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Abstract. Anisotropic diffusion filters with a diffusion tensor are suc-
cessfully used in many image processing and computer vision applica-
tions, ranging from image denoising over compression to optic flow com-
putation. However, finding adequate numerical schemes is difficult: Im-
plementations may suffer from dissipative artifacts, poor approximation
of rotation invariance, and they may lack provable stability guarantees.
In our paper we propose a general framework for finite difference dis-
cretisations of anisotropic diffusion filters on a 3 × 3 stencil. It is based
on a gradient descent of a discrete quadratic energy where the occurring
derivatives are replaced by classical as well as the widely unknown non-
standard finite differences in the sense of Mickens. This allows a large
class of space discretisations with two free parameters. Combining it with
an explicit or semi-implicit time discretisation, we establish a general and
easily applicable stability theory in terms of a decreasing Euclidean norm.
Our framework comprises as many as seven existing space discretisations
from the literature. However, we show that also novel schemes are possi-
ble that offer a better performance than existing ones. Our experimental
evaluation confirms that the space discretisation can have a very sub-
stantial and often underestimated impact on the quality of anisotropic
diffusion filters.

Keywords: diffusion filtering, finite difference methods, stability, rota-
tion invariance, dissipativity

1 Introduction

Anisotropic diffusion filters with a diffusion tensor instead of a scalar-valued dif-
fusivity are flexible tools that permit to steer the diffusion process in a desired
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direction [1]: This can be very useful for image processing tasks ranging from
image denoising and enhancement (see e.g. [1, 2]) to lossy image compression
[3]. Anisotropic diffusion terms also appear in computer vision applications, e.g.
in the Euler-Lagrange equations of variational methods for optic flow computa-
tions [4, 5], for stereo reconstruction [6], and for range image integration [7]. An
anisotropic diffusion filter in the sense of [1] computes a filtered version u(x, t)
of some initial image f(x) by solving the diffusion equation

ut = div (D∇u) (1)

with f as initial condition,

u(x, 0) = f(x) , (2)

and homogeneous Neumann boundary conditions. Here the lower index t denotes
a time derivative, and the divergence and the nabla operators involve spatial
derivatives only. The diffusion tensor D is a positive definite (and thus also
symmetric) 2×2 matrix that is space-variant and may even depend on derivatives
of the evolving image u(x, t). For our discussions below, one can use positive
semidefinite diffusion tensors as well.

A large number of numerical schemes has been proposed for anisotropic dif-
fusion processes, including finite elements [8], finite volume methods [9], and
lattice Boltzmann techniques [10]. However, mostly finite difference methods are
used [1, 2, 11–14], sometimes realised as wavelet shrinkage [15, 16]. Apart from
[13], all finite difference schemes approximate the divergence term on a 3 × 3
stencil.

Unfortunately, finding good finite difference schemes for anisotropic diffu-
sion filters is much more challenging than for their isotropic counterparts with
a scalar-valued diffusivity. While the time discretisation mainly influences the
efficiency of the method and does not create specific difficulties, the major prob-
lem comes from the space discretisation: If the diffusion process is strongly
anisotropic, the corresponding direction has to be approximated with very high
accuracy in order to avoid undesired dissipative blurring effects. The approxima-
tion quality of the rotationally invariant model can also vary a lot even among
schemes with identical order of consistency. Last but not least, it is difficult to
establish a stability theory for anisotropic diffusion filters: Weickert [1] presents
a discrete theory that analyses stability in terms of a maximum-minimum prin-
ciple. However, he shows that on a 3 × 3 stencil, this can only be guaranteed
if the spectral condition number of D does not exceed 5.82 (see also [17]). In
practice, one is usually interested in using more pronounced anisotropies. In this
case, there is no L∞-stability guarantee for the nonnegativity scheme from [1]
and its generalisations by Mrázek and Navara [12]. Thus, it would be desirable
to have at least an L2-stability theory such as for the wavelet-inspired schemes
from [15, 16]. However, none of the finite difference discretisations in [1, 2, 11–13]
gives L2-stability results.
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Our Contributions. The goal of the present paper is to provide a general
framework for L2-stable discretisations of anisotropic diffusion filters on a 3× 3
stencil. It is derived as gradient descent of a discretised energy functional with
a positive definite quadratic form. By considering also the widely unknown non-
standard discretisations in the sense of Mickens [18], we end up with a two-
parameter family of space discretisations on a 3 × 3 stencil. Interestingly this
family covers seven existing finite difference discretisations that have been pro-
posed for such a stencil [1, 2, 11, 12, 15, 16]. Moreover, we establish stability re-
sults in the Euclidean norm for explicit and semi-implicit time discretisations,
providing a theoretical foundation for many of these schemes that has not been
available so far. Last but not least we present an experiment that illustrates
the large impact that the free parameters can have. With a suitable parameter
choice, one can design novel schemes with low dissipativity and an excellent
approximation of rotation invariance.

Organisation of the Paper. In Section 2 we derive our general finite difference
stencil from a discrete energy. Its theoretical properties are analysed in Section
3. In the fourth section, we evaluate various discretisations that arise as special
cases, and we conclude our paper with a summary in Section 5.

2 General Discretisation

Quadratic Energy Model. To discretise the anisotropic diffusion process (1)
in time, we will use a sequence t0 < t1 < t2 < . . . of discrete time nodes. Freezing
the space-variant diffusion tensor D within each time interval [tk, tk+1), k ∈ N0

then creates a sequence of linearised processes. In each interval, the evolution
equation is a gradient descent of the quadratic energy

E(u) =
1

2

∫

Ω

∇
⊤uD∇u dx dy (3)

with a space-variant but time-invariant positive definite diffusion tensor

D =

(

a(x, y) b(x, y)

b(x, y) c(x, y)

)

. (4)

For discretisation in space, we adopt for u a regular grid {1, . . . , N}×{1, . . . ,M}
with mesh size h in both x and y direction, i.e. the index (i, j) refers to the
location (xi, yj) with xi = x0 + i h, yj = y0 + j h. Following the proceeding
in [15, 16], we assume that approximations for a, b, and c are available in the
locations (i + 1

2
, j + 1

2
). Provided that also u2

x, uxuy, and u2
y are approximated

in (i+ 1

2
, j + 1

2
), a discrete version of the energy (3) is then given by

E(u) =
1

2

N
∑

i=0

M
∑

j=0

(

au2
x + 2buxuy + cu2

y

)

i+ 1

2
,j+ 1

2

. (5)
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Suitable approximations should be local, i.e. involve only the four pixels in the
cell {i, i+1}× {j, j+1}. In terms of accuracy, we require their consistency to be
of second order. At boundary locations (rows j ∈ {0,M}, columns i ∈ {0, N}),
values of a, b, c, and ux, uy must satisfy appropriate constraints to be compatible
with Neumann boundary conditions.

Derivative Approximations. To derive approximations with these properties,
we start by discretising ux and uy. To this end, we consider combinations of the
forward differences

p p := Dxui,j :=
ui+1,j − ui,j

h
, (6)

p p

:= Dxui,j+1 :=
ui+1,j+1 − ui,j+1

h
, (7)

p

p

:= Dyui,j :=
ui,j+1 − ui,j

h
, (8)

p

p

:= Dyui+1,j :=
ui+1,j+1 − ui+1,j

h
. (9)

Nonstandard Finite Difference Approximations. Since our quadratic en-
ergy involves expressions in u2

x, u
2
y, and uxuy, let us study approximations of

these terms with second order of consistency using the discretisations (6)–(9).

We approximate u2
x by affine combinations of the arithmetic mean and the

geometric mean of the finite differences in x-direction:

u2
x

∣

∣

∣

i+ 1

2
,j+ 1

2

≈ (1− αi+ 1

2
,j+ 1

2

) ·
1

2

(

p p · p p +
p p

·
p p

)

+ αi+ 1

2
,j+ 1

2

· p p ·
p p

, (10)

where αi+ 1

2
,j+ 1

2

in an arbitrary weight that may be space-variant.

Analogously, u2
y is approximated by affine combinations of the arithmetic

mean and the geometric mean of the finite differences in y-direction:

u2
y

∣

∣

∣

i+ 1

2
,j+ 1

2

≈ (1− αi+ 1

2
,j+ 1

2

) ·
1

2

(

p

p

· p

p

+ p

p

· p

p

)

+ αi+ 1

2
,j+ 1

2

· p

p

· p

p

. (11)

To treat u2
x and u2

y equally, we have chosen the same weight αi+ 1

2
,j+ 1

2

.

Eventually, uxuy involves all four combinations of the two finite differences
in x-direction and the two finite differences in y-direction:

uxuy

∣

∣

∣

i+ 1

2
,j+ 1

2

≈
1− βi+ 1

2
,j+ 1

2

2
·
1

2

(

p p · p

p

+
p p

· p

p

)

+
1 + βi+ 1

2
,j+ 1

2

2
·
1

2

(

p p · p

p

+
p p

· p

p

)

(12)
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with a space-variant weight βi+ 1

2
,j+ 1

2

.

The approximations (10)–(12) deserve some further discussion. Note that for
αi+ 1

2
,j+ 1

2

6= 0, the second summand in (10) approximates u2
x at the location

(i+ 1

2
, j+ 1

2
) by multiplying two different approximations for ux, namely Dxui,j

and Dxui,j+1. This is in accordance with one of Mickens’ principles for so-called
nonstandard finite difference schemes [18]: “Nonlinear terms must, in general,
be modelled nonlocally on the computational grid or lattice”. Here, the term
nonlocal means that both approximations refer to different grid points: Dxui,j

is a central difference approximation in (i+ 1

2
, j), while Dxui,j+1 is centred in

(i+ 1

2
, j+1).

In a similar way, one sees that also (11) uses nonstandard finite differences
for αi+ 1

2
,j+ 1

2

6= 0, and so does (12) for βi+ 1

2
,j+ 1

2

6= 0. Note that for βi+ 1

2
,j+ 1

2

= 0,

approximation (12) is equivalent to

uxuy

∣

∣

∣

i+ 1

2
,j+ 1

2

≈
1

2

(

p p +
p p

)

·
1

2

(

p

p

+ p

p

)

(13)

which is a standard approximation, since both factors are centred in (i+1

2
, j+1

2
).

Mickens advocates his principle of nonlocal approximation of nonlinear terms
as an ingredient for obtaining qualitatively correct discrete models of continuous
equations. The evaluation in Section 4 will show the benefit of this idea.

Gradient Descent. Our space-discrete approximation of the anisotropic diffu-
sion process in every pixel (i, j) is finally given by the gradient descent

dui,j

dt
= −

∂E(u)

∂ui,j

(14)

for the discrete energy (5) with the approximations (10)–(12). The right hand
side gives the desired discretisation of div (D∇u). It can be represented by the
weights in a (3 × 3)-stencil. For inner pixels 1 < i < N , 1 < j < M one obtains
after some tedious but straightforward calculations the stencil

1

2h2
·

[

(β−1) b+ α (a+c)
]

i− 1

2
,j+ 1

2

[

(1−α) c− αa− β b
]

i+ 1

2
,j+ 1

2

+
[

(1−α) c− αa− β b
]

i− 1

2
,j+ 1

2

[

(β+1) b+ α (a+c)
]

i+ 1

2
,j+ 1

2

[

(1−α) a− α c− β b
]

i− 1

2
,j+ 1

2

+
[

(1−α) a− α c− β b
]

i− 1

2
,j− 1

2

−
[

(1−α) (a+c)− (β−1) b
]

i+ 1

2
,j+ 1

2

−
[

(1−α) (a+c)− (β+1) b
]

i+ 1

2
,j− 1

2

−
[

(1−α) (a+c)− (β+1) b
]

i− 1

2
,j+ 1

2

−
[

(1−α) (a+c)− (β−1) b
]

i− 1

2
,j− 1

2

[

(1−α) a− α c− β b
]

i+ 1

2
,j+ 1

2

+
[

(1−α) a− α c− β b
]

i+ 1

2
,j− 1

2

[

(β+1) b+ α (a+c)
]

i− 1

2
,j− 1

2

[

(1−α) c− αa− β b
]

i+ 1

2
,j− 1

2

+
[

(1−α) c− αa− β b
]

i− 1

2
,j− 1

2

[

(β−1) b+ α (a+c)
]

i+ 1

2
,j− 1

2

(15)
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Table 1. Seven existing space discretisations as special cases of our general stencil.

discretisation α β

standard discretisation [11] 0 0
Cottet and El-Ayyadi [2] 0 −1
nonnegativity discretisation [1] 0 sign(b)

Mrázek and Navara II [12] min(a,c)
a+c

0

Mrázek and Navara III [12] min(a,c)
2(a+c)

1
2
sign(b)

wavelet-inspired scheme I [15] 1
2

0
wavelet-inspired scheme II [16] [0, 1

2
] 0

where the y-axis is oriented upwards. This stencil approximates div (D∇u) with
consistency order 2. In boundary pixels, homogeneous Neumann boundary con-
ditions can be taken into account just by mirroring the first and last rows and
columns of u.

A General Framework for Existing Schemes. Interestingly our space dis-
cretisation subsumes a number of anisotropic diffusion stencils from the litera-
ture. Table 1 lists seven representatives with the corresponding weight param-
eters α, β of our general stencil. In three of the listed schemes the weights are
chosen space-variant. All but the last two schemes have originally been stated
with the diffusion tensor discretised either at locations (i, j) or (i+ 1

2
, j), (i, j+ 1

2
).

In these cases, full correspondence with our scheme is achieved by a suitable grid
resampling with linear interpolation. In Section 4 we will see that our general
stencil also contains new parameter settings with favourable performance.

3 Theoretical Properties

In the anisotropic diffusion process (1), the diffusion tensor field D is required to
consist of positive definite tensors. As a consequence, the quadratic form within
the continuous energy (3) is nonnegative. It is therefore natural to ask whether
also the discrete energy (5) retains this property. This will help to determine
stability properties of the gradient descent.
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3.1 Positive Semidefiniteness of the Discrete Energy

Introducing the notations

wi+ 1

2
,j+ 1

2

:=
(

p p ,
p p

, p

p

, p

p

)⊤
, (16)

Hi+ 1

2
,j+ 1

2

:=

















1−α
2

ai+ 1

2
,j+ 1

2

α
2
ai+ 1

2
,j+ 1

2

1−β
4

bi+ 1

2
,j+ 1

2

1+β
4

bi+ 1

2
,j+ 1

2

α
2
ai+ 1

2
,j+ 1

2

1−α
2

ai+ 1

2
,j+ 1

2

1+β
4

bi+ 1

2
,j+ 1

2

1−β
4

bi+ 1

2
,j+ 1

2

1−β
4

bi+ 1

2
,j+ 1

2

1+β
4

bi+ 1

2
,j+ 1

2

1−α
2

ci+ 1

2
,j+ 1

2

α
2
ci+ 1

2
,j+ 1

2

1+β
4

bi+ 1

2
,j+ 1

2

1−β
4

bi+ 1

2
,j+ 1

2

α
2
ci+ 1

2
,j+ 1

2

1−α
2

ci+ 1

2
,j+ 1

2

















, (17)

we can rewrite our discrete energy (5) as

E(u) =
1

2

N
∑

i=0

M
∑

j=0

w
⊤

i+ 1

2
,j+ 1

2

Hi+ 1

2
,j+ 1

2

wi+ 1

2
,j+ 1

2

. (18)

Now we state our main result on the discrete energy functional.

Proposition 1 (Positive Semidefiniteness of Hi+ 1

2
,j+ 1

2

). The matrix
Hi+ 1

2
,j+ 1

2

is positive semidefinite for any positive definite diffusion tensor

Di+ 1

2
,j+ 1

2

if and only if |β| ≤ 1− 2α.

Sketch of the proof. We decompose R
4 into the subspaces

V := span{(1, 1, 0, 0)⊤, (0, 0, 1, 1)⊤} and (19)

V ⊥ = span{(1,−1, 0, 0)⊤, (0, 0, 1,−1)⊤} . (20)

On V , the matrix Hi+ 1

2
,j+ 1

2

acts like 1

2
Di+ 1

2
,j+ 1

2

: To see this, let (x, y)⊤ be

an eigenvector ofDi+ 1

2
,j+ 1

2

with eigenvalue λ. Then (x, x, y, y)⊤ is an eigenvector

of Hi+ 1

2
,j+ 1

2

with eigenvalue λ
2
. This guarantees positive definiteness on V .

On V ⊥, it is easy to check that the action of Hi+ 1

2
,j+ 1

2

is given by the matrix

T :=
1

2

(

(1 − 2α)a βb

βb (1 − 2α)c

)

(21)

with respect to the basis vectors stated above. To ensure nonnegativity of the
eigenvalues of T for any positive definite D, the inequality |β| ≤ 1 − 2α is
necessary and sufficient. ⊓⊔

Remark. As a consequence, the largest value of α for which positive semidef-
initeness can be established is α = 0.5. However, we do not recommend using
α = 0.5, since the stencil can decouple into two checkerboard-like subgrids then.
For α < 0.5 one has strict positive definiteness and no decoupling problems.
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3.2 Stability Results for Fully Discrete Diffusion Schemes

The positive semidefinite energy (18) can be rewritten as

E(u) = −
1

2
u
⊤
Au (22)

with a negative semidefinite matrix A ∈ R
NM×NM where each row contains the

nine stencil entries of the corresponding spatial node. Its gradient descent

du

dt
= Au (23)

is a space-discrete and time-continuous anisotropic diffusion process. Let us now
consider two common time discretisations of this dynamical system.

Explicit Time Discretisation. An explicit scheme with step size τ is given
by

u
k+1 − u

k

τ
= A

k
u
k , (24)

where the upper index denotes the time level. It can be written as

u
k+1 = (I + τAk)uk . (25)

Stability in the Euclidean norm requires ‖uk+1‖2 ≤ ‖uk‖2. This is guaran-
teed for ρ(I + τAk) ≤ 1, where ρ denotes the spectral norm. For a negative
semidefinite A

k, this comes down to

τ ≤
2

ρ(Ak)
. (26)

An estimate for ρ(Ak) can be derived via Gershgorin’s Theorem. The stability
bound (26) also allows to design extremely efficient variants of (24), so-called
fast explicit diffusion (FED) schemes [19]. They use cycles of varying time steps,
preserve the L2 stability of the underlying scheme, and are well-suited for GPUs.

Semi-implicit Time Discretisation. The semi-implicit scheme

u
k+1 − u

k

τ
= A

k
u
k+1 (27)

requires to solve a linear system of equations:
(

I − τAk
)

u
k+1 = u

k . (28)

For negative semidefinite A
k, the matrix I − τAk has only eigenvalues ≥ 1 and

is thus invertible. Since ρ((I − τAk)−1) ≤ 1, the semi-implicit scheme

u
k+1 =

(

I − τAk
)−1

u
k (29)

is absolutely stable in the Euclidean norm.
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Table 2. Performance of different space discretisations.

discretisation α β PSNR [dB]

standard discretisation [11] 0 0 24.60
Cottet and El-Ayyadi [2] 0 −1 25.38
nonnegativity discretisation [1] 0 sign(b) 29.86

Mrázek and Navara II [12] min(a,c)
a+c

0 24.17

Mrázek and Navara III [12] min(a,c)
2(a+c)

0.5 sign(b) 27.42

wavelet-inspired scheme I [15] 0.5 0 29.57
wavelet-inspired scheme II [16] 0.49 0 32.88
our nonstandard stencil 0.44 0.118 sign(b) 33.99

4 Evaluation of Specific Discretisations

Now that we have derived a general class of L2-stable discretisations for aniso-
tropic diffusion processes, let us study the performance of different parameter
settings. Since more recent applications of anisotropic diffusion focus on its inter-
polation quality (see e.g. [3, 5]), we consider an idealised demosaicking scenario,
where we know the ground truth solution and where subpixel accuracy w.r.t. the
interpolation direction plays an important role. For other applications such as
denoising and image enhancement we have found similar performance rankings.

Demosaicking addresses a problem of many camera sensors: They use a colour
filter array which allows them to measure only one out of three colour channels
at each pixel location: either red (R), green (G), or blue (B). Thus, exactly
one third of the colour image information is available, and two thirds must be
interpolated. Often the colour information is arranged in the order of the so-
called Bayer array that consists of a periodic repetition of the pattern

R G

G B
(30)

For our evaluation we consider the synthetic test image in Figure 1(a). It
consists of concentric circular structures of varying frequencies. Thus, it allows
us to assess the directional and the frequency behaviour of anisotropic diffusion
interpolation. By removing two thirds of the colour information by means of
the Bayer mask, we obtain the image in Figure 1(b). Now we interpolate the
missing information at the unspecified channels in each pixel by evolving an
explicit anisotropic diffusion scheme to its steady state. The data at the specified
pixels serve as Dirichlet boundary conditions. In this synthetic example we can
design a positive semidefinite diffusion tensor in such a way that only diffusion
in tangential direction is allowed. Thus, the directional error of D is zero, and
all reconstruction errors are caused by limitations of our space discretisation due
to dissipative artifacts or deviations from rotation invariance.

Table 2 compares the peak signal-to-noise ratio (PSNR) between the interpo-
lated image and the original image. In spite of the fact that we interpolate over
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Fig. 1. (a) Left: Test image, 256× 256 pixels. (b) Middle: After applying the Bayer
colour filter array. (c) Right: Demosaicking result with our nonstandard scheme with
α = 0.44 and β = 0.118 sign(b).

a distance of at most two pixels and that we prescribe the correct interpolation
direction, we observe that the seven stencils from the literature differ strongly
in their performance: While the standard discretisation and the Mrázek–Navara
scheme II perform fairly bad, the nonnegativity discretisation and the wavelet-
inspired scheme II with α = 0.49 give rather good results. It should be noted
that the wavelet-inspired scheme I always uses α = 0.5. Hence, it suffers from
the before mentioned checkerboard decoupling which is particularly undesirable
for demosaicking. Therefore, we recommend to use only stencils with α ≤ 0.49.

We see that all seven schemes from the literature can be outperformed by
our nonstandard scheme with suitable parameters. Its demosaicking result is
depicted in Figure 1(c). Since all stencils from Table 2 have the same consistency
order (namely 2), it is remarkable that their actual performance is so different:
The PSNR difference between the best and the worst stencil is 9.82 dB! This
confirms the fundamental importance of a good discretisation when one wants
to use anisotropic diffusion processes with a diffusion tensor. Similar findings
have also been made in [12, 13, 15, 16].

The best 3 × 3 finite difference stencil in the anisotropic diffusion literature
is given by the wavelet-inspired filter class II [16]. It contains α as a free para-
meter. Our nonstandard stencil class identifies β as a second degree of freedom.
According to Proposition 1, β has to fulfil |β| ≤ 1 − 2α. Often it is advisable
to use a β-value that has the same sign as b, since this can help to reduce the
well-known over- and undershoots due to a lack of nonnegativity in the stencil.
Thus, it is convenient to replace the parameter β by a parameter γ that is linked
to sign(b) and can vary in the interval [−1, 1] for all α < 1

2
:

β = γ · (1 − 2α) · sign(b) . (31)

For example, β = 0.118 sign(b) in Table 2 can be expressed by γ = 0.98.

Table 3 illustrates the advantages of our nonstandard stencil over the wavelet-
inspired stencil II. For small values of α, one can easily improve the PSNR in
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Table 3. Comparison between the wavelet-inspired filter class II from [16] and our
nonstandard filter class. The table depicts the PSNR for the demosaicking test scenario,
and γopt refers to the γ-value where the nonstandard stencil yields the highest PSNR.

α wavelet-insp. II nonstandard γopt
0 24.60 29.86 1
0.1 25.27 30.81 1
0.2 26.14 31.90 1
0.3 27.32 33.04 1
0.4 29.08 33.83 1
0.42 29.57 33.87 1
0.44 30.16 33.99 0.98
0.46 30.90 33.96 0.96
0.48 31.98 33.87 0.90
0.49 32.88 33.78 0.80
0.5 29.57 29.57 −

the demosaicking test case by more than 5 dB: All one has to do is to choose
γ = 1 instead of γ = 0. The latter corresponds to the wavelet-inspired stencil
II. As long as α is not too close to the critical value 1

2
(which should be avoided

anyway due to checkerboard artifacts) it turns out that γ = 1 gives the highest
PSNR. However, even for α ∈ [0.43, 0.49], where γ = 1 is suboptimal, it still
outperforms γ = 0. Thus, choosing γ = 1 works well in practice and reduces the
parameter space to a single degree of freedom.

We see that within our stencil class, schemes with fairly large values for α

and γ perform particularly well. This confirms Mickens’ principle of nonlocal
approximation of nonlinear terms: The more α and γ differ from 0, the larger is
the contribution of the nonstandard finite difference terms within (10)–(12).

5 Conclusions

We have shown that seven finite difference discretisations for anisotropic diffusion
filtering with a diffusion tensor are special cases of a novel, unifying framework.
It is derived systematically from a discrete energy formulation, and it exploits
the widely unknown nonstandard finite differences of Mickens [18]. We have es-
tablished general L2-stability results. Our framework does not only provide a
theoretical foundation of existing schemes as L2-stable discrete energy minimis-
ers, but also comprises novel stencils that outperform existing ones.

Our evaluation has shown that different discretisations of the same continu-
ous model can give PSNR differences of almost 10 dB, even though they have
identical consistency order. This confirms the widely underestimated fact that
appropriate numerical algorithms are at least as important as good models.

We expect that the ideas in our paper can also be generalised to other
anisotropic equations that create similar numerical challenges.
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