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Abstract. Diffusion processes driven by anisotropic diffusion tensors are known
to be well-suited for structure-preserving denoising. However, numerical imple-
mentations based on finite differences introduce unwanted blurring artifacts that
deteriorate these favourable filtering properties. In this paper we introduce a novel
discretisation of a fairly general class of anisotropic diffusion processes on a 2-D
grid. It leads to a locally semi-analytic scheme (LSAS) that is absolutely stable,
simple to implement and offers an outstanding sharpness of filtered images. By
showing that this scheme can be translated into a 2-D Haar wavelet shrinkage pro-
cedure, we establish a connection between tensor-driven diffusion and anisotropic
wavelet shrinkage for the first time. This result leads to coupled shrinkage rules
that allow to perform highly anisotropic filtering even with the simplest wavelets.

1 Introduction

Anisotropy originates from physics where it decribes a direction-dependent behaviour
of material properties. In image analysis, anisotropic filters that act direction-adaptive
are an adequate framework to process oriented structures such as edges!. Since oriented
features play a central role in many computer vision applications, it is not surprising that
much research on anisotropic filtering has been carried out in the last decade.

One class of methods where anisotropy is used are anisotropic diffusion filters with
a matrix-valued diffusion tensor instead of a scalar-valued diffusivity; see e.g. [25].
They include edge-enhancing diffusion (EED) that denoises images isotropically within
regions and smoothes anisotropically along image edges, and coherence-enhancing dif-
fusion (CED) that processes flow-like structures by smoothing along the flow direction.

Also in the wavelet community many efforts have been made to incorporate aniso-
tropy in order to represent and process oriented structures in a better way, e.g. by con-

! Sometimes the notion anisotropic is already used for space-variant filtering; see e.g. [18]. In
our nomenclature, such a filter would be called isotropic.



tourlets [9], ridgelets [12] and curvelets [4]. They take the form of frame elements that
exhibit very high directional sensitivity and are highly anisotropic.

Initially, anisotropic concepts have been derived in a continuous setting where they
can be described most elegantly. However, in order to apply anisotropic filters to digi-
tal images, one has to find adequate discrete representations for them. In practice this
may create substantial problems with respect to rotation invariance, since the digital
geometry allows to represent only a very restricted set of directions in a precise man-
ner. If a filter is supposed to perform e.g. smoothing along an arbitrary one-dimensional
structure, even slight directional errors can introduce blurring artifacts that severely
deteriorate its performance. Therefore, research became necessary to find adequate dis-
crete realisations of anisotropic filters, both in the diffusion setting [24,26] and in the
wavelet framework [3, 10].

The goal of the present paper is to address these problems by deriving novel dis-
crete anisotropic filters that unify the concepts of tensor-driven diffusion and anisotropic
wavelet shrinkage. We start by presenting a new scheme for anisotropic diffusion fil-
tering that uses solutions of diffusion processes on 2 x 2 pixel images with a fixed
diffusion tensor as building blocks. We show that this so-called locally semi-analytic
scheme (LSAS) is absolutely stable, that it is simple to implement, that it gives an ex-
cellent approximation of rotation invariance, and that it hardly suffers from numerical
blurring artifacts. Afterwards we interpret this scheme as a new strategy for anisotropic
shift-invariant Haar wavelet shrinkage on a single scale. This leads to novel, anisotropic
shrinkage rules with coupling of the coefficients.

Our paper is organised as follows. In Section 2 we derive our method as a novel
scheme for anisotropic diffusion filtering, while Section 3 is devoted to its interpretation
in the wavelet context. Experimental results are presented in Section 4, and the paper is
concluded with a summary in Section 5.

Related work. Early schemes for anisotropic, tensor-driven diffusion such as [14, 19,
25] did not pay specific attention to the problem of rotation invariance and avoidance of
blurring artifacts. Weickert and Scharr [26] addressed these problems by a scheme for
coherence-enhancing diffusion filtering that uses optimised, Sobel-like approximations
of all first order spatial derivatives. However, no stability theory was presented, and
experiments showed only conditional stability. The same holds for the modified scheme
of Wang [24] who used Simoncelli’s derivative approximations [21] instead. Moreover,
both schemes require stencil sizes of at least 5 x 5 pixels, while the scheme in the
present paper is absolutely stable and comes down to a more local 3 x 3 stencil.

We notice that constructing numerical methods for diffusion filters from analytic so-
lutions of simpler systems is also a feature of the method of short-time kernels, see e.g.
[22], where a locally linearised diffusion equation is solved by Gaussian convolution.

Much research on relations between PDE-based filters and wavelets has been car-
ried out in the continuous setting; see e.g. [1,2, 5,6, 15,20]. Work on the relations be-
tween wavelet shrinkage and PDE-based denosing in the discrete framework include a
paper by Coifman and Sowa [8] where they proposed total variation (TV) diminishing
flows that act along the direction of Haar wavelets. Weickert et al. describes connec-
tions between (semi-)discrete diffusion filtering and Haar wavelet shrinkage, including
a locally analytic four-pixel scheme, but focussed on the 1-D or the isotropic 2-D case



with a scalar-valued diffusivity; see [27] and the references therein. To the best of our
knowledge, however, nobody has found connections between nonlinear diffusion and
wavelet shrinkage in the practically relevant anisotropic case so far. With respect to its
four-pixel building blocks, our scheme can be regarded as an anisotropic, 2-D exten-
sion of the 1-D two-pixel scheme of Steidl et al. [23], and the 2-D isotropic four-pixel
scheme of Welk et al. [28]. It is also an anisotropic extension of the equivalence re-
sults between discrete diffusion filtering and single scale Haar wavelet shrinkage that
have been established by Mrazek and Weickert in the 1-D case [17] and in the isotropic
setting [16].

2 A Local Discretisation of Anisotropic Diffusion with Low
Numerical Blurring

We consider a nonlinear anisotropic diffusion equation [25]
Ou = div (D(J) - Vu) (1)

where D(J) is an anisotropic diffusion tensor which depends on the image via the so-
called structure tensor [13]

J=J,(Vu,) =K, (V(K, xu) V(K, xu)T) . )

Here, K, and K, are Gaussian convolution kernels. This equation can model a wide
variety of anisotropic diffusion processes, including EED and CED, by adjusting the
parameters g, o, and the dependence of D on the structure tensor J.

In order to discretise (1) and (2) in a way that introduces as little numerical blurring
artifacts as possible, we will base our discretisation of .J on four-pixel cells consisting
of 2 x 2 pixels. Furthermore, our discretisation of the divergence expression will allow
for a decomposition into approximations on these cells.

2.1 Discretisation of the Diffusion Tensor

Discretising the diffusion tensor D means to discretise the structure tensor J. The main
step herein is the discretisation of the gradients Vv of the given pre-smoothed image
v = K, * u. As for nonlinear isotropic diffusion [28] a good location to discretise
these quantities most locally is in the centre of a four-pixel cell. We aim therefore at
discretising Vo = (8,v,9,v)T, and thus VoVo™, at the centre (2, 3) of a four-pixel
cell {v;; }4,j—1,2 from a sampling of the spatial function v.

First, 0,v and Jyv can be approximated from the given pixels v11, V12, V21, V22 by
central differences at midpoints between neighbouring pixel positions. By considering
a quadratic grid with grid size 1 and taking arithmetic means of these expressions, we
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obtain approximations for the derivatives at (3, 5):
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Having discretised the gradient Vv, one computes the outer product VoVo™ . The struc-
ture tensor field results from smoothing this componentwise by the Gaussian of standard
deviation g.

2.2 Discretisation of Anisotropic Diffusion with Given Diffusion Tensor Field
We turn now to consider the anisotropic diffusion equation

Ou = div (D - Vu) %)
with an arbitrary diffusion tensor field represented by positive semidefinite symmetric

. ac . . . . .
matrices D = (c b) . We assume that u is sampled at the integer pixel positions (i, 7)

while D is sampled at inter-pixel positions (i + %,j + 3).

In discretising the right-hand side of (4) at some pixel position (4, j), we will use the
values of u at positions (i + £1,j + £2) where 1,2 € {—1,0, +1}, and the diffusion
tensors at (i & %, + 1). For abbreviation we set

_fa—_c__ e [O—+ C—+
Di 3j-1= (c b) ’ Dicyivy = <c+ b+> ,

D' 1, 1 := a+7 c+7 D' 1,1 1= a++ c++
R Cy—by—) 7’ it Ct byy

To obtain a discretisation which is “as local as possible”, we decompose the differ-
ential operators div and V herein according to the 45°-rotated coordinates &, 7 where

()=20)  m=50) ©

Note that H = HT = H~'. To express the diffusion tensor in the £- coordinates, D
must be transformed by

&)

r_Llfa+b+2¢c a-—b
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Then we have
(div (D VU)). = ((657877)(HDH (Bguﬁnu)T)). .
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Fig. 1. The four-pixel cells contributing to % ;.

Expanding 0:u and O,u finally yields the dynamical system

g5 = i((a++ + bt + 244 ) (Wit 541 — Uij)

+ (@4t = b) (Uigr,5 — i j1)
—(a—— +b-— +2c ) (uij —ui-1,-1)
—(a—— —b__)(uij—1 — ui-1,5) )
+ (ag— —by_)(wig1,j — uij—1)
+(ay— + by — 24 ) (Uig1,j—1 — i )
—(a—y = b_4) (Ui jt1 — Uj—1,5)

—(ag by — 204 ) Uiy — uis141)) 5

where the dot denotes differentiation with respect to the time ¢. One observes that each
summand on the right-hand side contains only quantities from one of the four-pixel
cells

(—=): {i—-1,i}x{j—-1,5}, (+=): {i,i+1}yx{j—1,5},

(=) : {i—Lipx{j,i+1},  (++): {oi+ 1} x{jj+1}
which allows to split up (9) into the average of four dynamical systems each of which
only contains interactions within one four-pixel cell. For illustration see Figure 1.

(10)

With D = (CCL Z) denoting the diffusion tensor discretised in (%, %), one such

four-pixel dynamical system for the cell {1, 2} x {1, 2} reads as follows:

1,1 = (a+b+2¢)(u2,2 —ur1) + (@ — b)(u2,1 — u1,2) ,

Uo1 = (a+b—2c)(u12 —u21) + (@ — b) (w11 —u2p2), (11
U12 = (a+b—2¢)(u21 —u12) + (@ — b)(ug,2 —u11),

22 = (a+b+2c)(u1,1 —uz2) + (@ —b)(u1,2 —u21)

2.3 Semi-Analytical Solution of the Four-Pixel System

Next we want to solve the system (11) analytically where we assume that the diffusion
tensors D are kept fixed during the image evolution®. To this end it is useful to introduce

2 In analogy to semi-implicit schemes that keep the nonlinear diffusion fixed at the previous time
level while discretising the remainder in an implicit fashion, we call a method semi-analytic if
it freezes the diffusion tensor and searches for an analytic solution.



new variables w; ; by
W :=HUH , (12)

U1 U Wi, W .
where U := | ' ™21 ) W= LL210 Jand H happens to be the same matrix
U1,2 U2,2 Wi,2 W22

as introduced by (6). Then we can rewrite (11) in terms of the new variables as

w1 =0,

11')271 = —40/11]2’1 — 4CUJ1,2 s (13)
'11')1’2 = —4611)2,1 - 4bw1,2 5

lrgy =0.

While w1 1 and w5 are constant, the dynamical system for w := (w21, wl,z)T can be
rewritten as

w=—4Dw . (14)
Let the eigendecomposition of D be given by D = Ajejef + Asesel with eigenval-
ues A2 = 3(a + b=+ /(a — b)? + 4c?) and orthonormal eigenvectors ey, e;. Then,
remembering that D is kept constant, the solution of (14) is

w(t) = e Mt (eTw(0))e; + e (e w(0))e, . (15)
By the inverse transform of (12),
Ut)=HW(t)H , (16)

this analytical solution can be expressed with respect to the original variables.

2.4 Numerical Scheme for Anisotropic Diffusion

We use now the explicit solution (15) of our four-pixel system as a building block for
a numerical scheme for anisotropic diffusion. Because of the aforementioned splitting
of (9) into the contributions from the four cells (10), the solution of (9) can be approxi-
mated by averaging the solutions of systems of the type (11). These solutions have been
studied in Subsection 2.3. A time step will then be executed by computing the analytical
solution (15) (resp. its back-transformed analog) for the desired evolution time, i.e. the
time step size 7.

For the anisotropic diffusion processes that we are interested in, the diffusion tensor
D depends on the structure tensor J, which arises from smoothing the outer product
matrices VoVoT with a suitable convolution kernel, as seen in (2). To evaluate (15)
requires therefore to compute D from the current data u, and to determine the eigende-
composition of D.

We have therefore arrived at a locally semi-analytic scheme (LSAS) for anisotropic
diffusion, one time step of which is summarised in Figure 2. The use of our analyt-
ical solution ensures that the resulting scheme for our four-pixel cell is stable in the
Euclidean norm for any time step size (note that Ay, A2 > 0). Since solutions from
four-pixel cells are combined by simple averaging, this absolute stability transfers to
the discretised anisotropic diffusion on the entire grid?.

3 As for all known explicit diffusion schemes with unconditional stability, this favourable sta-
bility property is always in conjunction with conditional consistency: For fixed spatial grid



LSAS Algorithm for Anisotropic Diffusion

e Compute the pre-smoothed image v := K, * u* by convolution.

e For each four-pixel cell {7,7 + 1} x {j,j + 1}, compute the approximation of the
gradient Vv according to (3), and the tensor product VoVoT.

o Compute the structure tensor field J = K, * (VoVuv™T) by convolution.
e For each four-pixel cell, compute the diffusion tensor D = D(J).

e For each four-pixel cell, compute one time step of anisotropic diffusion via the ana-
lytical solution (12), (15), (16).

e For each pixel () with coordinates (%, j), consider the four cells

(=-) +-) =+ ++)

which lead to four approximations

k+1 k+1 k+1 k+1
Wi, ——s Ui 54— U5, — 4y Uig 44 -
Average:
k+1 _ 1, k+1 k+1 k+1 k+1
wig =g (uig— Fuijp Uiy Fuiyy) -

Fig. 2. One time step of the locally semi-analytic scheme for anisotropic diffusion, where u*,
u®+? refer to the old and new time step, respectively.

3 Anisotropic Wavelet Shrinkage

In [23], it was shown that one-dimensional nonlinear diffusion on two-pixel signals co-
incides with Haar wavelet shrinkage if the shrinkage function is chosen in accordance
with the diffusivity and the threshold parameter is equal to the diffusion time. A gen-
eralisation of this result to isotropic two-dimensional nonlinear diffusion was proposed
in [28] where the shrinkage step was based on a diffusion inspired shrinkage function
introduced in [16]. This shrinkage function couples the individual wavelet coefficients
which leads to an improved rotation invariance of the procedure. Here we want to ex-
tend these promising results to the anisotropic setting.

The key for the connection between our four-pixel scheme and Haar wavelet shrink-
age is the fact that the two-dimensional Haar wavelet transform acts naturally on subse-

fin f 2,1)

fip fa2)’

and explain how it changes under two-dimensional Haar wavelet shrinkage. One cycle

quent 2 x 2-pixel tiles of an image. Let us choose one such tile, say F' := (

size and a time step size tending to infinity, our scheme approaches a local averaging on a
checkerboard decomposition of our grid.



of Haar wavelet shrinkage consists of three steps: the analysis step, the shrinkage step
and the synthesis step.

In the analysis step, the four-pixel image F' image is transformed into the wavelet
domain. To this end, the low and high pass Haar filters are applied to the rows and
columns of F'. More precisely, F' is multiplied from the left and the right by the matrix
H from (6) which results in an image

C:=HFH. (17

Obviously, with U = F and W = C, this coincides with our variable transform (12).
The shrinkage step modifies the high-pass coefficients c2 1, c1,2 and ¢z 2 of C by
applying a shrinkage function Sy depending on a threshold parameter 6. Let us consider
two examples first before introducing a shrinkage rule inspired by anisotropic diffusion.
In ordinary wavelet shrinkage the thresholding depends on the individual coeffi-
cients. For example, soft shrinkage [11] shrinks the coefficients towards O by an amount
that is given by a threshold parameter §:

cij—Osgn(ciy) if lei;0 >0,

So(ci i) == 18

o(cii) {0 otherwise . (18)

In [16] a shrinkage function inspired by isofropic nonlinear diffusion filtering was

introduced that leads to a coupled shrinking of the coefficients. More precisely, the

. . . 1 .

thresholding applies with respect to ¥(C) := (¢3 ; + ¢} 5 + ¢3 ) 2. For a soft shrinkage

and (4,5) € {(2,1),(1,2), (2,2)} this comes down to

cij — 5oy senleiy) i (C) > 8,

19
0 otherwise . (19)

Sg(cz-,j) = {

Now we want to introduce an anisotropic shrinkage procedure with respect to a diffu-
sion tensor D. In accordance with (13) and (15), we set 59(02,2) 1= c2,2 and define a
coupled shrinkage of the antidiagonal coefficients ¢; 2 and o1 by

2,1 . 674)\19 0 T (2.1
Sp <<0172>> -—Q( 0 64)\20) Q <C1,2) ) (20)

where () := (e1, e2) denotes the eigenvector matrix of D, and the threshold param-
eter § was identified with the diffusion time ¢. This shows that besides the low-pass
coefficient ¢; ; also the high-pass coefficient ¢z » remains unaffected, while the antidi-
agonal coefficients ¢ 2 and cp 1 are shrunken in a coupled way. Let us abbreviate this
anisotropic shrinkage procedure by Sg(C).

Finally, the synthesis step leads us from the wavelet domain back to the original
image domain. To this end we perform the inverse transform of step 1,

FO) = HSy(C\H (1)

on the shrunken coefficients. This is just the analog of (16).



Fig. 3. Left to right: (a) Test image with noise. (b) Denoised by edge-enhancing diffusion with
standard explicit scheme, A = 5, 0 = 1.8, o = 0, 7 = 0.166, N = 200 iterations. (¢) Denoised
by edge-enhancing diffusion with LSAS, A = 5,0 = 1.8, o = 0,7 = 1, N = 200 iterations.

In summary, one cycle of the above anisotropic Haar wavelet shrinkage coincides
with the solution of (11) with initial condition U (0) = F', where the threshold parameter
plays the role of the diffusion time.

Expressing an image in terms of Haar wavelets leads to a natural decomposition
into tiles of 2 x 2 pixels (decimated wavelet transform). Shrinking these tiles separately
according to the preceding procedure is not translationally invariant. Fortunately this is
cured by the averaging procedure (9). It can be interpreted as a so-called cyclic spinning
[7] that is related to a shift-invariant undecimated wavelet transform.

Apart from shift invariance, the LSAS algorithm can also be seen as a simple ap-
proach to create rotationally invariant anisotropic Haar wavelet shrinkage: Since our
novel anisotropic shrinkage rules are a numerical scheme for a rotationally invariant
continuous diffusion filter, rotation invariance is approximated at no additional expense.

4 Experiments

In our first experiment (Fig. 3) we use our scheme to perform edge-enhancing diffusion
[25]. In this case, there is no integration over the outer products, so ¢ = 0. The diffusion
tensor D has the same eigenvectors as the outer product J = VoVoT, namely Vv
and its orthogonal Vo, The eigenvalue in direction Vv is given by g(|Vv|®) where
g(s?) = 1 — exp(—3.31488)8/s?) with a given threshold parameter A\ > 0, which
means that g is applied to the first eigenvalue of .J. The eigenvalue of D in direction
Vo7 is fixed to 1. — The noisy image (Fig. 3a) is denoised with a standard explicit
scheme with central spatial differences, and with the locally semi-analytic scheme. It is
observed that the denoising result with our new scheme is slightly sharper. Moreover, a
look at the parameters shows that the effective evolution time used by the new scheme is
six times larger than with the explicit scheme which demonstrates how much the latter
is indeed dominated by numerical blurring artifacts.

In our second experiment we consider coherence-enhancing diffusion (CED) [25].
It uses an integration scale g that is considerably larger than o, thereby introducing into
J a smoothing over eigenvector systems. If the structure tensor has the eigendecompo-
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Fig.4. Left to right: (a) One quadrant of a rotationally invariant test image, 64 x 64 pixels.
(b) Exact solution for coherence-enhancing diffusion with @ = 0.001,C = 1,0 = 0.5, 0 =4
and ¢ = 250. (c) Filtered with the nonnegativity scheme [25] with 7 = 1/6, and N = 1500 iter-
ations. Average absolute error: 17.99. (d) Processed with our LSAS algorithm, same parameters.
Average absolute error: 3.81.
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Fig. 5. Left to right: (a) Fingerprint image, 100 x 100 pixels. (b) Filtered with the nonnegativity
scheme [25] for CED with C = 1,0 = 0.5, p = 4, 7 = 1/6, and N = 60 iterations. (c) Pro-
cessed with our LSAS algorithm for CED, same parameters. (d) LSAS algorithm with 7 = 1 and
N = 10 iterations.

sition J = p1ejel + psesel with iy > o, then the diffusion tensor D(.J) has the
decomposition D(.J) := Ajeje] + laeseq with eigenvalues

)\1 =aq,

\ {a if 1 = pa, (22)
2 1= _
a+ (1—a)exp (ﬁg) else,

some small regularisation parameter o > 0 and a contrast parameter C' > 0. This pro-
cess smoothes along flow-like structures. For a rotationally invariant test image such as
the one in Figure 4, only radial linear diffusion with diffusivity a takes place. Hence,
the exact solution at time ¢ is given by a convolution with a Gaussian of standard de-
viation v/2at. By comparing the solutions of the so-called nonnegativity discretisation
from [25] with our LSAS algorithm and the exact solution, we see that the LSAS does
not suffer from visible blurring artifacts. It preserves rotation invariance very well and
creates significantly lower errors than the nonnegativity scheme.

These quantitative findings are also confirmed in the fingerprint example in Figure 5.
We observe that the LSAS gives much sharper results, and that it yields still realistic
results for time step sizes far beyond the stability limit 1/6 of the nonnegativity scheme.



5 Conclusions

The contributions in our paper are twofold: Firstly we have presented a novel scheme
for anisotropic diffusion with a high degree of rotation invariance and practically in-
visible blurring artifacts. It is absolutely stable in the Euclidean norm and simple to
implement due to its explicit nature. Therefore it can serve as the method of choice
whenever a well-founded, highly accurate scheme for anisotropic, tensor-driven diffu-
sion is required. Secondly, we have clarified the diffusion-wavelet connection in the
anisotropic case for the first time in the literature. This has led to novel, anisotropic
shrinkage rules with coupling of the coefficients. More importantly, it also demonstrates
that sophisticated concepts such as ridgelets and curvelets are not the only way to per-
form advanced anisotropic wavelet-based shrinkage: Even the most elementary class
of wavelets, namely Haar wavelets, are sufficient for implementing highly anisotropic
filters in a rotationally invariant fashion. We hope that this novel connection can help to
fertilise further research on simple, structure-adaptive anisotropic wavelet concepts and
to gain new insights in the design of coupled shrinkage rules.
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