, in the four-pixel cell {0,1} × { j , j + 1} where 1 ≤ j , j + 1 ≤ M we
have due to the mirroring uk

0, j = uk
1, j and uk

0, j+1 = uk
1, j+1. Thus, one easily checks

that the evolution (4.88) of the four-pixel cell conserves the equalities u0, j = u1, j and
u0, j+1 = u1, j+1 for all times, and in particular mimicks a two-pixel dynamics on u1, j

and u1, j+1 that equals (4.14) for TV flow, or an analogous equation for p 6= 1. As
a consequence, no transport (flux) across the image boundary separating columns 0
and 1 takes place, warranting zero-flux boundary conditions as desired.

Similarly, at an image corner, e.g. {0,1} × {0,1}, the cell arising from the mirror-
ing contains four equal pixels, leading to trivial dynamics that does not cause any
boundary-crossing transport neither.
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Figure 4.5: Top left: (a) Original image, 93× 93 pixels. Top right: (b) TV diffusion
with standard explicit scheme, where TV diffusivity is regularised with ǫ= 0.01, τ =
0.0025, 10000 iterations. Bottom left: (c) TV diffusion computed with LAS without
regularisation of diffusivity, τ = 0.0025, 10000 iterations. Bottom right: (d) LAS with
τ = 0.1, 250 iterations.

Experiments. We illustrate our LAS by three experiments. First, in Figure 4.5, we
contrast the regularisation-free LAS for TV diffusion with a standard explicit discreti-
sation. In the latter scheme, TV diffusivity is approximated by the regularised TV

diffusivity 1/
Æ
|∇u |2+ ǫ2. Since the stability condition for explicit schemes imposes

the upper limit ǫ/4 on the time step size, a high number of iterations is needed for
a reasonably small ǫ. It can be seen that the LAS based on four-pixel discretisations
and the unregularised TV diffusivity – which cannot be used in the explicit scheme –
considerably reduce blurring effects caused by the discretisation.
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Figure 4.6: Left: (a) One quadrant of a rotationally invariant test image, 64×64 pixels.
Middle: (b) TV diffusion with standard explicit scheme, ǫ = 0.01, τ = 0.0025, 12000
iterations. Right: (c) TV diffusion with our LAS algorithm, τ = 0.1, 300 iterations.

Figure 4.7: Left: Original image, 93×93 pixels. Middle: Balanced forward–backward
diffusion with standard explicit scheme,ǫ= 0.1, τ = 0.0025, 160000 iterations. Right:

BFB diffusion with our LAS, τ = 0.1, 4000 iterations.

Figure 4.6 demonstrates the reasonable rotational invariance of our LAS, which is
achieved in spite of the fact that the analytically solvable case of the 2× 2-pixel cell is
not the one with optimal rotational invariance.

Figure 4.7 demonstrates balanced forward–backward diffusion. With equal param-
eters, it can be seen again that the LAS looks sharper by preserving finer details.
Moreover, it is worth mentioning that in the LAS experiments we were able to use a
time step size that exceeded the largest admissible step size of the explicit scheme by
a factor of 40.
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4.2.6 Semi-Analytic Solution for Arbitrary Diffusivities

For general diffusivity functions g (|∇uσ |2), as well as for the singular diffusivity func-
tions (2.26) with discretisation parameters α 6= 1/2, we do in general not have an ana-
lytic solution in the sense of (4.88) which incorporates the dynamics of g . Neverthe-
less, it is still possible to solve analytically the dynamical system (4.67), which governs
the diffusion process within one four-pixel cell, for a fixed diffusivity field g .

To this end it is useful to introduce new variables wi , j by

W :=H U H , (4.96)

where U :=
�

u1,1 u2,1

u1,2 u2,2

�
, W :=

�
w1,1 w2,1

w1,2 w2,2

�
, and H happens to be the same matrix

as introduced by (4.63). In terms of the new variables, (4.94) can be rewritten as

ẇ1,1 = 0 , ẇ2,1 =−4g w2,1 ,

ẇ1,2 =−4g w1,2 , ẇ2,2 =−8αg w2,2 ,
(4.97)

where we have set g := g3/2,3/2 for the only diffusivity value involved. The solution
of (4.97) is easy to state: While w1,1 stays constant, the other variables are subject to
independent exponential decays,

w1,1(t ) = w1,1(0) , w2,1(t ) = e−4g t w2,1(0) ,

w1,2(t ) = e−4g t w1,2(0) , w2,2(t ) = e−8αg t w2,2(0) .
(4.98)

Via the inverse transform of (4.96),

U (t ) =H W (t )H , (4.99)

this solution can be rewritten in terms of the original variables.
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LSAS Algorithm for Isotropic Diffusion

• Compute the pre-smoothed image v := Kσ ∗ uk by convolution.

• For each four-pixel cell {i , i +1}×{ j , j +1}, compute the squared

gradient |∇v |2 according to (4.72), and the diffusivity g =

g (|∇v |2).

• For each four-pixel cell, compute one time step of isotropic diffu-

sion via the analytical solution (4.96), (4.98), (4.99).

• For each pixel (∗) with coordinates (i , j ), consider the four cells

∗
(−−)

∗
(+−)

∗
(−+)

∗
(++)

which lead to four approximations

uk+1
i , j ,−−, uk+1

i , j ,+−, uk+1
i , j ,−+, uk+1

i , j ,++ .

Average:

uk+1
i , j
= 1

4 (u
k+1
i , j ,−−+ uk+1

i , j ,+−+ uk+1
i , j ,−++ uk+1

i , j ,++) .

Figure 4.8: One time step of the locally semi-analytic scheme for a nonlinear isotropic
diffusion process.



(c) Martin Welk 2007–2016. All rights reserved.

4.2. Four-Pixel Approach to Isotropic Nonlinear 2D Diffusion 131

4.2.7 Locally Semi-Analytic Scheme for Isotropic Nonlinear Diffusion

Modifying the idea of our locally analytic scheme, we can use the solution given by
(4.96), (4.98), (4.99) as an approximation to the isolated evolution in a four-pixel cell.
Consequently, four solutions of this kind can again be used to approximate the solu-
tion of (4.65). In contrast to the previous case, it is now necessary to compute anew in
each time step the pre-smoothed image v = uσ and the diffusivity field g (|∇v |2). One
time step of the so adapted scheme is given in Figure 4.8. Note that this scheme can
be used for arbitrary diffusivity functions g and for every discretisation parameter
α ∈ [0,1].

In analogy to semi-implicit schemes that keep the diffusivity fixed at the previous
time level while discretising the remainder in an implicit fashion, we will call this
scheme a locally semi-analytic scheme (LSAS).

Stability. By substituting (4.99) into (4.98) one checks that, as in the LAS case, the
values of the analytical solution for u for any t ≥ 0 are convex combinations of the
initial values. Via the averaging procedure this guarantees a maximum–minimum
principle, and absolute stability of our LSAS for arbitrary time step size τ.

Consistency. Like the LAS, the locally semi-analytic scheme is conditionally con-
sistent. For simplicity, we restrict our analysis to the case of the 1D nonlinear isotropic
diffusion equation ∂t u = ∂x (g ∂x u)with bounded diffusivity function g = g (|∂x v |2).
The LSAS with variable spatial step size h and time step size τ can then be written as

uk+1
i
− uk

i

τ
=

1
h

 
δk

i+1/2

uk
i+1− uk

i

h
−δk

i−1/2

uk
i − uk

i−1

h

!
(4.100)

with

δk
i±1/2 :=

h2

4τ

�
1− exp

�
−4τ

h2
g k

i±1/2

��
. (4.101)

Using the Taylor series of the exponential function, we see that

δk
i±1/2 = g k

i±1/2+O
� τ

h2

�
(4.102)

from which it follows that the LSAS is an approximation of the underlying PDE of
order O(τ + h2 +

τ
h2 ). Therefore, it is consistent if τ

h2 → 0 as τ, h → 0. The latter
consistency condition constitutes a difference to the LAS situation. Nevertheless,
it is uncritical in the application context of digital image processing that we have in
view: Here, the grid size is in fact fixed to h = 1, and the LSAS is an unconditionally
consistent approximation to the space-discrete dynamical system.

Let us also characterise the error that occurs at large time step sizes. It is easy to see
that for τ→∞, the scheme creates constant 2×2 patches, except in case α= 0 where



(c) Martin Welk 2007–2016. All rights reserved.

132 Chapter 4. Locally Analytic and Semi-Analytic Schemes for Diffusion Filters

the local averaging is restricted to the components of a checkerboard decomposition.
Averaging the patches approximates linear diffusion with a constant diffusivity.

Boundary conditions. Reflecting Neumann boundary conditions for a rectangu-
lar image domain are implemented simply by mirroring the first and last rows and
columns of the image. The arguments demonstrating the zero-flux property of the
so obtained process are the same as in the case of the LAS for singular isotropic diffu-
sion processes. In this respect our LSAS behaves much like any other explicit scheme
working on a 3× 3 stencil around each pixel.

4.2.8 Multi-Channel Images

The generalisation of nonlinear isotropic diffusion to multi-channel images has been
described in 2.2.5: The divergence expression div(g ·∇u) is considered for each image
channel separately but using one and the same common diffusivity g that depends
on all channels.

This procedure can be used straightforward with the discretisations developed in this
section. To extend the discretisation of the squared gradient (4.72) to a multi-channel
image v = (vk;i , j )i , j ,k where vk;i , j is the value of the k-th image channel at pixel (i , j ),
we use

Gα(v) :=
∑

k

Gα(vk) (4.103)

with Gα(vk) given by (4.72) as squared gradient approximation in the argument of g .
One uses then for each channel separately the divergence discretisation (4.65) or any
of the derived schemes, inserting the single diffusivity field g in all channels.

In the cases in which the isotropic nonlinear diffusion process can be represented
as gradient descent of an energy, this is also true for the discretised multi-channel
process. A suitable discrete energy function is obtained by inserting (4.103) in the
place of the squared gradient in (4.73).

4.2.9 Haar Wavelet Interpretation

Like its 1D counterpart, also our locally analytic scheme for 2D singular isotropic
diffusion, as well as the locally semi-analytic schemes for general 2D isotropic dif-
fusion can be described in terms of single-scale Haar wavelet shrinkage procedures.
The underlying observation is that the finest scale Haar wavelet transform acts in a
natural way on 2× 2-pixel cells.
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Haar wavelet shrinkage on a four-pixel image. We describe the action of Haar

wavelet shrinkage on one single four-pixel tile F :=
�

fi , j

�2

i , j=1
. One cycle of Haar

wavelet shrinkage consists of three steps.

1. Analysis step. The four-pixel image F is transformed into the wavelet domain
by applying low and high pass Haar filters to its rows and columns. More
precisely, F is multiplied from the left and the right by the matrix H from
(4.63) which results in

C =

�
c1,1 c2,1
c1,2 c2,2

�
:=H F H . (4.104)

Setting U = F and W =C , this is exactly the variable transform (4.96).

2. Shrinkage step. The high-pass coefficients of C are modified by reducing the ab-
solute values of some or all of them. To this end, we apply a shrinkage function
Sθ depending on a threshold parameter θ to the high-pass filtered coefficients,
i.e., we compute Sθ(c1,2), Sθ(c2,1), Sθ(c2,2), while leaving the low-pass coefficient
c1,1 fixed.

3. Synthesis step. The inverse transform of step 1 is used to take the shrunken
coefficients back from the wavelet to the signal domain,

F (1) =H Sθ(C )H . (4.105)

This is just the analog of (4.99).

Shrinkage functions. In conventional wavelet shrinkage, thresholding depends on
the individual coefficients. For example, soft shrinkage [75] shrinks the coefficients
towards 0 by an amount that is given by a threshold parameter θ:

Sθ(ci , j ) :=

¨
ci , j −θ sgn(ci , j ) if |ci , j | ≥ θ ,

0 otherwise .
(4.106)

In [144] a shrinkage function inspired by isotropic nonlinear diffusion filtering was
introduced that leads to a coupled shrinking of the coefficients. More precisely, the
thresholding applies with respect to γ (C ) :=

�
c2
2,1+ c2

1,2+ c2
2,2

�1/2. For a soft shrinkage
and (i , j ) ∈

�
(2,1), (1,2), (2,2)

	
this comes down to

Sθ(ci , j ) :=

¨
ci , j − θ

γ (C ) sgn(ci , j ) if γ (C )≥ θ ,

0 otherwise .
(4.107)

In contrast to the classical wavelet shrinkage, this results in an improved rotation
invariance of the resulting image.
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We follow this idea and define our shrinkage function in dependence on

G(F ) =
�
c2
1,2+ c2

2,1+ c2
2,2

�1/2 . (4.108)

It is straightforward to check that the value G(F ) indeed coincides with G1/2(F ) as
defined in (4.72).

Shrinkage function for singular diffusivities. Applying the shrinkage function

Sθ(s ;G(F )) :=

¨ �
1− 4 p (G(F ))−p θ

�1/p
s , G(F )≥ (4 p θ)1/p ,

0 G(F )< (4 p θ)1/p .
(4.109)

our Haar wavelet shrinkage produces for i , j = 1,2 the values

f
(1)

i , j
=

¨
µ+

�
1− 4 p (G(F ))−p θ

�1/p
( fi , j −µ), G(F )≥ (4 p θ)1/p ,

µ, G(F )< (4 p θ)1/p .
(4.110)

Comparing this equation with (4.88) we observe that on 2×2 pixels our Haar wavelet
shrinkage with shrinkage function (4.109) coincides with the solution of the nonlin-
ear diffusion equation with diffusivity (2.26), where the shrinkage parameter θ plays
the same role as the diffusion time t .

Shrinkage function for arbitrary diffusivities. Moreover, by directly translating
(4.98) into the shrinkage function

Sθ(c2,1) := e−4gθc2,2 ,

Sθ(c1,2) := e−4gθc1,2 ,

Sθ(c2,2) := e−8gαθc2,2

(4.111)

and using this instead of (4.109), we obtain another shrinkage process which is equiv-
alent to our semi-analytic solution from Subsection 4.2.7. Note that in this case a
coupling between all three wavelet coefficients is mediated by the common quantity
g . The coupling is restricted to the first two wavelet coefficients only forα= 0, when
c2,2 is left unshrunken.

The discretisations of the diffusion process and diffusivities leading to our LAS and
LSAS are in full analogy to those used in [144, 145] to derive coupled Haar wavelet
shrinkage processes with improved rotational invariance. The shrinkage rules in
[144] equal the first-order terms of (4.111).

Single-scale Haar wavelet shrinkage on the entire image. Given an N ×M -pixel
image f , ordinary single scale Haar wavelet shrinkage divides the image into dis-
joint 2× 2-pixel cells and performs Haar wavelet shrinkage on each of these cells as
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described above. Unfortunately, this process is neither shift invariant nor rotation
invariant. However, both properties can be achieved with a little more effort by the
following 2D cycle-spinning procedure:

1. Shift the original image f++ := ( fi , j ) one pixel to the right to obtain f−+ :=
( fi−1, j ), one pixel down to get f+− := ( fi , j−1) and one pixel to the right and
down resulting in f−− := ( fi−1, j−1),

2. Perform wavelet shrinkage (4.110) on the 2 × 2 cells of the four images
f−−, f+−, f−+, f++, i.e., four times ordinary Haar wavelet shrinkage.

3. Shift the resulting images back and compute the average.

It is obvious that the 2D cycle spinning mimicks exactly the way how the analytic or
semi-analytic solutions of the dynamical systems (4.67) are combined into solutions
of (4.65). Consequently, it describes exactly one time step of size τ = θ of our locally
analytic scheme (4.94) if the shrinkage function (4.109) is used, or of our locally semi-
analytic scheme if the shrinkage function (4.111) is chosen.
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4.3 Four-Pixel Approach to Anisotropic Nonlinear Diffu-

sion

In this section, we are concerned with the nonlinear anisotropic diffusion equation
(2.35) with anisotropic diffusion tensor D(J ) depending on the structure tensor (2.36).
To reduce numerical blurring effects as much as possible, we derive a discretisation
of (2.35) which can again be split into approximations on the four-pixel cells (4.66).
We will then also discretise (2.36) within such cells.

4.3.1 Discretisation of the Divergence Form

Let us first discretise the anisotropic diffusion equation

∂t u = div(D · ∇u) (4.112)

with an arbitrary diffusion tensor field represented by positive semidefinite symmet-

ric matrices D =

�
a c

c b

�
. We assume that u is sampled at the integer pixel positions

(i , j ) while D is sampled at inter-pixel positions (i + 1/2, j + 1/2).

First approximation. To discretise the right-hand side of (4.112) at a given pixel
position (i , j ), we will will use values of u at positions (i + ǫ1, j + ǫ2) with ǫ1,ǫ2 ∈
{−1,0,+1}, together with the diffusion tensors at (i ± 1/2, j ± 1/2). We use the abbre-
viations

Di−1/2, j−1/2 :=
�

a−− c−−
c−− b−−

�
, Di+1/2, j−1/2 :=

�
a+− c+−
c+− b+−

�
,

Di−1/2, j+1/2 :=
�

a−+ c−+
c−+ b−+

�
, Di+1/2, j+1/2 :=

�
a++ c++
c++ b++

�
.

(4.113)

Expanding the differential operators div and ∇ into partial derivatives ∂x , ∂y , we
calculate

�
div(D∇u)

�
i , j
=
�
(∂x ,∂y)D(∂x ,∂y)

Tu
�

i , j

=
�
∂x (a∂x u+ c∂y u)+ ∂y(c∂x u + b∂y u)

�
i , j

≈ (a∂x u + c∂y u)i+1/2, j − (a∂x u + c∂y u)i−1/2, j

+ (c∂x u + b∂y u)i , j+1/2− (c∂x u + b∂y u)i , j−1/2 .

(4.114)
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Interpolating entries of D and image values linearly between the locations where they
are given, we continue

�
div(D∇u)

�
i , j

≈ a+++ a+−
2

(ui+1, j − ui , j )+
(c∂y u)i+1/2, j+1/2+ (c∂y u)i+1/2, j−1/2

2

− a−++ a−−
2

(ui , j − ui−1, j )−
(c∂y u)i−1/2, j+1/2+ (c∂y u)i−1/2, j−1/2

2

+
(c∂x u)i+1/2, j+1/2+ (c∂x u)i−1/2, j+1/2

2
+

b+++ b−+
2

(ui , j+1− ui , j )

−
(c∂x u)i+1/2, j−1/2+ (c∂x u)i−1/2, j−1/2

2
− b+−+ b−−

2
(ui , j − ui , j−1) .

(4.115)

Approximating (∂y u)i+1/2, j+1/2 by 1
2 (ui+1, j+1− ui+1, j + ui , j+1− ui , j ) etc., we are led

to the dynamical system

u̇i , j =
1
2

�
−a−−(ui , j−ui−1, j )− b−−(ui , j−ui , j−1)− c−−(ui , j−ui−1, j−1)

�
,

+
1
2

�
a+−(ui+1, j−ui , j )− b+−(ui , j−ui , j−1)− c+−(ui+1, j−1−ui , j )

�
,

+
1
2

�
−a−+(ui , j−ui−1, j )+ b−+(ui , j+1−ui , j )+ c−+(ui , j−ui−1, j+1)

�
,

+
1
2

�
a++(ui+1, j−ui , j )+ b++(ui , j+1−ui , j )+ c++(ui+1, j+1−ui , j )

�
,

(4.116)

where we have denoted differentiation with respect to t by a dot.

We observe again that each summand on the right-hand side combines only quantities
from one of the four-pixel cells (4.66), see Figure 4.3, giving way to splitting up (4.116)
into the average of four dynamical systems each of which is localised in a single cell.

Denoting the diffusion tensor discretised in (3/2, 3/2) simply by D =

�
a c

c b

�
, we state

such a four-pixel dynamical system for the cell {1,2}× {1,2}:

u̇1,1 = 2a(u2,1− u1,1)+ 2b (u1,2− u1,1)+ 2c(u2,2− u1,1) ,

u̇2,1 = 2a(u1,1− u2,1)+ 2b (u2,2− u2,1)− 2c(u1,2− u2,1) ,

u̇1,2 = 2a(u2,2− u1,2)+ 2b (u1,1− u1,2)− 2c(u2,1− u1,2) ,

u̇2,2 = 2a(u1,2− u2,2)+ 2b (u2,1− u2,2)+ 2c(u1,1− u2,2) .

(4.117)

Second approximation. As in Subsection 4.2.1, we can use representations of div
and ∇ in terms of the 45◦-rotated coordinates ξ ,η for an alternative discretisation.
The diffusion tensor D then needs to be transformed into

H DH T =
1
2

�
a+ b + 2c a− b

a− b a+ b − 2c

�
. (4.118)
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This leads to
�

div(D∇u)
�

i , j
=
�
(∂ξ ,∂η)

�
H DH (∂ξ u ,∂ηu)T

��
i , j

=
1
2

�
∂ξ
�
(a+ b + 2c)∂ξ u + (a− b )∂ηu

�

+ ∂η
�
(a− b )∂ξ u + (a+ b − 2c)∂ηu

��
i , j

≈ 1

2
p

2

��
(a+ b + 2c)∂ξ u + (a− b )∂ηu

�
i+1/2, j+1/2

−
�
(a+ b + 2c)∂ξ u + (a− b )∂ηu

�
i−1/2, j−1/2

+
�
(a− b )∂ξ u+ (a+ b − 2c)∂ηu

�
i+1/2, j−1/2

−
�
(a− b )∂ξ u+ (a+ b − 2c)∂ηu

�
i−1/2, j+1/2

�
.

(4.119)

Substituting central differences for ∂ξ u and ∂ηu yields the dynamical system

u̇i , j =
1
4

�
− (a−−+ b−−+ 2c−−)(ui , j − ui−1, j−1)

− (a−−− b−−)(ui , j−1− ui−1, j )

+ (a+−− b+−)(ui+1, j − ui , j−1)

+ (a+−+ b+−− 2c+−)(ui+1, j−1− ui , j )

− (a−+− b−+)(ui , j+1− ui−1, j )

− (a−++ b−+− 2c−+)(ui , j − ui−1, j+1)

+ (a+++ b+++ 2c++)(ui+1, j+1− ui , j )

+ (a++− b++)(ui+1, j − ui , j+1)
�

.

(4.120)

Like (4.116), this system is the average of four-pixel systems which for the cell {1,2}×
{1,2} read in this case

u̇1,1 = (a+ b + 2c)(u2,2− u1,1)+ (a− b )(u2,1− u1,2) ,

u̇2,1 = (a+ b − 2c)(u1,2− u2,1)+ (a− b )(u1,1− u2,2) ,

u̇1,2 = (a+ b − 2c)(u2,1− u1,2)+ (a− b )(u2,2− u1,1) ,

u̇2,2 = (a+ b + 2c)(u1,1− u2,2)+ (a− b )(u1,2− u2,1) .

(4.121)

As in the isotropic case, any convex combination

u̇1,1 = qα(u2,1− u1,1)+ rα(u1,2− u1,1)+ sα(u2,2− u1,1) ,

u̇2,1 = qα(u1,1− u2,1)+ rα(u2,2− u2,1)− sα(u1,2− u2,1) ,

u̇1,2 = qα(u2,2− u1,2)+ rα(u1,1− u1,2)− sα(u2,1− u1,2) ,

u̇2,2 = qα(u1,2− u2,2)+ rα(u2,1− u2,2)+ sα(u1,1− u2,2) ,

(4.122)



(c) Martin Welk 2007–2016. All rights reserved.

4.3. Four-Pixel Approach to Anisotropic Nonlinear Diffusion 139

of (4.117) and (4.121), where the coefficients qα, rα and sα are given by

qα := (1+α)a+ (1−α)b ,

rα := (1−α)a+ (1+α)b ,

sα := (1−α)(a+ b )+ 2c ,

(4.123)

is also a consistent discretisation of anisotropic diffusion.

Inserting the isotropic diffusion tensor D = g3/2,3/2I , where I is the 2× 2 unit matrix,
into (4.122) yields exactly the system (4.67) which underlines that our discretisation
of anisotropic diffusion is a natural extension of the isotropic case.

4.3.2 Discretisation of the Diffusion Tensor

To discretise the diffusion tensor D , we need to discretise the structure tensor J . The
most direct approach to do this is to discretise the gradients ∇v of the given pre-
smoothed image v := Kσ ∗ u . Much as in the case of isotropic diffusion, Section 4.2,
the centre of a four-pixel cell is an outstanding location for discretising these quantities
most locally. Let us therefore discretise ∇v = (∂x v,∂y v)T, and then ∇v∇vT, at the
centre (3/2, 3/2) of a four-pixel cell {vi j }i , j=1,2 from a sampling of the spatial function
v .

First approximation. Considering four pixels v11, v12, v21, v22 belonging to a qua-
dratic grid with mesh size 1, we approximate ∂x v and ∂y v at the midpoints between
neighbouring pixel positions and take arithmetic means of these expressions to obtain
approximations for the derivatives at (3/2, 3/2):

(∂x v)3/2,3/2 ≈ 1
2 (v2,2+ v2,1− v1,2− v1,1) ,

(∂y v)3/2,3/2 ≈ 1
2 (v2,2− v2,1+ v1,2− v1,1) .

(4.124)

Taking the outer product ∇v∇vT from the so discretised gradient ∇v leads to the
four components

(∂x v)23/2,3/2 ≈
1
4 (v2,2+ v2,1− v1,2− v1,1)

2

(∂y v)23/2,3/2 ≈
1
4 (v2,2− v2,1+ v1,2− v1,1)

2

(∂x v∂y v)3/2,3/2 ≈ 1
4 (v2,2+ v2,1− v1,2− v1,1)(v2,2− v2,1+ v1,2− v1,1)

=
1
4

�
(v2,2− v1,1)

2− (v2,1− v1,2)
2� .

(4.125)

Componentwise Gaussian convolution with K̺ yields the approximated structure
tensor field.
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Second approximation. An alternative way to discretise J uses one-sided finite dif-
ferences at each of the four pixels of the cell. At (1,1), one obtains the approximations

(∂x v)1,1 ≈ v2,1− v1,1 ,

(∂y v)1,1 ≈ v1,2− v1,1 .
(4.126)

From these an approximation of the outer product∇v∇vT at (1,1) is calculated. At
the other three pixels, analogous approximations are made using left- or right-sided
differences such as to stay within the given four-pixel cell. Taking the arithmetic mean
of the four outer product approximations yields the approximation

(∂x v)23/2,3/2 ≈
1
2 ((v2,2− v1,2)

2+ (v2,1− v1,1)
2)

(∂y v)23/2,3/2 ≈
1
2 ((v2,2− v2,1)

2+ (v1,2− v1,1)
2)

(∂x v∂y v)3/2,3/2 ≈ 1
4

�
(v2,2− v1,1)

2− (v2,1− v1,2)
2� .

(4.127)

Note that the two approximations (4.125) and (4.127) differ only in the main diagonal
entries.

Once more, one can also use convex combinations of (4.125) and (4.127), i.e.,

(∂x v)23/2,3/2 ≈
1
4

�
(v2,2+ v2,1− v1,2− v1,1)

2+α(v2,2− v2,1− v1,2+ v1,1)
2�

(∂y v)23/2,3/2 ≈
1
4

�
(v2,2− v2,1+ v1,2− v1,1)

2+α(v2,2− v2,1− v1,2+ v1,1)
2�

(∂x v∂y v)3/2,3/2 ≈ 1
4

�
(v2,2− v1,1)

2− (v2,1− v1,2)
2�

(4.128)

for α ∈ [0,1]. An easy calculation shows that the trace (∂x v)23/2,3/2+ (∂y v)23/2,3/2 of the
so discretised structure tensor equals the discretised isotropic diffusivity (4.72) for
i = j = 1. The one-sided difference procedure used to obtain (4.127) could equally
be used in the isotropic case to derive (4.70) in a different way.

4.3.3 Multi-Channel Case

Continuing the principle stated in Subsection 4.2.8, in such a process the channel
evolutions are synchronised by sharing the diffusion tensor (which is simply the sum
of the diffusion tensors of the separate channels) while the divergence expression acts
on each channel separately.

It is worth noting that unlike for scalar-valued images for which (4.112) with ̺ = 0
and σ = 0 degenerates into an isotropic process, these parameters still admit a truly
anisotropic process for multi-channel images.

4.3.4 Variational Interpretation in the Multi-Channel Case

In the multi-channel case with ̺= 0, σ = 0, it is also possible to describe anisotropic
diffusion as gradient descent for the variational problem of minimising a certain en-
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ergy functional [214].3 In this subsection, we show that the discretisations (4.116),
(4.120) and their weighted averages for the divergence expression arise naturally from
gradient descents for energy functions in the mentioned special case and are put into a
one-to-one correspondence to the approximations (4.125), (4.127) and their weighted
averages for the gradient outer product. Note that in this situation also the structure
tensor and the outer product (summed over channels) coincide.

We consider energy functions given by

E (u) :=
1
2

∑
i , j

trΨ

�∑
k

[∇uk∇uT
k ]i+1/2, j+1/2

�
(4.129)

where the inner sum runs over the image channels uk . As in Subsection 4.2.8, we
will use uk;i , j to refer to the value of pixel (i , j ) in uk . Further, [∇uk∇uT

k
]i+1/2, j+1/2

is some discretisation of the gradient outer product ∇uk∇uT
k

within the four-pixel
cell {i , i + 1}× { j , j + 1}, and the outer sum runs over all such four-pixel cells. By Ψ
we denote an increasing function on IR+0 which is applied to its symmetric positive
semidefinite matrix argument as usual by acting on the eigenvalues and leaving the
eigenvector system intact.

According to the chain rule, the partial derivative of the energy E with respect to
some particular variable uk;i , j is given by

∂ E

∂ uk;i , j

=
1
2

∑
i ′, j ′

tr

 
Ψ ′
�∑

l

[∇ul∇uT
l ]i ′+1/2, j ′+1/2

�
∂ [∇uk∇uT

k
]i ′+1/2, j ′+1/2

∂ uk;i , j

!
,

(4.130)
the corresponding gradient descent by

u̇k;i , j =−
∂ E

∂ uk;i , j

for all i , j , k . (4.131)

Similar as in the isotropic case, Subsection 4.2.3, Ψ ′ appears in the gradient descent,
this time in the role of the function that ties the diffusion tensor D to the struc-
ture tensor J . For given (i , j ), the sum on the right-hand side has again four possi-
bly nonzero contributions belonging to the cells (4.66), compare Figure 4.3. When
specifying a discretisation [∇ul∇uT

l
]i ′+1/2, j ′+1/2 in (4.129), the same discretisation

reappears in the argument of Ψ ′ in (4.131), but it also determines the expression
for ∂ [∇uk∇uT

k
]i ′+1/2, j ′+1/2/∂ uk;i , j . We study the two discretisations from Subsec-

tion 4.3.2. In equations which do not contain explicit interactions between image
channels, we will abbreviate v := uk .

3For ̺ 6= 0 and σ 6= 0, no energy functional is known that warrants (4.112) as gradient descent.
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First, by discretising the outer product analog to (4.125), we find that

∂ [∇v∇vT](−−)
∂ vi , j

=
vi , j−vi−1, j−1

2

�
1 1
1 1

�
+

vi , j−1−vi−1, j

2

�
1 0
0 −1

�
,

∂ [∇v∇vT](+−)
∂ vi , j

=
vi , j−vi+1, j−1

2

�
1 1
1 1

�
+

vi , j−1−vi+1, j

2

�
1 0
0 −1

�
,

∂ [∇v∇vT](−+)
∂ vi , j

=
vi , j−vi−1, j+1

2

�
1 1
1 1

�
+

vi , j+1−vi−1, j

2

�
1 0
0 −1

�
,

∂ [∇v∇vT](++)

∂ vi , j

=
vi , j−vi+1, j+1

2

�
1 1
1 1

�
+

vi , j+1−vi+1, j

2

�
1 0
0 −1

�

(4.132)

where we have used again the cell abbreviations from (4.66). By plugging this into the
right-hand side of (4.131) and evaluate the trace expression, we obtain exactly (4.120),
except for the additional channel indices.

If we use instead (4.127) in discretising the structure tensor, (4.132) is replaced by

∂ [∇v∇vT](−−)
∂ vi , j

=
1
2

�
2(vi , j − vi−1, j ) vi , j − vi−1, j−1

vi , j − vi−1, j−1 2(vi , j − vi , j−1)

�
,

∂ [∇v∇vT](+−)
∂ vi , j

=
1
2

�
2(vi , j − vi+1, j ) −vi , j + vi+1, j−1

−vi , j + vi+1, j−1 2(vi , j − vi , j−1)

�
,

∂ [∇v∇vT](−+)
∂ vi , j

=
1
2

�
2(vi , j − vi−1, j ) −vi , j + vi−1, j+1

−vi , j + vi−1, j+1 2(vi , j − vi , j+1)

�
,

∂ [∇v∇vT](++)

∂ vi , j

=
1
2

�
2(vi , j − vi+1, j ) vi , j − vi+1, j+1

vi , j − vi+1, j+1 2(vi , j − vi , j+1)

�

(4.133)

which implies (4.116) as gradient descent.

To summarise, the derivation from the energy minimisation framework, though ex-
actly valid only in the multi-channel image case with ̺ = 0, σ = 0, clearly indicates
that the discretisations (4.120) and (4.125) correspond to each other, as do (4.116) and
(4.127). This correspondence obviously extends to the weighted averages given by
(4.122) and (4.128) with equal α.

4.3.5 Semi-Analytic Solution

Under the assumption that the diffusion tensors D are kept fixed during the im-
age evolution, both systems (4.117) and (4.121) have fairly simple analytic solutions
which can be exploited to establish numerical schemes. We want now to derive these
solutions.
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We use again the variable transform (4.96) to rewrite the weighted average (4.122) as

ẇ1,1 = 0 , ẇ2,1 =−4aw2,1− 4cw1,2 ,

ẇ1,2 =−4cw2,1− 4b w1,2 , ẇ2,2 =−4α(a+ b )w2,2 .
(4.134)

This system decomposes into independent evolutions for w1,1, which is constant, for
w2,2 which follows a one-dimensional linear dynamical system with the solution

w2,2(t ) = e−4α(a+b )t w2,2(0) (4.135)

(in particular, for α= 0 it is constant) and the two-dimensional system

ẇ=−4Dw . (4.136)

for w := (w2,1, w1,2)
T. Let the eigendecomposition of D be given by D = λ1e1e

T
1 +

λ2e2e
T
2 with eigenvalues λ1,2 =

1
2

�
a+ b ±

p
(a− b )2+ 4c2

�
and orthonormal eigen-

vectors e1, e2. Then, remembering that D is kept constant, the solution of (4.136)
is

w(t ) = e−4λ1t
�
e

T
1 w(0)

�
e1+ e−4λ2t

�
e

T
2 w(0)

�
e2 . (4.137)

Via the inverse transform (4.99) the analytic solution given by (4.135), (4.137) can
easily be expressed with respect to the original variables.
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LSAS Algorithm for Anisotropic Diffusion

• Compute the pre-smoothed image v := Kσ ∗ uk by convolution.

• For each four-pixel cell {i , i +1}×{ j , j +1}, compute the approx-

imation of the tensor product ∇v∇vT according to (4.128).

• Compute the structure tensor field J = K̺ ∗ (∇v∇vT) by convo-

lution.

• For each four-pixel cell, compute the diffusion tensor D = D(J ).

• For each four-pixel cell, compute one time step of anisotropic dif-

fusion via the analytical solution (4.96), (4.135), (4.137), (4.99).

• For each pixel (∗) with coordinates (i , j ), consider the four cells

∗
(−−)

∗
(+−)

∗
(−+)

∗
(++)

which lead to four approximations

uk+1
i , j ,−−, uk+1

i , j ,+−, uk+1
i , j ,−+, uk+1

i , j ,++ .

Average:

uk+1
i , j
=

1
4 (u

k+1
i , j ,−−+ uk+1

i , j ,+−+ uk+1
i , j ,−++ uk+1

i , j ,++) .

Figure 4.9: One time step of the locally semi-analytic scheme for anisotropic diffu-
sion.
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4.3.6 Locally Semi-Analytic Schemes for Anisotropic Nonlinear Diffu-
sion

In an analogous manner as done in Subsection 4.2.7 we can employ the explicit so-
lutions (4.135), (4.137) to construct numerical schemes for anisotropic diffusion. We
use the splitting of (4.116) or (4.120) into the contributions from four-pixel cells. For
these, the analytic solution derived in Subsection 4.3.5 is evaluated with evolution
time equalling the time step size τ.

For the anisotropic diffusion processes in question, the diffusion tensor D , whose
entries are needed to evaluate (4.135) and (4.137), depends on the structure tensor
J̺. In each time step, the evaluation of the dynamical systems has therefore to be
preceded by recomputing D and its eigendecomposition from the current data u .
This completes our LSAS, one step of which is summarised in Figure 4.9.

Stability. As for the LSAS for isotropic diffusion, Subsection 4.2.7, the use of our
analytical solutions ensures that the resulting schemes for our four-pixel cell are stable
in the Euclidean norm for any time step size (note that λ1,λ2 ≥ 0). The averaging of
four-pixel cells guarantees the transfer of the absolute stability to the entire grid.

Consistency. The consistency analysis sketched for the isotropic case before can be
transferred to the anisotropic situation, showing that the LSAS, too, is a conditionally
consistent approximation of order O(τ + h2 +

τ
h2 ) to the corresponding PDE. It is

therefore consistent if τ/h2→ 0 as τ, h → 0. For a fixed spatial grid size h , as usual
in image processing, it is an unconditionally consistent O(τ) approximation of the
space-discrete dynamical system.

Let us briefly discuss the error behaviour for large time step sizes. Assuming a fixed
spatial grid size and a time step size tending to infinity, a scheme based on (4.121) (i.e.,
α = 0) approaches a local averaging on a checkerboard decomposition of our grid. For
α 6= 0, the averaging involves all pixels of the grid, though for α < 1 the averaging is
faster within each checkerboard component than between them.

Boundary conditions. Like its isotropic counterpart before, our LSAS for aniso-
tropic diffusion enables the realisation of Neumann boundary conditions in a very
simple manner by mirroring the first and last rows and columns of a rectangular
N ×M image domain. The four-pixel dynamics is then equally applied in the proper
four-pixel cells lying completely within the image domain as well as in those four-pixel
cells overlapping the boundary.

While in the isotropic case this comes as no surprise, as other explicit schemes allow
the same procedure, it constitutes a real simplification in the anisotropic situation,
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Figure 4.10: Left to right: (a) Test image with impulsive noise, 128×128 pixels. (b) De-
noised by edge-enhancing diffusion, λ = 5, σ = 1.8, ̺ = 0, with standard explicit
scheme, τ = 0.166, N = 200 iterations. (c) Denoised by edge-enhancing diffusion,
same parameters as in (b), but with LSAS, α= 0, τ = 1, N = 200 iterations.

since explicit discretisations that discretise the diffusion tensor at integer (pixel) loca-
tions typically require a special treatment of boundary rows and columns to rule out
fluxes across the boundary.

Let us shortly prove this favourable behaviour of our anisotropic LSAS. We start by
one additional reasoning needed to treat the pre-smoothed gradients in the compu-
tation of the diffusion tensor. Realising that the mirroring of boundary rows and
columns is in fact part of a (2N , 2M )-periodic continuation u∗ of the N ×M image
u on the entire plane, it becomes evident that also the convolution u∗σ of u∗ with a
Gaussian of standard deviation σ shares the periodicity and symmetry properties of
u∗. In particular, the rows and columns of u∗σ adjacent to the image domain equal
mirrored copies of the boundary rows and columns. Therefore a simple extension
of uσ by mirroring the boundary rows and columns is compatible with the same
mirroring operation on u itself.

Consequentially, the structure tensor computed e.g. in a boundary cell {0,1}×{ j , j+

1} where 1 ≤ j , j + 1 ≤ M will automatically have its eigenvector system aligned to
the coordinate directions, with a zero eigenvalue assigned to the x direction. As the
diffusion tensor inherits the eigenvector orientations of the structure tensor, it is a
diagonal matrix. Inserting this diagonal matrix (i.e., with c = 0) into the discretised
divergence form (4.116) or (4.120), one easily sees that u̇1, j+ u̇1, j+1 = u̇0, j+ u̇0, j+1 = 0,
in both cases, such that no flux across the boundary takes place. In the case of a corner
cell like {0,1} × {0,1} the dynamics again becomes trivial since all four pixels have
equal values.

Experiments. In Figure 4.10 we use our scheme to perform edge-enhancing diffu-
sion [206], see 2.3.1.1. Remember that in this case there is no integration over the
outer products, so ̺ = 0. The diffusion tensor D is given by g (J ) = g (∇v∇vT)
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Figure 4.11: Left to right: (a) Rotationally invariant test image from Figure 4.6, 64×64
pixels. (b) Exact solution for coherence-enhancing diffusion, ǫ = 0.001, C = 1, σ =
0.5, ̺ = 4, at time t = 250. (c) Filtered with the nonnegativity scheme [206] with
τ = 1/6, and N = 1500 iterations. Average absolute error: 17.99. (d) Processed with
our LSAS algorithm (α= 0), same parameters. Average absolute error: 3.81.

where we use the function g (s2) = 1− exp(−3.31488λ8/s8) with a given threshold
parameter λ> 0.

The noisy image, Figure 4.10(a), is denoised with a standard explicit scheme with
central spatial differences, and with the locally semi-analytic scheme. It is observed
that the denoising result with our new scheme is slightly sharper. Moreover, a look at
the parameters shows that the effective evolution time used by the new scheme is six
times larger than with the explicit scheme which demonstrates how much the latter
is indeed dominated by numerical blurring artifacts.

In our next experiment, Figure 4.11, we consider coherence-enhancing diffusion (CED)
[207], see 2.3.1.2, to perform smoothing along flow-like structures. For our rotation-
ally invariant test image only radial linear diffusion with diffusivity ǫ takes place.
Hence, the exact solution at time t is given by a convolution with a Gaussian of
standard deviation

p
2ǫt . By comparing the solutions of the so-called nonnegativ-

ity discretisation from [206]with our LSAS algorithm and the exact solution, we see
that the LSAS scheme does not suffer from visible blurring artifacts. It preserves rota-
tion invariance very well and creates significantly lower errors than the nonnegativity
scheme.

These quantitative findings are also confirmed in the fingerprint example in Fig-
ure 4.12. We observe that the LSAS scheme gives much sharper results, and that
it yields still realistic results for time step sizes far beyond the stability limit 1/6 of
the nonnegativity scheme.

Finally, we investigate the effect of different discretisation parameters α in our LSAS
for anisotropic diffusion. The comparison of the CED filter results in Figure 4.13(a)
and (b) reveals that, unlike in the isotropic case, the choice α = 0 is clearly supe-
rior to α = 1 in terms of both sharpness and rotational invariance. However, from
Figure 4.13(c) and (d) it can be seen that introducing a small amount of the second
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Figure 4.12: Left to right: (a) Fingerprint image, 100× 100 pixels. (b) Filtered with
CED, ǫ = 0.001, C = 1, σ = 0.5, ̺ = 4, using the nonnegativity scheme [206] with
τ = 1/6 and N = 60 iterations. (c) Processed with our LSAS scheme (α= 0) for CED,
same parameters. (d) LSAS scheme with τ = 1 and N = 10 iterations.

Figure 4.13: Left to right: (a) Test image from Figure 4.6(a) filtered by coherence-
enhancing diffusion, ǫ = 0.001, C = 1, σ = 0.5, ̺ = 4, with LSAS, τ = 0.166
and N = 300. The discretisation weight in the LSAS is α = 0. (b) Same but with
discretisation weight α= 1. (c) Detail (28× 28 pixels) from Figure 4.10(c), where the
grey-values have been rescaled to raise contrast. (d) Corresponding detail from LSAS
filtering result for CED with same parameters as in Figure 4.10(c) except α= 0.01.

discretisation (1 . . . 2 percent) allows to suppress the checkerboard artifacts that are
inherent to the α= 0 method.

4.3.7 Haar Wavelet Interpretation

In analogy to Subsection 4.2.9 we want to introduce an anisotropic shrinkage proce-
dure with respect to a diffusion tensor D . To do this, we only need to specify a suit-
able shrinkage function Sθ(C ). In accordance with (4.135) and (4.137), our shrink-
age function couples the reduction of the antidiagonal coefficients c1,2 and c2,1 while
shrinking c2,2 independently:

Sθ

��
c2,1
c1,2

��
:=Q

�
e−4λ1θ 0

0 e−4λ2θ

�
QT

�
c2,1
c1,2

�
,

Sθ(c2,2) := e−4α(a+b )θc2,2 ,

(4.138)
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where Q := (e1,e2) denotes the eigenvector matrix of D , and the threshold parameter
θwas identified with the diffusion time t . Let us abbreviate this anisotropic shrinkage
procedure by Sθ(C ).

With this shrinkage function, one cycle of the above anisotropic Haar wavelet shrink-
age on a four-pixel patch F coincides with the solution of (4.122) with initial condition
U (0) = F , where the threshold parameter plays the role of the diffusion time. By the
same procedure as in the isotropic case, this extends into an equivalence of the LSAS
algorithm and a shift-invariant single scale Haar wavelet shrinkage process.

Apart from shift invariance, the LSAS algorithm can also be regarded as a simple ap-
proach to create rotationally invariant anisotropic Haar wavelet shrinkage: Since our
novel anisotropic shrinkage rules are a numerical scheme for a rotationally invari-
ant continuous diffusion filter, rotation invariance is approximated at no additional
expense.

4.3.8 Variational Interpretation with Fixed Diffusivity

The semi-analytic solution considered in 4.3.5 motivates another way to look at the
dynamical systems (4.117) and (4.121). Assume the diffusion tensor field D is pre-
scribed at the locations (i + 1/2, j + 1/2), and consider the energy function

E (u) :=
1
2

∑
i , j

tr

�
Di+1/2, j+1/2 ·

∑
k

[∇uk∇uT
k ]i+1/2, j+1/2

�
. (4.139)

Of course, this is exactly (4.129) with a linear penalty function Ψ(A) = D ·A. Com-
putations analog to those in 4.3.5 confirm that (4.117) and (4.121) describe gradient
descent for E provided that the discretisations (4.125) and (4.127) are used for the
structure tensor, respectively. Within our terminology, the so described diffusion
process should correctly be called anisotropic (inhomogeneous) linear diffusion.

The same interpretation can be used to cover as well the case of a diffusion tensor
field that depends on the structure tensor. This means that the anisotropic nonlinear
diffusion process is approximated in each instant by an anisotropic linear diffusion
process. However, this means that the process is considered as a gradient descent for
a different energy function in each instant because the diffusion tensor field changes
with the data. Thus, it cannot be used to derive a theoretical result about unique-
ness of minimisers. Nevertheless, this model is also capable of describing anisotropic
diffusion with pre-smoothing in the diffusion tensor argument, i.e., ̺ 6= 0 and/or
σ 6= 0, and thereby also truly anisotropic diffusion of single-channel images.

Moreover, this connection between anisotropic nonlinear diffusion and anisotropic
inhomogeneous linear diffusion can be exploited to simplify the derivation of numer-
ical schemes. We will use this approach in the next section.
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A caveat that needs to be mentioned at this point refers to boundary conditions.
Our analysis in 4.3.6 made substantial use of the way how the diffusion tensor in
anisotropic diffusion depends on the image data. Thus, the simple compatibility be-
tween a locally semi-analytic scheme and Neumann boundary conditions transfers to
the corresponding discretisations of anisotropic inhomogeneous linear diffusion only
if the prescribed diffusion tensor fields obey the same restriction as the dependent
diffusion tensor fields in 4.3.6: Diffusion tensors D in the centre points of boundary
cells must have their eigenvector systems aligned with the boundary direction.



(c) Martin Welk 2007–2016. All rights reserved.

4.4. Higher-Dimensional Extensions 151

4.4 Higher-Dimensional Extensions

Our ideas described in the previous sections can be extended straightforward to the
case of higher-dimensional image domains. We demonstrate just two important ex-
amples in three dimensions: first, the discretisation of isotropic nonlinear diffusion
with α = 1/2 which includes the important case of the LAS for total variation flow;
second, the discretisation of anisotropic diffusion leading to a LSAS.

4.4.1 Locally Analytic Scheme for Total Variation Diffusion in 3D

The natural extension of our ideas to three-dimensional images involves dynamical
systems for eight-voxel (2× 2× 2) bricks. Neighbours of a voxel within such a brick
now come in three types: they can be adjacent via an edge, a face diagonal or a volume
diagonal, adding degrees of freedom to the discretisation procedure. For simplicity,
we restrict ourselves to generalising the important case α = 1/2 which underlies our
LAS from Subsection 4.2.5. In this case, we have G1/2(v) which is just the quarter
sum of squared differences of all pixel pairs in the four-pixel cell, and the dynamical
system (4.79). It is easy to check that in the case of an eight-voxel cell (ui , j ,l )i , j ,l=1,2
the expression

G(v) :=
1
16

∑
(i , j ,l )6=(i ′, j ′,l ′)

(vi , j ,l − vi ′, j ′,l ′ )
2 (4.140)

is a consistent approximation for
�
|∇v |2

�
3/2,3/2,3/2, while

u̇i , j ,l = 4g · (µ− ui , j ,l ) , i , j , l = 1,2 , (4.141)

with µ denoting the arithmetic mean of the eight initial values, consistently approx-
imates ut = div(g · ∇u). Derivation from these approximations of a LSAS or, with
the diffusivity (2.26), even a LAS for 3-D isotropic nonlinear diffusion based on eight-
voxel bricks is straightforward.

4.4.2 Anisotropic Diffusion in 3D

Even in the anisotropic case, our framework can easily be extended to the higher-
dimensional situation. In the following we will demonstrate shortly how a discreti-
sation of the structure tensor and the divergence form of the diffusion process can be
devised in the three-dimensional situation. Thereby, we obtain a numerical scheme
for a generic 3D anisotropic diffusion process.

For simplicity, we restrict ourselves from the beginning to the consideration of scalar-
valued images on the eight-voxel cell {1,2}3. We sketch two discretisations of the
outer product matrix ∇v∇vT at the location (3/2, 3/2, 3/2) that resemble (4.125) and
(4.127). The extension to a numerical scheme on the full regular 3D grid is clear.
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First approximation of the outer product. In analogy to (4.124), we approximate
∂x v , ∂y v and ∂z v at the midpoints between neighbouring voxel positions and take
arithmetic means of these expressions to obtain approximations for the derivatives at
(3/2, 3/2, 3/2):

(∂x v)3/2,3/2,3/2 ≈ 1
4 (v2,2,2+ v2,2,1+ v2,1,2+ v2,1,1− v1,2,2− v1,2,1− v1,1,2− v1,1,1)

(∂y v)3/2,3/2,3/2 ≈ 1
4 (v2,2,2+ v2,2,1− v2,1,2− v2,1,1+ v1,2,2+ v1,2,1− v1,1,2− v1,1,1)

(∂z v)3/2,3/2,3/2 ≈ 1
4 (v2,2,2− v2,2,1+ v2,1,2− v2,1,1+ v1,2,2− v1,2,1+ v1,1,2− v1,1,1) .

(4.142)
Using these expressions, one is led to the following approximation of the entries of
the outer product matrix:

(∂x v)23/2,3/2,3/2 ≈
1
16
(v2,2,2+ v2,2,1+ v2,1,2+ v2,1,1− v1,2,2− v1,2,1− v1,1,2− v1,1,1)

2

(∂y v)23/2,3/2,3/2 ≈
1
16
(v2,2,2+ v2,2,1− v2,1,2− v2,1,1+ v1,2,2+ v1,2,1− v1,1,2− v1,1,1)

2

(∂z v)23/2,3/2,3/2 ≈
1
16
(v2,2,2− v2,2,1+ v2,1,2− v2,1,1+ v1,2,2− v1,2,1+ v1,1,2− v1,1,1)

2

(∂x v∂y v)3/2,3/2,3/2 ≈
1
16

�
(v2,2,2+ v2,2,1− v1,1,2− v1,1,1)

2

− (v2,1,2+ v2,1,1− v1,2,2− v1,2,1)
2
�

(∂x v∂z v)3/2,3/2,3/2 ≈
1
16

�
(v2,2,2+ v2,1,2− v1,2,1− v1,1,1)

2

− (v2,2,1+ v2,1,1− v1,2,2− v1,1,2)
2
�

(∂y v∂z v)3/2,3/2,3/2 ≈
1
16

�
(v2,2,2− v2,1,1+ v1,2,2− v1,1,1)

2

− (v2,1,2− v2,2,1+ v1,1,2− v1,2,1)
2
�

.

(4.143)
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Second approximation of the outer product. Once more, we obtain a second
approximation of∇v∇vT by starting from separate discretisations in all eight voxels
(1,1,1), . . . , (2,2,2) and averaging. In voxel (1,1,1), the discretisation is based on the
one-sided difference approximations

(∂x v)1,1,1 ≈ v2,1,1− v1,1,1 ,

(∂y v)1,1,1 ≈ v1,2,1− v1,1,1 ,

(∂z v)1,1,1 ≈ v1,1,2− v1,1,1 .

(4.144)

The partial derivatives are discretised in an analog manner in the remaining seven vox-
els, using left- or right-sided differences as appropriate to stay within {1,2}3. Com-
puting outer products in all eight voxels and averaging yields

(∂x v)23/2,3/2,3/2 ≈
1
4

�
(v2,1,1− v1,1,1)

2+ (v2,1,2− v1,1,2)
2

+ (v2,2,1− v1,2,1)
2+ (v2,2,2− v1,2,2)

2
�

,

(∂y v)23/2,3/2,3/2 ≈
1
4

�
(v1,2,1− v1,1,1)

2+ (v1,2,2− v1,1,2)
2

+ (v2,2,1− v2,1,1)
2+ (v2,2,2− v2,1,2)

2
�

,

(∂z v)23/2,3/2,3/2 ≈
1
4

�
(v1,1,2− v1,1,1)

2+ (v1,2,2− v1,2,1)
2

+ (v2,1,2− v2,1,1)
2+ (v2,2,2− v2,2,1)

2
�

,

(∂x v∂y v)3/2,3/2,3/2 ≈
1
8

�
(v2,2,1− v1,1,1)

2− (v2,1,1− v1,2,1)
2

+ (v2,2,2− v1,1,2)
2− (v2,1,2− v1,2,2)

2
�

,

(∂x v∂z v)3/2,3/2,3/2 ≈
1
8

�
(v2,1,2− v1,1,1)

2− (v2,1,1− v1,1,2)
2

+ (v2,2,2− v1,2,1)
2− (v2,2,1− v1,2,2)

2
�

,

(∂y v∂z v)3/2,3/2,3/2 ≈
1
8

�
(v1,2,2− v1,1,1)

2− (v1,2,1− v1,1,2)
2

+ (v2,2,2− v2,1,1)
2− (v2,2,1− v2,1,2)

2
�

.

(4.145)

Discretisation of the divergence form. Each of the approximations (4.143),
(4.145) and convex combinations of them can be used in calculating the structure
tensor field of a given image. Moreover, each of them (or convex combinations) can
be used to derive a compatible approximation of the divergence form of anisotropic
diffusion.

To this end, we use the variational interpretation of an anisotropic diffusion process
with prescribed diffusivity as discussed in 4.3.8 for the 2D case. Adapted to the 3D,
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single-channel case and reduced to one eight-voxel cell, the energy reads

E (u) =
1
2

tr
�
D · [∇u∇uT]3/2,3/2,3/2

�
(4.146)

where

D = D3/2,3/2,3/2 =




a d e

d b f

e f c


 (4.147)

is the single diffusion tensor value prescribed in the cell centre.

The gradient descent that approximates anisotropic diffusion within the eight-voxel
cell in each time step of our numerical scheme is then given by

u̇i , j ,k =−8
∂

∂ ui , j ,k
E (u) =−4 tr

�
D · ∂

∂ ui , j ,k
[∇u∇uT]3/2,3/2,3/2

�
. (4.148)

The scaling factor 8 (that does not change the property of being a gradient descent)
reflects the periodic boundary condition due to which each voxel is treated as if being
under the influence of eight identical (up to reflections) cells.

First approximation of the divergence form. Inserting (4.143) into (4.148) leads
to the dynamical system

u̇= F (D)u (4.149)

with u := (u1,1,1, u1,1,2, u1,2,1, u1,2,2, u2,1,1, u2,1,2, u2,2,1, u2,2,2)
T and

F (D) = 1/2·


−a− b − c
−2d − 2e − 2 f

−a− b + c
−2d

−a+ b − c
−2e

−a+ b + c
+2 f

a− b − c
−2 f

a− b + c
+2e

a+ b − c
+2d

a+ b + c
+2d + 2e + 2 f

−a− b + c
−2d

−a− b − c
−2d + 2e + 2 f

−a+ b + c
−2 f

−a+ b − c
+2e

a− b + c
−2e

a− b − c
+2 f

a+ b + c
+2d − 2e − 2 f

a+ b − c
+2d

−a+ b − c
−2e

−a+ b + c
−2 f

−a− b − c
+2d − 2e + 2 f

−a− b + c
+2d

a+ b − c
−2d

a+ b + c
−2d + 2e − 2 f

a− b − c
+2 f

a− b + c
+2e

−a+ b + c
+2 f

−a+ b − c
+2e

−a− b + c
+2d

−a− b − c
+2d + 2e − 2 f

a+ b + c
−2d − 2e + 2 f

a+ b − c
−2d

a− b + c
−2e

a− b − c
−2 f

a− b − c
−2 f

a− b + c
−2e

a+ b − c
−2d

a+ b + c
−2d − 2e + 2 f

−a− b − c
+2d + 2e − 2 f

−a− b + c
+2d

−a+ b − c
+2e

−a+ b + c
+2 f

a− b + c
+2e

a− b − c
+2 f

a+ b + c
−2d + 2e − 2 f

a+ b − c
−2d

−a− b + c
+2d

−a− b − c
+2d − 2e + 2 f

−a+ b + c
−2 f

−a+ b − c
−2e

a+ b − c
+2d

a+ b + c
+2d − 2e − 2 f

a− b − c
+2 f

a− b + c
−2e

−a+ b − c
+2e

−a+ b + c
−2 f

−a− b − c
−2d + 2e + 2 f

−a− b + c
−2d

a+ b + c
+2d + 2e + 2 f

a+ b − c
+2d

a− b + c
+2e

a− b − c
−2 f

−a+ b + c
+2 f

−a+ b − c
−2e

−a− b + c
−2d

−a− b − c
−2d − 2e − 2 f




(4.150)
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Second approximation of the divergence form. With the same notations, insert-
ing (4.145) into (4.148) yields u̇= F (D)u with

F (D) = 1/2·


−4(a+ b + c
+d + e + f )

4c 4b 4 f 4a 4e 4d 0

4c −4(a+ b + c
+d − e − f )

−4 f 4b −4e 4a 0 4d

4b −4 f −4(a+ b + c
−d + e − f )

4c −4d 0 4a 4e

4 f 4b 4c −4(a+ b + c
−d − e + f )

0 −4d −4e 4a

4a −4e −4d 0 −4(a+ b + c
−d − e + f )

4c 4b 4 f

4e 4a 0 −4d 4c −4(a+ b + c
−d + e − f )

−4 f 4b

4d 0 4a −4e 4b −4 f −4(a+ b + c
+d − e − f )

4c

0 4d 4e 4a 4 f 4b 4c −4(a+ b + c
+d + e + f )




(4.151)

Remark. As in the 2D case, it is of course possible to use convex combinations of both
approximations. It can be seen from the structure of (4.150) that using the pure first
approximation again leads to a checkerboard-like decoupling which involves four in-
terlaced components, each of which consists of voxels linked by spatial diagonals. In
contrast, the second discretisation allows no direct transport along spatial diagonals
at all.

Semi-analytic solutions. Much as in the 2D case a transform of the eight grey-
values of the 2× 2× 2-cell into their wavelet coefficients simplifies the dynamical
systems associated with the two discretisations. Setting




w0
w1
w2
w3
w4

w5
w6
w7




:=
1p
8




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1




u (4.152)

the dynamical system (4.149), (4.150) transforms into

ẇ0 = 0


ẇ1

ẇ2
ẇ3


=−4D




w1

w2
w3




ẇ4 = 0

ẇ5 = 0

ẇ6 = 0

ẇ7 = 0 ,

(4.153)
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while (4.149), (4.151) transforms into the decoupled systems

ẇ0 = 0


ẇ1
ẇ2
ẇ3


=−4D




w1
w2
w3




ẇ7 =−4 tr(D)w7


ẇ4
ẇ5
ẇ6


=−4D̃




w4
w5
w6




(4.154)

with

D̃ :=




a+ b f e

f a+ c d

e d b + c


 . (4.155)

For a convex combination consisting of (1−α) times the first and α times the second
system one has therefore the analytic solution

w0(t ) = w0(0)


w1(t )

w2(t )

w3(t )


= e−4t D




w1(0)
w2(0)
w3(0)




w7(t ) = e−4αt tr(D)w7(0)


w4(t )

w5(t )

w6(t )


= e−4αt D̃




w4(0)
w5(0)
w6(0)




(4.156)

which can be computed using the eigendecompositions of D and D̃ and gives rise to
semi-analytic schemes for 3D anisotropic diffusion in analogy to those in 4.3.6.

Remark. The variety of possible discretisations of∇v∇vT within an eight-voxel cell
of a 3D grid is much greater than in a four-pixel cell in 2D. The two possibilities
shown here have been selected for their analogy to the 2D case. An evaluation of
the suitability of these, and possibly other, numerical schemes for practical 3D image
processing by meaningful experiments is beyond the scope of the present work.
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4.5 Splitting Schemes

To end this chapter, we explain how the locally analytic and semi-analytic schemes
fit into the framework of additive splitting schemes. We start by a short description
of splitting schemes for the numerical solution of PDEs.

(This section has been revised in July 2013.)

4.5.1 Error Analysis

Consider an autonomous dynamical system

u̇ = B(u)u (4.157)

where u is a spatially discretised image evolving in time t , the dot denotes the deriva-
tive w.r.t. t , and B(u) is a matrix which depends on u . Systems of this type arise
naturally as spatial discretisations of PDE-based image filters.

We assume for now that B is bounded, 4

‖B(u)‖ ≤M , (4.158)

and satisfies a Lipschitz condition w.r.t. u ,

‖B(u2)−B(u1)‖ ≤ L‖u2− u1‖ . (4.159)

However, the principles laid out here can often be transferred to cases with discon-
tinuous right-hand sides, provided that the discontinuities are accounted for by an
adequate concept of solution, as mentioned in Subsection 4.1.1.

For simplicity of notation we assume that u and all its approximations in the follow-
ing are bounded by U , i.e. ‖u‖ ≤ U .

If B is either constant, or u is one-dimensional, the exact evolution over the time
interval [t1, t2] is given by

u(t2) = exp




t2∫

t1

B(u(t ))dt


 u(t0) . (4.160)

Unfortunately, in all other cases – which means in particular, in all cases which are of
real interest for us – the exact solution of (4.157) can not be stated in such an explicit
form.

Nevertheless, (4.160) is a useful approximation for the exact solution of (4.157) for
small time intervals. We will therefore refer to (4.160) as exp-int approximation in the
following. The following proposition gives an error estimate for this approximation.

4Here and in the following, we use always the spectral norm ‖ · ‖ ≡ ‖ · ‖2 for matrices.
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Proposition 4.4 Let u denote the solution of u̇ = B(u(t ))u on the interval [t1, t2] of

length τ, and ǔ its continuous exp-int approximation according to

ǔ( t̃ ) = exp




t̃∫

t1

B(ǔ(t ))dt


 u0 (4.161)

for t̃ ∈ [t1, t2]with the initial condition ǔ(t1) = u(t1) = u0. Then the error of the exp-int

approximation is given by

e0 = ‖ǔ(t2)− u(t2)‖ =O(τ3) . (4.162)

The proof of this proposition will be provided in Subsection 4.5.4.

However, (4.160) is still an implicit description due to the occurrence of u(t ) in the
integrand on the right hand side, and an explicit computation of this solution is gen-
erally impossible. Instead, one resorts to numerical time-stepping schemes that rely
on different approximations of (4.160) for a short time interval of length t2− t1 = τ.

One possible simplification results if the matrix B(u) admits a decomposition

B(u) =
1
R

R∑
r=1

Br (u) (4.163)

into an average of operators Br whose actions, expressed by the dynamical systems

v̇ = Br (v)v , r = 1, . . . , R , (4.164)

and their solutions are simpler to control than (4.160) itself. Numerical methods that
capitalise on such decompositions are splitting schemes in a fairly general sense.

We mention here two important splittings of B . The additive operator splitting (AOS)

scheme of [215], see also [134], uses a directional splitting where R equals the num-
ber of dimensions of the image domain (2 in a usual planar image), and the Br corre-
spond to 1-D diffusion processes in the basis directions. The schemes of this chapter,
instead, rely on a decomposition of B into R = 4 (in the 2D case) matrices, each of
which combines the four-pixel dynamics of the disjoint four-pixel cells of one of the
four possible tilings of the grid with such cells. For instance, one of these matrices
combines the dynamical systems of all cells {2i , 2i + 1}× {2 j , 2 j + 1}. Each Br can
therefore be written (in a suitable ordering of rows and columns) as a block-diagonal
matrix consisting of 4× 4 blocks.

Using (4.164) one can rewrite (4.160) as

u(t2) = exp

� t2∫

t1

1
R

R∑
r=1

Br (u(t )) dt

�
u(t1) = exp

�
1
R

R∑
r=1

t2∫

t1

Br (u(t ))dt

�
u(t1)

(4.165)
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which can be approximated using the Baker–Campbell–Hausdorff formula by

u(t2) =
1
R

R∑
r=1

exp

� t2∫

t1

Br (u(t ))dt

�
u(t1)+ e1 (4.166)

with an error term e1 = O
�
(t2 − t1)

2
�
.5 The use of this additive decomposition of

exp
�∫

B(u)dt
�

characterises additive splitting methods.

Still, each summand on the right hand side contains the evolving image u(t ) and
thereby depends on the full evolution (4.160). A further approximation step replaces
Br (u(t )) by Br (u(r )(t )) where u(r )(t ) denotes the modified image evolving by the
dynamical system

u̇(r ) = Br (u(r )) u(r ) , t ∈ [t1, t2], (4.167)

with the initial condition u(r )(t1) := u(t1). By Gronwall’s Lemma, one proves that
‖u(r )(t )− u(t )‖ =O(t − t1) for t ∈ [t1, t2] and therefore

e2 :=







1
R

R∑
r=1

exp

� t2∫

t1

Br (u(t ))dt

�
u(t1)−

1
R

R∑
r=1

exp

� t2∫

t1

Br (u(r )(t ))dt

�
u(t1)








≤ 1
R

R∑
r=1






exp

� t2∫

t1

Br (u(t ))dt

�
− exp

� t2∫

t1

Br (u(r )(t ))dt

�




 · ‖u(t1)‖

=
1
R

R∑
r=1








t2∫

t1

�
Br (u(t ))−Br (u(r )(t ))

�
dt +O

�
(t2− t1)

2�





 · ‖u(t1)‖

≤ 1
R
‖u(t1)‖ ·

R∑
r=1

t2∫

t1

‖Br ‖ ·



u(t )− u(r )(t )




 dt +O
�
(t2− t1)

2�

≤ 1
R
‖u(t1)‖ ·

R∑
r=1

(t2− t1)‖Br ‖ ·O(t2− t1)+O
�
(t2− t1)

2�

=O((t2− t1)
2) . (4.168)

Since both e1 and e2 are error contributions related to the splitting itself, they can be
denoted as splitting errors. It should be noted that the exp-int approximation error e0
is of third order while e1, e2 and all other error contributions for numerical schemes
discussed in the following are of second order, thus dominating e0. Acknowledging

5We remark that the contribution of this approximation to the error of a numerical scheme using
the approximation (4.166) and time step size τ = t2 − t1 is given by e1/τ = O(τ), since one has to
consider the error of approximating ∂t u via u(t2)−u(t1)

t2−t1
. The same holds for all other error contributions

discussed subsequently.
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its presence in all of the subsequent approximations, we can therefore drop e0 from
the further discussions.

For a time-stepping scheme, one uses approximations of one time step of size τ
(= t2− t1) of (4.167), and averages them in each time step into a new approximation
of u(t2) which then takes the role of u(t1) in the next time step. Additive splitting
methods use different ways to approximate the numerical solutions of the systems
(4.167).

Semi-implicit schemes. If in (4.167) the matrix Br (u(r ))(t )) is approximated by

B̃r := Br (u(t1)), a linear dynamical system is obtained. An implicit Euler discreti-
sation approximates exp

�
−(t2− t1)B̃r dt

�
in the solution

exp
�
−(t2− t1)B̃r

�
u(r )(t2) = u(t1) (4.169)

by I − (t2− t1)B̃r +O
�
(t2− t1)

2
�
, thus leading to a system of linear equations,

�
I − (t2− t1)B̃r

�
ũ(r )(t2) = u(t1) , (4.170)

whose solution ũ(r )(t2) approximates u(r )(t2). Note that of the two splitting error
contributions discussed above, only e1 is encountered here, since e2 is replaced by the
(generally larger) error e3 that results from keeping B(r ) constant, and the linearisation
error e4.

The semi-implicit approach underlies the (directional) additive operator splitting (AOS)
scheme [134, 215]where the summands Br correspond to discretised one-dimensional
diffusion processes, as mentioned above. The resulting systems of equations are tridi-
agonal and admit a very efficient exact solution.

4.5.2 LAS and LSAS as Splitting Schemes

Semi-analytic schemes. Using the same constant approximation B̃r for Br (u(r )(t ))

one obtains
u(r )(t2) = exp

�
(t2− t1)B̃r

�
u(t1) . (4.171)

If it is possible to compute the analytic solution for the right hand side of this system,
a semi-analytic scheme results. Our LSAS algorithms in Subsections 4.2.7 and 4.3.6 are
of this kind. Here we have R= 4 and the matrices Br correspond to the four possible
tilings of the image plane with disjoint four-pixel cells, thereby making these schemes
locally semi-analytic.

Again, only e1 occurs as splitting error, while e2 is replaced by the same error e3
mentioned for the semi-analytic scheme. No linearisation error e4 is incurred.
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Analytic schemes. If an analytic solution can be given even for the system (4.167),
without additional approximation, we have an analytic scheme. Naturally, this is the
most special case, and consequentially our LAS method in Subsection 4.2.5 had to be
designed for a specific class of diffusivity functions.

Here, the splitting error comprises e0, e1 and e2, while no errors e3 and e4 occur.

4.5.3 Locally Semi-Implicit Scheme for Isotropic Nonlinear Diffusion

Another way to exploit our local splitting would be to combine it with the procedure
described above which leads to semi-implicit schemes. For example, in the case of
isotropic nonlinear diffusion this would mean to linearise (4.67) or, simpler, (4.97) in
time as

1
τ
(wk+1

1,1 −wk
1,1) = 0 ,

1
τ
(wk+1

2,1 −wk
2,1) =−4g k wk+1

2,1 ,

1
τ
(wk+1

1,2 −wk
1,2) =−4g k wk+1

1,2 ,
1
τ
(wk+1

2,2 −wk
2,2) =−8αg k wk+1

2,2 ,
(4.172)

where k and k + 1 refer to the old and new time step, resp., and τ is the time step
size. Since the linear equations in the transformed variables wi , j decouple, one reads
the solution direct from the equations:

wk+1
1,1 = wk

1,1 , wk+1
2,1 =

wk
2,1

1+ 4τ g
,

wk+1
1,2 =

wk
1,2

1+ 4τ g
, wk+1

2,2 =
wk

2,2

1+ 8ατ g
.

(4.173)

By using simply (4.173) in place of (4.98), our LSAS from Subsection 4.2.7 would be
converted into a locally semi-implicit scheme for isotropic nonlinear diffusion.

4.5.4 Proof of the Error Bound for the Exp-Int Approximation

It remains to prove the error bound of Proposition 4.4. To this end, we will compare
time-discrete versions of both (4.157) and (4.160) and prove their convergence to the
time-continuous case.

For a more convenient presentation of these estimates, we introduce a change of no-
tation at this point. The (time) interval of length τ that was denoted by [t1, t2] in
Sections 4.5.1–4.5.3, including Proposition 4.4 will from now on be referred to as
[t0, t ∗], in order to reserve t1, t2, . . . for the splitting points of subdivisions of this
interval.
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Convergence of time-discrete evolution to the time-continuous evolution. In
a first step we prove that the error of an explicit time-discrete approximation of the
exact solution of (4.157) on a given interval goes to zero with refined time steps.

Consider a subdivision of the time interval [t0, t ∗] of length τ by equidistant points
t1, . . . , tN−1 according to t0 < t1 < . . . < tN−1 < tN = t ∗ with tk+1 − tk =

τ
N . Let

N ≥ 2.

Let u be the exact solution of (4.157) with initial condition u(t0) = u0. By ũ we
shall denote an approximate solution obtained by holding B constant within each
subinterval [tk , tk+1], i.e. the solution of

˙̃u = B̃(t )ũ (4.174)

with ũ(t0) = u0 and B̃(t ) = B̃k = B(ũ(tk)) for tk ≤ t < tk+1. It is known that

ũk = exp
� τ

N
B̃k−1

�
· exp

� τ
N

B̃k−2

�
· . . . · exp

� τ
N

B̃0

�
u0 . (4.175)

Lemma 4.5 Assume that τ ≤ N
4L . Then the approximate solution ũ on [t0, tN ] satisfies

‖ũ(t )− u(t )‖ ≤ LM U
τ2

N
+O

�
τ3

N

�
(4.176)

for all t ∈ [t0, tN ].

Proof. By mathematical induction we prove that for t ∈ [tk , tk+1] the inequality

‖ũ(t )− u(t )‖ ≤ kLM U 2 τ
2

N 2
+O

�
k2τ3

N 3

�
(4.177)

holds.

For k = 0 we have ũ(t0) = u(t0) = u0, thus (4.177) is fulfilled. For k ≥ 0 let (4.177)
hold up to k. Then we have for t ∈ [tk , tk+1] that

‖ũ(t )− u(t )‖ ≤ 

ũ(t )− exp
�
(t − tk)B(ũ(tk))

�
u(tk)




+


exp

�
(t − tk)B(ũ(tk))

�
u(tk)− exp

�
(t − tk)B(u(tk))

�
u(tk)




+


exp

�
(t − tk)B(u(tk))

�
u(tk)− u(t )




=



exp
�
(t − tk)B(ũ(tk))

�
(ũ(tk)− u(tk))




+


�exp

�
(t − tk) (B(ũ(tk))−B(u(tk)))

�
− 1

�

·exp
�
(t − tk)B(u(tk ))

�
u(tk)




+


exp

�
(t − tk)B(u(tk))

�
u(tk)− u(t )



 (4.178)
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and by using the induction hypothesis in the first summand, induction hypothesis
and Lipschitz condition in the second summand, and Gronwall’s inequality in the
third summand, we obtain

‖ũ(t )− u(t )‖ ≤ e
Mτ
N

�
(k − 1)LM U 2 τ

2

N 2
+O

�
k2τ3

N 3

��

+ e
τ
N ·L·(k−1)LM U2 τ2

N 2+O
�

k2τ4

N 4

�
e

Mτ
N U

+
�
e
τ
N ·
τ
N LM U − 1

�
e

Mτ
N U

=
�
1+O

� τ
N

��
U
��
(k − 1)LM U

N 2
τ2+O

�
k2τ3

N 3

��

+

�
(k − 1)L2M U 2

N 3
τ3+O

�
k2τ4

N 4

��

+

�
LM U 2

N 2
τ2+O

�
τ4

N 4

���

=
kLM U 2

N 2
τ2+O

�
k2τ3

N 3

�
, (4.179)

where the higher order terms have been combined using

O
�

k2τ3

N 3

�
+O

�
kτ3

N 3

�
+O

�
k2τ4

N 4

�
+O

�
τ4

N 4

�
=O

�
k2τ3

N 3

�
. (4.180)

This ends the proof of the lemma. �

The important consequence of Lemma 4.5 is that for a given interval [t0, t ∗] of length
τ the error of the discrete time-stepping solution ũ compared to the exact solution u

vanishes with refinement of the subdivision, N →∞.

Error estimate for the discrete exp-int approximation. Our next step is to prove
an error estimate for the discretisation of (4.160) with respect to the discretisation
(4.174) of the original equation (4.157). The discrete time-stepping approximation of
(4.160) with the same interval subdivision as before reads

û(tN ) = exp

 
τ

N

N−1∑
j=0

B(û(t j ))

!
u(t0) . (4.181)
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We introduce the following abbreviations:

B̂k := B(û(tk)) , (4.182)

B̃k := B(ũ(tk)) , (4.183)

Ek :=








exp

 
τ

N

k−1∑
j=0

B̂ j

!
−

k−1∏
j=0

exp
� τ

N
B̃ j

�






, (4.184)

Zk := exp

 
τ

N

k−1∑
j=0

B̂ j

!
−

k−1∏
j=0

exp
� τ

N
B̂ j

�
, (4.185)

∆k := ‖Zk‖ , (4.186)

Dk :=




exp

� τ
N

B̂k

�
− exp

� τ
N

B̃k

�



 . (4.187)

Lemma 4.6 One has

EN =O
�
τ3� . (4.188)

Proof. Clearly, û and ũ coincide on the first subinterval [t0, t1], thus B̂0 = B̃0, B̂1 = B̃1
and therefore D0 = D1 = 0. Moreover, ∆0 = 0 and E0 = 0. This is the basis for an
inductive proof of

Dk =O
�

k3τ4

N 4

�
, (4.189)

∆k =
τ3

N 3
LM 2U

�
k + 1

3

�
+O

�
k3τ4

N 4

�
(4.190)

Ek =
τ3

N 3
LM 2U

�
k + 1

3

�
+O

�
k3τ4

N 4

�
. (4.191)

For the induction step, we use triangle and norm inequalities to find the estimate

Ek ≤∆k

+Dk−1 ·




exp

� τ
N

B̂k−2

�



 · . . . ·




exp

� τ
N

B̂0

�





+





exp
� τ

N
B̃k−1

�



 ·Dk−2 ·




exp

� τ
N

B̂k−3

�



 · . . . ·




exp

� τ
N

B̂0

�




+ . . .

+





exp
� τ

N
B̃k−1

�



 · . . . ·




exp

� τ
N

B̃1

�



 ·D0

≤∆k + (Dk−1+ . . .+D0)e
(k−1)M τ

N (4.192)

from which it is already evident that (4.189) and (4.190) together imply (4.191).
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Assume now that (4.189)–(4.191) have been established for all indices up to k−1. We
have then by the Lipschitz condition on B that




B̂k − B̃k




 ≤ L‖ûk − ũk‖
≤ LEk−1U (4.193)

and further, using also the boundedness condition on B , that

Dk ≤




exp

� τ
N
(B̂k − B̃k)

�
− I





 ·




exp

� τ
N

B̃k

�





≤
�
τ

N
· τ

3

N 3
LM 2U 2

�
k

3

�
+O

�
τ5

N 5

�
k

3

����
1+
τM

N
+O

�
τ2

N 2

��
(4.194)

thus by virtue of
�k

3

�
=O(k3) the estimate (4.189) for Dk .

For∆k we start with the observation

Zk − exp
� τ

N
B̂k−1

�
Zk−1

= exp

 
τ

N

k−1∑
j=0

B̂ j

!
− exp

� τ
N

B̂k−1

�
exp

 
τ

N

k−2∑
j=0

B̂ j

!
(4.195)

and use the Baker-Campbell-Hausdorff series to estimate the right-hand side:

Zk − exp
� τ

N
B̂k−1

�
Zk−1

= exp
� τ

N
B̂k−1

�
exp

 
τ

N

k−2∑
j=0

B̂ j

!
·

·

exp




 τ

N
B̂k−1,

τ

N

k−2∑
j=0

B̂ j



�
1+O

� τ
N

��
− I


 (4.196)

where the O
� τ

N

�
contribution comes from higher order commutators in the Baker-

Campbell-Hausdorff series.

For the commutator we use the decomposition

B̂k−1,

k−2∑
j=0

B̂ j


=

k−2∑
j=0

[B̂k−1, B̂ j ] =
k−2∑
j=0

[B̂k−1− B̂ j , B̂ j ] (4.197)

which can because of



B̂k−1− B̂ j




 =



B(û(tk−1))−B(û(t j ))




 ≤ L



û(tk−1)− û(t j )






≤ LM U (tk−1− t j ) = LM U
(k − 1− j )τ

N
(4.198)
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be used to derive the estimate




Zk − exp

� τ
N

B̂k−1

�
Zk−1







≤








exp
� τ

N
B̂k−1

�
exp

 
τ

N

k−2∑
j=0

B̂ j

!






· τ

3

N 3
· 2LM 2U

k−2∑
j=0

(k − 1− j )·

·
�
1+O

� τ
N

��

≤ exp
�

kτM

N

�
· τ

3

N 3
· 2LM 2U

�
k

2

�
·
�
1+O

� τ
N

��
. (4.199)

Using the induction hypothesis we obtain

∆k ≤




Zk − exp

� τ
N

B̂k−1

�
Zk−1





+




exp
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thus the claim for∆k .

Since
�k+1

3

�
=O(N 3), this completes the proof. �

Convergence of time-discrete exp-int approximation to the continuous case.

Finally, we will show that the time-discrete exp-int approximation (4.181) approxi-
mates its time-continuous counterpart (4.160) on the interval [t0, t ∗] of length τ with

an error O
�
τ2

N

�
that goes to zero when the number N of time steps goes to∞.

To this end, consider again a subdivision of [t0, t ∗] according to t0 < t1 < . . .< tN−1 <
tN = t ∗ with tk+1− tk =

τ
N , where N ≥ 2. Consider further the solution ǔ of

ǔ( t̃ ) = exp




t̃∫

t0

B(ǔ(t ))dt


 u0 (4.201)

for t̃ ∈ [t0, t ∗] (compare (4.161) in Proposition 4.4. The solution of the time-discrete
exp-int approximation is called û as before.

Lemma 4.7 For the functions û and ǔthe estimate

‖ǔ(tN )− û(tN )‖ =O
�
τ2

N

�
(4.202)

holds.
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Proof. We show inductively the two statements

‖ǔ(tk)− û(tk)‖ ≤ kLM U 2 τ
2

N 2
+O

�
k2τ3

N 3

�
(4.203)










tk∫

t0

B(ǔ(t ))dt − τ
N

k−1∑
j=0

B(û(t j ))









≤ kLM U

τ2

N 2
+O

�
k2τ3

N 3

�
. (4.204)

The base case k = 0 is clear, as the left-hand sides of both inequalities vanish. Assume
therefore that (4.203), (4.204) are proven for index k − 1. For t ∈ [tk−1, tk] we have

then, using the estimate



 ˙̌u



 ≤ ‖B‖ ‖u0‖ ≤ M U and the induction hypothesis for

(4.203),


ǔ(t )− û(tk−1)



 ≤ 

ǔ(t )− ǔ(tk−1)


+ 

ǔ(tk−1)− û(tk−1)





≤M U
τ

N
+ (k − 1)LM U 2 τ

2

N 2
+O

�
k2τ3

N 3

�

=M U
τ

N

�
1+ (k − 1)LU

τ

N

�
+O

�
k2τ3

N 3

�
. (4.205)

By the Lipschitz condition on B this implies



B(ǔ(t ))−B(û(tk−1))


 ≤ LM U

τ

N

�
1+ (k − 1)LU

τ

N

�
+O

�
k2τ3

N 3

�
(4.206)

and after integration over [tk−1, tk]
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With the induction hypothesis for (4.204) and the triangle inequality for the norms
on the l.h.s. it follows that
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�
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i.e. the claim (4.204) for index k. Note that in the last step we used k =O(N ), thus

O
�

k2τ3

N 3

�
+O

�
k2τ4

N 4

�
=O

�
k2τ3

N 3

�
+O

�
kτ4

N 3

�
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�
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N 3

�
, (4.209)
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to combine the higher order terms.

By the exponential series it follows further that









exp




tk∫

t0

B(ǔ(t ))dt


− exp

 
τ

N

k−1∑
j=0

B(û(t j ))

!








≤ kLM U
τ2

N 2
+O

�
k2τ3

N 3

�
+O

�
k2τ4

N 4

�
. (4.210)

The higher order terms on the right-hand side can again be combined via (4.209).
Subtracting (4.181) from (4.161) and using (4.210), ‖u0‖ ≤ U implies the claim (4.203)
which completes the induction step.

Inserting k =N into (4.203) yields the claim of the lemma. �

From the lemma it follows immediately that also the time-discrete exp-int approxima-
tion (4.181) converges to (4.160) over [t0, t ∗]when the subdivision is refined infinitely,
N →∞.

Combining the results. Proposition 4.4 is a straightforward concatenation of the
estimates from Lemmas 4.5, 4.6 and 4.7.
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Chapter 5

Spatially Discrete Analysis of

Structure-Enhancing Processes

In this chapter, we are concerned with another group of PDE-based image filters for
which the semidiscrete analysis via dynamical systems has proven fruitful. Our study
will include one type of shock filters and two types of inverse diffusion filters. These
filters have in common that they are designed to enhance discontinuous structures
like edges, but their theoretical understanding on the continuous level suffers con-
siderably from ill-posedness. The focus of our investigation here is in all cases on a
theoretical analysis of semidiscrete and in part fully discrete formulations. Also, the
results obtained so far refer to the 1-D case. The study of the 2-D analoga is part of
ongoing research.

Shock filters. While shock filters are popular morphological image enhancement
methods, no well-posedness theory is available for their corresponding partial dif-
ferential equations (PDEs). By analysing the dynamical system that results from a
space discretisation of a 1-D shock filter PDE, we derive an analytical solution and
prove well-posedness. We show that the results carry over to the fully discrete case
when an explicit time discretisation is applied. Finally we establish an equivalence
result between discrete shock filtering and local mode filtering. The results on shock
filters have been published first in [224, 226]. The presentation here follows mainly
[226]. The relation between shock filters and mode filtering described in 5.1.3 has
been contributed by work of I. Galić.

Stabilised inverse linear diffusion. We consider a semidiscrete model problem
for the approximation of stabilised inverse linear diffusion processes. It is known
that numerical realisations of this and other processes involve the so-called staircas-
ing phenomenon: when sharpening monotone data profiles, fully discrete methods

169
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generally introduce stepfunction-type solutions reminiscent of staircases. By analy-
sising dynamical systems, we show that staircasing is that already the semidiscrete
numerical model contains the relevant information on the occurrence of staircasing.
Numerical experiments confirm and complement the theoretical findings. These re-
sults have been achieved in collaboration with M. Breuß and published in [38]. Our
presentation here follows closely this reference.

Forward-and-backward diffusion. Finally, we will consider a nonlinear diffusion
process in which the diffusivity g = g (|∇u |2) can even attain negative values. We
demand only that g (0) =: c1 is positive, g is positive for a small interval [0, z), z > 0,
and g is bounded from below by a negative constant c2 with |c2| < c1. This process
has been studied, among others, by G. Gilboa et al., under the name forward-and-

backward (FAB) diffusion [95]. It relates to triple-well-potentials discussed by the same
authors in [96]. In analysing FAB diffusion, we restrict ourselves to the fully discrete
situation.

5.1 Shock Filters in 1D

Shock filters are morphological image enhancement methods where dilation is per-
formed around maxima and erosion around minima. Iterating this process leads to a
segmentation with piecewise constant segments that are separated by discontinuities,
so-called shocks. This makes shock filtering attractive for a number of applications
where edge sharpening and a piecewise constant segmentation is desired.

In 1975 the first shock filters have been formulated by Kramer and Bruckner in a
fully discrete manner [125], while first continuous formulations by means of partial
differential equations (PDEs) have been developed in 1990 by Osher and Rudin [155].
The relation of these methods to the discrete Kramer–Bruckner filter became clear
several years later [100, 180]. PDE-based shock filters have been investigated in a
number of papers. Many of them proposed modifications with higher robustness
under noise [5, 94, 123, 156, 180], but also coherence-enhancing shock filters [209]
and numerical schemes have been studied [170].

Let us consider some continuous d -dimensional initial image f : IRd → IR. In the
simplest case of a PDE-based shock filter [155], one obtains a filtered version u(x , t )

of f (x) by solving the evolution equation

∂t u =− sgn(∆u) |∇u | (t ≥ 0) (5.1)

with f as initial condition, i.e., u(x , 0) = f (x). Experimentally one observes that
within finite “evolution time” t , a piecewise constant, segmentation-like result is ob-
tained (see Fig. 5.1).
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Figure 5.1: Left: (a) Original image (blurred version of Figure 1.1(b)). Right: (b) After
applying the Osher–Rudin shock filter. – Following [224].

Specialising to the one-dimensional case, we obtain

∂t u =− sgn(∂x x u) |∂x u |=





|∂x u | , ∂x x u < 0,

−|∂x u | , ∂x x u > 0,

0, ∂x x u = 0.

(5.2)

It is clearly visible that this filter performs dilation ∂t u = |∂x u | in concave segments
of u , while in convex parts the erosion process ∂t u = −|∂x u | takes place. The time
t specifies the radius of the interval (a 1-D disk) [−t , t] as structuring element. For a
derivation of these PDE formulations for classical morphological operations, see e.g.
[39].

While there is clear experimental evidence that shock filtering is a useful operation,
no analytical solutions and well-posedness results are available for PDE-based shock
filters. In general this problem is considered to be too difficult, since shock filters have
some connections to classical ill-posed problems such as backward diffusion [155,
156].

The main goal of this section is to show that it is possible to establish analytical so-
lutions and well-posedness as soon as we study the semidiscrete case with a spatial
discretisation and a continuous time parameter t . This case is of great practical rele-
vance, since digital images already induce a natural space discretisation. For the sake
of simplicity we restrict ourselves to the 1-D case. We also show that these results
carry over to the fully discrete case with an explicit (Euler forward) time discreti-
sation, and we establish an equivalence result between shock filtering and a specific
image enhancement method called mode filtering.

In 5.1.1 we present an analytical solution and a well-posedness proof for the semidis-
crete case, whereas corresponding fully discrete results are given in 5.1.2. An equiva-
lence result between shock and mode filters is presented in 5.1.3.
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5.1.1 Semidiscrete Case

5.1.1.1 Problem Statement

In this section, we are concerned with a spatial discretisation of (5.2) which we will de-
scribe now. The time variable remains continuous here. Throughout the following,
the notion semidiscrete will refer to this setting.

Problem. Let (. . . , u0(t ), u1(t ), u2(t ), . . .) be a time-dependent bounded real-valued

signal which evolves according to

u̇i =





max(ui+1− ui , ui−1− ui , 0), 2ui > ui+1+ ui−1,

min(ui+1− ui , ui−1− ui , 0), 2ui < ui+1+ ui−1,

0, 2ui = ui+1+ ui−1

(5.3)

with the initial conditions

ui (0) = fi . (5.4)

Assume further that the signal is either of infinite length with compact support, or finite

with reflecting boundary conditions.

Here, u̇i denotes the time derivative of ui (t ). Like (5.2), this filter switches between
dilation and erosion depending on the local convexity or concavity of the signal. Dila-
tion and erosion themselves are modeled by upwind-type discretisations [158], which
are well established for dilation and erosion PDEs because they guarantee the detec-
tion of local extrema and stabilise the discretised process by adapting the discrete
representation to the local directedness of the PDE evolution.

It is important that in case 2ui > ui+1+ ui−1 the two neighbour differences ui+1− ui

and ui−1− ui cannot be simultaneously positive; with the opposite inequality they
cannot be simultaneously negative. In fact, whenever the maximum or minimum in
(5.3) does not select its third argument, zero, it returns the absolutely smaller of the
neighbour differences.

No modification of (5.3) is needed for finite-length signals with reflecting boundary
conditions. In this case, each boundary pixel has one vanishing neighbour difference.

In order to study the solution behaviour of this system, we have to specify the pos-
sible solutions, taking into account that the right-hand side of (5.3) may involve dis-
continuities. Similar to the conditions for solutions of 1D TV flow formulated on
page 103, we call a time-dependent signal u(t ) = (. . . , u1(t ), u2(t ), u3(t ) . . .) a solution

of (5.3) if

(I) each ui is a continuous, piecewise differentiable function of t ,
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(II) each ui satisfies (5.3) for all times t for which u̇i (t ) exists,

(III) for t = 0, the right-sided derivative u̇+
i
(0) equals the right-hand side of (5.3) if

2ui (0) 6= ui+1(0)+ ui−1(0).

Remark. Let us point out that extremality of pixels is handled strictly local: A pixel
ui of a 1-D space-discrete signal u is called a (discrete) local extremum whenever
(ui − ui−1)(ui+1− ui )≤ 0. For example, in the sequence of five pixels u1 > u2 =

u3 = u4 > u5, pixels u2 and u3 are local minima while u3 and u4 are local maxima.

5.1.1.2 Well-Posedness Results

The following theorem contains our main result.

Theorem 5.1 (Well-Posedness) For our Problem, assume that the equality

fk+1− 2 fk + fk−1 = 0 does not hold for any pixel fk which is not a local maximum or

minimum of f . Then the following are true:

(i) Existence and uniqueness: The Problem has a unique solution for all t ≥ 0.

(ii) Maximum–minimum principle: If there are real bounds a, b such that

a < fk < b holds for all k, then a < uk(t )< b holds for all k and all t ≥ 0.

(iii) l∞-stability: There exists a δ > 0 such that for any initial signal f̃ with

‖ f̃ − f ‖∞ <δ the corresponding solution ũ satisfies the inequality

‖ũ(t )− u(t )‖∞ < ‖ f̃ − f ‖∞
for all t > 0. The solution therefore depends l∞-continuously on the initial condi-

tions within a neighbourhood of f .

(iv) Total variation preservation: If the total variation of f is finite, then the total

variation of u at any time t ≥ 0 equals that of f .

(v) Steady state: For t →∞, the signal u converges to a piecewise constant signal.

The jumps in this signal are located at the steepest slope positions of the original

signal.

All statements of this theorem follow from an explicit analytical solution of the Prob-
lem that will be described in the following proposition.

Proposition 5.2 (Analytical Solution) For our Problem, let the segment ( f1, . . . , fm )

be strictly decreasing and concave in all pixels. Assume that the leading pixel f1 is either

a local maximum or a neighbour to a convex pixel f0 > f1. Then the following hold for

all t ≥ 0:
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(i) If f1 is a local maximum of f , then u1(t ) is a local maximum of u(t ).

(ii) If f1 is neighbour to a convex pixel f0 > f1, then u1(t ) also has a convex neighbour

pixel u0(t )> u1(t ).

(iii) The segment (u1, . . . , um) remains strictly decreasing and concave in all pixels. The

grey values of all pixels at time t are given by

uk(t ) =C ·
�

1+ (−1)ke−2t − e−t
k−2∑
j=0

t j

j !
(1+ (−1)k− j )

�

+ e−t
k−2∑
j=0

t j

j !
fk− j − (−1)k f1e−t

�
e−t −

k−2∑
j=0

(−t ) j

j !

� (5.5)

for k = 1, . . . , m, where

C =

¨
f1(0) if f1 is a local maximum of f ,
1
2 ( f0(0)+ f1(0)) otherwise.

(5.6)

(iv) At no time t ≥ 0, the equation 2ui (t ) = ui+1(t )+ ui−1(t ) becomes true for any

i ∈ {1, . . . , m}.

Analogous statements hold for increasing concave and for convex signal segments.

In a signal that contains no locally linear pixels (such with 2 fi = fi+1+ fi−1), each
pixel belongs to a chain of either concave or convex pixels led by an extremal pixel
or an “inflection pair” of a convex and a concave pixel. Therefore Proposition 5.2
completely describes the dynamics of such a signal. Let us prove this proposition.

Proof. We show in steps 1.–3. that the claimed evolution equations hold as long as
the initial monotonicity and convexity properties of the signal segment prevail. Step
4. then completes the proof by demonstrating that the evolution equations preserve
exactly these monotonicity and convexity requirements.

1. From (5.3) it is clear that any pixel ui which is extremal at time t has u̇i (t ) = 0
and therefore does not move. Particularly, if f1 is a local maximum of f , then u1(t )

remains constant as long as it continues to be a maximum.

2. If u0 > u1, u0 is convex and u1 concave for t ∈ [0,T ). Then we have for these pixels

u̇0 = u1− u0 ,

u̇1 = u0− u1 ,
(5.7)

which by the substitutions y := 1
2 (u0+ u1) and v := u1− u0 becomes

ẏ = 0 ,

v̇ =−2v .
(5.8)
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This system of linear ordinary differential equations (ODEs) has the solution y(t ) =

y(0) =C and v(t ) = v(0)exp(−2t ). Backsubstitution gives

u0(t ) =C · (1− e−2t )+ f0e−2t ,

u1(t ) =C · (1− e−2t )+ f1e−2t .
(5.9)

This explicit solution is valid as long as the convexity and monotonicity properties
of u0 and u1 do not change.

3. Assume the monotonicity and convexity conditions required by the proposition
for the initial signal hold for u(t ) for all t ∈ [0,T ). Then we have in all cases, defining
C as in the proposition, the system of ODEs

u̇1 =−2(u1−C ) ,

u̇k = uk−1− uk , k = 2, . . . , m
(5.10)

for t ∈ [0,T ). We substitute further vk := uk −C for k = 1, . . . , m as well as w1 := v1
and wk := vk + (−1)k v1 for k = 2, . . . , m. This leads to the system

ẇ1 =−2w1 ,

ẇ2 =−w2 ,

ẇk = wk−1−wk , k = 3, . . . , m .

(5.11)

This system of linear ODEs has the unique solution

w1(t ) = w1(0)e
−2t ,

wk(t ) = e−t
k−2∑
j=0

t j

j !
wk− j (0) , k = 2, . . . , m

(5.12)

which after reverse substitution yields (5.5) for all t ∈ [0,T ].

4. Note that (5.7) and (5.10) are systems of linear ODEs which have the unique ex-
plicit solutions (5.9) and (5.5) for all t > 0. As long as the initial monotonicity and
convexity conditions are satisfied, the solutions of (5.3) coincide with those of the
linear ODE systems.

We prove therefore that the solution (5.5) fulfils the monotonicity condition

uk(t )− uk−1(t )< 0 , k = 2, . . . , m , (5.13)

and the concavity conditions

uk+1(t )− 2uk(t )+ uk−1(t )< 0 , k = 1, . . . , m , (5.14)

for all t > 0 if they are valid for t = 0. To see this, we calculate first

uk(t )− uk−1(t ) = e−t
k−2∑
j=0

t j

j !
( fk− j − fk−1− j )

+ 2e−t (−1)k−1

�
e−t −

k−2∑
j=0

(−t ) j

j !

�
( f1−C ) .

(5.15)



(c) Martin Welk 2007–2016. All rights reserved.

176 Chapter 5. Spatially Discrete Analysis of Structure-Enhancing Processes

By hypothesis, fk− j − fk−1− j and f1−C are negative. Further, the difference expres-

sion exp(−t )−∑k−2
j=0 (−t ) j / j ! is just the error of the (alternating) Taylor series of

exp(−t ), thus having the same sign (−1)k−1 as the first neglected member. Conse-
quently, monotonicity is preserved by (5.5) for all t > 0.

Second, we have for k = 2, . . . , m− 1

uk+1(t )− 2uk(t )+ uk−1(t ) = e−t
k−2∑
j=0

t j

j !
( fk− j+1− 2 fk− j + fk− j−1)

+ 4e−t (−1)k
�

e−t −
k−1∑
j=0

(−t ) j

j !

�
( f1−C )

+ e−t t k−1

(k − 1)!
( f2− 3 f1+ 2C )

(5.16)

which is seen to be negative by similar reasoning as above.

Concavity at um(t ) follows in nearly the same way. By extending (5.5) to k = m+ 1,
one obtains not necessarily the true evolution of um+1 since that pixel is not assumed
to be included in the concave segment. However, the true trajectory of um+1 can
only lie below or on that predicted by (5.5).

Third, if f1 is a maximum of f , then u1(t ) remains one for all t > 0 which also ensures
concavity at u1. If f1 has a convex neighbour pixel f0 > f1, we have instead

u2(t )− 2u1(t )+ u0(t ) = e−t ( f2− 2 f1+ f0)+ 4e−t (1− e−t )( f1−C )< 0 (5.17)

which is again negative for all t > 0.

Finally, we remark that the solution (5.9) ensures u0(t )> u1(t ) for all t > 0 if it holds
for t = 0. That convexity at u0 is preserved can be established by analogous reasoning
as for the concavity at u1.

Since the solutions from the linear systems guarantee preservation of all monotonic-
ity and convexity properties which initially hold for the considered segment, these
solutions are the solutions of (5.3) for all t > 0. �

Proof of Theorem 5.1. Existence and uniqueness of the solution follow from the
proof of Proposition 5.2.

The maximum–minimum principle and preservation of total variation follow from
the fact that extrema do not move, and monotonicity is preserved for all t > 0. Note
that by the specification of our Problem, each non-extremal pixel in the signal belongs
to a segment enclosed by two extrema.
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For the l∞-stability, note that for each admissible initial signal f , there exists a lower
bound γ > 0 for all values of

�� fk−1− fk

��which are not zero, and a lower bound η > 0
for all values of

�� fk−1− 2 fk + fk+1
�� for pixels k which are not local extrema of f .

Let a signal f̃ with ‖ f̃ − f ‖∞ =: d <min
�
γ/2,η/4

	
be given. One easily checks that

then the monotonicity and convexity properties of all strictly monotone segments
of f are preserved in f̃ . Moreover, isolated extremal pixels of f will be such in f̃ .
Only chains of equal pixels fk = . . .= fk+l may break up in f̃ , but in this case the
corresponding chain f̃k , . . . , f̃k+l contains at least one extremum or one inflection
pair. To sum up, each monotone and convex/concave segment in f with one of the
pixels fk = . . .= fk+l as leading pixel is turned into a segment of equal character in f̃

whose leading pixel is one of f̃k , . . . , f̃k+l .

Let us choose without loss of generality a pixel f̃k within a decreasing and concave
segment as in the proposition. By virtue of |C̃ −C | ≤ d and | f̃ j − f j | ≤ d , we can
estimate the difference of the explicit solutions (5.5) for ũk and uk :

|ũk(t )− uk(t )| ≤ d ·
 �����1− e−t

k−2∑
j=0

t j

j !
+ (−1)ke−t

�
e−t −

k−2∑
j=0

(−t ) j

j !

������

+e−t
k−2∑
j=0

t j

j !
+ e−t ·

�����e
−t −

k−2∑
j=0

(−t ) j

j !

�����

!

≤ d

(5.18)

which proves the l∞-stability statement with δ :=min
�
γ/2,η/4

	
.

Finally, the convergence to a steady state is obvious from the exponential decay of all
summands but C in (5.5). �

Remark. The fact that the signal reaches its steady state only for t →∞ stands in
contrast to the behaviour of space-continuous dilation and erosion where extrema
propagate in space with constant speed. In our semidiscrete setting, non-extremal
pixels only asymptotically approach their limit values. This can be seen as a blurring,
or approximation error, which is the price for the performed spatial discretisation.

5.1.1.3 Signals With Non-Extremal Linear Pixels

Our well-posedness statements in the previous section explicitly exclude those signals
which contain pixels fk with fk+1− 2 fk + fk−1 = 0. For brevity, we shall call such
pixels non-extremal linear pixels.

As we are going to demonstrate, no uniqueness and continuous dependence on ini-
tial condition holds for initial signals f with non-extremal linear pixels. First of all,
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condition (III) allows the right-sided time derivative of such a pixel at t = 0 to deviate
from the right-hand side of equation (5.3). Without this relaxation, the condition
would in many cases stand in contradiction to the uniquely determined evolution of
non-linear surrounding pixels, preventing the existence of solutions.

While the evolution of the neighbours of a non-extremal linear pixel will often force it
to become convex or concave, this process is never unique: Instead, one can label each
non-extremal linear pixel at t = 0 arbitrarily to impose either convexity or concavity.
Whatever labelling is chosen, it leads to a consistent evolution for t > 0 in which no
linear pixels reappear. This is precised in the following proposition.

Proposition 5.3 (Forking Solutions at Non-Extremal Linear Pixels) Let an ini-

tial signal f = (. . . , f1, f2, f3, . . .) be given. For each non-extremal linear pixel fk , let a

sign σk ∈ {+1,−1} be chosen. Then there exists a unique solution of (5.3) in the sense of

(I)–(III) with initial conditions (5.4) such that for each non-extremal linear pixel fk , the

right-sided derivative of uk at t = 0 is

u̇+
k
(0) =

¨
max(ui+1− ui , ui−1− ui , 0) , σk =+1 ,

min(ui+1− ui , ui−1− ui , 0) , σk =−1 .
(5.19)

For none of these solutions, non-extremal linear pixels exist in u(t ) for t > 0.

Remark. As there is no “natural” labelling of linear pixels as convex or concave, this
proposition expresses that for initial signals with non-extremal linear pixels, the spa-
tially discrete shock filter is highly nonunique. Moreover, for such initial signals the
solutions no longer depend continuously on the initial conditions: Considering a
non-extremal linear pixel fk in a signal f , it is clear that every neighbourhood of f

will contain signals f̃ in which f̃k is strictly convex, and such in which it is strictly
concave.

Proof. Assume we are given a fixed choice of the σk . Interpreting non-extremal linear
pixels with σk = +1 as convex and such with σk = −1 as concave, we have again
a segmentation of the entire signal into concave and convex regions as for signals
without non-extremal linear pixels. For each of these regions, we proceed as in the
proof of Proposition 5.2 by rewriting the evolution into a system of linear ODEs
which has verbatim the same analytical solutions as before.

Following further the proof of Proposition 5.2, one finds first that the proof of mono-
tonicity preservation suffers no change at all. In the concavity preservation proof one
finds that some of the summands of type ( f j−1− 2 f j + f j+1) in the inequalities used
there for uk+1(t )− 2uk(t )+ uk+1(t ) now vanish. However, for the entire right-hand
side to vanish it is necessary that ( f1−C ) and all ( f j−1− 2 f j + f j+1) for j = 1, . . . , k

are zero. This is true if and only if fk itself is extremal. Consequently, under the
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evolution of the linear system, non-extremal pixels which are linear at t = 0 become
convex for all positive t if σk =+1, or concave for all positive t if σk =−1. �

Remark. In some cases, there can even exist more solutions than listed in Proposi-
tion 5.3, in particular such in which non-extremal linear pixels retain this property at
positive evolution times. We sketch just one simple case: Assume that a non-extremal
linear pixel fk is surrounded by a concave and a convex segment in the sense of Propo-
sition 5.2, and that these segments are completely point-symmetric with respect to
(k , fk ). Then there will also exist possible evolutions with uk(t ) = fk for all t > 0.
We will, however, not give a full classification of these solutions here since our pri-
mary goal to give necessary and sufficient conditions for well-posedness has already
been achieved with Proposition 5.3.

As to the solution concept, one could also think of introducing a way to deal with the
instability at linear pixels would be to introduce a degree of freedom into the right-
hand side of (5.3) for non-extremal linear pixels, very much in the same spirit as the
treatment of sgn(0) in the analysis of TV diffusion [44]. However, since this would
still not remove the ambiguities involved here, it seems not too sensible to do so.

5.1.2 Fully Discrete Case

In the following we discuss time discretisations of our time-continuous system. As
usual, we denote the time step by τ > 0.

5.1.2.1 Explicit Time Discretisation

A straightforward explicit time discretisation of our Problem reads as follows:

Time-Discrete Problem. Let (. . . , u l
0 , u l

1 , u l
2 , . . .), l = 0,1,2, . . . be a series of bounded

real-valued signals which satisfy the equations

u l+1
i
− u l

i

τ
=





max(u l
i+1− u l

i , u l
i−1− u l

i , 0) , 2u l
i > u l

i+1+ u l
i−1 ,

min(u l
i+1− u l

i , u l
i−1− u l

i , 0) , 2u l
i < u l

i+1+ u l
i−1 ,

0 , 2u l
i = u l

i+1+ u l
i−1

(5.20)

with the initial conditions

u0
i = fi . (5.21)

Assume further that the signal is either of infinite length or finite with reflecting boundary

conditions.
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Theorem 5.4 (Time-Discrete Well-Posedness) Assume that in the Time-Discrete

Problem the equality fk+1− 2 fk + fk−1 = 0 does not hold for any pixel fk which is not

a local maximum or minimum of f . Assume further that τ < 1/2. Then the statements

of Theorem 5.1 are valid for the solution of the Time-Discrete Problem if only uk(t ) for

t > 0 is replaced everywhere by u l
k

with l = 0,1,2, . . .

The existence and uniqueness of the solution of the Time-Discrete Problem for l = 0,1,2, . . .
is obvious. Maximum–minimum principle, l∞-stability, total variation preservation
and the steady state property are immediate consequences of the following proposi-
tion. It states that for τ < 1/2 all qualitative properties of the time-continuous solu-
tion transfer to the time-discrete case.

Proposition 5.5 (Time-Discrete Solution) Let u l
i be the value of pixel i in time step

l of the solution of our Time-Discrete Problem with time step size τ < 1/2. Then the

following hold for all l = 0,1,2, . . .:

(i) If u l
1 is a local maximum of u l , then u l+1

1 is a local maximum of u l+1.

(ii) If u l
1 is a concave pixel neighbouring to a convex pixel u l

0 > u l
1 , then u l+1

1 is again

concave and has a convex neighbour pixel u l+1
0 > u l+1

1 .

(iii) If the segment (u l
1 , . . . , u l

m) is strictly decreasing and concave in all pixels, and u l
1

is either a local maximum of u l or neighbours to a convex pixel u l
0 > u l

1 , then the

segment (u l+1
1 , . . . , u l+1

m ) is strictly decreasing.

(iv) Under the same assumptions as in (iii), the segment (u l+1
1 , . . . , u l+1

m ) is strictly con-

cave in all pixels.

(v) If 2u l
i = u l

i+1+ u l
i−1 holds for no pixel i , then 2u l+1

i
= u l+1

i+1 + u l+1
i−1 also holds for

no pixel i .

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . , m} have the same

limit lim
l→∞

u l
i =C with

C :=

¨
f1 if f1 is a local maximum,
1
2 ( f0+ f1) if f1 neighbours to the convex pixel f0.

(5.22)

Analogous statements hold for local minima, for increasing concave and for convex signal

segments.

Proof. Assume first that u l
1 is a local maximum of u l . From the evolution equation

(5.20) it is clear that u l+1
j
≤ u l

j + τ(u
l
1 − u l

j ) for j = 0,2. For τ < 1 this entails

u l+1
j
< u l

1 = u l+1
1 , thus (i).
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If instead u l
i is a concave neighbour of a convex pixel u l

0 > u l
1 , then we have u l+1

1 =

u l
1 + τ(u

l
0 − u l

1) and u l+1
0 = u l

0 + τ(u
l
1 − u l

0). Obviously, u l+1
0 > u l+1

1 holds if and
only if τ < 1/2. For concavity, note that u l+1

2 ≤ u l
2+τ(u

l
1− u l

2 ) and therefore u l+1
0 −

2u l+1
1 + u l+1

2 ≤ (1−τ)(u l
0−2u l

1+ u l
2)+2τ(u l

1− u l
0 ). The right-hand side is certainly

negative for τ ≤ 1/2. An analogous argument secures convexity at pixel 0 which
completes the proof of (ii).

In both cases we have u l+1
1 ≥ u l

1 . Under the assumptions of (iii), (iv) we then have
u l+1

k
= u l

k
+ τ(u l

k−1
− u l

k
) for k = 2, . . . , m. If τ < 1, it follows that u l

k
< u l+1

k
≤

u l
k−1 for k = 2, . . . , m which together with u l+1

1 ≥ u l
1 implies that u l+1

k−1
> u l

k
for

k = 2, . . . , m and therefore (iii).

For the concavity condition we compute

u l+1
k−1− 2u l+1

k
+ u l+1

k+1 = (1− τ)(u
l
k−1− 2u l

k + u l
k+1)+ τ(u

l
k−2− 2u l

k−1+ u l
k) (5.23)

for k = 3, . . . , m−1. The right-hand side is certainly negative for τ ≤ 1 which secures
concavity in the pixels k = 3, . . . , m − 1. Concavity in pixel m for τ ≤ 1 follows
from essentially the same argument. However, the equation is now replaced by an
inequality since for pixel m + 1 we know only that u l+1

m+1 ≤ u l
m+1 + τ(u

l
m − u l

m+1).

If u l
1 is a local maximum and therefore u l+1

1 = u l
1 , we find for pixel 2 that u l+1

1 −
2u l+1

2 + u l+1
3 = (1−τ)(u l

1−2u l
2+ u l

3 )+τ(u
l
2− u l

1 )which again secures concavity for
τ ≤ 1. As was proven above, concavity in pixel 1 is preserved for τ ≤ 1/2 such that
(iv) is proven.

Under the hypothesis of (v), the evolution of all pixels in the signal is described by
statements (i)–(iv) or their obvious analoga for increasing and convex segments. The
claim of (v) then is obvious.

Finally, addition of the equalities C − u l+1
1 = (1− 2τ)(C − u l

1) and u l+1
i−1 − u l+1

i
=

(1− τ)(u l
i−1− u l

i ) for i = 2, . . . , m implies that

C − u l+1
k
= (1− τ)(C − u l

k)− τ(C − u l
1 )< (1− τ)(C − u l

k) (5.24)

for all k = 1, . . . , m. By induction, we have

C − u l+l ′

k
≤ (1− τ)l ′ (C − u l

k) (5.25)

where the right-hand side tends to zero for l ′→∞. Together with the monotonicity
preservation for τ < 1/2, statement (vi) follows. �

We remark that in the presence of non-extremal linear pixels, uniqueness fails in a
similar way as in the semidiscrete setting.
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5.1.2.2 Modified Explicit Time Discretisation

A closer look at the proof of Proposition 5.5 reveals that the limitation τ < 1/2 is
made necessary only by the situation of case (ii) of the proposition, i.e., a concave
pixel following a convex one within a decreasing segment, or symmetrical situations.
In the absence of such a configuration, the statements hold even for all τ < 1.

By a small adaptation of the time-discrete evolution rule we can therefore obtain a
scheme which satisfies well-posedness properties for time step sizes up to 1.

Modified Time-Discrete Problem. Let (. . . , u l
0 , u l

1 , u l
2 , . . .), l = 0,1,2, . . . be a series

of bounded real-valued signals which is generated by the equations

ũ l
i − u l

i

τ
=





max(u l
i+1− u l

i , u l
i−1− u l

i , 0) , 2u l
i > u l

i+1+ u l
i−1 ,

min(u l
i+1− u l

i , u l
i−1− u l

i , 0) , 2u l
i < u l

i+1+ u l
i−1 ,

0 , 2u l
i = u l

i+1+ u l
i−1 ,

(5.26)

u l+1
i =





1
2 (ũ

l
i+1+ ũ l

i ) , (ũ l
i+1− ũ l

i )(u
l
i+1− u l

i )< 0 ,
1
2 (ũ

l
i−1+ ũ l

i ) , (ũ l
i−1− ũ l

i )(u
l
i−1− u l

i )< 0 ,

ũ l
i , else

(5.27)

with the initial conditions (5.21) and boundary conditions as in the previous Time-Discrete

Problem.

Note that the case distinction on the right-hand side of (5.27) is sound since the case (ii)
of Proposition 5.5 cannot occur simultaneously on both sides of the same pixel. Fur-
ther, it is clear from Proposition 5.5 that the Modified Time-Discrete Problem is iden-
tical with the Time-Discrete Problem for τ < 1/2.

For the Modified Time-Discrete Problem, the well-posedness statements of Theo-
rem 5.4 hold for all τ ≤ 1. Since the proof contains only slight modifications com-
pared to the previous one, we do not repeat it here but state only the suitably modified
version of Proposition 5.5. The main modification is that extremal linear pixels can
now arise during the evolution.

Proposition 5.6 (Modified Time-Discrete Solution) Let u l
i be the value of pixel i

in time step l of the solution of our Modified Time-Discrete Problem with time step size

τ ≤ 1. Then the following hold for all l = 0,1,2, . . .:

(i) If u l
1 is a local maximum of u l , then u l+1

1 is a local maximum of u l+1.

(ii) If u l
1 is a concave pixel neighbouring to a convex pixel u l

0 > u l
1 , then u l+1

1 is again

concave and has a convex neighbour pixel u l+1
0 ≥ u l+1

1 .
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(iii) If the segment (u l
1 , . . . , u l

m) is strictly decreasing and concave in all pixels, and u l
1

is either a local maximum of u l or neighbours to a convex pixel u l
0 > u l

1 , then the

segment (u l+1
2 , . . . , u l+1

m ) is strictly decreasing, and u l+1
1 ≥ u l+1

2 .

(iv) Under the same assumptions as in (iii), the segment (u l+1
2 , . . . , u l+1

m ) is strictly con-

cave in all pixels. Pixel u l+1
1 is strictly concave except if u l

1 is a local maximum,

and τ = 1.

(v) If 2u l
i = u l

i+1+u l
i−1 holds for no pixel i for which u l

i−1= u l
i = u l

i+1 does not hold,

then 2u l+1
i
= u l+1

i+1 + u l+1
i−1 also holds for no pixel i for which u l+1

i−1 = u l+1
i
= u l+1

i+1
does not hold.

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . , m} have the same

limit lim
l→∞

u l
i =C with C as in (5.22).

Analogous statements hold for local minima, for increasing concave and for convex signal

segments.

The special case τ = 1 deserves a closer consideration. Straightforward calculations
reveal that a pixel neighbouring to a local maximum attains the same value as the
maximum in the next time step. Moreover, a pair of a convex pixel followed by
a concave one in a decreasing segment aligns to equal values within one time step,
turning both pixels into discrete local extrema. These facts give rise to the following
corollary.

Corollary 5.7 Consider the Modified Time-Discrete Problem with τ = 1. If at time step

k = l the segment (u l
1 , u l

2 , . . . , u l
m) has the properties required in Prop. 5.6, (iii), then each

pixel uk of this segment becomes constant after not more than k time steps.

In the case of finite-length signals, or infinite signals in which there exists a finite
upper bound to the length of monotonic concave or convex segments, this corollary
implies that the steady state is reached in finite time.

Since the modified time-discrete filter propagates grey-values in x direction one pixel
per time step, it turns out to reflect particularly well the behaviour of dilations and
erosions on a continuous domain. In the light of our remark following the proof
of Theorem 5.1, it can be said that the approximation error introduced by spatial
discretisation has been compensated exactly by the time discretisation.

A further view on the modified scheme is that it can be related to the locally ana-
lytic schemes from Chapter 4. Our modified time-discrete shock filtering scheme
can be understood as a locally analytic scheme built on the analytical solutions (for
0≤ τ ≤ 1) of space-continuous dilation and erosion filters where the signal is linearly
interpolated between subsequent pixels.
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5.1.3 Equivalence to Local Mode Filtering

Now that we have derived well-posedness properties for semidiscrete and fully dis-
crete shock filters, let us also establish an equivalence result between shock filters and
a class of discrete filters based on local signal statistics, namely so-called mode filters.

Discrete filters exploiting local signal statistics evaluate signal values from a sliding
window neighbourhood to determine a new value for each pixel. Commonly used
representatives of this class are box-average filters, median filters and generally M-
smoothers, but also discrete dilation and erosion.

One statistical parameter of the local greyvalue distribution that is not used in one
of the aforementioned filters is the mode. The mode of a continuous distribution is
defined as its most probable value. Analogous as above, determining the mode of the
grey-values within a sliding window or structuring element constitutes a local mode
filter for images [71, 98, 194].

However, applying this procedure to spatially discretised signals faces a problem be-
cause the distribution is now given only by finitely many values. Defining the mode
simply as the most frequent value is not helpful since in generic cases there are no
duplicates among the values.

Instead, we combine a polynomial approximation with local histogram properties to
find the mode value within a sliding window containing three pixels.

Assume we have a one-dimensional discrete signal (. . . , u l
0 , u l

1 , u l
2 , . . .). By our sliding

window we select three subsequent values u l
i−1, u l

i , u l
i+1. The value at pixel i of the

signal filtered by our local mode filter should be the mode value of u l
i−1, u l

i , u l
i+1.

To begin with, we interpolate by a quadratic polynomial through the three points

(i − 1, u l
i−1), (i , u l

i ), (i + 1, u l
i+1) . (5.28)

Translating, for simplicity, spatial coordinates by−i , we therefore want the quadratic
polynomial

p(z) = az2+ b z+ c (5.29)

to satisfy the conditions

p(−1) = u l
i−1 , p(0) = u l

i , p(1) = u l
i+1 . (5.30)

This gives the system of three equations

a− b + c = u l
i−1 ,

c = u l
i ,

a+ b + c = u l
i+1 ,

(5.31)



(c) Martin Welk 2007–2016. All rights reserved.

5.1. Shock Filters in 1D 185

with the solution

a =
u l

i−1− 2u l
i + u l

i+1

2
, b =

u l
i+1− u l

i−1

2
, c = u l

i . (5.32)

Having determined p(z), we are now interested in the location of the mode of its
values. First, if a = 0, p is a linear polynomial whose values are uniformly distributed.
In this case, we have our local mode filter not change the value of pixel i .

If a 6= 0, the density of the distribution of values of p attains its maximum at the
(uniquely determined) stationary value of p . The extremum of p(z) is located at

− b

2a
=

u l
i−1− u l

i+1

u l
i−1− 2u l

i
+ u l

i+1

=: e . (5.33)

However, whenever e 6∈ {−1,0,+1}, the extremal value p(e) will lie outside the in-
terval Ii :=

�
min(u l

i−1, u l
i , u l

i+1),max(u l
i−1, u l

i , u l
i+1)

�
; choosing p(e) as the value of

the mode filter therefore results in over- and undershoots.

This leads us to stabilise our filtering procedure by projecting p(e) to the interval Ii ,
i.e., choosing as the new value of pixel i the value from the interval Ii which is closest to

p(e). We will call this procedure stabilised discrete local mode filtering. Clearly, for p

not linear this filter will always return as its value one of the end points of Ii , namely
min(u l

i−1, u l
i
, u l

i+1) if a < 0, or max(u l
i−1, u l

i
, u l

i+1) if a > 0.

We have therefore arrived at the following equivalence result.

Proposition 5.8 Stabilised discrete local mode filtering of a 1-D discrete signal

(. . . , f0, f1, f2, . . .) obeys the equation

ui =





min(u l
i−1, u l

i , u l
i+1) , u l

i−1− 2u l
i + u l

i+1< 0 ,

max(u l
i−1, u l

i , u l
i+1) , u l

i−1− 2u l
i + u l

i+1> 0 ,

u l
i , u l

i−1− 2u l
i + u l

i+1= 0 .

(5.34)

Consequently, it is equivalent to one step of time-discrete shock filtering as described in

5.1.2 with time step size τ = 1.

Since the time step size τ = 1 exceeds the limit given in Theorem 5.4, the well-
posedness properties do not transfer fully to stabilised discrete local mode filtering.
However, a modification analog to the modified scheme of 5.1.2 could also be applied
to local mode filtering to obtain a well-posed process.
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5.2 Stabilised Inverse Linear Diffusion

In this section, we are concerned with the processes governed by time-dependent
PDEs of the form

∂

∂ t
u(x , t ) =

¨
−c ∂

2

∂ x2 u(x , t ), ∂
∂ x

u(x , t ) 6= 0

0, ∂
∂ x

u(x , t ) = 0
(5.35)

where u is a scalar-valued signal, x ∈ IR, t > 0, and c > 0 is a constant anti-diffusion
coefficient. We will call these processes stabilised inverse linear diffusion (SILD).

Their appearance in an image processing context goes back to [156]. Since then,
they have been used as building blocks of image filters, see e.g. [95] and the refer-
ences therein. Outside image processing, models of the form (5.35) have been used
as sharpening filters within flux-corrected transport (FCT) schemes in the field of
computational fluid dynamics [33, 127].

Naturally, our considerations also link once more to the stabilised inverse diffusion

equations (SIDEs) introduced in [164, 165] where, however, emphasis is laid on non-
linear inverse diffusion processes.

In this section, we are particularly interested in the analysis of a numerical phe-
nomenon which can spoil the results of SILD filtering, namely the so-called staircas-

ing phenomenon [230]: when applied to a strictly monotone signal of finite length,
a numerically realised SILD process typically generates a stepfunction-type solution
reminding of a staircase instead of a new strictly monotone signal with sharper gradi-
ent. Since [230]where staircasing was described for Perona–Malik diffusion [161], it
has been observed in nonlinear diffusion processes involving backward diffusion, see
e.g. [210] and references therein. For staircasing in the context of total variation reg-
ularisation, we refer to [153, 172]. To overcome or at least reduce staircasing, special
adaptive diffusion processes have been designed, see e.g. [32, 46, 65, 116, 131, 210].

However, the staircasing phenomenon by itself has not been analysed mathematically
in much detail up to now. It is useful to note again in this context that realistic initial
signals consist of monotone segments of finite length, which have a local maximum
and a local minimum as end-points. Simple infinite models of staircasing which do
not take into account the corresponding effects, like e.g. the lever model mentioned
in [127], do not give a full account of the effects that are in fact observed in numerical
computations.

Recently, staircasing in fully discrete schemes for PDEs of type (5.35) has been in-
vestigated in [36]. It has been proven that it necessarily occurs in these schemes. In
the context of fully discrete SILD processes, the question arises if staircasing could
be avoided either by some specific time stepping scheme, or by using very small time
steps in the time integration. In order to better understand the nature of staircasing as
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well as for the development of algorithms, it is of interest whether staircasing events
follow some mechanism that can be determined in advance. A closely related ques-
tion is staircasing is a numerically stable phenomenon – in other words: Can small
perturbations due to low-level noise or numerical errors lead to significant changes
in the result of a numerical approximation of (5.35)?

In order to clarify the meaning of these open points, let us briefly discuss fully discrete
approximations of (5.35). To this end, we set un

i ≈ u(i , nτ) using a space-time grid
with corresponding, uniform grid parameters h := 1 and τ, and denote by gi±1/2

consistent numerical fluxes at the boundaries between the cells i and i±1, respectively.
Note that this flux discretisation at inter-pixel locations corresponds to the procedure
in 4.1. Then, we obtain as a consistent and conservative approximation of (5.35) the
process

un+1
i = un

i − τ
�

gi+1/2− gi−1/2

�
. (5.36)

which is also in analogy to (the time discretisation of) our scheme in 4.1, with the
divergence form discretisation guaranteeing conservativity.

Stabilisation in this setting takes place via an appropriate choice of the fluxes. To this
end, we employ the minmod-function

minmod(a, b ) =





a if a · b > 0 and |a| ≤ |b |,
b if a · b > 0 and |b | ≤ |a|,
0 else,

(5.37)

which can easily be extended to more than two arguments if necessary, compare e.g.
[130], by choosing the argument with minimal modulus if the arguments are of the
same sign, and zero else. The most basic useful scheme for approximating (5.35) then
incorporates the minmod function by

gi+1/2 =minmod
�

1
τ

�
un

i+2− un
i+1

�
, c
�
un

i+1− un
i

�
,

1
τ

�
un

i − un
i−1

��
. (5.38)

Let us stress that the natural discretisation of fluxes in (5.35) is given by means of the
middle argument of (5.38),

c
�
un

i+1− un
i

�
, (5.39)

and its counterpart in gi−1/2. The other ingredients of gi±1/2 act as stabilisers, which
is easily recognised by taking into account the multiplication by τ from (5.36).

Let us now consider inner points of a strictly monotone data set u0 :=
�

u0
k
, . . . , u0

l

	
.

We assume that the extrema u0
k

and u0
l

stay fixed, and we point out that the events

u
n1
k+1
= u0

k or u
n2
l−1
= u0

l for any n1, n2 ≥ 1 (5.40)

do not constitute staircasing as staircasing refers to steps aka constant valued data
tupels arising away from extrema. Especially, one may consider to choose the time
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step size τ small enough such that the method reduces for many time steps at inner
points of u0 to

un+1
i
= un

i − cτ
��

un
i+1− un

i

�
−
�
un

i − un
i−1

��
, i = k + 2, . . . , l − 2 , (5.41)

i.e., in such cases the numerical fluxes reduce to the middle arguments, (5.39), such
that no stabilisation takes effect at these points. Heuristically, one then expects that
no staircasing occurs in strictly monotone data regimes: numerical fluxes gi±1/2 as in
(5.39) always introduce nonzero updates for i = k + 2, . . . , l − 2, whenever data are
not distributed exactly along a linear segment where un

i+1−un
i = un

i −un
i−1. Also the

other mentioned aspects of interest are close to this line of argumentation: since one
cannot avoid to employ the minmod stabilisation, as is shown in [36], it is natural to
assume that the number and position of staircasing artifacts depends on how often
the minmod stabilisation takes effect. This frequency in turn could be influenced,
e.g., by manipulating the time step size.

In the following, however, it will become evident that the stated expectations are not
based on solid ground.

• Staircasing arises already in semidiscrete approximations of (5.35) and is merely
bequeathed to fully discrete methods which approximate the semidiscrete pro-
cess.

• Concerning stability, we show that semidiscrete SILD processes involve bifur-
cations, such that the stability of numerical results under small data perturba-
tions cannot be guaranteed for all data configurations.

• Furthermore, we show that the choice of a time stepping method is also prob-
lematic: a naive proceeding can easily violate important invariance properties
of the semidiscrete formulation of (5.35), namely that the total variation as well
as the number of extrema of a given signal do not increase during time evolu-
tion.

5.2.1 Semidiscrete Analysis

We will now formulate and analyse a dynamical system that describes a spatially dis-
cretised, time-continuous version of SILD. We use the spatial discretisations of flux
and diffusion that have already been described. For simplicity we assume from now
on c = 1.

5.2.1.1 The Dynamical System

We consider real-valued, time-dependent signals

u = u(t ) = (. . . , u0(t ), u1(t ), u2(t ), . . .) (5.42)



(c) Martin Welk 2007–2016. All rights reserved.

5.2. Stabilised Inverse Linear Diffusion 189

of compact support. The latter restriction can be relaxed; it is sufficient to ensure
that signals are bounded and do not contain strictly monotone segments of infinite
length. Note that the time-continuous functions ui (t ) ≈ u(i , t ) defined at discrete
points in space is distinguished from fully discrete data un

i ≈ u(i , nτ) by the absence
of the upper, time-step index. We assume that spatial and temporal discretisations are
uniform with mesh sizes 1, τ, respectively.

Proceeding as in the fully discrete setting, see (5.36)–(5.38), we obtain for a conserva-
tive evolution on a signal (5.42) the following dynamical system of ordinary differen-
tial equations

u̇i = gi−1/2− gi+1/2 . (5.43)

Here, gi+1/2 = gi+1/2(u , t ) is the flux between adjacent pixels i and i + 1, which we
assume to fulfil the following conditions.

Translational invariance: gi+1/2(u , t ) = g1/2(S−i (u), t ), where S−i (u) denotes the
signal u shifted by −i pixels, (S−i (u)) j = u j+i ,

Time invariance: g1/2(u , t ) = g1/2(u). This assumption means that the system (5.43)
is autonomous.

Inverse diffusion without stabilisation can be realised by

g1/2 =−u0+ u1 (5.44)

leading to
u̇i =−ui−1+ 2ui − ui+1 . (5.45)

A stabilisation is introduced in order to ensure that local extrema become invariant
values, compare also the discussion in [36] for the fully discrete case. This means,
that (5.44) is used only if neither u0 nor u1 is an extremum, otherwise we set g1/2 = 0.

The stabilised version of (5.45) thus reads as the system

u̇i =





(−ui−1+ 2ui − ui+1), (ui−2, ui−1, ui , ui+1, ui+2) strictly

monotone

(ui − ui+1), (ui−1, ui , ui+1, ui+2) strictly monotone

and ui−1 local extremum

(−ui−1+ ui ), (ui−2, ui−1, ui , ui+1) strictly monotone

and ui+1 local extremum

0 else.

(5.46)

Our notion of a discrete extremum is the same as in 5.1: any pixel ui for which the
sequence (ui−1, ui , ui+1) is not strictly monotone is considered as local extremum
(compare remark on page 173).
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The equations (5.46) comprise a dynamical system with discontinuous right-hand
side. Let us therefore first specify our concept of solution, analogous to the procedure
in 4.1.1 and 5.1.

Given an initial signal (. . . , f0, f1, f2, . . .), we will say that a time-dependent signal
(. . . , u0(t ), u1(t ), u2(t ), . . .) is a solution of the initial-value problem consisting of the
differential equations (5.46) and the initial conditions

ui (0) = fi , i = . . . , 0,1,2, . . . , (5.47)

if the following conditions are satisfied:

(I) each ui is a continuous, piecewise differentiable function of t ,

(II) each ui satisfies (5.46) for all t for which u̇i (t ) exists,

(III) for t = 0, the right-sided derivative u̇+
i
(0) equals the right-hand side of (5.46).

In the following, we will refer to (5.46) with this understanding of solution as semidis-

crete stabilised inverse linear diffusion.

5.2.1.2 Analytical Solution

We start by noting the following facts.

Lemma 5.9 Let (. . . , u0(t ), u1(t ), u2(t ), . . .) be a solution of (5.46)–(5.47) in the sense of

(I)–(III).

Then the following hold:

(i) If ui is a local extremum at a time t = t0, its neighbours ui−1 and ui+1 can not

move away from ui at t = t0.

(ii) If ui is a local extremum at a time t0, it remains a local extremum for all t > t0.

(iii) If ui = ui+1 at a time t0, then the same equality holds for all t > t0.

Remark. The Lemma implies particularly the preservation of monotonicity, thereby
guaranteeing that the process is total variation preserving (TVP), compare [130] for
this notion.

Proof. We prove that, as long as ui is a local extremum, its neighbour ui+1 can move
only towards ui . Indeed, in case ui is a local extremum we have, see (5.46),

u̇i+1=

¨
(ui+1− ui+2) if neither ui+1 nor ui+2 is a local extremum,

0 else.
(5.48)
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If thus u̇i+1 is to be non-zero, ui+1 cannot be an extremum, and ui+1− ui and ui+2−
ui+1 have the same sign. Consequently,

sgn(u̇i+1) = sgn(ui − ui+1) (5.49)

holds at any time t in case ui is an extremum. Note, that the left neighbour ui−1 of
ui can be treated in an analogous fashion. This proves statement (i).

Next, we prove that pixels, once they have attained the same value, cannot split up
again to attain different values. Assume there were two neighbouring pixels ui and
ui+1 which are equal at time t0 and unequal at time t1 > t0, without loss of generality
we set ui+1(t1) > ui (t1). Furthermore, we assume that the interval (t0, t1) is chosen
such that the signs of differences ui+2− ui+1 and ui−1− ui do not change within the
interval, and such that ui and ui+1 are differentiable throughout the interval (t0, t1).
Note that this can always be ensured by splitting the interval if necessary. According
to the mean-value theorem of differential calculus, there exists a ϑ ∈ (t0, t1) such that

(t1− t0)(u̇i+1(ϑ)− u̇i (ϑ)) = (ui+1(t1)− ui (t1))− (ui+1(t0)− ui (t0)) , (5.50)

which entails
u̇i+1(ϑ)− u̇i (ϑ)> 0 . (5.51)

To prove assertion (ii) of the Lemma we derive a contradiction to (5.51).

If ui is a local minimum at t = ϑ (thus, throughout (t0, t1)), we have that ui+1 is not
an extremum, and it follows that

u̇i+1(ϑ)− u̇i (ϑ) = ui+1− ui+2< 0 . (5.52)

An analogous argument holds if ui+1 is a local maximum and ui not an extremum.

Finally, if neither ui nor ui+1 is an extremum at t = ϑ, we have that the differ-
ences ui−1− ui , ui − ui+1, ui+1− ui+2 are all negative in (t0, t1), and at least one
of ui−1− ui , ui+1− ui+2 is negative for t = t0. By choosing the interval (t0, t1)

small enough, we can achieve that 2(ui − ui+1) > ui−1− ui + ui+1− ui+2 through-
out (t0, t1), from which it follows that

u̇i+1(ϑ)− u̇i (ϑ) = (ui+1− ui+1)− 2(ui − ui+1)+ (ui−1− ui )< 0 . (5.53)

To sum up, we have obtained contradictions to (5.51) in all possible cases, which
completes the proof of statement (ii).

The third assertion follows from the fact that for a local extremum to lose its extremal-
ity, it would have to be “passed” by one of its neighbours, which would therefore have
to be equal to the extremum at some time (remember u is continuous with respect
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to t ). According to the second statement, the two pixels would irreversibly merge in
this case. �

It is therefore sufficient to consider the evolution of signal segments of finite length
whose first and last pixels are local extrema, and which are strictly monotone. With-
out loss of generality, we consider a decreasing segment f0 > f1 > . . . > fn > fn+1
where f0 is a local maximum and fn+1 a local minimum. Thus, we have the evolu-
tion equations

u̇0 = 0 ,

u̇1 = u1− u2 ,

u̇i =−ui−1+ 2ui − ui+1 , 2≤ i ≤ n− 1 ,

u̇n =−un−1+ un ,

u̇n+1 = 0 ,

(5.54)

which hold throughout any time interval (0,T ) in which u0 > u1 > . . .> un > un+1
stays true.

The system (5.54) is a system of linear ODEs which can be solved analytically. Leav-
ing aside u0 and un+1, we can rewrite the system for u := (u1, . . . , un)

T as

u̇=Au (5.55)

with the n× n matrix

A=




1 −1 0 . . . . . . 0
−1 2 −1 0 0

0 −1 2 −1 0 0
...

.. . .. . . . .
...

0 . . . 0 −1 2 −1
0 . . . . . . 0 −1 1




. (5.56)

The matrix A is positive semidefinite, since by Gershgorin’s Theorem [93] all its
eigenvalues are nonnegative. Moreover, A has rank n−1 since it contains a triangular
(n− 1)× (n− 1) submatrix without zeros on its diagonal. We therefore simplify the
system by eliminating the zero eigenvalue and corresponding eigenvector.

For v0 := 1p
n

n∑
i=1

ui we have v̇0 = 0, implying v0(t ) = v0(0) for all t . In fact, v0 = aT
0 u

where a0 =
1p
n
(1, . . . , 1)T is the eigenvector with eigenvalue zero of A.

Let us now set vi := ui − ui+1, i = 1, . . . , n− 1, and v := (v1, . . . , vn−1)
T, i.e.,

v := Du , (5.57)
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with the (n− 1)× n matrix

D =




1 −1 0 . . . 0
0 1 −1 0 0
...

. . . . . .

0 . . . 0 1 −1




. (5.58)

Introducing additionally the (n− 1)× (n− 1)matrix

B =




2 −1 0 . . . . . . 0
−1 2 −1 0 0

0 −1 2 −1 0 0
...

. . . . .. .. .
...

0 . . . 0 −1 2 −1
0 . . . . . . 0 −1 2




, (5.59)

one easily sees that
DTD =A, DDT = B . (5.60)

Thus, by (5.55) and (5.60), we obtain

Du̇= DAu= BDu , (5.61)

i.e., a new linear dynamical system for v:

v̇= Bv . (5.62)

The analytical solution of (5.62) is given by

v(t ) = eB t
v(0) (5.63)

which we will make more explicit using the eigendecomposition of the symmetric
matrix B .

Lemma 5.10 Let δk := πk/n. Then

bk :=

s
2
n
(sin(δk ), sin(2δk), . . . , sin((n− 1)δk))

T (5.64)

for k = 1, . . . , n− 1 are normalised eigenvectors of B, with corresponding eigenvalues

λk = 2(1− cos(δk)) . (5.65)

Remark. The matrix B represents a discrete Laplacian with zero boundary condi-
tions. Consequently, its eigenvectors are discretised harmonic functions, namely the
basis of a discrete sine transform.
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Proof. By direct calculation one checks that each bk is of unit length and satisfies

B bk = 2(1− cos(δk))bk . (5.66)

�

Via

v(t ) =
n−1∑
k=1



bk ,v(0)

�
bkeλk t (5.67)

we can rewrite (5.63) to obtain directly the following statement.

Proposition 5.11 For t ∈ [0,T ] the solution of (5.62) is given by

vi (t ) =
2
n

n−1∑
j=1

�
n−1∑
k=1

sin
πi k

n
sin
π j k

n
e2
�
1−cos

πk
n

�
t

�
v j (0) . (5.68)

The analytical solution of (5.55) is then computed by backsubstituting u for v and it
is given within the following corollary.

Corollary 5.12 The solution of (5.55) for t ∈ [0,T ] is given by

ui (t ) =
1
n

�
n∑

j=1

u j (0)−
i−1∑
j=1

j v j (t )+
n−1∑
j=i

(n− j )v j (t )

�
, (5.69)

where v j (t ) are given by (5.68), and thus by

ui (t ) =
n∑

j=1

 
1
n
+

4
n2

n−1∑
k=1

cos
π(2 j − 1)k

2n
sin
πk

2n
e2
�
1−cos

πk
n

�
t ·

·
�

n−1∑
l=1

l sin
πl k

n
+ n

n−1∑
l=i

sin
πl k

n

� !
u j (0) . (5.70)

In (5.69) and (5.70), sums with upper limit below lower limit are to be read as zero.

Remark. The evolution (5.55) (or also (5.70)) can also be read as non-stabilised inverse
linear diffusion on a finite signal (u1, . . . , un) with reflecting, i.e. zero-flux, boundary
conditions. That is to say, in time intervals between pixel merging events the strictly
monotone segments of semidiscrete stabilised inverse linear diffusion follow an or-
dinary inverse linear diffusion dynamics; at merging events, just the segmentation
changes.
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5.2.1.3 Staircasing in Segments

We continue considering a strictly decreasing signal segment enclosed between two
local extrema, and we want to determine under which conditions staircasing occurs.
We start with the following observation.

Lemma 5.13 Let a strictly decreasing segment ( f0, . . . , fn+1) with local extrema f0 and

fn+1 be given, n ≥ 2, and let (u0, . . . , un+1) evolve according to (5.46) with initial condi-

tion u(0) = f . Then the dynamics of (u1, . . . , un) follows (5.55) until one of the following

events happens:

(a) One of the pixels u1, un merges with its extremal neighbour pixel u0, un+1, respec-

tively.

(b) Two neighbouring pixels ui , ui+1 (1≤ i ≤ n− 1) become equal.

Either (a) or (b) occurs for a finite t = T .

Case (b) describes a staircasing event, entailing a transition to two smaller segments,
while in case (a) a transition to a smaller segment is made without staircasing. Even
in the latter case, a later staircasing event involving the same pixels is still possible but
then governed by the dynamics of the new segments.

Proof. It is clear that the dynamics (5.55) is terminated as soon as (a) or (b) occurs. It
remains to show that whatever initial values are given, this happens at finite evolution
time t = T .

From Lemma 5.9 it follows that for n ≥ 2 both u1 and un evolve in direction of their
neighbouring extrema as long as no staircasing involving these pixels has occurred,
i.e., as long as u1 > u2 and un−1 > un hold. Since (5.68) contains only exponential
summands with positive exponents, it is clear that the velocity of both pixels cannot
go asymptotically to zero; thus, whatever values u0 and un+1 might have (which don’t
influence the dynamics of u1, . . . , un directly), either u1 or un will merge with its
neighbouring extremum in finite time. �

However, by choosing f0 large enough and fn+1 small enough, the end-of-segment
merging events can be pushed to arbitrarily large values of t . This leads us to ask:
For which values of u1, . . . , un is the dynamics (5.55) guaranteed to be terminated by an

end-of-segment merging event of type (a), independent on f0 and fn+1?

To answer this question, we consider the dynamics (5.55) just as ordinary semidis-
crete inverse diffusion with zero-flux boundary conditions, and focus on the differ-
ences v1, . . . , vn−1. These differences are positive at t = 0, and staircasing events are
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indicated by at least one of these differences reaching zero. We can then prove the
following result.

Proposition 5.14 Given a strictly decreasing signal ( f1, . . . , fn), the dynamics (5.55)

with initial condition u(0) = f preserves the strict monotonicity u1 > . . . > un for

all t > 0 if and only if the differences v1(0) = f1− f2, . . . , vn−1(0) = fn−1− fn are given

by some multiple µb1 of the eigenvector b1 with µ> 0.

The proof relies on two important properties of the eigendecomposition of B which
can be directly read off the formulae (5.64), (5.65).

Lemma 5.15 For the eigenvectors and eigenvalues of B given by (5.64), (5.65), the fol-

lowing properties hold:

1. The eigenvalues are ordered by size, λ1 < λ2 < . . .< λn−1.

2. Exactly one eigenvector, namely b1 which corresponds to the smallest eigenvalue,

has only positive components. Each of the eigenvectors b2, . . . , bn−1 has at least one

negative component.

Proof of Proposition 5.14. Since v(0) has positive components, 〈v(0), bk〉 6= 0 holds
for some k. Let k be the largest index with this property. Considering (5.67) for
t →∞, we have that

lim
t→∞

v(t )

e2λk t
= 〈v(0), bk〉bk . (5.71)

Assuming that vi > 0 for all i and all t , the limits on the left hand side of (5.71) must
be nonnegative which can only be the case if all components of bk are nonnegative,
or if all are nonpositive. According to Lemma 5.15 this implies k = 1. �

Initial values f which do not satisfy the condition from Proposition 5.14 can be clas-
sified depending on which neighbouring values in the signal will merge first. We
describe this classification qualitatively in terms of the difference variables v.

To this end, we note that (5.63) can be evaluated for negative t as well as for positive t

since the linear system (5.62) is reversible. This implies that all initial values v◦ which
lead to a given state v∗ at later times can be obtained, vice versa, by (5.63) if v(0) = v

∗

is used as an initial condition and going backwards in time.

Since we seek to investigate which vi vanishes first during evolution, we want to
know where trajectories leave the sector (IR+0 )

n−1. The boundary of this sector is
made up by n − 1 facets, each of them characterised by one of the variables vi , i ∈
{1, . . . , n− 1} attaining zero value, see Figure 5.2.
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Figure 5.2: Facets of the boundary of
�
IR+0

�n . Left: (a) n = 3. Right: (b) n = 4.

Let the facet consisting of all these points (v0 > 0, . . . , vi = 0, . . . , vn−1 > 0)T be de-
noted by Si . Each facet is simply connected. Denoting by Tt<0(v) the trajectory of
a point v ∈ IRn−1 propagating under (5.63) backwards in time, we see that the set
of initial conditions for which vi is the first variable to vanish during evolution is
exactly

Tt<0(Si ) :=
⋃

v∈Si

Tt<0(v) . (5.72)

Note that solutions of (5.63) are continuous in t . Moreover, they depend continu-
ously on initial conditions, and because of the reversibility of the system, trajectories
are either identical or disjoint. The union Tt<0(Si ) of negative trajectories starting
on a single facet Si is therefore a simply connected (n − 1)-dimensional point set in
IRn−1, whose boundary consists of the facet Si itself and those trajectories starting on
the boundary of Si ,

∂ Tt<0(Si ) = Si ∪Tt<0(∂ Si ) , (5.73)

compare Figure 5.3.

Different sets Tt<0(Si ), Tt<0(S j ) are therefore separated by hypersurfaces Tt<0(Si j ),
Si j := ∂ Si ∩∂ S j (except for n = 3 where the separating line cannot be obtained from
S12 = {0} in this way, see instead the discussion below for this case). The topology
of the resulting partition of (IR+0 )

n−1 is therefore equivalent to the topology of the
(n − 1)-dimensional surface of a n-dimensional (hyper)cube corner with one facet
removed.

We notice further that if v ∈ Tt<0(Si ), then the linearity of (5.63) implies αv ∈
Tt<0(Si ) for any α > 0. This ensures that any hyperplane H = H

n,C defined by
〈n,v〉=C (where 〈·, ·〉 denotes Euclidean scalar product, n ∈ (IR+0 )n−1 and C > 0 are
fixed) is transversal to all trajectories under consideration. Thus, the separation of
(IR+0 )

n−1 induces by restriction a separation of (IR+0 )
n−1 ∩H whose topology equals
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Figure 5.4: Topology of the intersection of the partitioned
�
IR+0

�n with a hypersurface
H = H

n,C , equivalent to the (n − 2)-dimensional surface of a (n − 1)-dimensional
(hyper)cube corner. Left: (a) For n = 3, two line segments are obtained, equivalent
to two sides of a quadrangle. Right: (b) For n = 4, one has three triangles, adjacent to
a common corner like the corners of three quadrangular facets of a cube.

that of the (n− 2)-dimensional surface of a (n− 1)-dimensional (hyper)cube corner,
see Figure 5.4.

We discuss the simplest cases explicitly.

Case n = 2. Since B is a scalar, all initial values satisfy the conditions of Proposi-
tion 5.14, i.e., no staircasing takes place.

Case n = 3. The sets Tt<0(S1) and Tt<0(S2) are separated by a line which due to
symmetry considerations and because of the scaling property αTt<0(Si ) = Tt<0(Si )

must be the bisector of the quadrant (IR+0 )
2, i.e., v1 = v2. Initial values with v1(0) >

v2(0)make v2 vanish first, others with v1(0)< v2(0)make v1 vanish first.
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Case n = 4. The three facets S1, S2, S3 bounding the octant (IR+0 )
3 share the boundary

half-lines S12 = {(0,0,a)T | a ≥ 0}, S13 = {(0,a, 0)T | a ≥ 0}, S23 = {(a, 0,0)T | a ≥ 0},
respectively. Inserting (0,0,a)T into (5.63) gives

v1(t ) =
1
2

�
1
2

e(2−
p

2)t − e2t +
1
2

e(2+
p

2)t
�

a

v2(t ) =
1
2

�p
2

2
e(2−
p

2)t −
p

2
2

e(2+
p

2)t
�

a

v3(t ) =
1
2

�
1
2

e(2−
p

2)t + e2t +
1
2

e(2+
p

2)t
�

a

(5.74)

which by the substitution

α :=
1
4

e2t
�
et
p

2/2+ e−t
p

2/2�2, β :=
et
p

2/2− e−t
p

2/2

et
p

2/2+ e−t
p

2/2
(5.75)

simplifies to
v1(t ) = αβ

2, v2(t ) =
p

2αβ, v3(t ) = α . (5.76)

Taking into account that a > 0 and t < 0, it follows that

Tt<0(S12) =
�
(αβ2,
p

2αβ,α)T
�� α > 0,0<β< 1

	
. (5.77)

Analogous considerations lead to

Tt<0(S23) =
�
(α,
p

2αβ,αβ2)T
�� α > 0,0<β< 1

	

Tt<0(S13) =
�
(α,
p

2β,α)T
�� 0< α <β

	 (5.78)

which finally allow us to establish the following set of criteria, for given initial values
v(0) =

�
v1(0), v2(0), v3(0)

�T:

v2(0)<
p

2v1(0)v3(0) ⇒ v2 vanishes first,

v2(0)>
p

2v1(0)v3(0) and v1(0)< v3(0) ⇒ v1 vanishes first,

v2(0)>
p

2v1(0)v3(0) and v1(0)> v3(0) ⇒ v3 vanishes first.

(5.79)

5.2.2 Numerical Tests

Our experimental validation of the previously obtained results is twofold. On one
hand, we validate experimentally the bifurcation results from the preceding para-
graph, thus showing that staircasing is predictable by theory. Note, that the test
data are chosen so that the experiments featuring staircasing can be understood as
perturbed data of the non-staircasing test case, thus showing that data perturbations,
e.g. due to low-level noise or preceding numerical errors in the case of FCT schemes,
may influence the outcome of a SILD process. Complementing these investigations,
we discuss the influence of time stepping schemes by use of a numerical staircase-type
solution.
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5.2.2.1 Validation of Semidiscrete Theory

To validate the results of our bifurcation analysis, we consider a couple of data seg-
ments of length n = 4 which can be classified according to Proposition 5.14 and (5.79).
As the theoretical results are obtained for the semidiscrete case, we integrate in time
using Euler forward time stepping with very small time step sizes, i.e., we generally
use τ = 10−7. As in the theoretical derivations, we fix the spatial mesh width to 1.

Case 1: No staircasing. We consider the following set of initial data:

�
u0

0 , u0
1 , u0

2 , u0
3 , u0

4 , u0
5

�
=
�
2, 1.1707, 1.0707, 0.9293, 0.8293, 0

�
, (5.80)

continued by constant states u0
i = 2, i < 0, and u0

i = 0, i > 5, respectively.

Regarding the criteria (5.79), we observe that the data (5.80) correspond to v1 = v3
and v2 =

p
2 v1. In Figure 5.5 (top left) we display the initial signal as well as its steady

state solution, evaluated at t = 3. As predicted, no staircasing effect is visible.

Case 2: Staircasing in the middle of a profile. Consider now the initial data

�
u0

0 , u0
1 , u0

2 , u0
3 , u0

4 , u0
5

�
=
�
2, 1.16, 1.06, 0.94, 0.84, 0

�
, (5.81)

continued as in the preceding test case by constant states left and right. As easily ob-
served, this case corresponds to v2 <

p
2v1v3. Note that the data from (5.81) differ

only marginally from signal (5.80). Figure 5.5 (top right) shows the initial signal to-
gether with its steady-state solution, evaluated again at t = 3. As predicted, staircasing
is observable at the middle of the profile, with uk

2 = uk
3 = 1 for large k.

Case 3: Staircasing at an end of a profile. Our third set of initial data is

�
u0

0 , u0
1 , u0

2 , u0
3 , u0

4 , u0
5

�
=
�
2, 1.1707, 1.0807, 0.9393, 0.8293, 0

�
. (5.82)

Note again that (5.82) is very close to signal (5.80); however, one easily verifies that
in this case v2 >

p
2v1v3 and v1 < v3.

The initial signal as well as two evolved states are shown in Figure 5.5 (bottom row).
At t = 1.8, we observe as predicted that staircasing occurs first near the left end of
the profile. The steady state solution then is dominated by the first staircasing event.

Remark. The case that v3 vanishes first, see (5.79), can be realised numerically in an
analogous fashion.
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Figure 5.5: Initial states (lines with dots) together with numerical states (squares), as
described below. Top left: initial signal from (5.80) and steady state without staircas-
ing. Top right: initial data from (5.81) and steady state featuring staircasing at the
middle of the profile. Bottom: initial state from (5.82) together with (left) interme-
diate state with staircasing at an end of the profile, (right) steady state dominated by
previous staircasing. From [38].

5.2.2.2 Discussion of time integration

In this section, we want to investigate experimentally the influence of time discreti-
sation methods on a stable situation away from a bifurcation situation, thus comple-
menting the above numerical tests.

To this end, we employ a useful academic test case, i.e., The test case we use for this
purpose is the tent function already suggested in [36], here given as an initial function
u0:

u0(x) =

¨
α sin

�π
2

� x
10 + 1

��
+β, −5 ≤ x ≤ 5

0 else.
(5.83)

Setting α = 5 and β = 0, we obtain on a grid with spatial mesh width h = 1 the
function u0 together with its discrete representation displayed in Figure 5.6 (left).

Taking the discrete data displayed in Figure 5.6 (left) and performing 8 time steps with
τ = 0.2 using the fully discrete method from (5.36)–(5.38), we obtain the staircasing
situation given in Figure 5.6 (right). The discretisation error of the time stepping
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Figure 5.6: Left: analytic (line) and discrete (squares) initial states. Right: staircasing
by propagation of discrete initial state. Adapted from [38].
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Figure 5.7: Re-computations of staircasing solutions. Left: using 160000 time steps
with τ = 10−7. Right: using 16000000 time steps with τ = 10−9. Adapted from [38].

scheme is O(τ), such that one obtains in the limit τ → +0 the semidiscrete scheme
(5.43). For this reason we repeat the computation using the initial data from Fig-
ure 5.6 (right) but with very small time step size. The left and right diagrams in
Figure 5.7 show the computational results after 160000 time steps with τ = 10−5,
and after 16000000 time steps with τ = 10−7, respectively. We observe nearly the
same staircase-like structure as in the case of the coarse time discretisation, see Fig-
ure 5.6 (right); the differences of the employed time step sizes are observable only
by the slightly more rounded structure of the signals in Figure 5.7 compared with
Figure 5.6 (right). Here, as staircasing is an unquestioned feature of the spatial dis-
cretisation, the error of the time discretisation takes the role of an approximation
error resulting in a slightly rougher profile. However, as it is clear after our discus-
sion, staircasing cannot be avoided.

Let us point out a difference between the fully discrete method employing the Eu-
ler time stepping method, (5.36)–(5.38), and the semidiscrete methods. In the fully
discrete case there exist data constellations circumventing the effect of the minmod
stabilisation. To demonstrate this, we modify the case discussed above by choosing
α = 5 and β =−2.5, thus translating the tent function from Figure 5.6 (left) moder-
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Figure 5.8: Left: analytic (line) and discrete (squares) initial states. Right: numerical
solution (and steady state) after 9 time steps with slight new extrema. Adapted from
[38].

ately into negative y-direction, see Figure 5.8 (left). Note the new scaling of the y-axis.
Computing 9 time steps with τ = 0.001, we observe that new extrema are produced,
see Figure 5.8 (right). The reason for this behaviour is that at the critical points where
new extrema arise the method is reduced at the ninth time step to scheme (5.41). The
stabilisation then takes no effect, which cannot happen in the semidiscrete case.

It is evident from the last experiment that the fully discrete scheme as stated does
not accurately model all important qualitative properties of the semidiscrete process,
since the TVP property is violated by the generation of new extrema.

A remedy for this undesired behaviour is to modify the numerical flux (5.38) into

gi+1/2 =minmod
�

1
2τ

�
un

i+2− un
i+1

�
, c
�
un

i+1− un
i

�
,

1
2τ

�
un

i − un
i−1

��
, (5.84)

thus restricting the updates of variables within one time step of the fully discrete
scheme in such a way that none of two neighbouring pixels is allowed to travel more
than half the distance towards its neighbour. This is in fact the same sort of stability
limit as used in the 1-D total variation diffusion scheme in 4.1.

A disadvantage from the theoretical point of view could be that neighbouring pixels
approach each other only asymptotically, thus postponing the actual merging events
from finite to infinite times. This is the same phenomenon as observed for the semidis-
crete shock filter in 5.1, see remark on page 177.

Another way to suppress the TVP violations is based on the observation that it re-
quires two adjacent data moving in opposite directions to generate a new extremum.
Transferring therefore the procedure from 5.1.2, page 182, we can design a two-step
TVP scheme:

Step 1:

ũn
i = un

i − τ
�

gi+1/2− gi−1/2

�
, (5.85)
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Step 2:

un+1
i =





1
2 (ũ

n
i+1+ ũn

i
), (ũn

i+1− ũn
i
)(un

i+1− un
i
)< 0,

1
2 (ũ

n
i−1+ ũn

i ), (ũ
n
i−1− ũn

i )(u
n
i−1− un

i )< 0,

ũn
i else.

(5.86)

These steps substitute (5.36), while (5.38) is retained without change. Note, that the
modification by (5.85)–(5.86) is conservative as data at (automatically adjacent) new
extrema are replaced by their average.

Both schemes, (5.36) with (5.84) as well as (5.85)–(5.86) with (5.38), are time-discrete
approximations for the semidiscrete process (5.43) since all modifications vanish as τ
goes to zero.

5.3 Forward-and-Backward Diffusion

In this section we are concerned with a fully discrete analysis of the diffusion process

ut = div
�
g (|∇u |2)∇u

�
(5.87)

where the diffusivity g is positive at zero, but can attain negative values for some
positive arguments. In detail we require that

g (0) = c1 (5.88)

g (s2) ∈ [c2, c1] for all s > 0 (5.89)

with constants c1, c2 that satisfy

|c1|> |c2| , c1 > 0> c2 . (5.90)

We will also demand that there exists a small interval [0, z2) with z > 0 in which all
values of g are positive. For continuous g this is automatically satisfied.

This type of diffusion process is called forward-and-backward diffusion [95].

Specialising to the 1D case, we obtain

ut = ∂x

�
g (u2

x) ux

�
. (5.91)

Spatial Discretisation. A spatial discretisation of (5.91) with spatial mesh width 1
yields a semi-discrete model which reads

u̇i =
gi−1+ gi

2
(ui−1− ui )+

gi+1+ gi

2
(ui+1− ui ) (5.92)

where we have discretised the diffusivity g in the grid points by

gi = g
�
max

�
(ui − ui−1)(ui+1− ui ), 0

��
. (5.93)
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Comparing to the previous section, we see that this discretisation again involves a
stabilisation. The use of a mixed product of one-sided derivatives in the argument
of g ensures that we detect discrete extrema of u correctly: In these points, (ui −
ui−1)(ui+1− ui ) is zero or negative (despite the fact that u2

x cannot become negative)
and is mapped to zero by the maximum operation. This is similar to the minmod
discretisation of the previous section. However, the averaging of neighbouring diffu-
sivity values as in gi+gi+1

2 implies that we do this time not force the fluxes adjacent to
an extremum to be zero. It will turn out that with our requirements to g we can still
ensure maximum–minimum stability.

Time-Discrete Model. Discretising also the time variable, we arrive at a fully dis-
crete model. It takes the form

uk+1
i
− uk

i

τ
=

g k
i−1+ g k

i

2
(uk

i−1− uk
i )+

g k
i+1+ g k

i

2
(uk

i+1− uk
i ) (5.94)

with the time step size τ and g k
i = g

�
max

�
(uk

i − uk
i−1)(u

k
i+1− uk

i ), 0
��

.

5.3.1 Stability and Well-Posedness Analysis

For our analysis, two additional assumptions are essential. While the first one refers
to the range of grey-values, the second one requires that the diffusivity g still takes
sufficiently large positive values for small positive arguments. We can state the fol-
lowing result.

Theorem 5.16 Let an initial 1-D image f = ( fi ) be given and let the sequence of im-

ages uk = (uk
i ) evolve according to (5.94) with the initial condition u0 = f . Let the

grey-values fi be restricted to a finite interval of length R. Assume further that for the

diffusivity g , a positiveω exists such that g (s2)>−c2 holds for all s , 0< s <ωR.

If the time step satisfies

τ <
ω2

c1+ |c2|+ 2c1ω2
, (5.95)

the following are true for the time evolution (uk).

(i) Maximum–minimum principle. If the initial signal is bounded by a ≤ fi ≤ b

for all i = . . . ,−1,0,1,2, . . ., then the inequalities a ≤ uk
i
≤ b hold for all i and

all k = 0,1,2, . . ..

(ii) Total variation reduction. For each time step k = 0,1,2, . . ., the total variation

of the image uk+1 is less or equal to the total variation of uk .
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Proof. The global statements of the theorem follow from local properties which will
be proved in the sequel.

1. We prove that a local maximal pixel does not increase. Assume that uk
i is a local

maximum of the 1-D image in time step k, i.e., we have uk
i ≥ uk

i+1 and uk
i ≥ uk

i−1.

Since in this case g k
i−1+ g k

i and g k
i + g k

i+1 are certainly nonnegative, uk+1
i

is a convex
combination of uk

i , uk
i+1 and uk

i+2 if only

1− τ
2
(g k

i−1+ 2g k
i + g k

i+1)≥ 0 (5.96)

holds. Because of g k
i−1+ 2g k

i + g k
i+1 ≤ 4c1 this is surely the case if

τ ≤ 1
2c1

. (5.97)

2. We show that the neighbour pixel of a local maximum can not increase in excess
of this maximum. Assume that uk

i is a maximum and uk
i+1 is not a local minimum.

Then the inequality uk+1
i+1 ≤ uk

i holds if

τ ≤ ω2

2c1ω2+ |c2|
. (5.98)

To see this, we use the equation

uk+1
i+1 = uk

i+1+ τ ·
�

g k
i
+ g k

i+1

2
(uk

i − uk
i+1)+

g k
i+1+ g k

i+2

2
(uk

i+2− uk
i+1)

�
(5.99)

and distinguish two cases.

Case 1: (uk
i+1− uk

i )(u
k
i+2− uk

i+1)≤ω2R2.

Then g k
i+1+g k

i+2 is certainly nonnegative. The right-hand side of (5.99) is there-
fore a convex combination of uk

i
, uk

i+1 and uk
i+2 if

1− τ
2
(g k

i + 2g k
i+1+ g k

i+2)≥ 0 . (5.100)

Analogous to our above reasoning, this is true if (5.97) is satisfied.

Case 2: (uk
i+1− uk

i )(u
k
i+2− uk

i+1)>ω
2R2.

Here we conclude from uk
i+1− uk

i+2≤ R that

uk
i − uk

i+1>ω
2R . (5.101)
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Using 1
2 (g

k
i + g k

i+1) < c1 and 1
2 (g

k
i+1 + g k

i+2) > c2 we obtain from (5.99) the
estimate

uk+1
i+1 ≤ uk

i+1+ τc1(u
k
i − uk

i+1)+ τ |c2| R (5.102)

which ensures uk+1
i+1 ≤ uk

i
, provided that

τ ≤ ω2

c1ω2+ |c2|
(5.103)

holds.

Condition (5.98) ensures the bounds of both cases, i.e., (5.97) and (5.103).

3. We prove that no new extrema are generated around existing extrema. Assume
that uk

i
is a local maximum, and none of its neighbours is a local minimum. Assume

first that
(uk

i+1− uk
i )(u

k
i+2− uk

i+1)>ω
2R2 (5.104)

and thus again (5.102) holds.

Similar considerations for uk+1
i

yield

uk+1
i ≥ uk

i + τc1(u
k
i+1− uk

i )− τc1R (5.105)

and therefore

uk+1
i − uk+1

i+1 ≥ (1− 2τc1)(u
k
i − uk

i+1)− τ(c1+ |c2|)R . (5.106)

Since we assume that

τ <
ω2

c1+ |c2|+ 2c1ω2
≤ 1

(c1+ |c2|)R/(uk
i
− uk

i+1)+ 2c1

, (5.107)

the expression on the right-hand side of (5.106) is nonnegative.

Therefore uk+1
i+1 can become a maximum in (uk+1) only if

(uk
i+1− uk

i )(u
k
i+2− uk

i+1)≤ω2R2 . (5.108)

Analogous reasoning applies to the left neighbour uk+1
i−1 . This means that the maxi-

mum property of pixel i can be shifted to one of its neighbours. Our assertion that
no new extrema are generated remains true except if both neighbours uk+1

i−1 and uk+1
i+1

would simultaneously into maxima.

Let us therefore discuss this case. This would require the two inequalities

(uk
i+1− uk

i )(u
k
i+2− uk

i+1)≤ω2R2

and (uk
i−1− uk

i−2)(u
k
i − uk

i−1)≤ω2R2
(5.109)
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to hold at the same time. In this situation, however, g k
i+1+ g k

i+2 and gi−1+ gi−2 are
nonnegative, implying

uk+1
i+1 ≤ uk

i+1+ τc1(u
k
i − uk

i+1)

and uk+1
i−1 ≤ uk

i−1+ τc1(u
k
i − uk

i−1) ,
(5.110)

while for the central pixel

uk+1
i ≥ uk

i + τc1(u
k
i−1− 2uk

i + uk
i+1) (5.111)

holds, hence

−uk+1
i−1 + 2uk+1

i − uk+1
i+1 ≥ (1− 2τc1)(−uk

i−1+ 2uk
i − uk

i+1) . (5.112)

For τ ≤ 1
2c1

, the right-hand side is clearly nonnegative which ensures that uk+1
i−1 and

uk+1
i+1 can not both become maxima.

4. We prove that monotonicity is preserved in image segments without extrema.
Assume that uk

i > uk
i+1 > uk

i+2> uk
i+3. We show that then also uk+1

i+1 ≥ uk+1
i+2 holds.

In the proof we distinguish three cases.

Case 1: g k
i
+ g k

i+1 ≥ 0 and g k
i+2+ g k

i+3 ≥ 0.

Then

uk+1
i+1 − uk+1

i+2 ≥ (1− 2τc1)(u
k
i+1− uk

i+2) ; (5.113)

the right-hand side is again surely nonnegative if (5.97) holds.

Case 2: g k
i
+ g k

i+1 ≥ 0 and g k
i+2+ g k

i+3< 0.

(The case g k
i + g k

i+1< 0 and g k
i+2+ g k

i+3≥ 0 is treated in a symmetric way.)

Here we conclude from uk
i+2−uk

i+3≤ R and (uk
i+1−uk

i+2)(u
k
i+2−uk

i+3)>ω
2R2

that
uk

i+1− uk
i+2>ω

2R . (5.114)

Consequently,

uk+1
i+1 − uk+1

i+2 ≥ uk
i+1− uk

i+2− 2τc1(u
k
i+1− uk

i+2)− τ |c2| (uk
i+2− uk

i+3)

> uk
i+1− uk

i+2− 2τc1(u
k
i+1− uk

i+2)− τ |c2|R ; (5.115)

the right-hand side is certainly nonnegative if

τ ≤ ω2

2c1ω2+ |c2|
. (5.116)
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Case 3: g k
i + g k

i+1 < 0 and g k
i+2+ g k

i+3< 0.

Since in this case we have

(uk
i − uk

i+1)+ (u
k
i+2− uk

i+3)≤ R , (5.117)

it follows that

(uk
i+1− uk

i+2)min(uk
i − uk

i+1, uk
i+2− uk

i+3)>ω
2R2 (5.118)

and thus
uk

i+1− uk
i+2> 2ω2R . (5.119)

Similar reasoning as in Case 2 gives that uk+1
i+1 − uk+1

i+2 is ensured if

τ ≤ ω2

2c1ω2+ |c2|/2
. (5.120)

Comparing the bounds derived for the different statements yields (5.95) as the most
restrictive one, which we impose therefore. Since then extrema can not be gener-
ated but only shifted to neighbouring pixels, and monotonic segments preserve their
monotonicity, both maximum–minimum principle and reduction of total variation
follow immediately. �

Remark. Theorem 5.16 demonstrates that in the semidiscrete setting even a process
involving negative diffusivities can have well-posedness properties, which can be anal-
ysed by our approach. In applying this theoretical result for practical computation,
however, one is confronted with the difficulty that the bound for τ guaranteed by
the Theorem is rather small. We do not address this aspect further here.
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Chapter 6

Variational Models and

Integro-Differential Equations for

Image Deconvolution

In this and the following chapter, we are concerned with the application of variational
approaches and related (integro-)differential equations for the sharpening of images.
The present chapter is devoted to our basic model. The relevant concepts and ap-
proaches have been laid out in two conference papers at Scale Space 2005 [222] and
DAGM 2005 [223]. The presentation here follows and extends these two sources.
The author is particularly grateful to David Theis who contributed to this research
within his diploma thesis [193] under the author’s co-supervision, and did many ex-
periments to validate and compare concepts, and who is also a coauthor of the before-
mentioned conference papers.

6.1 Introduction to Basic Deblurring Concepts

Blurring describes the fact that information belonging to a single object point de-
picted in an image is spread over a certain region in the image, instead of being sharply
localised. In all kinds of image acquisition methods, this is a ubiquitous phenomenon.
Common sources of blurring include

• motion of objects during the recording of an image,

• motion of the camera during the recording of an image,

• defocussing of the imaging equipment,

213
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• aberrations, diffraction and other deviations of the real camera optics from its
idealised model,

• atmospheric perturbations.

Consequently, there is a strong demand for methods which can remove blur, i.e.,
deblur images, in order to fully exploit the information contained in digital images.

Deblurring, or image restoration, as it is also often called, is a challenging, severely
ill-posed problem. It is therefore reasonable to introduce into the deblurring process
any a-priori knowledge available in a specific application context in order to improve
the quality of results. Thus it is natural that over the years a tremendous variety
of approaches has been proposed in the literature, which differ greatly in their as-
sumptions on the image as well as on the blurring process, and in the way how these
assumptions are cast into a mathematical model.

Before we give a coarse categorisation of deblurring approaches, let us establish some
fairly general mathematical framework.

6.1.1 Basic Blur Model

We have to describe the relation between the observed image f : Ω → R given on a
(discrete or continuous) image domain Ω and the “ideal” image g : Ω′ → R on the
image domainΩ′. The latter is often identified with the physical object being imaged.
We assume that both f and g share the same range R which is a real vector space, but
we permit for the moment that the image domains Ω and Ω′ may be different.1

A widespread and physically well motivated assumption in deblurring methods is
that the blurring process is a linear process that can be modelled as

u(x) =

∫

Ω′

g (y)H (x , y)dy (6.1)

with a function H : Ω × Ω′ → IR. The latter is called point-spread function (PSF)

since it describes the contributions of each point y of the ideal image domain Ω′ to
each point x of the observed image domain Ω. In cases when the image domain Ω′

considered for g is discrete, the integral over Ω′ is of course a sum.

1Although we will not make substantial use of this generality in this work, it is useful in several
respects for further developments. We sketch two directions. Firstly, a model with Ω 6= Ω′ can better
account for the fact that the blurring transports information from outside to inside the observed image
region. We will discuss ways to handle these boundary effects later in this chapter. Secondly, one could
even choose e.g.Ω′ as a continuous domain butΩ discrete in order to model the entire image acquisition
process from the sharp continuous physical image to the blurred discrete observed image. Models of
this type, however, are not considered further here.
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However, realistic models have to account for the fact that measurements are noisy.
This means that instead of the right-hand side of (6.1) one observes the result of some
stochastic point operation N( · )( · ) :Ω×R→ R acting on it, i.e.,

f (x) =Nx



∫

Ω′

g (y)H (x , y)dy


 . (6.2)

Usually, the noise operator N is assumed to be additive, such that the model simplifies
to

f (x) =

∫

Ω′

g (y)H (x , y)dy + n(x) (6.3)

with a random noise function n :Ω→ R.

6.1.2 Classification of Deblurring Approaches

We will now sketch three main distinctions that can be used to classify deblurring
approaches.

Type of blurring. An important case of image blurring is that the values of the
PSF depend only on the relative position of the two points involved. In this case one
speaks of a spatially invariant PSF, otherwise of a spatially variant PSF.

The spatially invariant blurring model tacitly assumes that the image domainsΩ and
Ω′ can be identified, and possess an affine structure, such that x − y makes sense for
x ∈Ω, y ∈Ω′. It requires then that H (x , y) = h(x− y).2 One has then

f (x) =

∫

Ω

g (y)h(x − y)dy + n(x) (6.4)

which can easily be rewritten as

f = g ∗ h+ n (6.5)

where ∗ denotes convolution.

From this case, it is clearly motivated why the term deconvolution is often used in
place of deblurring. It has, however, become common to denote by deconvolution
also the solution of more general integral equations, which justifies the use of the
term also for deblurring with spatially variant PSF.

Figure 6.1 shows examples of spatially invariant point-spread functions.

2This assumption can be weakened.
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Figure 6.1: Some spatially invariant point-spread functions (convolution kernels).
Left to right: (a) Gaussian. It can be used as simple model for different types of blur,
e.g. as a coarse approximation for atmospheric blur. (b) Disk-shaped PSF. It appears
typically as defocussing kernel for rotationally symmetric apertures. (c) Line-shaped
PSF as it results from linear motion blur. (d) Discontinuous PSF combined from
two line-shaped components. (e) Banana-shaped PSF, extracted from a photograph
where it appeared as impulse response of an approximate point light source (compare
Figure 6.8). – Some of these PSFs will be used in experiments later in this chapter.

Comparing to general spatially variant PSFs, spatially invariant PSFs contain tremen-
dously less data. Given two-dimensional images, e.g., a full space-variant PSF has a
four-dimensional domain of definition. Storing it completely would require huge
memory resources even for moderate image sizes and moderate reach of blur and is
therefore unpractical. Besides, it is unrealistic that such a fully general space-variant
PSF could be measured. For these reasons it is fairly attractive, and common practice,
to work with space-invariant PSF models even when they are known to be inexact as
long as the inaccuracy is moderate.

Knowledge about the blurring process. The second distinction to be made refers
to the information that is available on the PSF. Some methods are designed to de-
blur images where the point-spread function H is known. Such knowledge can be
derived from measurements, for example from calibration of camera optics, or from
theoretical considerations of the physical process that leads to blurring, or from a
combination of both. We will refer to these approaches as models with known blur.

As opposed to that, blind deblurring methods try to recover even the parameters of
blurring from the blurred image. Obviously, a blind deblurring problem is much
more underdetermined than one with known blur. Inevitably, even blind deblurring
methods have to make some assumptions on the type of blur, which in fact leads to
a scale of degrees of blindness. On one extreme, fully blind deblurring with spatially
variant PSF is seems out of reach due to its extreme underdetermination. On the
other extreme, in some cases, where the search space is restricted to a blur model
with very few parameters, one speaks of semi-blind methods. Clearly, the existence
of blind deblurring methods does not render non-blind approaches superfluous.
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Discretisation level. The third distinction refers to the image domains Ω,Ω′ used
in designing the algorithm: They can be chosen either discrete or continuous.

Since measured digital images are necessarily on a discrete domain, discrete models are
closer to the image representation that is finally used in the numerical computations,
while continuous models still need to be discretised for implementation. Moreover,
discrete models can capitalise on the realm of matrix algebra theory; alternatively,
discrete variational approaches can be formulated.

On the other hand, continuous modelling is closer to the physical process of blurring
that takes place in a continuous environment. It allows to use the theory of (integro-)
differential equations and closely related calculus of variations. This framework en-
sures by construction that important physical symmetries are properly reflected in
the model.

Hence, the choice between continuous and discrete modelling appears primarily as a
methodological decision. Both approaches have led to promising results, and both ap-
proaches display specific strengths. It is therefore worth trying to combine concepts
developed in both frameworks.

6.1.3 Related Work

Deblurring problems have attracted the attention of signal processing and computer
vision researchers for almost six decades. Early contributions were based on lin-
ear system theory. Later on, the accent of linear methods shifted towards matrix-
algebraic methods which profit from the great developments in iterative solvers such
as conjugated gradients, particularly with preconditioning. Variational approaches
to non-blind and blind deconvolution date back mostly to the last 15 years.

Linear filtering. A first class of approaches to deconvolution within a continuous
framework (with spatially invariant kernel) is based on ideas from linear system the-
ory. Assume that a blurred image is given which is the convolution of a sharp image
with a known kernel superposed with additive noise,

f (x) = (g ∗ h)(x)+ n(x) , x ∈ IR2 . (6.6)

Assume first that the noise n can be neglected. Fourier transform then carries over
the convolution to multiplication in the frequency domain,

f̂ = ĝ · ĥ . (6.7)

Provided h is known, division of f̂ by ĥ should allow to restore ĝ and thereby g .
However, this inverse filtering procedure faces the problem that in general ĥ will pos-
sess zeroes. These represent frequencies which are deleted by blurring with h and
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must therefore not be present in a noise-free blurred image. But still ĥ is close to zero
in the vicinity of its zeroes, and, even if it has no zeroes, for high frequencies. But in
frequency ranges where |ĥ| is small, even minimal amounts of noise are tremendously
amplified, rendering the procedure extremely unstable.

The simplest approach to handle this difficulty is pseudo-inverse filtering which elim-
inates frequencies for which ĥ is smaller than some threshold K . A refined way to
regularise inverse filtering is Wiener filtering [231] which replaces ĥ−1 by a smooth
approximation ĥ−1 |ĥ|2 /(|ĥ|2+K2) such that one obtains an approximation u for the
sharp image g via

û =
1

ĥ
· |ĥ|

2

|ĥ|2+K2
· f̂ . (6.8)

This filter displays better stability than pseudoinverse filtering. It has properties of a
band-pass and is therefore even well-suited to deal with moderate noise. The optimal
value for the threshold parameter K can be linked to the noise level in the image.
However, the cut-off of high frequencies still leads to characteristic perturbations in
the image which can principally not be avoided by linear filters, see [23, p. 119].

Analytic approaches to discrete deblurring. A number of approaches to discrete
deconvolution with Gaussian kernels is based on different analytic approximations
of the inverse of Gaussian convolution. Approximate convolution inverses – i.e.,
convolution kernels providing for an approximative deblurring – of Gaussian PSFs
were constructed using Hermite polynomials in [109]. Analytic inversion of the
Toeplitz matrix describing Gaussian convolution has been used in [119]. Higher
order derivatives computed in the Fourier domain are used in [192]. An approach
via q -series was proposed in [135]. An approach integrating analytic inversion with
variational ideas can be found in [49].

Iterative and algebraic discrete deblurring methods. Early iterative methods for
discrete deblurring are described in the survey paper [26].

More recently, a number of important contributions to discrete deblurring has been
made by Nagy and colleagues. Here, spatially invariant PSFs have been considered
in [114, 115, 148]. Kronecker product approximations and the theory of Toeplitz
(and closely related) matrices are the main approaches. Extensions to spatially vari-
ant blurs were considered in [113, 149, 150]. It is assumed that the PSF does not vary
largely within small regions such that locally spatially invariant deblurring can be
used. Approximate convolution kernels at specific locations are obtained by interpo-
lation.

In [105, 151] it has been demonstrated how to include nonnegativity constraints into
a discrete deblurring approach. Boundary conditions were discussed in [148].
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The aforementioned methods are applied to astronomic imaging in [104]. An appli-
cation to the cosmic microwave background has been demonstrated for symmetric
[201] and asymmetric [202] PSFs.

Variational deconvolution. Variational methods rely on stating the problem to be
solved as minimisation of a functional dependent on an unknown function. Such ap-
proaches also have a long tradition in image deblurring. Similar to other variational
functionals used in image analysis applications, variational functionals for deblurring
are composed of a data (or fidelity) term and a regularisation term. A typical func-
tional has the form

E (u) =

∫

Ω

�
(h ∗ u− f )2+Ψ

�
|∇u |2

��
dx . (6.9)

Here, the data term
∫
(h∗u− f )2 dx is based on a mean-square error of the reconstruc-

tion of the blurred image f from the deblurred image candidate u and convolution
kernel h and enforces the exact match between the blurred image and its deblurred
counterpart. The regularisation term

∫
Ψ
�
|∇u |2

�
dx encodes a smoothness prior for

the deblurred image. This basic structure of a variational formulation of deblurring
is found e.g. in [14, 59, 138]. Regularisation ideas in connection with iterative solu-
tion are already found in [26, 129]. Research on existence, uniqueness, and stability
of solutions for this type of problems can be found in the work by Bertero, Poggio,
and Torre [24].

Gradient descents for functionals of this type are represented by integro-differential
equations. These resemble diffusion–reaction PDEs but involve convolutions in the
reaction term which is therefore not strictly local. Meanwhile, via the diffusion term
a link is established to the well-developed theory of image processing via diffusion,
see Chapter 2. Many different diffusivities can be linked to different regularisers in
variational functionals. The simplest possible regularisation, a quadratic Tikhonov
regulariser, generates a linear diffusion component which leads like in other image
processing applications to a general degradation of small-scale image details, acting
thereby against the desired deblurring effect. Therefore the non-quadratic regularis-
ers which have been established as a standard in image processing for a long time, are
also advocated in the variational deblurring literature.

The most widespread nonquadratic regularisation employed in variational deblur-
ring is the total variation (TV) regularisation, see [154, 157], which is linked to total
variation diffusion, compare 2.2.4.1. It has been used by Marquina and Osher [138]
for non-blind deconvolution. Chan and Wong [59] attacked the blind deconvolu-
tion problem with the same regulariser. Another early approach to blind variational
deconvolution with quadratic regularisation is found in You and Kaveh [233, 234],
where also alternating gradient descent for image and convolution kernel is proposed
to carry out the minimisation.
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Recent work by Bar, Sochen and Kiryati [14] uses instead a Mumford-Shah segmen-
tation term [147] to address non-blind deconvolution with fairly general spatially
invariant PSFs as well as a semi-blind deconvolution problem with a parametric Gaus-
sian PSF model.

Robust data terms are motivated by robust statistics [103, 108] and have been in-
troduced in computer vision particularly in motion detection [28, 29, 40, 107, 141].
Important theoretical results were contributed by Nikolova [152]. In the context
of discrete deconvolution models, robust data terms have already been proposed in
1995 by Zervakis et al. [235], but it seems that this proposal attracted little atten-
tion at that time. They did not come into broader use until recently, when they were
introduced in the variational deblurring framework by Bar et al. [15], where their ex-
cellent capabilities in the deconvolution of images degraded by severe, e.g. impulsive,
noise were impressively demonstrated. Since then, further aspects of this concept
have been investigated also in our own work [223] including the formulation of the
spatially variant setup, and in [13] where the focus lies on colour images.

Continuation strategy. In 6.4.3.2, we describe a continuation strategy for the steer-
ing of the regularisation weight. This technique has been considered for non-convex
variational problems in visual reconstruction in general by Blake and Zisserman [30],
and more specifically in the context of total variation denoising by Chan, Chan and
Zhou [58].

Blur estimation. A bridge between nonblind and blind deblurring methods is es-
tablished by several works concerned with estimating point-spread functions.

Again, these methods have to rely on assumptions made about the type of PSF ac-
cording to which they can be classified. Older approaches [26, 177, 178, 179] are
based on parametric models for spatially invariant PSFs; image information is then
exploited to estimate parameters.

Recently, Fergus et al. [89] proposed a statistics-based method to estimate irregularly
shaped spatially invariant PSFs. Other recent extensions [12, 16, 84, 132, 190] aim
at estimating spatially variant PSFs which can be represented by parametric models
with spatially variant parameters, like spatially variant defocus or motion blur.

6.1.4 Our Contributions

In this chapter we present a fairly general framework for non-blind deblurring that
is based on a variational approach. Via the variational gradient descent procedure it
leads to integro-differential equations for deblurring. We list some main features of
the approach.
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Generality of point-spread functions. The model is designed to impose only weak
conditions on the PSFs. Throughout this chapter, we adhere to a spatially variant blur
model No symmetry assumptions (like axial or rotational symmetry) are made such
that PSFs can take fairly irregular shapes.

Edge preservation and enhancement. By the choice of regularisers (or correspond-
ing diffusion expressions in the resulting integro-differential equations) the model is
enabled to preserve and even enhance edges in images. To this end, we include in the
framework besides the common total variation regulariser also non-convex regularis-
ers of Perona–Malik type. On the level of the the integro-differential equations we
also investigate anisotropic diffusion expressions for which no corresponding energy
functional is known so far. The performance of different regularisers is compared
quantitatively and visually.

Robustness. We use the setup for nonquadratic robust data terms that has also been
used in [15], which is related to the earlier discrete formulation of [235]. With regard
to the capabilities of the model, this may be the most valuable single improvement.

The capability of robust data terms of handling extreme noise in image deconvolution
is known from Bar et al.’s work [15]. We investigate further practical aspects of this
concept. Especially it turns out that a model with robust data terms can excellently
cope with a variety of model violations, i.e., discrepancies between idealised model
assumptions and the features present in real data.

Although blind deconvolution is not included in the model as presented here, the
aforementioned robustness property opens a way to cope with uncertainty on the
PSF: Since a misestimation of the blurring PSF is in fact a model violation, robust
data terms allow to tolerate it as long as the error is moderate. Thereby, deblurring
can be performed even with only approximative knowledge of the PSF, which can be
achieved in multiple ways.

Steering of the regularisation/diffusion weight. Based on considerations on the
twofold role of the regularisation, namely that it provides stabilisation against noise
influence as well as suppression of oscillatory artifacts in the reconstructed image, we
propose a continuation strategy that successively reduces the weight parameter.

Boundary conditions. Information flow across the image boundary appears nat-
urally in image blurring and makes the boundary treatment in deblurring more dif-
ficult than in other image processing tasks. We discuss shortly some ways to handle
this problem. We sketch a setup for synthetic examples which allows quantitative
measurements of reconstruction accuracy without the influence of boundary effects.
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For practical applications, we propose a pragmatic solution that once more makes
use of the favourable robustness properties achieved by nonquadratic data terms.

6.2 Energy Functionals and Diffusion-Reaction Equations

Variational deconvolution methods aim at reconstructing the sharp image by min-
imising an energy functional that encodes the convolution relation between the given
and sought images together with regularity assumptions on the sought image.

6.2.1 Energy Functionals and Diffusion-Reaction Equations

From now on, we simplify the blur model (6.3) by the assumptionΩ =Ω′. Relying
on this blur model, deconvolution of an image can be achieved by minimising the
energy functional

E[u] := E1[u]+αE2[u] (6.10)

consisting a data or fidelity term E1 and a regularisation or smoothness term E2 as fol-
lows, whose respective influence is balanced by the regularisation or smoothness weight

α > 0.

Data term. The data term has the structure

E1[u] :=
1
2

∫

Ω

Φ
�
(R f ,H [u](x))

2�dx (6.11)

and depends on the residual

R f ,H [u](x) := f (x)−
∫

Ω

u(y)H (x , y)dy (6.12)

that measures the error of reconstruction of the observed image from the estimated
sharp image u under our blur model. The function Φ : IR+0 → IR+0 is an increasing
penaliser with Φ(0) = 0. Relevant choices for Φ will be discussed in Section 6.3.1.
This setting for the data term comprises and extends its counterparts used in [234, 14]
and other variational deconvolution literature. Its purpose is to enforce closeness of
the reconstructed image to the unobservable sharp image g from (6.3).

Regulariser. The regularisation term has the structure

E2[u] :=
1
2

∫

Ω

Ψ
�
|∇u |2

�
dx (6.13)
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where Ψ : IR+0 → IR+0 is again an increasing penaliser with Ψ (0) = 0, for which we will
present possible choices in Section 6.3.2. This term is used to enforce smoothness as-
sumptions on the deconvolved image and is therefore the primary place to introduce
prior knowledge about image structure into the framework.

The role of the regulariser in variational deconvolution will be discussed further in
Section 6.4.3.1.

6.2.2 Variational Gradient Descent

In the following, we aim at finding local minima of E by gradient descent. To this end,
we will derive now integro-differential equations that encode this gradient descent.
The variational derivation is similar to Chapter 2.

Variational gradient of the data term E1. We substitute w = u+ǫv for u into E1,
where v is assumed to be a smooth function on Ω which vanishes on the boundary.
It follows that

d
dǫ

E1[w]

�����
ǫ=0

=
d
dǫ

�
1
2

∫

Ω

Φ
�
(R f ,H [w](x))

2�dx

������
ǫ=0

=

∫

Ω

�
Φ′
�
(R f ,H [u](y))

2�R f ,H [u](y)
�
·

· d
dǫ

�
f (y)−

∫

Ω

�
u(x)+ ǫv(x)

�
H (y, x)dx

�����
ǫ=0

dy

=−
∫

Ω

�
Φ′
�
(R f ,H [u](y))

2�R f ,H [u](y)
�
·
∫

Ω

v(x)H (y, x)dx dy

=−
∫

Ω

∫

Ω

�
Φ′
�
(R f ,H [u](y))

2�R f ,H [u](y)
�
·H (y, x)dy · v(x)dx . (6.14)

Requiring that this equality holds for all admissible functions v , we can drop the
integral and multiplication with v , which gives us the variational gradient

δ

δu
E1[u](x) =−

∫

Ω

Φ′
�
(R f ,H [u](y))

2� R f ,H [u](y) H (y, x)dy . (6.15)

Notice that the arguments of H have switched their positions – the operator appear-
ing here is the adjoint of the blur operator. In the case of a spatially invariant PSF h

this corresponds to a convolution with h̃ where h̃(x) := h(−x) is the result of reflect-
ing h at the origin.
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Variational gradient of the regularisation term E2. The regularisation term E2
is exactly of the same type as the energy functional (2.20) considered in 2.2.2 such
that its variational gradient equals (2.25), i.e.,

δ

δu
E2[u] =−div

�
Ψ ′
�
|∇u |2

�
∇u

�
. (6.16)

Gradient descent. Using the variational gradients for both components of the en-
ergy functional (6.10), a gradient descent for the latter finally reads

∂t u =− δ
δu

E1[u]−α
δ

δu
E2[u] (6.17)

or, by inserting (6.15) and (6.16),

∂t u =

∫

Ω

Φ′
�
(R f ,H [u](y))

2� R f ,H [u](y) H (y, · )dy +αdiv
�
Ψ ′
�
|∇u |2

�
∇u

�
. (6.18)

This integro-differential equation is the basic form of what we will refer to as deblur-

ring equation in this part of the work.

The last summand on the right-hand side of (6.18) is a diffusion term. The first
summand resembles a reaction term in a diffusion–reaction PDE. While a reaction
term, however, is usually understood as a local interaction that acts as data-dependent
source or sink, this term is not strictly local due to the integration. If the PSF has
(locally) a support of a certain size, then the region of influence of the integral term
in (6.18) has roughly speaking the double extent of that support. Having said this,
we will for the sake of simple terminology nevertheless refer to the integral term of
(6.18) as reaction term and also call the entire equation a diffusion–reaction equation.

6.3 Taxonomy of Energy Functionals and Corresponding

Diffusion-Reaction Equations

So far, we have specified in our energy functional (6.10) neither the data term penaliser
Φ nor the regularisation penaliser Ψ . We discuss relevant choices now.

6.3.1 Data Terms – Reaction Terms

Different data terms in the energy functional induce different reaction terms in the
gradient descent equation.
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6.3.1.1 Quadratic Data Term – Linear Reaction Term

The most widespread choice in variational deconvolution literature (as in most fields
of variational image processing) is still the quadratic Tikhonov penaliser Φ(s2) = s2,
i.e.,

E1[u] =

∫

Ω

(R f ,H [u](x))
2 dx . (6.19)

Via the variational gradient

δ

δu
E1[u](x) =−

∫

Ω

R f ,H [u](y) H (y, x)dy (6.20)

it leads to linear reaction terms, thereby offering the advantage of utmost simplicity
and applicability of the well-developed theory for linear operators and, after discreti-
sation, linear systems of equations.

6.3.1.2 Robust Data Term – Nonlinear Reaction Term

In the context of discrete deconvolution models, robust data terms have already been
proposed in 1995 [235], but it seems that this proposal attracted little attention at that
time. They did not come into broader use until recently, when they were introduced
in the variational deblurring framework by Bar et al. [15].

In the case of grey-value images, robustification means to replace the squared residual
(R f ,H [u])

2 as penaliser by some nondecreasing function Φ of it such that Φ(s2) grows
slower than s2. The standard choice here is an L1 penaliser, with Φ(s2) = |s |, or its
regularised form Φ(s2) =

p
s2+β2 with a small positiveβ. In the latter case the data

term then takes the form

E1[u] =

∫

Ω

q
(R f ,H [u])2+β2 dx , (6.21)

corresponding to the variational gradient

δ

δu
E1[u](x) =−

∫

Ω

�
R f ,H [u](y)p

(R f ,H [u](y))2+β2

�
·H (y, x)dy . (6.22)

We do not consider in this work non-convex penaliser functions in the data term. In
practice, already L1 penalisers offer a considerable gain in robustness and thereby re-
construction quality, which is still not fully investigated in all its facets. On the other
hand, non-convex penalisers introduce a difficult-to-control non-uniqueness into the
model.3

3In the regularisation term, however, we will include non-convex penalisers, see Section 6.3.2.
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6.3.1.3 Multi-Channel Case

Up to this point, all considerations of energy functionals and gradient descents in
this chapter have been carried out for scalar-valued images. In order to devise decon-
volution methods also for multi-channel images we need adequate formulations of
data and regularisation terms with their respective gradient descents. We start here
by considering data terms.

In the case of the quadratic penaliser Φ(s2) = s2, an obvious choice is to use the sum
of squares of residuals in the channels, i.e.,

E1[u] =
1
2

∫

Ω

∑
k∈Γ

�
R fk ,H [uk](x)

�2 dx (6.23)

where the index set Γ enumerates the image channels uk of u .

This choice is obviously associated with the Euclidean norm in the multidimensional
image range, which particularly for multi-channel data with geometric semantics (like
vector or tensor fields) is advantageous from the modelling viewpoint as it ensures ro-
tational invariance. Moreover, the reaction term resulting from the variational gra-
dient

δ

δuk

E1[u](x) =−
∫

Ω

R fk ,H [uk](y) H (y, x)dy (6.24)

is linear and separable between image channels, which offers algorithmic advantages.

In fact, separability corresponds also to a specific model assumption: It assumes that
noise is independent between image channels.

Separate versus joint robustification. The situation is more complicated in the
case of a robust penaliser. Here, one can in general rescue only one of the two desir-
able properties, rotational invariance and separability.

Separability is achieved obviously if the penaliser function Φ is applied individually
to each image channel, as in

E1[u] =
1
2

∫

Ω

∑
k∈Γ
Φ
�
(R fk ,H [uk](x))

2�dx (6.25)

which we will refer to as separate robustification. The variational gradient in this case
takes the form

δ

δuk

E1[u](x) =−
∫

Ω

Φ′
�
(R fk ,H [uk](y))

2� R fk ,H [uk](y) H (y, x)dy (6.26)

for each channel k ∈ Γ .
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In contrast, rotational invariance is achieved if Φ is applied to the Pythagorean sum
of all image channels, i.e.,

E1[u] =
1
2

∫

Ω

Φ
�∑

k∈Γ
(R fk ,H [uk](x))

2
�

dx . (6.27)

We will call this joint robustification. The corresponding variational gradient reads

δ

δuk

E1[u](x) =−
∫

Ω

Φ′
�∑

l∈Γ
(R fl ,H [ul ](y))

2
�

R fk ,H [uk](y) H (y, x)dy , (6.28)

displaying a coupling between channels via the argument of Φ′.

Note that both (6.25) and (6.27) are generalisations of (6.23). While intermediate
choices are possible – providing in general neither separability nor rotational invari-
ance, and bringing about algorithmic complication –, these are the two basic cases.
Again, they can be associated with the assumptions on noise: Separate robustifica-
tion assumes that noise is independent between channels, while joint robustification
assumes a noise distribution that is strongly channel-coupled.4

As a rule of thumb, it is advisable to use joint robustification whenever channel-
coupled noise is to be expected. This applies to most multi-channel imaging proce-
dures, be it digital colour photography (where the optics is shared by all colour chan-
nels, and mostly all channels are recorded on one CCD chip) or DT-MRI (where
an error in one diffusion-weighted measurement channel always influences several
matrix channels). We will therefore use joint robustification in all multi-channel ex-
periments presented in this work. In contrast, e.g. Bar et al. [13] advocate separate ro-
bustification without addressing the problematic assumption of noise independence
between channels. For a discussion of joint versus separate robustification in a differ-
ent context – optic flow – see also [45, p. 38].

6.3.2 Regularisers – Diffusion Terms

Correspondences between different energy functionals for regularisation and diffu-
sion expressions arising as their gradient descent equations have been studied in Chap-
ter 2. These considerations transfer directly to the regularisation term E2[u] of our
deconvolution energy functional. We can therefore restrict ourselves to repeating
only the most essential points. Building on the framework described in Chapter 2
that embeds also smoothly those diffusion processes for which no variational gradi-
ent descent representation is known, we are led to investigate also the use of the latter

4It is worth noticing that the one situation in which joint and separate robustification coincide cor-
responds to quadratic penalisation Ψ (s2) = s2. Statistical considerations link this case to Gaussian noise
which due to its separability can indeed be considered equally as channelwise (independent) or channel-
coupled noise.
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diffusion terms in the deconvolution context. We will speak in this case of variation-

ally motivated deblurring equations.

6.3.2.1 Quadratic Tikhonov-Type (H 1) Regulariser

The simplest case, the constant diffusivity g (s2) = 1 which corresponds to Tikhonov
regularisation Ψ (s2) = s2, leads to a linear diffusion term in the deblurring equation.
From the view point of image processing, it often tends towards an over-smoothed
deblurring result because high gradients at edges of the reconstructed image are pe-
nalised over-proportionally.

Moreover, the resulting deblurring equation is very close to a linear process (it is even
linear if also a quadratic data term is used). It comes as no surprise that it also suffers
from the same kind of artifacts as described above for linear deconvolution methods.

6.3.2.2 Non-Quadratic Regularisation and Isotropic Nonlinear Diffusion

A non-quadratic penaliser Ψ (|∇u |2), where Ψ (s2) typically grows slower than s2,
gives raise to a nonlinear isotropic diffusion term div

�
g (|∇u |2)∇u

�
, where g ≡ Ψ ′.

Depending on the choice of Ψ (thus, g ) one has either an edge-preserving or even an
edge-enhancing regulariser. We name again the two main representatives.

Total variation. The singular diffusivity function g (s2) = 1/ |s | is associated with
the L1 penaliser Ψ (s2) = |s |. Mostly in its regularised form g (s2) = 1/

p
s2+ ǫ2, it is a

popular choice in the variational deconvolution literature, see e.g. [59, 138, 14]. This
is the case on one hand because it enforces piecewise constant results and therefore
preserves edges in the image. On the other hand, Ψ (s2) is still convex w.r.t. s in
this case, therefore providing uniqueness of assertions about minimisers that are not
guaranteed to hold with non-convex penalisers.

Perona–Malik. A drawback of TV diffusivity is that it does not allow an enhance-
ment of edges. Using the Perona–Malik diffusivity g (s2) = (1+ s2/λ2)−1 associated
to the nonconvex regulariser Ψ (s2) = λ2 ln(1+ s2/λ2), see [161, 206], makes this pos-
sible. However, this happens at the cost that the smoothness energy Ψ (|∇u |2) is no
longer convex. It has therefore to be expected that depending on the initial conditions
different solutions are obtained, making the choice of initial conditions a relevant is-
sue.

Pre-smoothing. To reduce the noise sensitivity of isotropic Perona–Malik diffu-
sion (see [205, 206]) it can be stabilised by using a Gaussian-smoothed gradient∇uσ
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in the diffusivity argument, turning the diffusion expression into div(g (|∇uσ |2)∇u).
This stabilised Perona–Malik diffusivity can easily be plugged into our deblurring
equations, which in this case ceases to be a gradient descent for an energy functional.
Experiments indicate, however, that in the deblurring context Perona–Malik diffu-
sion with pre-smoothing bears no clear advantages over its counterpart without pre-
smoothing.
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6.3.2.3 Anisotropic Nonlinear Diffusion

In analogy to the proceeding in 2.3 one is led to substituting the isotropic diffusiv-
ity g with an anisotropic diffusion tensor D(∇uσ ) in order to achieve an improved
reconstruction of edges. In our model, we use D(∇uσ ) = g (∇uσ∇uT

σ ) where the
Perona–Malik diffusivity g is applied to the symmetric matrix ∇uσ∇uT

σ , as usual,
by letting g act on the eigenvalues and leaving the eigenvectors unchanged [206].

The resulting anisotropic deblurring equation

∂t u =

∫

Ω

Φ′
�
(R f ,H [u])

2� R f ,H [u] H (y, · )dy +αdiv
�

D(∇uσ )∇u
�

(6.29)

contains a smoothed gradient in the argument of the diffusion tensor. This smooth-
ing is inevitable in order to have true anisotropy. As a consequence, (6.29) is not
known so far to be the gradient descent for an energy. It is therefore appropriate to
speak of a variationally motivated deblurring method in this case.

6.3.2.4 Multi-Channel Case

As the regularisers discussed here lead to diffusion expressions that stand in full anal-
ogy to those considered in Chapter 2, the generalisation to multi-channel images is
straightforward, too.

While linear diffusion (see 6.3.2.1) is simply applied in each image channel separately,
the proceeding in the case of isotropic (see 6.3.2.2) and anisotropic nonlinear diffusion
(see 6.3.2.3) follows that in 2.2.5 and 2.3.2, respectively: The divergence expression
is computed in each image channel separately but the diffusivity g ( · ) or diffusion
tensor D( · ) is uniform across all channels.

In the same way as in Chapter 2, this treatment of multi-channel images is linked
to energy functionals that combine gradient information from all channels into one
energy term.
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6.4 Special Model Aspects

6.4.1 Outliers and Violation of Model Assumptions

The noise model underlying robust data terms is in fact a random process that acts
independently and identically distributed on all pixels. The difference to Gaussian
noise that gives rise to quadratic data terms is one has here a noise distribution with
“thick tails”. Nevertheless, the robustness achieved by the corresponding data terms
goes considerably beyond this assumption.

Following the principle to consider influences on which insufficient information is
present and that cannot be controlled for as random, one can include in the noise
many kinds of perturbations other than pixel noise. In other words, any violation of
the blur model that is encoded in the residual formula can be considered as a sort of
noise.

However, the resulting concept of noise differs from the classical assumption for-
mulated above in that in the noise now there will be significant autocorrelation and
spatial variation. Nevertheless, it turns out that indeed robust data terms can cope
with several types of model violations, apparently because the assumption of thick-
tail pixel noise is already more extreme than those. We will now name one situation
in which this robustness is useful. Another example is discussed in 6.4.2.3.

Imperfect knowledge on PSF. One type of model violations in a non-blind decon-
volution model that implies a strong perturbation with spatial correlation is impre-
cision in the estimated PSF. Even small imprecision here often deteriorates consider-
ably deblurring results with non-robust techniques. In contrast, our robust deconvo-
lution model performs favourable even in the presence of visible deviations from the
PSF estimate. We will demonstrate this experimentally later.

6.4.2 Boundary Treatment

For solving the deblurring equations (6.18) (or (6.29)), suitable boundary conditions
must be specified. Due to the integro-differential character of our deblurring equa-
tions, the problem of boundary conditions is even worse than for differential equa-
tions: Since the convolution expression in the data term smears out boundary in-
formation instantaneously to locations in the interior of the image domain, there
is a more or less extended region in the interior of the image domain on which the
boundary conditions take direct effect. Moreover, boundary conditions can involve
dramatic violations of the blur model encoded in the data term. The resulting large
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penalties in the data term can dominate the behaviour of the solution in a region that
sometimes extends deeply into the interior of the image domain.

In the following, we sketch a few approaches to this problem, with emphasis on their
practical usefulness.

6.4.2.1 Image Extension

A class of more or less simple approaches attempts at extrapolating the given blurred
image beyond its boundaries in some way such that the extrapolated data are approx-
imately consistent with the blur assumption, compare Figures 6.2 and 6.3(a).

Neumann boundary conditions. In partial differential equations like e.g. diffu-
sion equations one possible choice is given by Neumann boundary conditions which
require that the image derivative perpendicular to the boundary vanishes on the bound-
ary. In the case of a rectangular image domain this is equivalent to continuing the
image beyond each boundary by a mirrored version of itself (Figure 6.2(c)). They
are therefore also referred to as reflecting boundary conditions. Neumann boundary
conditions are often an excellent choice in diffusion-based image processing methods,
as they guarantee conservation properties along with a continuous extension of the
image at its boundary.

Unfortunately, reflecting boundary conditions are badly suited to the deconvolution
context: The reflected extension of the image is approximately the blurred version of
the reflected sharp image with the reflected point spread function. This is acceptable
only in the case of a symmetric point spread function, such as a Gaussian, a defo-
cussing disc or a motion blur parallel or perpendicular to the boundary. With non-
symmetric PSF, it constitutes a substantial violation of spatially invariant or spatially
continuous blur models.

Moreover, reflecting boundary conditions will in most cases violate spatially contin-
uous blur models in the immediate neighbourhood of the boundary whatever the
PSF is (even if it is symmetric). This is due to the cut-off of the blurring process at
the image boundary.

Both mentioned effects cause strongly visible artifacts.

Periodic boundary conditions. Periodic boundary conditions (Figure 6.2(d)) for
a rectangular domain lead instead to a wrap-around of image information between
opposite boundaries. In this case, the image extension is in accordance with a space-
invariant blur model. Also, periodic boundary conditions are in natural correspon-
dence to the Fourier transform which is used in the Wiener filter and can also be
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Figure 6.2: Left to right: (a) Styrian Hog photograph, 240 × 320 pixels. – (b)

Blurred with linear motion blur (40 pixels horizontal, 20 pixels vertical, compare
Figure 6.1(c)). (a) and (b) were clipped from a larger image, such that the information
transport across the boundary is correctly simulated. – (c) Blurred image extended
by mirroring, corresponding to reflecting boundary conditions. The blur assump-
tion is severely violated in the amended regions. No discontinuities are introduced.
– (d) Periodic image extension. The blur assumption is fulfilled in the interior of the
amended regions. It is violated at the boundaries themselves, where also discontinu-
ities are introduced. – (e) Zero-padding extension. Violation of blur assumptions and
introduction of discontinuities are analog to (d). – Images (c), (d): D. Theis.

Figure 6.3: Left (a): Continuous and periodic extension of an image by weighted
averages of Gaussian smoothed copies of the first and last rows and columns. For
greater clarity, the extension is shown here for the sharp original Styrian Hog image.
The extended image size has been set to 512× 1024 pixels for convenient FFT use.
– Middle (b): Continuous periodic image consisting of four mirrored copies of the
sharp Styrian Hog image for the special test setting. – Right (c): Image (b) blurred by
linear motion blur (40 pixels horizontal, 20 pixels vertical) with periodic boundary
treatment. This type of blurred image is used in the special test setting. – Modified
from images generated by D. Theis.
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useful in computing the convolutions within a numerical realisation of our deblur-
ring integro-differential equations.

While the first drawback of periodic boundary conditions is thereby elegantly
avoided, the violation of the blur model in the boundary region itself remains. This
problem gets even worse since unlike reflecting boundary conditions, periodic ones
introduce discontinuities at the boundaries. As a result, not only the wrap-around of
image information between opposing boundaries is observed which is always typi-
cal for periodic boundary conditions, but also strong oscillatory (“ringing”) artifacts
parallel to boundaries are observed.

Nevertheless, due to the above-mentioned properties, periodic boundary conditions
are an option especially for space-invariant PSFs.

Zero padding. A third possibility is to surround the image by a zone of zero (or
other constant) grey values (Figure 6.2(e)) and apply e.g. periodic boundary condi-
tions to the so extended image domain. In this case, the benefits of periodic bound-
ary conditions are retained while the wrap-around artifacts are eliminated. Moreover,
the constant image extension is able to fit any blur model. However, also the zero-
padding procedure introduces discontinuities along the boundaries that imply similar
ringing artifacts as before.

Other extensions. It requires considerable effort to design boundary regimes that
really eliminate the sources of artifacts that have been described for the methods so
far. A simple, more pragmatic way is to design more sophisticated image extensions
that guarantee continuity at the boundaries and an approximate fit to the blur model.
If periodic boundary conditions are to be used for the extended image, one can in
particular also secure continuity between opposing boundaries.

In [193] a method has been proposed which to this end continues the image by
weighted averages of Gaussian blurred boundary rows and columns, see Figure 6.3(a).
Here, the rectangular image domain is embedded into a larger periodic domain (a
torus). To fill the uncovered parts of the torus, one continues the image by copies of
its boundary rows and columns which are increasingly blurred by 1D Gaussian con-
volution, and takes weighted averages between opposing boundary rows or columns.
In [15] an image version blurred with the adjoint of the (spatially invariant) point
spread function was used to generate the extension. These methods often lead to a
reasonable reduction, though not elimination, of artifacts. Their simplicity makes
them a reasonable choice in many cases.
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6.4.2.2 A Special Test Setting

In the case of synthetically generated test cases, it is possible to eliminate boundary
artifacts in order to measure the deblurring quality by a special test setting. This has
been described in [193, 222].

We assume here a spatially invariant but possibly irregularly shaped point spread
function. We start by extending the sharp test image via horizontal and vertical re-
flection to quadruple size, see Figure 6.3(b). Periodic extension of this larger image is
equivalent to reflecting extension of the original image, thus not involving discontinu-
ities. Now the large image is blurred in a periodic setting (i.e., with the left boundary
wrapping over into the right one etc.) with the given PSF. While the resulting image,
see Figure 6.3(c), has lost the symmetry of the original larger image, it perfectly ful-
fils the blur model assumption throughout the periodic image domain, without any
deviation at boundaries. In deblurring this image, one uses again periodic boundary
conditions.

While this approach cannot be used in real deblurring applications where the blur-
ring process is not subject to our control, its advantage is that it admits a measurement
of the deblurring quality, e.g. in terms of signal-to-noise ratio, without including dis-
continuity and boundary artifacts which would dominate the total result otherwise.

6.4.2.3 Modelling via the Point-Spread Function

The formulation of our deblurring model with a space-variant point-spread function
opens another way to deal with the problem of information transport across the im-
age boundary.

For this purpose, we modify the point-spread function in such a way that it is defined
on Ω×Ω only, and that ∫

Ω

H (x , y)dx = 1 (6.30)

for each y ∈Ω. The modification is to some extent arbitrary but it can be restricted
to a narrow region along the image boundary. As a consequence, H models a blur
process in which the grey-value contribution of each location x within the image
domain remains within the image.

The deviation from this assumption is considered as noise. This can be seen as another
instance of the idea brought up in 6.4.1 to include violations of model assumptions
into the noise. Indeed, influences from beyond the image boundary cannot be con-
trolled for in the blur model, such that it is reasonable for them to be considered as
random. However, once more simple noise models will no longer be adequate, as the
boundary effects introduce significant autocorrelation into the noise. Therefore, the
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treatment of boundary effects as noise can work only if the deblurring model is able
to cope with such types of noise. Fortunately, robust data terms again match this
need. It turns out that they perform fairly well also in this situation.

6.4.2.4 Boundary Treatment by Inpainting

A more radical way to cope with boundary effects in image deblurring has been pro-
posed in [60]. The authors integrate (blind) deconvolution with image inpainting
on a variational basis. The inpainted region can as well be chosen as the exterior
of the image domain, which is therefore extrapolated in a way that matches the in-
formation found within the blurred image more perfectly than a model with fixed
boundary conditions can.

While it is to be expected that reconstruction results near the boundary are better
with this approach than with any other method discussed here, we give preference
here to the method from 6.4.2.3, which performs reasonably good in our examples.
The combination of deconvolution with other image processing tasks like inpainting
is beyond the scope of the present work.

6.4.3 Choice of Regularisation Weight

Whenever a regularisation approach is used, choosing the diffusion weight appropri-
ately is an important issue. The deblurring problem with its severe ill-posedness adds
to this difficulty since, as we will see, it assigns a double purpose to the regularisation.
We will discuss this now in the context of variational deconvolution processes.

6.4.3.1 The Double Role of Regularisation

As in many regularisation models, regularisation also in variational deconvolution
serves the purpose of suppressing noise. Regularisers can be adapted to noise models,
and measures of noise intensity can be linked to suitable values of the regularisation
weights. In general, for stronger noise larger values of α need to be chosen.

However, there is another reason why regularisation is needed in variational decon-
volution, which is related to a deficiency in the data terms used. In absence of noise,
the non-regularised energy consisting only of the data term is minimised by the cor-
rect solution. One could therefore consider to set α to zero, thereby simplifying
the diffusion-reaction equation (6.18) to a fixed-point equation without the diffusion
part.

Unfortunately, the solution of the minimisation problem without regularisation can
be highly non-unique. The reason is that the data term is insensitive to such pertur-
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bations which are annihilated by the blurring with the point-spread function H . For
example, if H (x , y) = h(x− y) is spatially invariant, each location in the Fourier do-
main h corresponds to a spatial frequency which is extinguished by the blur. Pertur-
bations constructed from these frequencies are eigenfunctions for the blur operator
with eigenvalue zero, and are thus not corrected by the data term. The energy to be
minimised is still convex, but not strictly convex, in this situation.

Even in the case of a PSF without such zero-eigenvalue eigenfunctions, e.g., space-
invariant Gaussian blur, some frequencies are strongly attenuated by the blur, mak-
ing the solution of the minimisation problem highly unstable. As a consequence,
regularisation with a non-zero α is needed to remove or reduce the non-uniqueness.
With a convex regulariser, strict convexity of the energy functional can be ensured
under suitable conditions. With a non-convex regulariser of Perona-Malik type, this
needs not to be the case; in practice, it still provides a disambiguation effect.

While this latter discussion seems to favour a larger α even in case of low noise, this
would be a premature conclusion. Assume, namely, that the energy is made convex
by a suitable regulariser such that a unique solution exists. Even if the regularisa-
tion weight is small, it is practically only the regularisation term which chooses the
solution among those which cannot be discriminated by the data term. As a conse-
quence, even a small regularisation weight can drive the solution far away from the
true unblurred image.

Experimentally one observes that when using the blurred image as initialisation with
small diffusion weight, similar oscillatory artifacts as for linear deblurring methods
evolve, like over- and undershoots near edges and shadows of high-contrast objects.
Large diffusion weights, on the other hand, induce an over-smoothing and loss of
small-scale details in the image.

6.4.3.2 Continuation Strategy

In the conflict between accurate restoration of image details (which is better achieved
for small α) and suppression of artifacts (which requires a large α) it is useful to notice
the dependence of the solution on initial conditions. In case of nonconvex regularisa-
tion there can exist multiple minima which can be reached from different initial data.
Even with convex regularisers, the non-strict convexity of the data term can lead to
considerable numerical errors in the computed minimiser when the regularisation
weight is low, which depend similarly on the initial conditions.

This influence of initial conditions opens a way how to a certain extent the advantages
of large and small regularisation weights can be combined in practice in a continua-

tion strategy [30, 58]: Instead of considering only one energy functional with a fixed
amount of regularisation, a cascade of functionals is taken into account. Starting with
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a rather large amount of regularisation, this amount is reduced from one member of
the cascade to the next. The level to which the regularisation weight can be reduced
is mainly determined by the first mentioned purpose of the regularisation, namely
noise suppression. For images with very low noise, the final α can be close to zero
– experimentally one can sometimes even use α= 0 which means that the inevitable
numerical dissipation provides sufficient regularisation.

In such a cascade of minimisations, the first steps prefer smooth solutions and there-
fore may yield good initialisations close to the smoothest optimum of the next ver-
sion with less regularisation. On the other hand, in later steps more and more the
data term dominates which models the blur model and favours sharper results. This
way, one finally approximates an optimum of the functional without regularisation,
yet choosing a specific optimum that is smooth. Though this optimum will not be
exactly the original image – in particular, it tends to be slightly over-smoothed –, it
will often be superior to solutions obtained without continuation strategy, provided
the smoothness assumptions encoded in the regularisation term are adequate for the
type of image being processed.

6.5 Numerical Aspects

The focus on the work on variational deblurring presented here is in the development
of models. In this section we present briefly explicit finite-difference schemes that we
use in our experiments to evaluate the deblurring equations (6.18), (6.29) and further
variants. We stress that this numerical realisation has primarily a proof-of-concept
character. Improvements are possible and necessary, and future work will be devoted
to them.

For our considerations in this section, we will adopt the same convention as intro-
duced in 4.2.3: If z = z(x , t ) is an expression on a continuous domain, we will denote
by [z]Ki j a discretisation of it at location (i , j ) in time step K .

To start with, the time derivative on the left-hand side of (6.18), (6.29) etc. will always
be discretised by a forward difference

[ut ]
K
i j =

uK+1
i j
− uK

i j

τ
(6.31)

where τ denotes the time-step size.

The right-hand side decomposes into the reaction and diffusion terms which we will
now discuss separately.
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6.5.1 Discretisation of the Reaction Term

The computationally most expensive task in the numerical evaluation of the deblur-
ring equations (6.18), (6.29) and further variants is the computation of the reaction
term. It contains convolution-type integrals that need to be computed in each single
time step. Depending on the specific situation different realisations are used.

Convolution via the Fourier domain. This is applicable if a spatially invariant PSF
is used. The computational cost of the Fourier transforms pays off if the sup-
port of the PSF h is large and if the image dimensions enable the use of an
efficient fast Fourier transform.

In the case of quadratic data terms, |ĥ|2 = h̃
Õ∗ h is precomputed5, leaving two

Fourier transforms (one forward and one backward transform) of the image
per time step.

With robust data terms, ĥ is precomputed, and four Fourier transforms of the
image (two forward and two backward transforms) are necessary since Ψ ′ is
computed in the spatial domain between the two convolutions.

Convolution in the spatial domain. Especially for point-spread functions with
small support direct convolution in the spatial domain is often faster than the
Fourier transforms. Again, for non-robust data terms precomputing h̃ ∗ h cuts
the computational cost nearly by half.

Spatially variant PSF. For spatially variant point-spread functions, we always eval-
uate the reaction term in the spatial domain. Since the memory demand of a
full spatially variant PSF precludes its full storage, it is recovered during each
integral computation by interpolation or by parametric representations from
a fewer data, depending on the model used for its specification. This adds to
the computational cost of the integration itself, increasing it up to four times.

For a more detailed analysis, let us concentrate on the evaluation via the spatial do-
main. Discretising integrals into sums and replacing all quantities by their discrete
counterparts from time step K , we obtain as our discretisation of the reaction term
in pixel (i , j ) the expression

P K
i , j :=

∑
(k ,l )∈H ∗(i , j )

[R f ,H ]
K
k ,lΦ
′(([R f ,H ]

K
k ,l )

2)H(k ,l )(i , j ) (6.32)

with the discretised residual

[R f ,H [u]]
K
k ,l = fk l −

∑
(s ,t )∈H (k ,l )

H(k ,l )(s ,t )u
K
s ,t . (6.33)

5Remember h̃(x) := h(−x), cf. page 223
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Here we have used H also to denote the matrix that arises from discretising the point-
spread function H . Then H(k l )(i j ) is the matrix entry corresponding to H (x , y) at
location (k , l ) for x and (i , j ) for y, i.e., it quantifies the influence of pixel (i , j ) on
(k , l ) in the blur operation.

ByH (i , j )we denote a neighbourhood of (i , j )which contains the support of H(i , j )(·),
byH ∗(i , j ) a neighbourhood containing the support of H(·)(i , j ). Formally, one can
of course use the entire image in both cases.

Inserting (6.33) into (6.32) we arrive at

P K
i , j =

∑
(k ,l )∈H ∗(i , j )

ϕ((([R f ,H ]
K
k ,l )

2)H(k ,l )(i , j ) fk ,l

−
∑

(k ,l )∈H ∗(i , j )

∑
(s ,t )∈H (k ,l )

ϕ((([R f ,H ]
K
k ,l )

2)H(k ,l )(i , j )H(k ,l )(s ,t )u
K
s ,t . (6.34)

By setting

F K
i , j :=

∑
(k ,l )∈H ∗(i , j )

Φ′(([R f ,H ]
K
k ,l )

2)H(k ,l )(i , j ) fk ,l (6.35)

and

BK
(i , j )(s ,t ) :=

∑
(k ,l )

Φ′(([R f ,H ]
K
k ,l )

2)H(k ,l )(i , j )H(k ,l )(s ,t ) (6.36)

we rewrite (6.34) into
P K = F K −BK uK . (6.37)

For non-robust data terms, one has of course ϕ ≡ 1, thus F K = F and BK = B are
independent on the time step index K .

6.5.2 Discretisation of the Diffusion Term

As for the left-hand side, we use finite difference discretisations in the diffusion term.
A general expression for the discretised diffusion term in pixel (i , j ) at time step K is
given by

QK
i , j :=

∑
(k ,l )∈N (i , j )

w(k ,l )(i , j ) g
K
(k ,l )(i , j )(u

K
k ,l − uK

i , j ) , (6.38)

where N (i , j ) denotes a suitable neighbourhood of pixel (i , j ), and w(k ,l )(i , j ) is the
weight of pixel (k , l ) in the neighbourhood of (i , j ). Finally, g K

(k ,l )(i , j )
denotes the

discrete diffusivity between pixels (i , j ) and (k , l ) in time step K . In the isotropic
case, this is a discretisation of Ψ ′(|∇u |2), while in the anisotropic case it is obtained
in a more complex way from the diffusion tensor D .

While the weights w are quantities inherent to the discretisation, and reflect geo-
metric properties of the grid, the diffusivities g depend on the image u , which also
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entails the appearance of a time-step index on them. Both weights and diffusivities
are required to be symmetric,

w(i , j )(k ,l ) = w(k ,l )(i , j ) , g K
(i , j )(k ,l ) = g K

(k ,l )(i , j ) , (6.39)

in order to ensure the conservation property of the diffusion process. For regular
grids, the weights will also be translation invariant,

w(i+r, j+s )(k+r,l+s ) = w(i , j )(k ,l ) . (6.40)

The expression (6.38) is fairly general. It can model standard explicit schemes as well
as, e.g., four-pixel explicit schemes. We concentrate here on the case of nonlinear
isotropic diffusion terms as in (6.18).

Standard discretisation. For a standard explicit discretisation with spatial mesh
sizes∆x in x direction,∆y in y direction we have

N (i , j ) = {(i − 1, j ), (i + 1, j ), (i , j − 1), (i , j + 1)}

w(i , j )(i±1, j ) =
1
∆x

w(i , j )(i , j±1) =
1
∆y

,

(6.41)

and the diffusivity is given as

g K
(i , j )(k ,l ) =

1
2
(g K

i , j + g K
k ,l ) (6.42)

with g K
s ,t := Ψ ′

�
[|∇u |2]Ks ,t

�
, i.e., an average of discretisations of Ψ ′(|∇u |2) at neigh-

bouring pixel positions. Alternatively, one could consider discretising diffusivities
directly in the locations half-way between neighbouring pixels,

g K
(i j )(k l ) = g K

(i+k)/2,( j+l )/2 . (6.43)

Four-pixel discretisation. Assuming equal mesh sizes∆x =∆y, another possibil-
ity is an explicit weighted four-pixel discretisation in the sense of (4.65). With the
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discretisation parameter γ ∈ [0,1], we have then6

N (i , j ) = {(i − 1, j − 1), (i − 1, j ), (i − 1, j + 1), (i , j − 1),

(i , j + 1), (i + 1, j − 1), (i + 1, j ), (i + 1, j + 1)} ,

w(i , j )(i±1, j±1) =
1− γ
2∆x

,

w(i , j )(i±1, j ) = w(i , j )(i , j±1) =
γ

∆x
,

g(i±1, j±1)(i , j )= gi±1/2, j±1/2 ,

g(i±1, j )(i , j )=
1
2
(gi±1/2, j−1/2+ gi±1/2, j+1/2) ,

g(i , j±1)(i , j )=
1
2
(gi−1/2, j±1/2+ gi+1/2, j±1/2) .

(6.44)

In this case, the discretisations gi+1/2, j+1/2 := Ψ ′
�
[|∇u |2]i+1/2, j+1/2

�
are computed in

the manner of (4.72).

Matrix-vector product notation. For later analysis, we point out that in any case
the right-hand sides of (6.38) for all pixels can be combined in a matrix-vector product
notation

QK =AK uK (6.45)

where AK is a N ×N matrix, N being the number of pixels in the image, and uK is
a column vector with the grey-values of all N pixels as its entries. The matrix AK

contains all weight and diffusivity contributions of (6.38).

Practical remarks. In the experiments in this and the following chapter both dis-
cretisations described above have been used. Experimentally, the influence of the
discretisation of the diffusion term on the overall sharpness of the deblurred image
turns out negligible. Results obtained with both types of explicit discretisations look
practically the same.

In principle, one could even use the time step of our locally semi-analytic or analytic
schemes to compute the diffusion contribution of (6.18). However, in the light of
the stability analysis that will be given below, the absolute stability provided by the
L(S)AS is pointless here. We have therefore not made use of this possibility.

With the implementations outlined here, computation times for the images shown
here range from a few minutes to several hours on standard PCs.

6The discretisation parameter α from (4.65) had to be renamed to γ in the present chapter to avoid
confusion with the regularisation weight α.
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6.5.3 Stability Considerations

Combining the discretisations described in detail above, we have the explicit scheme

uK+1 = (I + ταAK − τBK )uK + τF K (6.46)

for the diffusion-reaction equation (6.18).

Concerning stability, we remark first that due to the character of the deblurring prob-
lem and the corresponding reaction term the scheme does not obey a maximum-
minimum principle. Nevertheless, both in L∞ and L2 sense the scheme is stable for
sufficiently small τ w.r.t. perturbations in the initial data u0 or given image f .

A full stability analysis of (6.46) is intricate, as it requires to take into account the
fact that also the matrices AK ,BK and the vector F K depend on uK . We leave this
detailed analysis for future work. Here we give instead a simplified analysis that ne-
glects the dependency of AK ,BK , F K on uK . In strict sense, the analysis is therefore
only applicable to the case of linear diffusion and non-robust data term, in which
these dependencies do not take place. Moreover, we consider only perturbations in
the initial data u0 but not those in f .

The equations we are dealing with are of reaction-diffusion type, and require a sta-
bility concept that differs somewhat from that for pure diffusion equations. We
will consider the scheme (6.46) stable in L2 norm w.r.t. perturbations of u0 if for
any fixed set of matrices AK , BK , F K , and initial data u0 there exists a constant
M that does not depend on K , such that for sufficiently small



ũ0− u0


 one has

ũK − uK



 ≤M ·


ũ0− u0



 for all K .

In this case, a necessary condition for L2 stability is that the matrix C K := I+ταAK−
τBK has only eigenvalues of absolute value not exceeding 1.

Let us therefore analyse the eigenvalues of C K .

Consider AK first. Because of our symmetry assumption on g , AK is a symmetric ma-
trix, featuring real eigenvalues. Remembering our assumption that g (0) = 1 and thus
0≤ g (z2)≤ 1 for all z , we see that AK has zero row sums and main diagonal entries
from [−4,0]. According to Gershgorin’s Theorem it follows that for all eigenvalues
λ of AK the inequality

−8≤ λ≤ 0 (6.47)

holds.7

For BK , we notice that (6.36) can be rewritten as

BK
(i , j )(s ,t ) =

∑
(k ,l )

H(k ,l )(i , j )ϕ
K
k ,l H(k ,l )(s ,t ) , (6.48)

7If the four-pixel explicit discretisation (6.44) is used, the main diagonal entries are even constrained
to [−2(1+ γ ), 0], yielding the estimate −4(1+ γ )≤ λ≤ 0.
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where ϕK
k ,l := Φ′(([R f ,H ]k ,l )

2), thus

BK =H T diag (ϕK
k ,l )H (6.49)

is symmetric and has therefore real eigenvalues. Moreover, as Φ′(z2) is assumed to be
nonnegative for all z , we can conclude further that

BK = (LK )T(LK ) (6.50)

where
LK := diag

�q
ϕK

kl

�
H (6.51)

Consequentially, the eigenvalues µi of B can be computed from the eigenvalues νi of
LK by

µi = ν̄i νi = |νi |2 (6.52)

(remember ν̄i are the eigenvalues of (LK )T) ensuring B is positive semidefinite.

Further, as the matrix H describes the PSF of a blur, it is nonnegative, and the contri-
butions of every pixel (i , j ) of the unblurred image to the blurred image sum up to 1.
That is to say, H has unit column sums.8 Since 0< Φ′(z2) ≤ 1, the entries of LK are
nonnegative, too, and also its column sums are not greater than 1. By Gershgorin’s
Theorem we can therefore conclude that the eigenvalues νi of LK are located within
the unit circle in the complex plane. By virtue of (6.52) we have then

0≤µi ≤ 1 (6.53)

for the eigenvalues of BK .

Putting together the bounds on the eigenvalues of AK and BK that we have found, we
see that the eigenvalues of C K (which are real, as C K is diagonal, too) are confined to
the interval [1− (1+ 8α)τ, 1].

Therefore the necessary stability condition is fulfilled if

τ ≤ 2
1+ 8α

. (6.54)

We stress again that this is not a sufficient condition for stability. However, the bound
(6.54) is in good agreement with experimental observations. In practice, one does
not immediately observe numerical instabilities if slightly larger time steps are used
than admitted by (6.54). The reason is that for realistic point-spread functions the
eigenvalues of the reaction term will often stay far away from the bound (6.53).

Because of the smallness of typical regularisation parameters α, the influence of the
diffusion term on the stability condition is subordinate to that of the reaction term.
This makes also clear why using the full L(S)AS construction for the diffusion term
is of little use here: Even with an absolute stable discretisation of the diffusion term,
the reaction term would still dictate τ ≤ 2.

8More precisely, the column sums of H are not greater than 1 if we take into account that pixels
near the image boundary can be smeared out across the image boundary.
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Figure 6.4: Left to right: (a) Styrian Hog photograph, 240× 320 pixels. – (b) Blurred
with banana-shaped kernel from Figure 6.1(e). – (c) Deblurred by diffusion–reaction
method with Perona–Malik diffusivity, λ = 5, α = 0.001, 1000 iterations. – (d) Pho-
tograph blurred with discontinuous kernel. – (e) Deblurred by diffusion–reaction
method with Perona–Malik diffusivity, λ = 1; the continuation strategy was used
with two steps for the diffusion weight: 2400 iterations with α = 0.01 followed by
2400 iterations with α= 0. – From [222]. Deconvolved images by D. Theis.

6.6 Experiments

6.6.1 Deblurring of Synthetically Blurred Images

To illustrate and validate the methods described in the preceding sections, we first
show experimental results obtained with two test images and two different spatially
invariant PSFs, Figure 6.1.

One of them (Figure 6.1(e)) is a banana-shaped blob with irregularly distributed in-
tensity. This comes close to the blurring of photographs taken with bad illumination
and moving camera and objects. The other PSF (Figure 6.1(d)) is discontinuous; it is
assembled from two line-shaped parts which are similar to motion blurs. It has been
selected as an example of a very challenging spatially invariant PSF.

The first test image used in Figs. 6.4 and 6.5 is a colour photograph with many small-
scale details. The second test image used in Figs. 6.6 and 6.7 is a grey-value image of
three print letters. It differs from the first image by its composition of fairly homo-
geneous regions.

Synthetically blurred Styrian Hog image. In Figure 6.4 we blur the first test image
with both kernels and restore it by diffusion–reaction deblurring with Perona–Malik
diffusivity. For the discontinuous kernel, we also use the continuation strategy in
a simple form with one positive α followed by a fixed-point iteration with α = 0.
Excellent deblurring quality is achieved for the banana kernel (despite its irregularity)
while for the discontinuous kernel some shadow-like boundary artifacts are observed.
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Figure 6.5: Deblurring of a detail of the Styrian Hog photograph from Figure 6.4 with
different boundary treatment. Top, left to right: (a) Photograph detail blurred with
discontinuous kernel from Figure 6.1(d). – (b) Linear deblurring by Wiener filter. – (c)

Diffusion–reaction deblurring with TV diffusivity. – (d) Diffusion–reaction deblur-
ring with Perona–Malik diffusivity. In (b)–(d), a continuous periodic extrapolation of
the blurred image was used (realistic method). While details are well reconstructed,
shadow-like boundary artifacts affect the overall quality. Bottom row (e)–(h): Same
as (a)–(d) but with special setting to suppress boundary artifacts. The image was ex-
tended by reflection to four times its original size before blurring. This quadruple-size
blurred image was then blurred and deblurred with periodic continuation. – Images:
D. Theis, from [222].

In Figure 6.5, a more detailed comparison of deblurring algorithms is presented for a
detail from the photograph blurred with the discontinuous kernel, including Wiener
filter as an example of linear deblurring, diffusion–reaction filtering with TV, and
Perona–Malik diffusivity. Here we also demonstrate the use of our special test setting
to avoid boundary artifacts in quality measurements.

Blurred MIA Letters image. Results for the grey-value test image are shown in
Figure 6.6. Here, we concentrate on the discontinuous kernel from Figure 6.1(d).
Besides the methods mentioned above we show also diffusion–reaction deblurring
with anisotropic diffusion tensor which performs particularly well for this type of
strongly segmented images.

Figure 6.7 shows a detail of our grey-value test image to demonstrate the improve-
ments made by anisotropic diffusion tensors and continuation strategy. Perona–
Malik deblurring with a single fixed α > 0 reduces oscillatory artifacts quite well
but smears thin lines while the fixed-point iteration with α= 0 restores many details
but generates artifacts similar to those of linear deconvolution. The continuation
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Figure 6.6: Top left (a): Grey-value MIA Letters test image. Top middle (b): Blurred with
discontinuous kernel from Figure 6.1(d). Top right (c): Linear deblurring by Wiener
filter, boundary treatment by continuous extrapolation. Bottom left (d): Diffusion–
reaction deblurring with TV diffusivity and continuation strategy (2 levels). Bot-

tom middle (e): Same with Perona–Malik diffusivity. Bottom right (f): Same with
anisotropic diffusion tensor. – From [222]. Deconvolved images: D. Theis.

Figure 6.7: Detail from deblurred MIA Letters images, with boundary artifacts sup-
pressed by special test setting. Left to right: (a) Linear filtering. – (b) Unregularised
variational model. – (c) Perona–Malik, constant diffusion weight. – (d) Perona–Malik
followed by nonregularised iteration (two-step continuation strategy). – (e) Perona–
Malik, continuation strategy with 10 steps. – (f) Anisotropic diffusion–reaction, con-
tinuation strategy with 10 steps. – From [222].

Table 6.1: SNR (dB) for deblurring with the discontinuous kernel. First values:
specific test setting for boundary conditions, second values: with continuous extra-
polation. From [222].

Wiener filtering Diffusion–
reaction,
Perona–Malik

Diffusion–
reaction,
TV diffusivity

Letters 15.6 / 7.1 18.4 / 7.3 17.1 / 7.2
– with contin. strategy 19.3 / 7.4 19.2 / 7.1
Photograph detail 15.9 / 9.4 14.9 / 6.0 14.3 / 5.9

strategy combines a better restoration of details with a reasonable suppression of ar-
tifacts. Even in its simplest form with two steps it bears a clear improvement; more
steps lead to further enhancement. The sharpness of edges is further improved by
using the anisotropic diffusion tensor.
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In Table 6.1 we compile measurements of the signal-to-noise ratio (SNR)

SNR(v, u) = 10 log10
var(u)

var(u − v)
dB (6.55)

where u is the original image and v the deblurring result. Throughout the measure-
ments Perona–Malik deblurring tends to slightly better SNR than deblurring with
TV diffusivity. However, not always do SNR measurements reflect sufficiently well
visual judgement. For the photograph, e.g., the Wiener filter performs better than
diffusion–reaction deblurring in terms of SNR. On the other hand, Figure 6.5 clearly
reveals the superiority of diffusion–reaction deblurring.

6.6.2 Deblurring of Photographs Blurred During Exposure

Our second group of experiments aims at deblurring images which have been blurred
during exposure by camera movement or defocussing. In these tests, we used the
gradient descent PDE resulting from a variational approach with robust L1 data term
and Perona–Malik regulariser. In Figure 6.8, we also show results with non-robust
(quadratic) data term and quadratic regulariser for comparison.

A caveat about all comparisons between methods presented here is that the regular-
isation weight α cannot be compared between methods because different penalisers
differ in the magnitudes of their energy or gradient descent contributions.

Photograph of Paris (camera motion). In Figure 6.8(a), a photograph of Paris at
dusk is shown which has been blurred by camera movement during exposure. The
PSF is fairly irregular. For the deblurring process, it was assumed to be spatially
invariant. By clipping the image of an isolated light source from the lower part of the
river region, the approximate PSF shown in Figure 6.1(e) was obtained and used for
deblurring.

Clearly, the estimation of the convolution kernel from such an approximate impulse
response induces an imprecision. Further, a closer look at the blurred image reveals
that the assumption of spatially invariant blur does not perfectly capture the situa-
tion since impulse responses in opposite corners of the image are of slightly different
shape.

The deconvolution result obtained with quadratic data terms and regularisers, Fig-
ure 6.8(b), shows that while the image can be sharpened to some degree but fine de-
tails, like the small light sources, are visibly smeared out due to the linear diffusion
contribution. At the same time, strong oscillatory artifacts can be seen that prevent
reducing the regularisation weight (and thereby the smearing).
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Figure 6.8: Top left (a): Paris at dusk from Eiffel tower, blurred by camera movement
during exposition (480× 480 pixels). – Top right (b): Restoration by variational de-
blurring with quadratic data term and quadratic Tikhonov regulariser, α= 0.05. The
spatially invariant, irregularly shaped PSF from Figure 6.1(e) was used as approximate
PSF. – Bottom left (c): Same with quadratic data term and edge-enhancing Perona–
Malik regulariser, λ = 26, α = 1.5. – Bottom right (d): Variationally deblurred with
robust (L1) data term and Perona–Malik regulariser, λ= 26, α= 0.06. – Be aware that
values of the regularisation weight α cannot be compared between different methods.
– Partially following [223].

Combining an edge-enhancing Perona–Malik regulariser with non-robust data terms
increases the sharpness of fine details, Figure 6.8(c). To keep oscillatory artifacts low,
it was still necessary to choose a large diffusion weight which caused most finer struc-
tures in the image to be smoothed away. Nevertheless, street lights are still restored
inaccurately, as they are accompanied by shadows and echo images. Street lights re-
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Figure 6.9: Enlarged detail views (240× 117 pixels) from the images shown in Fig-
ure 6.8, middle right region. Top left (a): Original image. – Top right (b): Quadratic
data term, quadratic regulariser. – Bottom left (c): Quadratic data term, Perona–Malik
regulariser. – Bottom right (d): Robust data term, Perona–Malik regulariser. – The
bridge region chosen is close to the location from which the PSF has been extracted.
Increasing sharpness and reduction of artifacts can be seen. – Partially following
[223].

Figure 6.10: Enlarged detail views (117× 117 pixels) from the images shown in Fig-
ure 6.8, top left region. Left to right: (a) Original image. – (b) Quadratic data term,
quadratic regulariser. – (c) Quadratic data term, Perona–Malik regulariser. – (d) Ro-
bust data term, Perona–Malik regulariser. – As the region shown here is remote from
the location where the PSF has been extracted, the PSF estimate is rather inaccurate
here. Deconvolution with non-robust data terms performs poor while robust decon-
volution achieves a considerable quality. – Partially following [223].

mote from the river region are particularly poorly restored because of the PSF inac-
curacy.

Robust deblurring, in contrast, can cope with the PSF imprecision much better, see
Figure 6.8(d). The strength of regularisation could be reduced such that more struc-
tures like streets and buildings are recovered. Shadows and double images near the
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Figure 6.11: Enlarged detail views (117× 117 pixels) from the images shown in Fig-
ure 6.8, bottom left region, with linearly enhanced contrast. Left to right: (a) Origi-
nal image. – (b) Quadratic data term, quadratic regulariser. – (c) Quadratic data term,
Perona–Malik regulariser. – (d) Robust data term, Perona–Malik regulariser. – In this
low-contrast region, the deconvolution result (b) is dominated by artifacts while in
(c) the strong regularisation needed leads to a partial loss of details like the building
contours. The reduced amount of regularisation with robust data terms (d) allows
for a better preservation of these features. – Partially following [223].

street lights do hardly occur. Even in the lower left part of the image where the PSF
shape deviates much from that in the river region favourable sharpness is achieved.

Figures 6.9–6.11 show clippings from the same images in which these effects can be
seen clearer.

Printed text (spatially variant defocus). The last experiment of this chapter, Fig-
ure 6.12, emphasises the spatial variation of the PSF. A piece of printed text was pho-
tographed from small distance without appropriate focussing. The distance between
lens and object varied widely, leading to a stronger defocussing in the lower than in
the upper part of the image. Theoretical considerations show that defocussing PSFs
are well approximated by cylindrical functions (normalised characteristic functions
of disks, compare Figure 6.1(b)). For defocussing we used therefore a cylindrical PSF
whose diameter varies linearly from 5 at the top edge to 10.5 at the bottom edge.

To demonstrate also the robustness of the proposed deblurring method with respect
to noise, we replaced 30% of all pixels by uniform noise. Noise of such intensity is
not typically encountered in application data that the method is intended for, so we
had to resort to artificial image degradation at this single point. Restoration using our
variational method still works well. One difference is that the continuation strategy
must stop reducing the diffusion weight α at a larger value now, in order to remove
the oversmoothing at the initial large α while preserving the noise suppression by
regularisation.

We stress that although we used in Figure 6.12 a special PSF shape where effectively
only one parameter – the diameter – controls the spatial variation, our deblurring
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Figure 6.12: Left to right: (a) Spatially variant defocussing PSF (correct size). – (b)

Defocussed photograph of printed text. – (c) Restored by variational deblurring with
robust data term and Perona–Malik regulariser (λ= 5), using continuation strategy (2
levels with α= 0.03 and α= 0.003). – (d) Defocussed photograph with 30% uniform
noise. – (e) Restored by variational deblurring with robust data term and Perona–
Malik regulariser (λ = 5), using continuation strategy (2 levels with α = 0.03 and
α= 0.015). – From [223].

PDE itself is not restricted to such a setting. Indeed it can cope with arbitrarily given
H (x , y).
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Chapter 7

Inequality Constraints in

Variational Deconvolution

In this chapter we will extend the basic variational framework for deblurring devel-
oped in the previous chapter by introducing inequality constraints.

Since typical deconvolution problems are ill-posed inverse problems, it is highly de-
sirable to use any additional information that is available to support the sharpening
process. Inequality constraints are one type of such additional information which can
often be derived e.g. from physical considerations: In a grey-value image whose val-
ues are proportional to radiance, these values are bounded from below since radiance
cannot take negative values. Parameters of the image acquisition process sometimes
allow also to derive an upper bound. A similar situation occurs in the context of
diffusion tensor magnetic resonance imaging (DTMRI). The physical nature of the
measured diffusion tensors implies that they must be positive (semi-)definite, which
is an inequality constraint, too.

The principal idea of our approach to variational deconvolution with inequality con-
straints consists in a reparametrisation of the image range. In the grey-value case, the
reparametrisation principle has been used before in the context of a discrete deconvo-
lution model [151]. Moreover, the reparametrisation admits an interesting differen-
tial geometric reinterpretation which subsequently enables a transfer of the technique
to more complex inequality constraints on multi-channel images, such as positive def-
initeness of matrix-valued data. We will demonstrate the capabilities of the approach
by experiments on a colour photograph and on DTMRI data.

The presentation of the concepts and results in this chapter follows the conference
paper published at IbPRIA 2007 [220].

253



(c) Martin Welk 2007–2016. All rights reserved.

254 Chapter 7. Inequality Constraints in Variational Deconvolution

Related work. Reparametrisation has been used to impose a positivity constraint
on a discrete deconvolution model in [151]. A differential geometric framework for
gradient descent constrained to submanifolds (i.e., equality constraints) has been dis-
cussed in [64].

7.1 Basic Framework

We start from a model for variational deconvolution of (single- or) multi-channel im-
ages as described in Chapter 6 and use all notations from there. The energy functional
for a model with robust data terms (joint robustification, compare the discussion on
page 226) and edge-enhancing regulariser reads

E[u] =

∫

Ω

�
Φ
�∑

k∈Γ

�
R fk ,H [uk]

�2�
+αΨ

�∑
k∈Γ
|∇uk |2

��
dx (7.1)

where the index set Γ enumerates the image channels (|Γ |= 1 for grey-value images).

A gradient descent for (7.1) is given by

∂t uk =G1 :=
�∫

Ω

Φ′
�∑

l∈Γ

�
R fl ,H [ul ](y)

�2��
R fk ,H [uk](y)

�
H (y, · )dy

�

+αdiv
�
Ψ ′
�∑

l∈Γ
|∇ul |2

�
∇uk

�
. (7.2)

We next consider how the model (7.1) can be modified to incorporate constraints on
the solution.

7.1.1 Constraints for Greyvalue Images

Let us assume first that we are dealing with the single channel case, where the pixels
represent grey-value intensities. Since negative intensities do not physically make
sense, we would like to modify (7.1) to constrain the grey-values to be nonnegative.

One possibility would be to add a penalty for negative values, Such a “soft constraint”
would harmonise with the structure of the variational approach. However, it brings
about an additional weight parameter which is difficult to tune, and it also does not
strictly enforce the inequality.

7.1.1.1 Reparametrisation Approach

Another possibility, which has been shown to be very effective for discrete decon-
volution problems [151], reparametrises the greyvalues via u = exp(z) with a new
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image function z whose values are unconstrained in IR, and calculates the gradient
descent for z . Slightly generalising, we substitute u = ϕ(z) with a smooth invertible
function ϕ : IR→ IR into (7.1) and obtain

Ẽ[z] =
1
2

∫

Ω

�
Φ
��

R f ,H [ϕ ◦ z](x)
�2�
+αΨ

��
ϕ′(z(x)) |∇z(x)|

�2��dx . (7.3)

7.1.1.2 Gradient Descent Calculation

We derive now the variational derivative of the energy functional with respect to
z . For convenience, we decompose the energy functional again into data term and
regulariser.

Variation of data term. Inserting into the data term

Ẽ1[z] :=
1
2

∫

Ω

Φ
��

R f ,H [ϕ ◦ z](x)
�2�dx (7.4)

for z the function w = z + ǫv , where v is assumed to be a smooth function on Ω
which vanishes on the boundary, we calculate

d
dǫ

Ẽ1[w]

�����
ǫ=0

=
d
dǫ

�
1
2

∫

Ω

Φ
�
(R f ,H [ϕ ◦w](x))2

�
dx

������
ǫ=0

=

∫

Ω

�
Φ′
�
(R f ,H [ϕ ◦ z](y))2

�
R f ,H [ϕ ◦ z](y)

�
·

· d
dǫ

�
f (y)−

∫

Ω

ϕ
�
z(x)+ ǫv(x)

�
H (y, x)dx

�����
ǫ=0

dy

=−
∫

Ω

�
Φ′
�
(R f ,H [ϕ ◦ z](y))2

�
R f ,H [ϕ ◦ z](y)

�
·

·
∫

Ω

ϕ′(z(x)) v(x) H (y, x)dx dy

=−
∫

Ω

∫

Ω

�
Φ′
�
(R f ,H [ϕ ◦ z](y))2

�
R f ,H [ϕ ◦ z](y)

�
·H (y, x)dy ·

·ϕ′(z(x)) · v(x)dx . (7.5)
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As this equality has to hold for all admissible functions v , we drop the integral and
multiplication with v and obtain as variational derivative of Ẽ1 the expression

δ

δ z
Ẽ1[z](x)

=−
∫

Ω

�
Φ′
�
(R f ,H [ϕ ◦ z](y))2

�
R f ,H [ϕ ◦ z](y)

�
·H (y, x)dy ·ϕ′(z(x)) (7.6)

Substituting z := ϕ−1(u) with the inverse function ϕ−1, the variational gradient is
expressed in terms of the true image data u as

δ

δ z
Ẽ1[z](x)

=−
∫

Ω

�
Φ′
�
(R f ,H [u](y))

2�R f ,H [u](y)
�
·H (y, x)dy ·ϕ′(ϕ−1(u(x))) . (7.7)

Variation of the regulariser. Turning to the regulariser

Ẽ2[z] =
1
2

∫

Ω

Ψ
��
ϕ′
�
z(x)

�
|∇z(x)|

�2�
dx (7.8)

and substituting for z again w = z + ǫv with a smooth function v on Ω which
vanishes on the boundary, we have

d
dǫ

Ẽ2[w]

�����
ǫ=0

=
d
dǫ

�
1
2

∫

Ω

Ψ
��
ϕ′(w) |∇w|

�2�
dx

������
ǫ=0

=
1
2

∫

Ω

Ψ ′
��
ϕ′(z) |∇z |

�2� ·
∑

i

d
dǫ

�
ϕ′(z + ǫv)∂xi

(z + ǫv)
�2
����
ǫ=0

dx

=
1
2

∫

Ω

Ψ ′
��
ϕ′(z) |∇z |

�2� ·

·
∑

i

�
2ϕ′(z) ·ϕ′′(z) · d

dǫ
(z + ǫv)

����
ǫ=0
·
�
∂xi

z
�2

+
�
ϕ′(z)

�2 · d
dǫ

�
(∂xi

z)2+ 2ǫ∂xi
z · ∂xi

v + ǫ2(∂xi
v)2
�����
ǫ=0

�
dx

=

∫

Ω

Ψ ′
��
ϕ′(z) |∇z |

�2� ·
∑

i

�
ϕ′ ·ϕ′′ · (∂xi

z)2 · v +ϕ′2 · ∂xi
z · ∂xi

v
�

dx . (7.9)
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Integration by parts yields
∫

Ω

Ψ ′
��
ϕ′(z) |∇z |

�2� · �ϕ′(z)�2 · ∂xi
z · ∂xi

v dx

=−
∫

Ω

∂xi

�
ϕ′(z)

�
·ϕ′(z) ·Ψ ′

��
ϕ′(z) |∇z |

�2� · ∂xi
z · v dx

−
∫

Ω

ϕ′(z) · ∂xi

�
ϕ′(z) ·Ψ ′

��
ϕ′(z) |∇z |

�2� · ∂xi
z
�
· v dx (7.10)

which by inserting into (7.9) leads to

d
dǫ

Ẽ2[w]

�����
ǫ=0

=−
∫

Ω

div
�
Ψ ′
��
ϕ′(z) |∇z |

�2� ·ϕ′(z)∇z
�
·ϕ′(z) · v dx (7.11)

and by back-substitution z = ϕ−1(u) to

d
dǫ

Ẽ2[w]

�����
ǫ=0

=−
∫

Ω

div
�
Ψ ′
�
|∇u |2

�
· ∇u

�
·ϕ′

�
ϕ−1(u)

�
· v dx (7.12)

Dropping as before the integral and multiplication by v , we arrive at the variational
gradient

δ

δ z
Ẽ2[z] =−div

�
Ψ ′
�
|∇u |2

�
∇u

�
·ϕ′

�
ϕ−1(u)

�
. (7.13)

Combining (7.7) and (7.13), we find the new gradient descent

∂t u =Gϕ := ϕ′(ϕ−1(u)) ·
�∫

Ω

Φ′
��

R f ,H [u](y)
�2��

R f ,H [u](y)
�

H (y, · )dy
�

+αdiv
�
Ψ ′
�
|∇u |2

�
∇uk

�
(7.14)

which differs from (7.2) (with |Γ | = 1) only by a factor on the right-hand side, i.e.,
we have

Gϕ = ϕ
′(ϕ−1(u)) ·G1 . (7.15)

We will refer to the factor ϕ′(ϕ−1(u)) as constraint multiplier.

7.1.1.3 Specific Reparametrisations

It remains to specify suitable functions ϕ which can realise via reparametrisation the
desired inequality constraints, and to calculate the corresponding constraint multi-
pliers.
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Positivity constraint. A positivity constraint is imposed by

ϕ(z) = exp(z) , (7.16)

with the constraint multiplier

ϕ′(ϕ−1(u)) = u . (7.17)

This reparametrisation has been introduced in [151].

Interval constraint. The positivity constraint can easily be generalised to an inter-
val constraint a < u < b by using a sigmoid function such as

ϕ(z) =
a exp(−z)+ b

exp(−z)+ 1
, (7.18)

leading to the constraint multiplier

ϕ′(ϕ−1(u)) =
(u − a)(b − u)

b − a
. (7.19)

7.1.2 Separable Constraints for Multi-Channel Images

Going from a single grey-value to multi-channel images, the simplest type of con-
straints that comes into sight are separable inequality constraints, i.e., constraints that
are represented by independent inequalities on the individual channels. The exten-
sion of the framework developed above for single-channel images to this situation is
obvious.

Constraining Colour Images. For example, positivity or interval constraints for
the channels of colour images are imposed by setting uk = ϕk (zk) for k ∈ Γ . The
corresponding gradient descent in channel k is given by equation (7.2) with the right-
hand side multiplied by ϕ−1

k
(ϕ′

k
(uk)).

Experiment. In our first experiment, we consider deconvolution of a colour image
with positivity constraint in all channels using the gradient descent (7.14) withϕ(z) =
exp(z). We use robust L1 data terms in combination with an edge-enhancing Perona–
Malik regulariser.

As in the case of the unconstrained gradient descent (7.2), a straight forward numer-
ical implementation is through an explicit time-stepping scheme which is stopped
when the updates fall below some small positive threshold. We do not focus on ex-
periments with additional noise since the robustness of variational deconvolution
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Figure 7.1: Variational deconvolution of the colour photograph from Figure 6.8(a),
using the approximate space-invariant PSF from Figure 6.1(e). In all cases, robust L1

data terms and Perona–Malik regularisers with λ= 26 have been used. In this setting,
regularisation weights can be compared. Top left (a): Without constraint, α = 0.06
(same as Figure 6.8(d)). – Top right (b): With positivity constraint, α= 0.06. – Bottom

left (c): Without constraint, α = 0.03. – Bottom right (d): With positivity constraint,
α= 0.03. – Following [220].
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Figure 7.2: Details (240× 117 pixels) from the images shown in Figure 7.1, middle
right region. Top left (a): No constraint, α= 0.06 – Top right (b): Positivity constraint,
α = 0.06. – Bottom left (c): No constraint, α = 0.03. While light spots are still more
blurry than in (b), artifacts are amplified, particularly near the riverbank. – Bottom

right (d): Positivity constraint, α = 0.03. Artifacts are suppressed similarly as in (a)
but light spots as well as the light bands at the bridge appear sharper than in (b) and (c).
– Following [220].

Figure 7.3: Details (117× 117 pixels each) from the images shown in Figure 7.1. Top

row (a)–(d): Detail from top left region as in Figure 6.10. Bottom row (e)–(h): Detail
from bottom left region, with linearly enhanced contrast as in Figure 6.11. From left

to right: (a)/(e) No constraint, α = 0.06. – (b)/(f) Positivity constraint, α = 0.06. A
slight gain in the sharpness of some details is visible. – (c)/(g) No constraint, α =
0.03. Many details that were smoothed away in (a)/(e) become distinguishable but
oscillations on the finest scale appear close to light sources (black pixels). – (d)/(h)

Positivity constraint, α = 0.03. Sharpness is comparable to (c)/(g) but the artifacts
are suppressed.
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with robust data terms under e.g. impulsive noise has already been demonstrated in
Section 6.6.2, Figure 6.12.

Figure 7.1 shows deconvolution results without constraints and with positivity con-
straints for the blurred colour photograph of Paris from Figure 6.8(a). Since in both
cases the same energy functional is minimised, the comparison of regularisation weights
α is meaningful here. Remember that the exact PSF is unknown and slightly space-
variant while a space-invariant PSF estimated from an impulse response in the image
is used for deconvolution.

In Figure 7.1(a) we show again the result from Figure 6.8(d), i.e., deconvolution with-
out constraint,α= 0.06. In (b) a positivity constraint is used while retainingα= 0.06.
Already here, a gain in sharpness of small details can be observed. Reducing the reg-
ularisation weight in both settings to α = 0.03 leads to the results shown in (c) and
(d). Without constraint (c), a slight gain in sharpness is accompanied by a noticeable
increase of oscillatory artifacts, best visible near edges. In contrast, the result with
positivity constraint (d) still shows a good suppression of artifacts. Interestingly, this
includes not only undershoots to negative values which are suppressed directly, but
also overshoots in the positive range, due to the convolution in the data term that
links over- and undershoots. The overall level of artifacts in (d) is comparable to that
in (a), while fine image structures are reconstructed much better. In practice, the pos-
itivity constraint thus allows to reduce the degree of regularisation and thereby to
improve the deconvolution of details.

This comparison is further illustrated by Figures 7.2 and 7.3 which show clippings
from the images of Figure 6.8.

7.2 Geometric Reinterpretation

We now show that it is possible to interpret the reparametrisation approach geomet-
rically, and this leads to a very convenient form in which more general constraints
can be easily incorporated into the model.

Positivity constraint and hyperbolic metric. Let us consider once more grey-
value images with positivity constraint, i.e., ϕ′(ϕ−1(u)) = u . We have obtained (7.14)
as the gradient descent for the functional Ẽ[z]. This derivation implicitly refers to an
inner product in a function space (compare our remark in 2.1.2 after (2.8)), namely
that of the variation functions v = δ z . The inner product we have used is the stan-
dard inner product

〈δ z1,δ z2〉=
∫

Ω

δ z1(x)δ z2(x)dx (7.20)
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which is constructed from the standard (Euclidean) metric dz on the range of z :Ω→
IR.

Let us now consider the range of positive grey-values IR+, i.e., the range of u , and
replace the Euclidean metric du with the hyperbolic metric given by

dhu :=
du

u
. (7.21)

This implies also a different metric on the space of functions u : Ω → IR+, which is
expressed by

δhu :=
δu

u
, (7.22)

and thereby to a different inner product on its tangential space, the space of variation
functions δu . This inner product is given by

〈δu1,δu2〉h := 〈δhu1,δh u2〉 (7.23)

We will now see that the gradient descent (7.14) also arises as gradient descent for the
original energy functional E[u] from (7.1) w.r.t. the inner product (7.23). Variations
of data term and regulariser have been computed before as (6.14) and (2.24), resp., and
sum up to

δE =−
∫

Ω

G1(x) · v(x)dx (7.24)

where we have used the abbreviation G1 as defined in (7.2). According to 2.1.2 the
sought variational gradient is the function G for which

δE = 〈−G,δh u〉 (7.25)

which, by comparison to δE = 〈−G1,δu〉 implies G = u ·G1 in accordance with
(7.19) for ϕ ≡ exp.

We can therefore represent our modified gradient descent process as standard gradient
descent with a different underlying metric! From this viewpoint, zero and negative
greyvalues are avoided simply because the hyperbolic metric puts them at infinite
distance from any positive values.

This reinterpretation can directly be transferred to the interval constraint case, by
choosing a metric on (a, b ) in which both interval ends a and b are pushed away to
infinite distance.

7.3 Positive Definiteness as an Inequality Constraint

As a consequence of our geometric reinterpretation, we no longer need to rely on
an explicit reparametrisation of the image range to compute a constrained gradient
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descent. Instead, it is sufficient to calculate the gradient descent of (7.1) with respect
to a suitably chosen metric on the image range. We carry this out for one example.

Positive definiteness constraint in matrix-valued images. We consider matrix-
valued images as in Chapter 3. As pointed out there positive definiteness is an essential
property of such data in several relevant application contexts. We want therefore to
formulate a gradient descent for variational deconvolution of matrix-valued images
with positive definiteness constraint.

To this end, we use the Riemannian metric on the cone of positive definite matrices
that is given by dSA2 = ‖A−1/2 dAA−1/2‖2F with ‖ · ‖F denoting the Frobenius norm,
see [187, 106]. This metric has recently been investigated intensively in the context
of DTMRI data processing, see e.g. [143, 160].

Denoting the matrix-valued image by U = (uk)k∈Γ , Γ = {1,2,3}× {1,2,3}, the gra-
dient descent for (7.1) with respect to the metric dS is given by

∂t U = U 1/2 G U 1/2 (7.26)

where G is the matrix of all the right-hand sides of (7.2) for channels k ∈ Γ .

Experiment with DT-MRI data. In Figure 7.4 we demonstrate deconvolution of
matrix-valued data with positive definiteness constraint, using data from diffusion
tensor MRI measurements. We employ once more robust L1 data terms, an edge-
enhancing Perona–Malik regulariser and compute the gradient descent according to
(7.26).

Figure 7.4 (a), (b) show one 2D slice of the DTMRI data set that has already been
used in Chapter 3, see e.g. Figure 3.4. In (c), (d) it has been synthetically blurred by
iterative box filtering approximating a Gaussian of standard deviation 2, and in (e), (f)
deconvolved by our method, using a Gaussian PSF of the same standard deviation.

It can be seen that many structures in the DTMRI image are nicely reconstructed by
the deconvolution process, e.g. the highly anisotropic diffusion tensors of the corpus
callosum region, and the sharp edges between corpus callosum and the large isotropic
tensors in the adjacent ventricle. A limitation of the current method that can be seen
from the figures is that very thin details with a width of only one or two voxels are
still smoothed in the deconvolved image. Due to the low resolution this effect is more
relevant in DTMRI data than elsewhere, and further work will be devoted to improve
reconstruction quality for such details.
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Figure 7.4: Top left (a): One 2D slice from a DTMRI data set of a human brain. The
3× 3 tiles represent the matrix components, with middle grey representing 0. Top

right (b): Detail from the corpus callosum region visualised by ellipsoids. Directions
and lengths of the principal axes correspond to eigenvectors and eigenvalues, resp.
Middle row (c), (d): Blurred by iterated box filtering, approximating convolution with
a Gaussian of standard deviation 2. Bottom row (e), (f): Variational deconvolution with
robust data terms, total variation regulariser, regularisation weight 0.03, and positive
definiteness constraint. – From [220].
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Concluding Remarks

We have presented theoretical developments and experimental results on different
mathematical models and algorithms for the processing of digital single- and multi-
channel images. One common theme behind the contributions included in this work
is given by the use of geometric concepts and invariances as guiding principle in the
design of models and algorithms. Another common theme is that image filtering
processes that involve an evolution from the original to the filtered image can be seen
as dynamical systems. Both principles were made useful in a number of ways.

We have detailed the development of a stringent theory for median filters on multi-
channel images with focus on matrix-valued images, based on a geometrically mo-
tivated axiomatic approach. Extensions included several median-related filters and
particularly a family of M-smoothers with power laws for the penalisation of differ-
ences.

Further we have studied space-discrete versions of PDE-based signal and image filters
using dynamical systems of ODEs. The selection of filters covered on one hand the
family of diffusion filters including linear,nonlinear isotropic and nonlinear anisotropic
diffusion, in particular also singular isotropic processes like total variation flow. On
the other hand exemplary structure-enhancing filters – a shock filter of Osher-Rudin
type, stabilised inverse linear diffusion, and the so-called forward-and-backward dif-
fusion were considered and important aspects analysed. Due to the occurrence of
singularities in several of these processes, techniques for dynamical systems with dis-
continuous right-hand sides had to be used. For all types of diffusion filters, we also
were able to devise numerical schemes of special kind, namely, locally (semi-) analytic
schemes, with interesting stability properties, low numerical dissipation, and simple
algorithmic structure. These algorithms also constituted a bridge between diffusion
and wavelet-based image denoising filters.

In the last part we have discussed a variational model framework for the sharpening of
images degraded by blur. The models presented here are characterised by excellent ro-
bustness against noise and violations of model assumptions. They admit fairly general
blur models: space-variant point-spread functions, even of fairly irregular shape. By
their continuous-domain design, they also obey the geometric invariance principles

265
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that are essential in image processing. Finally, we showed how inequality constraints
can be integrated into the variational framework. The way to do this is again founded
on a geometric construction, this time concerning the metrics in the function space
underlying the gradient descent for the energy functional.

Representing current research, this work naturally remains incomplete in many re-
spects, leaving open questions. Let us outline a few major directions of ongoing re-
search.

The investigation of spatially discretised PDE filters calls for extension to further
classes of filters. In the case of the structure enhancement filters from Chapter 5, also
the extension to the 2D case is awaiting research. Further it can be hoped that also
the idea of locally (semi-) analytic schemes can be transferred, e.g., to curvature-based
PDE filters like mean curvature motion (compare 3.1.1, 3.5.1).

In the case of variational deconvolution, algorithmic improvements are one desider-
atum. This includes more efficient numerics for the gradient descent equations, and
possibly also other ways to minimise the energy functionals in question. Also, the
stability analysis for the explicit numerical schemes started in Chapter 6 will be con-
tinued and extended to further schemes.

Last but not least, experience shows that deconvolution methods that work fairly
well on synthetic examples can still fail on naturally blurred images. We have there-
fore consciously carried out many experiments here on physically blurred images.
However, proper benchmarking becomes difficult – currently, mostly impossible –
in this way. A further analysis of the physical blur process and creation of better
benchmarks will be necessary to replace questionable visual judgements.
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