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Abstract. Matrix-valued images gain increasing importance both as the
output of new imaging techniques and as the result of image process-
ing operations, bearing the need for robust and efficient filters for such
images. Recently, a median filter for matrix-valued images has been in-
troduced. We propose a new approach for the numerical computation of
matrix-valued median filters, and closely related mid-range filters, based
on sound convex programming techniques. Matrix-valued medians are
uniquely computed as global optima with interior point solvers. The
robust performance is validated with experimental results for matrix-
valued data including texture analysis and denoising.

1 Introduction

In this paper, we are concerned with the processing of images where the value
attached to each pixel or voxel is a symmetric matrix. Image data of this kind
appear in a variety of different contexts in modern image acquisition and pro-
cessing. For example, diffusion tensor magnetic resonance imaging (DT-MRI) is
an upcoming medical image acquisition technique which measures the diffusion
characteristics of water molecules in tissue, yielding valuable insights into the
structure and function of tissues, particularly fibre connectivity in the brain [13].
Moreover, structure tensors arise as derived quantities in motion detection, tex-
ture analysis and segmentation and other fields of image processing [8]. Tensor
data also occur in solid and fluid mechanics. The latter can have eigenvalues of
either sign while diffusion tensors and structure tensors are positive semidefinite.

All of these data, be they directly measured or computed, are often degraded
by noise. One of the basic tasks in matrix-valued image processing as in other
fields of image processing is therefore denoising. A simple but effective denoising
filter is the matrix-valued median filter introduced in [18]. Based on generalising
the minimisation property of the scalar-valued median, it inherits from its scalar



counterpart the robustness and capability to preserve discontinuities. To com-
pute matrix-valued medians, in [18] a gradient descent algorithm was proposed.

In this paper, we introduce a new and efficient algorithm for the computa-
tion of matrix-valued medians according to the (slightly generalised) definition
from [18]. The new approach is based on convex conic programming methods
and can easily be adapted to closely related problems like the computation of
matrix-valued mid-range filters. We apply the new algorithm to DT-MRI data
to demonstrate its use. Furthermore, we use matrix-valued medians to smooth
structure tensor data from textured grey-value images as a preprocessing step
for texture segmentation.

We proceed as follows. In Section 2 we describe the local matrix-valued image
filters that we are concerned with. Sections 3 shows how these filters can be
rewritten as convex optimisation problems which are then solved in Section 4.
Experiments on DT-MRI data and local orientation estimation of grey-value
images are presented and discussed in Section 5. Conclusive remarks are given
in Section 6.

Related Work. Median filtering of matrix-valued data is closely related to that
of vector valued data. Indeed, the definition from Welk et al. [18] has an obvious
vector-valued analog. For earlier approaches to vector-valued median filtering in
the image processing literature we refer to Astola et al. [1] and Caselles et al.
[7]. While Caselles et al. [7] require that the median has always to be one of
the given data vectors, Astola et al. [1] relax this condition somewhat while the
definition given in [18] does not make such a restriction at all. Barni et al. [3]
define a vector median using the Euclidean distance sum minimisation similarly
as [18], but again restricted to the given data vectors. Interestingly, the exact
analog to the definition from [18] for 2-D vectors has already been proposed in
1959 by Austin [2] along with a graphical algorithm which is closely related to
the gradient descent procedure from [18]. The problems of this procedure and
improvements have been discussed in Seymour’s 1970 reply [15]. Vector-valued
medians as well as vector-valued mid-range values (often called 1-centres) have
also been studied in the context of facility location problems, see e.g. Megiddo
[12], Fekete et al. [9] and the references therein.

The concept of the structure tensor goes back to Förstner and Gülch [8]. It is
common in image analysis to smooth the rank one matrices which arise directly
from the gradient vectors in single points by Gaussian convolution which leads
in general to rank two matrices which integrate directional information from a
neighbourhood and suffer less from noise sensitivity. The observation that the
Gaussian convolution used in this process is essentially a linear diffusion of the
directional information, thus introducing a blurring that is unwished at times,
led to the definition of a nonlinear structure tensor by Weickert and Brox [17], [6]
in which Gaussian convolution is replaced by nonlinear diffusion. For its better
preservation of discontinuities, the nonlinear structure tensor is well-suited for
texture segmentation [4], [14] and optical flow analysis [6]. Smoothing structure
tensors with medians is also related to the robust structure tensor introduced by
van den Boomgaard and van der Weijer in [16] and which for a particular choice



of the penaliser function % also amounts to a minimisation similar to that in the
matrix-valued median.

Regarding convex programming, all concepts we use can be found in cor-
responding textbooks (e.g., Boyd and Vandenberghe [5]). Recently, these op-
timisation methods have been also successfully applied to various other image
processing problems by Keuchel et al. [11].

Notation and Preliminaries. Throughout the paper, e denotes the vector
(1, . . . , 1)> ∈ R

n. By Id we denote the d × d unit matrix. Further, Ld is the

convex cone of vectors
{

x ∈ R
d

∣

∣ xd ≥
√

x2
1 + · · · + x2

d−1

}

while Sd is the linear

space of symmetric d× d real matrices. The ith eigenvalue of X ∈ S in the order
λ1(X) ≥ · · · ≥ λd(X) will be denoted by λi(X). Finally, by Sd

+ we mean the
convex cone of positive semidefinite symmetric matrices {X ∈ Sd

∣

∣ λd(X) ≥ 0}.

2 Problem Statement: Local Matrix Filters

Given n real numbers a1, a2, . . . , an, their median is defined as the middle value
in the sequence that contains all the numbers ordered by size. The median con-
cept gives rise to a class of image filters, called median filters, which are known
for their outstanding capability for edge-preserving denoising of images. Median
filtering of a discrete grey-value image requires the specification of a pixel mask,
the so-called structure element, which is used to select a neighbourhood for each
pixel. The new grey-value of each pixel is taken to be the median of the old grey-
values of all pixels within its neighbourhood. Median filtering can be iterated,
thereby performing a progressive edge-preserving smoothing. This can be com-
pared to the approximation of the (non-edge-preserving) Gaussian smoothing by
iterated box averaging.

The matrix-valued generalisation of median filtering introduced in [18] is
based on an interesting energy minimisation property of the scalar-valued me-
dian: The median of a1, a2, . . . , an is exactly the real number x for which
∑n

i=1
|x − ai| is minimal. The median of n matrices A1, . . . , An ∈ Sd is then

defined as

med(A1, . . . , An) := argminX∈Sd

n
∑

i=1

d(X, Ai)

where d is a suitable, rotationally invariant metric on Sd. In [18], the Frobenius
norm was used,

d(X, Ai) = ‖X − Ai‖2 =
√

tr
[

(X − Ai)(X − Ai)] ;

another possible choice is the spectral norm,

d(X, Ai) = |X − Ai| = max
i=1,...,d

∣

∣λi(X − Ai)
∣

∣ .

Interestingly, the so-called mid-range value of real numbers a1, a2, . . . , an

which is defined as the arithmetic mean of their maximum and minimum, can



be described by an extremality property very similar to that of the median –
instead of the sum of the distances |x − ai|, their maximum is minimised. The
transfer to matrices is therefore straightforward. We define

midr(A1, . . . , An) := argminX∈Sd max
{

d(X, A1), . . . , d(X, An)
}

with the same requirements for d as in the case of the median. Midrange filtering
is less attractive by itself but stands in close relation to other matrix filters.

3 Convex Optimisation

In this section, we show that each filter introduced in the previous section is
defined as global optimum of a convex optimisation problem.

3.1 Median Filter: Frobenius Norm

We consider the optimisation problem:

medF (A1, . . . , An) := argminX∈Sd

n
∑

i=1

‖X − Ai‖2 (1)

and identify the unknown matrix X ∈ Sd with a vector X ∈ R
d2

. Introducing n

additional variables t = (t1, . . . , tn)>, we rewrite (1):

inf
X∈Sd,t∈Rn

〈e, t〉 , ‖X − Ai‖2 ≤ ti , i = 1, . . . , n (2)

Each constraint is convex, because (X>, ti)
> varies in the convex cone Ld2

+1
i

translated by (A>
i , 0)>. Denoting the corresponding convex constraint sets with

Ci, i = 1, . . . , n, problem (2) reads:

inf
X∈Sd,t∈Rn

〈e, t〉 ,

(

X

t

)

∈

n
⋂

i=1

Ci (3)

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

3.2 Median Filter: Spectral Norm

We consider the optimisation problem:

medS(A1, . . . , An) := argminX∈Sd

n
∑

i=1

|X − Ai| (4)

Similarly to section 3.1, we introduce auxiliary variables t ∈ R
n and correspond-

ing constraints:
|X − Ai| ≤ ti , i = 1, . . . , n



These constraints are satisfied if

tiId − (X − Ai) ∈ Sd
+ and tiId + (X − Ai) ∈ Sd

+ , i = 1, . . . , n

Again, the variables (X, ti) are constrained to convex sets, defined by the inter-
section of affine sets (left hand sides) with the convex cone Sd

+. Denoting the
constraint sets with Ci,+, Ci,−, i = 1, . . . , n, we can rewrite problem (4):

min
X∈Sd,t∈Rn

〈e, t〉 ,

(

X

t

)

∈
n
⋂

i=1

(

Ci,+ ∩ Ci,−

)

(5)

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

We remark that for positive semidefinite data Ai ∈ Sd
+ , i = 1, . . . , n, the

constraints represented by the sets Ci,− are redundant and can be dropped.

3.3 Midrange Filters

For midrange filters defined by

midr(A1, . . . , An) := argminX∈Sd max
{

d(X, A1), . . . , d(X, An)
}

, (6)

we introduce the scalar auxiliary variable t := max
{

d(X, A1), . . . , d(X, An)
}

.
Similar to the derivation of (3) and (5), problem (6) results in two convex opti-
misation problems, depending on which norm we choose. We focus on the median
filters in the remainder of this paper.

4 Convex Programming and Duality

We represent the optimisation problems defined in the previous section as convex
programs. This allows to implement matrix-valued median filters using corre-
sponding numerical interior-point algorithms. The corresponding dual programs
reveal that solutions automatically satisfy plausible conditions whose direct com-
putation (without convex programming) would be more involved.

4.1 Convex Conic Programs

Conic programs generalise linear programs by replacing the standard cone R
n
+

with more general convex cones K:

inf
x
〈c, x〉 , Fx − g ∈ K (7)

The corresponding dual conic program reads:3

sup
y

〈g, y〉 , F>y = c , y ∈ K (8)

3 In general, conic duals are defined w.r.t. dual cones K∗. In this paper, however, we
consider only self-dual cones K∗ = K.



If at least one of these problems is bounded and strictly feasible, then {x, y} is
a pair of optimal solutions if and only if the duality gap is zero:

〈c, x〉 = 〈g, y〉 (9)

4.2 Medians as Conic Programs

We consider problem (1) and identify again matrices X, Ai ∈ Sd with vectors

X, Ai ∈ R
d2

. (2) and (3) corresponds to (7):

inf
X∈Rd2

,t∈Rn

〈e, t〉 , F

(

X

t

)

− g ∈ K , (10)

where F and g are obtained by stacking the matrices resp. vectors
(

Id2 0d2×n

0> e>i

)

and

(

Ai

0

)

, i = 1, . . . , n

together, ei is the i-th unit vector, and K = Ld2
+1 × · · · × Ld2

+1.
Below, X ∈ Sd is again regarded as a matrix. Problem (4) or (5), respectively,

directly lead to (7), formulated as semidefinite program:

inf
X∈Sd,t∈Rn

〈e, t〉 , subject to F

(

X

t

)

− G ∈ Sn×d2

+ , (11)

with the linear mapping:

F(X, t) = Diag
{

. . . , tiId − X, . . . , tiId + X, . . .
}

(12)

and:
G = Diag

{

. . . ,−Ai, . . . , +Ai, . . .
}

(13)

4.3 Dual Programs and Optimality Conditions

Evaluating (8), the conic dual program to (10) reads:

sup
Yi∈Rd2

n
∑

i=1

〈Yi, Ai〉 ,

n
∑

i=1

Yi = 0 , ‖Yi‖2 ≤ 1 , ∀i (14)

Since 〈
∑n

i=1
Yi, X〉 = 0, we can rewrite the objective function as

∑n

i=1
〈Yi, Ai −

X〉. Using (9), we obtain:

n
∑

i=1

‖X − Ai‖2 =
n

∑

i=1

〈Yi, Ai − X〉

The constraints ‖Yi‖2 ≤ 1 suggest as solution to (14):

Yi =
Ai − X

‖Ai − X‖2

, i = 1, . . . , n



Inserting this into the constraint
∑n

i=1
Yi = 0 yields the stationarity conditions

of the original problem (1):

n
∑

i=1

X − Ai

‖X − Ai‖2

= 0 (15)

Using this condition for the computation of X , however, leads to a non-trivial nu-
merical optimisation problem, the need of choosing suitable damping parameters
to achieve convergence, and differentiability problems in cases where the median
X coincides with some data point Ai (in this case, the corresponding term in
(15) is ill-defined, whereas Yi in (14) is not). In contrast, all these problems can
be avoided by the convex programming formulation presented above.

In order to compute the dual program to (11), we first have to clarify
the meaning of F> in (8) for the mapping F in (12). According to (12), the
mapping Fz =

∑

i ziFi defines elementary matrices Fi for each single vari-
able zi = Xj,k or zi = tj . F> in (8) is then given by the adjoint mapping4

F∗Y = (. . . , 〈Fi, Y 〉, . . . )>. Computing the dual program to (11) then results –
analogously to (12) and (13) – in a block-diagonal matrix of the dual variables:

Y = Diag{Y −

1 , . . . , Y −
n , Y +

1 , . . . , Y +
n } ,

and, using the definition

Yi := Y +

i − Y −

i , ∀i ,

to the optimisation problem:

sup
Yi∈Sd

n
∑

i=1

〈Yi, Ai〉 ,

n
∑

i=1

Yi = 0 , tr[Y +

i + Y −

i ] = 1 , Yi ∈ Sd
+ , ∀i (16)

Note the similarity of (16) and (14). Using the same reasoning as after (14), we
obtain:

n
∑

i=1

|X − Ai| =
n

∑

i=1

〈Yi, Ai − X〉

Again, the dual matrices Yi seem to play the role of normalised gradients of the
original objective function (4). Because the spectral norm | · | is non-smooth,
it is not obvious how to make this more explicit. More important, however, are
the computational advantages of the convex programming formulation presented
above, as compared to directly optimising (4).

5 Experiments and Discussion

In our first experiment (Fig. 1) we demonstrate the capability of matrix-valued
median filtering to remove outliers from structure tensor data. The photograph

4 〈Fi, Y 〉 denotes the matrix inner product tr[F>

i Y ].



Fig. 1. Left to right: (a) Image containing oriented texture with inhomogeneities.
(b) Structure tensors computed by smoothing the outer products ∇u∇u> with 15 ×
15 Gaussian. The gradients themselves have been calculated by 3 × 3 derivative-of-
Gaussian filtering. The final matrix field has been subsampled for visualisation. (c)
Result of median filtering of (b) with 7 × 7 structure element and Frobenius norm
(subsampled).

Fig. 2. Left to right: (a) Synthetic image with oriented textures, inspired by [16]. (b)
Local orientations computed via DoGs and visualised as grey-values. (c) Orientations
after median filtering of the orientation matrices with Frobenius norm and a disk-
shaped structure element of diameter 7. (d) Same with structure element of diameter
9. (e) Spectral norm median filtering, diameter 9.

(a) shows a texture with randomly interspersed inhomogeneities. The outer prod-
ucts ∇u∇u> have been computed by 3× 3 derivative-of-Gaussian (DoG) filters
and smoothed with a 15 × 15 Gaussian mask. In (b) a subsampling of the re-
sulting matrix field is shown. Outliers are removed from this matrix field by
applying a 7 × 7 median filter (with Frobenius norm) as can be seen in (c).

In the following experiments we show the application of matrix-valued median
filtering in the context of texture analysis. The synthetic test image in Fig. 2 (a)
contains two oriented texture regions separated by a sharp edge. We compute the
gradient ∇u at each pixel using a 3× 3 DoG filter and the outer product matrix
∇u∇u> (of rank one) which estimates the local orientation. We visualise the
orientations of the principal eigenvectors by mapping angles directly into grey-
values (b). The direct transitions between black and white at image boundaries
and along the texture edge are caused by the fact that black and white in fact
represent orientations which are very close to each other because of the cyclic
nature of angles. Median filtering of the outer product matrices yields new matrix
fields. We visualise their orientation in the same way as before (c–e). Juxtaposing
orientation fields obtained with Frobenius norm (d) and spectral norm (e) shows



Fig. 3. Top, left to right: (a) Test image with 20 % impulse noise. (b) Orientation
field of (a). (c) Structure tensor orientation obtained by Gaussian smoothing of the
outer product matrices with standard deviation 19. (d) Same after median filtering
with Frobenius norm and disk-shaped structure element of diameter 9. (e) Median
filtering of (a) with Frobenius norm and disk-shaped structure element of diameter
19. Bottom, left to right: (f) Test image perturbed by Gaussian noise of standard
deviation 0.2 (where grey-values vary between 0 and 1). (g) Orientation field of (f).
(h) Structure tensor orientation as in (c). (i) Median filtering as in (d). (k) Median
filtering as in (e).

that the two distance measures yield no significantly different results. In the
following we therefore restrict ourselves to the Frobenius norm.

Let us turn now to investigate orientation estimation in noisy images. Fig. 3
shows two noisy versions of the test image (Fig. 2 (a)) together with their local
orientation estimates. Each orientation matrix field is then smoothed by matrix-
valued median filtering. For comparison, we show also the orientation of the
standard structure tensor obtained by Gaussian smoothing of the orientation
matrices. While in (a–e) impulse noise is shown where the grey values at 20 % of
all pixels have been replaced with random values from [0, 1], images (f–k) show
perturbation by Gaussian noise. While for impulse noise the median filter de-
noises orientation better and also better preserves the discontinuity, the removal
for Gaussian noise is still less satisfactory. Increasing the size of the structure
element reduces noise at the cost of blurring also the discontinuity and round-
ing corners, see Fig. 3 (e, k). We are therefore led to propose two modifications
which improve the quality of the orientation estimation by median filtering in
the case of noisy images.

The first modification is to normalise the gradients before computing the
outer products and applying the median filter. This leads to a sharper represen-
tation of the discontinuity in the case of impulse noise as shown in Fig. 4 (a, b).
With Gaussian noise, however, only a marginal improvement is achieved (f, g).

Our second modification is to iterate median filtering. While the improvement
achieved for the impulse-noise image is comparable to that of the normalisation
procedure, see Fig. 4 (c), it outperforms it in the case of Gaussian noise as shown



Fig. 4. Top, left to right: (a) Median filtering of local orientation derived from
normalised gradients of Fig. 3 (a) with Frobenius norm and disk-shaped structure
element of diameter 9. (b) As (a) but with structure element of diameter 19. (c) Median
filtering without normalisation of gradients as in Fig. 3 (d), iterated four times. (d)
Median filtering with normalisation, structure element of diameter 5, iterated five times.
(e) Orientation estimate from Boomgaard–Weijer’s robust structure tensor, parameters
(see [16]) m = 0.05, s = 5. Bottom, left to right: Filtering of Fig. 3 (f). (f) Median
filtering (Frobenius norm) with normalisation, structure element of diameter 9. (g)
Same with diameter 19. (h) Filtering as in Fig. 3 (i), iterated five times. (i) Median
filtering with normalisation, structure element of diameter 15, iterated four times. (k)
Boomgaard–Weijer’s robust structure tensor, m = 0.05, s = 9.

in (h). Compared to a single median filtering step with the same structure el-
ement, corners are rounded slightly more but less than with a single step with
larger structure element. The sharpness of the discontinuity is not reduced con-
siderably compared to a single iteration while noise is removed more effectively.

Both presented modifications can be combined: In case of impulse noise, see
Fig. 4 (d), the edges are sharpened and the corner is reconstructed more precisely.
However in connection with Gaussian noise, as in Fig. 4 (d), this combination
cannot improve the results.

The smoothing of outer product matrices by iterated median filtering can be
interpreted as computation of a robust structure tensor. When computing classi-
cal structure tensors as in Fig. 3 (c, h), the outer product matrices are smoothed
by Gaussian filtering, thus by linear diffusion. Nonlinear structure tensors as es-
tablished by Weickert and Brox [17] use instead nonlinear diffusion to achieve a
better representation of orientation discontinuities. The robust structure tensor
introduced by van den Boomgaard and van der Weijer [16] smoothes the outer
product matrices by minimising an energy in which a function % is applied to
matrix distances. In the case %(s) = s, their robust structure tensor is similar
to a single step of median filtering, with the difference that not a sharp struc-
ture element but Gaussian weights are used. In our filtering procedure, iterated

matrix-valued median filtering takes the role of the smoothing process. This is
primarily a change in theoretic perspective since it means that linear filtering is



Table 1. Average angular errors (AAE) for orientation estimation. Values in brackets
are method-specific parameters: for median filtering, diameter of structure element and
number of iterations; for Boomgaard–Weijer method, m and s (see [16]).

Method AAE AAE AAE
undisturbed impulse noise Gaussian noise

gradient direction 3.387◦ 20.612◦ 31.429◦

Frobenius median 1.591◦ (7, 1) 1.914◦ (9, 4) 3.207◦ (9, 5)
Frobenius median, norm. 1.312◦ (7, 1) 1.655◦ (5, 5) 3.434◦ (15, 4)
Boomgaard–Weijer 1.634◦ (0.1, 3) 1.489◦ (0.05, 5) 3.657◦ (0.05, 9)

replaced by robust filtering more consequently. Orientation estimates obtained
by Boomgaard and Weijer’s method are shown in Fig. 4 (e, k). In Table 1, we
compare the different orientation estimation methods by their average angular
errors. As the experiments show, both types of robust structure tensors yield
comparable results.

6 Conclusion and Further Work

In this paper, we have introduced a novel numerical algorithm for the com-
putation of matrix-valued median filters which in their basic form have been
introduced in [18], and for closely related mid-range filters. This algorithm is
based on convex programming ideas. It uses interior-point techniques to com-
pute the filtered matrices as global optima. Further, we have demonstrated the
application of matrix-valued median filtering as a discontinuity-preserving de-
noising technique for orientation data obtained from grey-value images with ori-
ented textures. It has become evident that median filtering of local orientation
matrices is an attractive alternative to Gaussian–smoothed structure tensors.
It also leads in a natural way to a concept of robust structure tensor in which
matrix-valued median filtering takes the role of the smoothing process.

Future work will include the embedding of matrix-valued median filtering
into texture segmentation procedures. Moreover, it will address a better under-
standing of the properties of the so defined type of robust structure tensor and
its comparison to the already existing concepts of nonlinear and robust structure
tensors.
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