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Abstract. Novel matrix-valued imaging techniques such as diffusion
tensor magnetic resonance imaging require the development of edge-
preserving nonlinear filters. In this paper we introduce a median filter for
such tensor-valued data. We show that it inherits a number of favourable
properties from scalar-valued median filtering, and we present experi-
ments on synthetic as well as on real-world images that illustrate its
performance.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a recent medical im-
age acquisition technique that measures the diffusion characteristics of water
molecules in tissue. The resulting diffusion tensor field is a positive semidefinite
matrix field that provides valuable information for brain connectivity studies as
well as for multiple sclerosis or stroke diagnosis [15]. These matrix-valued data
are often polluted with noise, hence it is necessary to develop filters to remove
this noise without losing too much valuable information. Similar problems also
occur in other situations where matrix-valued data are to be smoothed: Tensor
fields have shown their use as a common description tool in image analysis, seg-
mentation and grouping [9]. This also includes widespread applications of the
so-called structure tensor (Förstner interest operator, second moment matrix,
scatter matrix) [8] in fields ranging from motion analysis to texture segmenta-
tion. Moreover, a number of scientific applications require to process tensor fields:
The tensor concept is a common physical description of anisotropic behaviour in
solid mechanics and civil engineering, where stress-strain relationships, inertia
tensors, diffusion tensors, and permitivity tensors are used.

For scalar-valued images, the median filter is one of the most frequently
used structure-preserving smoothing methods, since it is simple, robust against
outliers, and preserves discontinuities. The goal of this paper is to introduce a
median filter for matrix-valued images where the matrices are positive (semi-)de-
finite. To this end we will start with a review of the properties of the scalar-valued
median in Section 2. In Section 3, we will introduce a median for tensor fields
as a solution of a minimisation problem originating from a basic property of the
median for scalar-valued data. Algorithmic aspects will be sketched in Section 4.



The fifth section shows experiments on synthetic and real-world images. In the
final sixth section we present concluding remarks.

Related work. The search for good smoothing techniques for DT-MRI data
and related tensor fields is a very recent research area. Several authors have
addressed this problem by smoothing derived expressions such as the eigenvalues
and eigenvectors of the diffusion tensor [16, 6, 17] or its fractional anisotropy [14].
Some methods that work directly on the tensor components use linear [20] or
nonlinear [10] techniques that filter all channels independently, thus performing
scalar-valued filtering again. Nonlinear regularisation methods for matrix-valued
filtering with channel coupling have been proposed in [17, 19]. Related nonlinear
diffusion methods for tensor-valued data have led to the notion of a nonlinear
structure tensor [19] that has been used for optic flow estimation [4].

There are several proposals on how to generalise the median filter to vector-
valued data; see e.g. [3, 13] and the references therein. To our knowledge, how-
ever, no attempts have been made so far to design median filters for tensor
fields.

2 Properties of Scalar-Valued Median Filters

One of the basic tasks of statistics is the description of some arbitrary sample
data x = {x1, x2, . . . , xn} by a single number that is representative of the data.
Such a number is commonly called an average. The median x̃ is a prominent ex-
ample of a position average, in contrast to the arithmetic mean x̄ as a computed
average. The median is found by locating the place of a value in a sample series.
As a measure of central tendency the median x̃ is the value of the middle item
in a sample series when the items are ordered according to their magnitude.

It can be formally defined as that value which divides a sample series in such
a way that at least 50 percent of the items are equal to or less than it and at
least 50 percent of the items are equal to or greater than it. This alludes to
the origin of the median as a so-called 50 percent quantile. It is clear that the
median depends heavily on the existence of a total order for the sample items.
If the number of items in a sample is odd, the median is the value of the middle
term. If the number of items in a sample is even, it is usually chosen as the
arithmetic mean of the two middle items (though any other average would be
formally acceptable). Thus, for an ordered sample with x1 ≤ x2 ≤ . . . ≤ xn, the
median is defined as

x̃ := med(x1, . . . , xn) :=

{

xk for n = 2k − 1,

1

2
(xk + xk+1) for n = 2k.

(1)

Typical for a position average, the median is highly robust with respect to out-
liers of the sample. This makes median filtering the method of choice when
impulse noise such as salt-and-pepper noise is present, but it is equally popular
for other types of noise.



Median filtering in signal processing goes back to Tukey [18]. In image pro-
cessing, median filtering is usually based on considering a neighbourhood of size
(2k + 1)× (2k + 1) of some pixel. Median filtering may be iterated. In this case
one usually observes that after a relatively small number of iterations, the re-
sult becomes stationary (so-called root signal). It is easy to see that median
filters preserve straight edges, while they round off corners. For more properties
of median filters and their numerous modifications we refer to monographs on
statistics [5, 11] and nonlinear image processing [7, 12].

The median has a very interesting minimisation property: The sum of abso-
lute deviations from the median is smaller than the sum of the absolute devia-
tions from any other point:

n
∑

i=1

|xi − x| ≥

n
∑

i=1

|xi − x̃| = min . (2)

This property has been used in [2, 1] to generalise median filters to vector-valued
data. It will also be essential for our design of matrix-valued median filters.

3 A Median for Matrix-Valued Images

The definition of a median for matrix-valued functions should inherit as many
properties of the standard median described above as possible. We restrict our
attention to real 2 × 2-matrices A ∈ IR2×2 but the extension to larger matrices
is straight forward.

We recall the definition of the Frobenius norm ‖A‖ of a matrix A ∈ IR2×2:
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We use this norm to define a median of an odd number of sample items.

Definition: The median of the set of matrices {Ai : i = 1, . . . , n} is the

matrix Ã which solves the minimisation problem

Ã := argmin
X

n
∑

i=1

‖Ai − X‖ . (4)

The solution of this minimisation problem is an element of the convex hull
of the matrices {Ai : i = 1, . . . , n}. If these matrices are positive (semi-)definite,
then the median is again a positive (semi-)definite matrix since the set of all
such matrices is convex.

There is a new property for the median of a sample of matrices: the median
should be rotationally invariant. The matrix

R(ϕ) :=

(

cosϕ − sinϕ

sin ϕ cosϕ

)

(5)



describes a rotation with angle ϕ ∈ [0, π] and the requirement of rotational
invariance amounts to the equality

med(R(ϕ)A1R
>(ϕ), . . . , R(ϕ)AnR>(ϕ)) = R(ϕ) med(A1, . . . , An) R>(ϕ) (6)

for any ϕ ∈ [0, π] and any choice of matrices A1, . . . , An . This property is clearly
desirable from the practical point of view, although it has no counterpart in case
of scalar-valued data. The median induced by the minimisation problem inherits
the rotational invariance of the Frobenius norm:

n
∑

i=1

‖R(ϕ)AR>(ϕ) − R(ϕ)XR>(ϕ)‖ =
n

∑

i=1

‖A − X‖ (7)

holds for all X and also for the minimising Ã. Hence, Ã = med(A1, . . . , An) is
independent of R(ϕ).

4 Algorithmic Aspects

When computing the median of a set of matrices as defined here, one problem
has to be solved. Each of the functions ‖Ai−X‖ in the definition is differentiable
except in Ai itself. Thus their sum is also differentiable except in the matrices of
the given set. It is therefore an obvious idea to use a gradient descent method.
Unfortunately the gradient vector ∇‖Ai − X‖ has the same length everywhere.
Although −∇‖Ai −X‖ always points in the direction of Ai, it contains no infor-
mation about the distance to Ai. In the same way the gradient of the sum lacks
information on the distance to the minimum. We overcome this problem by im-
plementing a step size control based on the over- and undershoots encountered
in the subsequent iteration steps.

The algorithm therefore works as follows. First we find the Aj for which
∑n

i=1
‖Ai − Aj‖ takes its minimal value within the given set. For that Aj , we

compute ∇
∑

i6=j ‖Ai−Aj‖. If this gradient is of length 1 or smaller, then X = Aj

minimises

S(X) =

n
∑

i=1

‖Ai − X‖ (8)

and is therefore the median. Otherwise we proceed by gradient descent using the
gradient of S(X). After each step in which we change X to

X ′ = X − s∇S(X) (s > 0), (9)

we compare ∇S(X) with the projection of ∇S(X ′) onto ∇S(X). This provides
an estimate for over- or undershoots which allows us to adapt s for the subsequent
step and, in case of extreme overshoots, even to roll back the last step.



Fig. 1. Edge preservation and noise robustness of matrix-valued median filtering. (a)
Top Left: Tensor field with a discontinuity. The matrices are visualised by ellipses.
Colour indicates orientation and brightness encodes eccentricity. (b) Top Right: De-
graded version of (a) where the eigenvalues are perturbed by Gaussian noise. (c) Bot-
tom Left: Median filtering of (a) shows the discontinuity-preserving qualities (5 × 5
median, 5 iterations). (d) Bottom Right: Median filtering of (b) illustrates the de-
noising capabilities (5 × 5 median, 5 iterations).

5 Experiments

Symmetric positive definite matrices A ∈ IR2×2 can be visualised as ellipses

{x ∈ IR2 : x>A−2x = 1} . (10)

We prefer this representation using the matrix A−2 rather than A, since then
the larger (smaller) eigenvalue corresponds directly to the semi-major (-minor)
axis of the displayed ellipse.

In Figure 1 we illustrate the discontinuity-preserving properties of matrix-
valued median filtering by applying it to a synthetic data set that contains a
discontinuity. We observe that five iterations of 5 × 5 median filtering hardly
affects this discontinuity. Almost the same results can be obtained when noise



is present which perturbs the eigenvalues of the matrix. This illustrates that the
median filter inherits its high robustness against outliers from its scalar-valued
counterpart. We observe that at the image boundary, the location of the discon-
tinuity is shifted. This effect has been caused by imposing reflecting boundary
conditions. This symmetry constraint encourages structures that are perpendic-
ular to the boundary, since deviations from the perpendicular behaviour create
corner-like structures.

The behaviour of matrix-valued median filtering on real-world images is stud-
ied in Figure 2. In this case we have extracted a 2D frame from a 3D DT-MRI
data set of a human head and restricted ourselves to four channels in this plane.
30 % of all data have been replaced by noise matrices. Their angle of the eigen-
system was uniformly distributed in [0, π], and their eigenvalues are uniformly
distributed in the range [0, 127]. We observe that the noise robustness and dis-
continuity preservation that has already been observed in Figure 1 is also present
in this case. Moreover, Figure 2(f) suggests that root signals also exist in the
matrix-valued case. As can be expected, increasing the stencil size leads to a
more pronounced filtering.

6 Conclusions

In this paper we have extended the notion of median filtering to the case of
matrix-valued data sets. This has been achieved by seeking the matrix that min-
imises the sum of the distances to the other sample items in the Frobenius norm.
Experiments on synthetic and real-world tensor fields show that the resulting me-
dian filter inherits important properties from its scalar-valued counterpart: It is
robust against outliers and it preserves discontinuities. In our future work we
plan to generalise other nonlinear filters in order to make them applicable to
tensor field filtering.
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Fig. 2. Matrix-valued median filtering applied to a 2D DT-MRI frame. (a) Top Left:
The four channels (x, x), (x, y), (y, x), and (y, y) create four subimages of size 92×108.
(b) Top Middle: Degraded version of (a) where uniform noise is used. (c) Top Right:
Median filtering of (b) with 1 iteration of a 3 × 3 median. (d) Middle Left: Ditto,
5 iterations. (e) Middle Middle: 25 iterations. (f) Middle Right: 125 iterations.
Note the similarity to (e). (g) Bottom Left: 25 iterations with a 5 × 5 median. (h)
Bottom Middle: Ditto, 7 × 7 median. (i) Bottom Right: 9 × 9 median.


