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Abstract. Nonlinear diffusion has long proven its capability for discon-
tinuity-preserving removal of noise in image processing. We investigate
the possibility to employ diffusion ideas for the denoising of audio sig-
nals. An important difference between image and audio signals is which
parts of the signal are considered as useful information and noise. While
small-scale oscillations in visual images are noise, they encode essential
information in audio data. To adapt diffusion to this setting, we apply
it to the coefficients of a wavelet decomposition instead of the audio
samples themselves. Experiments demonstrate that the denoising results
are surprisingly good in view of the simplicity of our approach. Nonlin-
ear diffusion promises therefore to become a powerful tool also in audio
signal processing.

1 Introduction

Degradation of signals by noise is a ubiquitous phenomenon. In practically any
field of signal processing the removal of noise therefore is a key problem. In the
field of image processing, diffusion processes are among the most effective and
theoretically best understood denoising techniques [18]. While linear diffusion is
highly effective in removing noise, it blurs indiscriminately all image information
and therefore removes, or at least severely degrades, important image features
such as edges along with the noise. Nonlinear diffusion processes – isotropic as
well as anisotropic – have therefore gained increasing interest in the last 15 years
[14, 2, 18, 17]. They allow to treat details of different size and contrast differently.
Thus they enable the design of image filters which remove noise effectively while
at the same time edges are preserved and in some cases even enhanced.

The question therefore arises naturally whether diffusion filters can also be
used to denoise other classes of signals. Audio signals are one class of signals
which is of similar importance as images. We want therefore to investigate the
possibility of denoising digital audio signals by diffusion processes.

First of all, audio signals are one-dimensional, so the range of applicable
techniques is constrained to linear and isotropic nonlinear diffusion. Another ob-
servation is that music samples, like images, contain well-localised features that
should be preserved in the denoising process. It can therefore be expected that
a good filtering process should again be inhomogeneous and therefore nonlinear.



Direct application of diffusion to sampled audio signals faces a serious prob-
lem. Typically, small oscillatory details are the first structures that a diffusion
filter removes from a signal. This is well appropriate for image processing; how-
ever, in audio signals the most important features consist of oscillations. It needs
therefore a re-consideration which features in an audio signal are typically noise
and which are useful information.

Targeting at the denoising of sampled music or speech, we see that useful in-
formation basically should consist of periodic oscillations with only a moderate
number of different frequencies occurring at the same time while noise is sup-
posed to be made up of irregular oscillations which are not concentrated at single
frequencies. It seems therefore reasonable to separate useful signal components
from noise by a suitable frequency analysis method. The necessity to keep signal
components well localised in time motivates us to prefer wavelet decomposition
[5, 13] over Fourier analysis.

An established technique for denoising of data in wavelet representations
is wavelet shrinkage [6, 7]. Though it is by far not an optimal denoising tech-
nique for audio data, it serves for us as a reference because of its simplicity. We
will compare the denoising results of our diffusion-based methods with those of
wavelet shrinkage working on the same wavelet representations.

A signal restoration approach that is related to ours since it manipulates
wavelet coefficients using variational ideas is described in [4]. Further approaches
which combine variational and wavelet ideas in a different manner to denoise
signals and images can be found in [1, 8, 12].

Section 2 gives an outline of the wavelet methods that will be needed in
this paper. In Section 3 we introduce diffusion processes for wavelet coefficients.
Application of these filters to digital audio data is illustrated by experiments in
Section 4 which are discussed quantitatively and qualitatively. A summary and
outlook in Section 5 conclude the paper.

2 Signal processing with wavelets

Wavelet methods in signal processing rely on the representation of a signal f
with respect to a basis consisting of scaling functions ϕj

i and wavelet functions

ψ
j
i . All scaling and wavelet functions are shifted and dilated versions of one

scaling function ϕ with low-pass characteristics and one wavelet function ψ with
band-pass properties, i.e.

ϕ
j
i (z) = 2−j/2ϕ(2−jz − i), ψ

j
i (z) = 2−j/2ψ(2−jz − i) .

If the wavelet functions ψj
i and scaling functions ϕj0

i form an orthonormal basis,
we have
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where cji := 〈f, ϕj
i 〉, d

j
i := 〈f, ψj

i 〉 with 〈·, ·〉 being the L2(R) inner product. Note
that this representation uses scaling functions only on the coarsest level j0 while



wavelet functions of level j0 and all finer levels are used. For a discrete signal,
represented by a function f which is constant on [k, k + 1) for every integer k,
only wavelet levels j ≥ 1 occur.

2.1 Haar wavelet representations

Let us consider the simplest wavelet, the Haar wavelet [10] ψ(z) = χ[0, 1

2
)(z) −

χ[ 1
2
,1)(z) with corresponding scaling function ϕ(z) = χ[0,1), where χI is the

characteristic function of the interval I . Then, wavelet analysis and synthesis
can be efficiently carried out via the two-scale relations

c
j
i =

c
j−1
2i + c

j−1
2i+1√

2
, d

j
i =

c
j−1
2i − c

j−1
2i+1√

2
.

For a discrete signal as described above, the c0i equal the signal samples.
A wavelet representation of this kind, called decimated wavelet decomposi-

tion, constitutes a hierarchical subdivision of the domain of definition of the
signal, thereby bearing the clear disadvantage of lacking translation invariance.
A simple but effective way to overcome this problem in case of a discrete signal of
finite length is the cycle-spinning procedure [3]. Cycle-spinning essentially means
that the decimated wavelet analysis and synthesis of a signal of length N is car-
ried out N times: for the original signal and all N − 1 possible cyclically shifted
copies of it. The analysis step therefore yields N redundant wavelet representa-
tions encoding the same signal. In the synthesis step, N concurrent signals are
generated. However, if the reconstruction is done with processed wavelet coeffi-
cients, these N signals will in general no longer coincide. The final reconstruction
result is therefore obtained by averaging the concurrent reconstructions. Filters
designed with these transforms are shift-invariant by construction.

2.2 Soft wavelet shrinkage

The processing of a signal is typically performed in three steps. First, the analysis

step in which the given signal is transformed into wavelet representation; second,
some operation on the wavelet coefficients; third, the synthesis in which the
modified coefficients are used to reconstruct the processed version of the signal.

One class of denoising methods widely studied in literature are wavelet shrink-

age procedures. Soft wavelet shrinkage applies the shrinkage function

Sθ(y) =

{

y − θ sgn(y), |y| > θ,

0, |y| ≤ θ

to the wavelet coefficients after the analysis step. The modified coefficients d̃j
i :=

Sθ(d
j
i ) are used with the unchanged scaling coefficients cji in the synthesis step.

In [16] it was shown that the denoising quality of shift-invariant soft Haar
wavelet shrinkage is improved by using the level-dependent shrinkage parameter
θj = 2−j/2θ0 on level j instead of one uniform parameter θ.
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Fig. 1. Basis for a two-level decimated Haar wavelet decomposition. Top left: Scaling
function ϕ1

0. Top right: Wavelet function ψ1

0 . Bottom left: Wavelet function ψ2

0 .
Bottom right: Wavelet function ψ2

1 .

2.3 Daubechies wavelets

In image processing, excellent denoising results can be achieved using Haar
wavelets, particularly its shift-invariant modification. However, for audio signal
processing Haar wavelets are often considered insufficient because they have only
one vanishing moment. Daubechies wavelets [5] are often suggested as a better
choice in this context. They can be constructed with arbitrarily many vanishing
moments. In every case, their wavelet and scaling functions can be found via a
recursive procedure. For the simplest Daubechies wavelet (Daubechies-4), one
has
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1 +

√
3

2
, ϕ(2) =

1 −
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3

2
, ϕ(k) = 0, k ∈ Z \ {1, 2},
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for all z = 2−jk, with integers j, k, and by continuity on the whole real line
(see [5, 11]).



Fig. 2. Left to right: Scaling function for Daubechies-4 wavelet. – Correspond-
ing wavelet function. – Scaling function for Daubechies-20 wavelet. – Corresponding
wavelet function. Generated using MATLAB with Wavelet toolbox.

Scaling and wavelet functions of the Daubechies-4 and Daubechies-20
wavelets used in our experiments are shown in Fig. 2.

3 Diffusion of wavelet coefficients

Let a one-dimensional signal s(z) be given. The partial differential equation

vt = ∂z(g(v
2
z) vz), (z, t) ∈ R × (0,+∞) (1)

with initial condition v(z, 0) = s(z) describes a one-dimensional diffusion process
which embeds the signal s(z) into a family v(z, t) of signals, parametrised with
t ∈ [0,+∞), which constitute smoothed versions of s. The parameter t can be
considered as a diffusion time which, however, must be well distinguished from
the signal time z. Here, the diffusivity g(y2) should be a bounded, non-increasing,
positive function of its nonnegative argument. For t → ∞, the signal will tend
to a constant function. To obtain a smoothed signal, it is therefore necessary to
choose a stopping time T which determines the degree of smoothing.

Besides the case g(y2) = 1 of linear diffusion we consider the Perona–Malik
diffusivity g(y2) = 1

1+y2/λ2 where λ is a threshold parameter [15]. The purpose of

non-linear diffusion with such a decreasing diffusivity is to suppress smoothing at
locations with large gradients which are supposed to be edge-like discontinuities
holding important information.

A simple explicit discretisation of (1) is given by

vk+1
i = vk

i +
τ

h

(

g((v̇k
i )2)v̇k

i − g((v̇k
i−1)

2)v̇k
i−1

)

, v̇k
i =

1

h
(vk

i+1 − vk
i )

with step sizes τ for diffusion time h for the signal parameter.
In applying the diffusion equation to the coefficients of a decimated wavelet

representation, the coefficients of each wavelet level are considered as one chan-
nel, such that diffusion does not transfer amplitudes between different frequency
bands. It requires attention that the step size h doubles from each level to
the next coarser one. Having this in mind, linear diffusion can be implemented
straightforward by

[dj
i ]

k+1 = [dj
i ]

k +
τ

22j
([dj

i+1]
k − 2[dj

i ]
k + [dj

i−1]
k)



where [dj
i ]

k denotes the wavelet coefficient dj
i in the decomposition of the signal

in the k-th diffusion-time step, and we have assumed that the temporal resolution
in signal time is 1 for the samples, i.e. wavelet level 0.

In nonlinear diffusion of multi-channel signals (like colour images) it is essen-
tial that the discontinuities where smoothing is suppressed are localised at equal
positions in all channels [9]. To achieve this, one uses a common diffusivity which
incorporates gradient information from all channels and steers uniformly the dif-
fusion in all of them. The same argument applies also in our model. Here it is
assumed that large differences between neighbouring wavelet coefficients signify
boundaries of acoustic events extended in time which should not be blurred.

Consequently, we want to use a common diffusivity also in the nonlinear
diffusion of our wavelet coefficients. In computing this common diffusivity in a
decimated wavelet representation, it needs to be clarified which neighbour dif-
ferences should contribute to which diffusivities. Since diffusivities are to steer
diffusion between neighbouring wavelet coefficients of one level, the proper loca-
tion where to estimate the diffusivity is the central point between the coordinates
of the wavelet coefficients themselves. To determine which neighbour differences
should enter a particular diffusivity, we look at the influence zones of the wavelet
coefficients, i.e. for each coefficient the group of subsequent samples that it de-
pends on. Then each diffusivity is influenced exactly by the neighbour differences
of those wavelet coefficients with influence zones starting or ending at the posi-
tion of this diffusivity, see Fig. 3. Vice versa, the diffusion between two adjacent
wavelet coefficients is regulated only by the diffusivity at the single inter-sample
location where the two influence zones meet.

This procedure can directly be motivated as a simple subsampling of the
coarser wavelet levels. By writing down each wavelet coefficient [dj

i ]
k of the j-th

level 2j−1 times, a vector-valued signal with the signal-time resolution of the
finest wavelet level 1 arises. The i-th vector in this signal reads

([d1
i ]

k, [d2
bi/2c]

k, . . . , [dj0
bi/2j0−1c

]k)T

The diffusivity between the i-th and (i+ 1)-th vector in this signal is

gi+1 := g





j0
∑

j=1

(

[dj
b(i+1)/2j c]

k − [dj
bi/2jc]

k
)2





where bzc denotes the largest integer less or equal z. Here we have weighted all
wavelet levels equally; one could also use different weights for the wavelet levels.

After computing the new diffusion time-step, the 2j−1 copies of the coefficient
[dj

i ]
k are no longer identical; the new value [dj

i ]
k+1 is then obtained by averaging

the concurrent values which amounts exactly to

[dj
i ]

k+1 = [dj
i ]

k+
τ

22j

(

g2j−1(i+1) ·
(

[dj
i+1]

k − [dj
i ]

k
)

− g2j−1i ·
(

[dj
i ]

k − [dj
i−1]

k
))

.

In the context of decimated wavelet shrinkage, it can be criticised that dif-
fusivities at different locations have different numbers of influencing coefficient
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Fig. 3. Influence of differences of neighbouring wavelet coefficients on diffusivities for
the coupled nonlinear diffusion. Left: Decimated Haar wavelet representation with 3
levels. Wavelet coefficients dk

j with their influence zones are shown. By g0, . . . , g4 subse-
quent diffusivities are denoted. Right: Shift-invariant Haar wavelet representation with
2 levels. Again, g0, . . . , g8 are subsequent diffusivities. Variables for wavelet coefficients
are omitted.

pairs. One could consider compensation factors to remedy this. On the other
hand, as soon as we switch to shift-invariant Haar wavelets, the problem dis-
appears. In this situation, if we count identical wavelet coefficients only once,
we have for each inter-sample location exactly one pair of coefficients in each
wavelet level whose influence zones meet there; compare Fig. 3.

We emphasise that in the shift-invariant setting only coefficients of one
wavelet level which are part of the same decimated wavelet decomposition com-
municate directly in the diffusion process. These are coefficients which have not
only the same frequency but also the same phase. Coefficients of the same level
and different phase, as well as those of different levels, belong to different chan-
nels which are linked only by the channel coupling.

4 Experimental results

For a first impression of the properties of different wavelet bases in audio pro-
cessing, we degrade a synthetic 200 Hz sine wave1 by adding Gaussian noise2

of 10 % the signal variance, and apply to it soft wavelet shrinkage with non-
shift-invariant and shift-invariant Haar wavelets as well as with two Daubechies
bases, see Fig. 4. It is evident that the signal shape of the shrinked signal is
strongly influenced by the shape of the used wavelets. Audio perception is very
sensitive to such details in the wave shape such that the signals denoised with
decimated Haar, and Daubechies-4 wavelets do not sound too well. Surprisingly,
the quality of shift-invariant Haar wavelet shrinkage is subjectively perceived
superior to that of Daubechies-20 shrinkage although the shift-invariant Haar

1 The sampling frequency of all our audio data is 44,100 Hz.
2 The choice of Gaussian noise in the experiments presented here is nothing special.

Denoising quality was quite similar when, e.g., white noise or recorded noise from
technical sources was added.
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Fig. 4. Soft wavelet shrinkage with different wavelet decompositions, shrinkage parame-
ter always θ = 10000. Top left: Original signal (sine wave of 200 Hz). Top right: Same
with Gaussian noise, noise variance ca. 10 % of signal variance. Middle left: Denoised
using decimated Haar wavelet shrinkage. Middle right: Shift-invariant Haar wavelet
shrinkage. Bottom left: With Daubechies-4 wavelets. Bottom right: Daubechies-20
wavelets.



Table 1. SNR measured for different denoising methods

Denoising method SNR (dB), drum SNR (dB) instr.

Wavelet shrinkage, shift-invariant Haar 12.50 13.54
Nonlin. diffusion, decimated Haar 12.57 14.13
Nonlin. diffusion, Daubechies-4 12.81 14.49
Nonlin. diffusion, Daubechies-20 13.01 15.05
Nonlin. diffusion, shift-invariant Haar 12.92 13.04

no denoising (noisy signal) 11.16 13.63

wavelet shrinkage result shows a slight deformation around the peaks. However,
the Daubechies-20 denoised sample displays a jitter of amplitude which is indeed
an audible perturbation.

In the further experimental validation of our diffusion denoising model, we use
two musical signals: First, a short drum loop; second, a clipping of instrumental
music (brass accompanied by strings)3. We add Gaussian noise to each of the
signals. The noise variance is about 10 % of the signal variance for the drum loop
and about 5 % for the instrumental piece. Table 1 compiles results of signal-to-
noise ratio (SNR) measurements for selected denoising methods. The SNR is
computed as

SNR(u, f) = 10 log10

var(f)

var(f − u)
dB

where f is the original and u the noisy signal.
According to subjective perception, our nonlinear diffusion method in gen-

eral leads to better denoising results than soft wavelet shrinkage. The SNR,
however, favours in some cases wavelet shrinkage (or even the noisy signal!)
which indicates that it might not be an adequate criterion for denoising quality.
A characteristic difference between shrinkage and diffusion denoising is shown
in Fig. 5. Looking at the right part of the original signal clipping displayed, one
notices small high-frequent oscillations which are visible particularly near the ex-
trema of the low-frequent base oscillation. These components are indeed essential
for the characteristic timbre of the drum. By removing these signal components
along with the noise, wavelet shrinkage compromises the timbre much more than
nonlinear diffusion which keeps at least part of these components.

In the remainder of this section, we discuss qualitatively a few more obser-
vations made during our experiments. As to the choice of the wavelet basis,
auditory impression as well as, in part, the SNR measurements suggest that
introducing shift-invariance into Haar wavelet shrinkage raises the quality to a
level comparable that of (decimated) Daubechies wavelets. This is observed both
for shrinkage and diffusion algorithms.

The number of wavelet levels which are used in our wavelet diffusion process
is less important than it appears. Most denoising is achieved just in the finest
five wavelet levels; with ten levels, no significant enhancement is encountered.

3 Audio samples are available via the first author’s web page,
http://www.mia.uni-saarland.de/welk
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Fig. 5. Denoising of a drum loop signal. Parameters are chosen such that similar degrees
of noise reduction are perceived. Top to bottom: A drum loop. – Same with Gaussian
noise. – Denoised by shift-invariant soft Haar-wavelet shrinkage (θ = 5000). – Denoised
by channel-coupled nonlinear diffusion on shift-invariant Haar wavelet decomposition
(t = 100, λ = 500, σ = 1.0).



The reason is that the diffusion process is not very effective on coarse levels
because of their low resolution and the very small updates which are therefore
made per diffusion-time step. Low-frequent (rumbling) noise should therefore be
handled by other measures.

Denoising with Haar wavelet methods often creates a characteristic audible
artifact. It consists in a slightly rough-ringing noise of specific pitch which is com-
posed of frequencies standing in octave relations to the sampling frequency. This
noise gains intensity the longer diffusion acts or the more coefficients are shrunk
by wavelet shrinkage. It is also observed that many signals tend to be flattened
even by our nonlinear diffusion process for large t. We assume that these two
phenomena are two sides of the same medal: By admitting only transfer between
wavelet coefficients of equal frequency and phase, our diffusion process tries to
keep signal amplitude in the separated frequency and phase components and to
avoid extinction. However, this works perfectly only for frequencies which are
subdivisions of the sampling frequency by powers of two (and which therefore
in some sense are “in resonance” with the wavelet decomposition). Other fre-
quencies are still weakened during the process, inducing the tendency to flatten
signals. On the other hand, even some noise is kept in the resonance frequencies
and can be perceived with its pitch as soon as the other frequencies are gone.

In agreement with this reasoning, improvements in the algorithm which lead
to a better preservation of signal amplitude reduce the sound artifact at the same
time. Starting from a simple linear diffusion process on decimated Haar wavelet
coefficients, each of the following steps observably reduces both the diminishing
of signal amplitude and the appearance of the artifact tone: first, switching to
shift-invariant Haar wavelets; second, making diffusion in each channel nonlinear;
and third, establishing of the channel coupling.

5 Summary and outlook

In this paper, we have introduced a method for the denoising of audio signals by
nonlinear diffusion. Because of the specifics of audio data compared to images,
the diffusion process is not formulated for the digital audio samples but for the
wavelet coefficients of a suitable wavelet representation.

Comparisons with wavelet shrinkage techniques reveal a fairly good perfor-
mance of our method despite its simplicity. Due to the high sensitivity of human
auditory perception for even tiny perturbations, the denoising achieved is not
satisfactory enough for immediate application Nevertheless, our results clearly
indicate that nonlinear diffusion can be successfully adapted to the denoising of
audio data.

Ongoing work concentrates on the reduction of artifacts and improvement of
the homogeneity of denoising over the frequency range. We are also interested in
establishing better quantitative measures for denoising quality that reflect the
perceived quality as accurate as possible.
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