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ABSTRACT Nonlinear diffusion filtering and wavelet shrinkage are two
methods that serve the same purpose, namely discontinuity-preserving de-
noising. In this chapter we give a survey on relations between both para-
digms when space-discrete or fully discrete versions of nonlinear diffusion
filters are considered. For the case of space-discrete diffusion, we show
equivalence between soft Haar wavelet shrinkage and total variation (TV)
diffusion for 2-pixel signals. For the general case of N -pixel signals, this
leads us to a numerical scheme for TV diffusion with many favourable
properties. Both considerations are then extended to 2-D images, where
an analytical solution for 2 × 2 pixel images serves as building block for a
wavelet-inspired numerical scheme for TV diffusion. When replacing space-
discrete diffusion by fully discrete one with an explicit time discretisation,
we obtain a general relation between the shrinkage function of a shift-
invariant Haar wavelet shrinkage on a single scale and the diffusivity of
a nonlinear diffusion filter. This allows to study novel, diffusion-inspired
shrinkage functions with competitive performance, to suggest new shrink-
age rules for 2-D images with better rotation invariance, and to propose
coupled shrinkage rules for colour images where a desynchronisation of the
colour channels is avoided. Finally we present a new result which shows that
one is not restricted to shrinkage with Haar wavelets: By using wavelets
with a higher number of vanishing moments, equivalences to higher-order
diffusion-like PDEs are discovered.

1 Introduction

Signal and image denoising is a field where one often is interested in remov-
ing noise without sacrificing important structures such as discontinuities.
To this end, a large variety of nonlinear strategies has been proposed in the
literature including wavelet shrinkage [10] and nonlinear diffusion filtering
[18]; see Figure 1. The goal of this chapter is to survey a number of con-
nections between these two techniques and to outline how they can benefit
from each other.

While many publications on the connections between wavelet shrinkage
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FIGURE 1. (a) Left: Original image with additive Gaussian noise. (b) Mid-
dle: Result after shift invariant soft wavelet shrinkage. (c) Right: Result after
nonlinear diffusion filtering with total variation diffusivity.

and PDE-based evolutions (as well as related variational methods) focus on
the analysis in the continuous setting (see e.g. [2, 3, 4, 5, 13]), significantly
less investigations have been carried out in the discrete setting [7]. In this
chapter we give a survey on our contributions that are based on discrete
considerations. Due to the lack of space we can only present the main ideas
and refer the reader to the original papers [14, 15, 16, 20, 22] for more
details.

This chapter is organised as follows: In Section 2 we start with briefly
sketching the main ideas behind wavelet shrinkage and nonlinear diffusion
filtering. Afterwards in Section 3 we focus on relations between both worlds,
when we restrict ourselves to space-discrete nonlinear diffusion with a to-
tal variation (TV) diffusivity and to soft Haar wavelet shrinkage. Section
4 presents additional relations that arise from considering fully discrete
nonlinear diffusion with arbitrary diffusivities, and Haar wavelet shrinkage
with arbitrary shrinkage functions. In Section 5 we present a new result
that generalises these considerations to higher-order diffusion-like PDEs
and shrinkage with wavelets having a higher number of vanishing moments.
The chapter is concluded with a summary in Section 6.

2 Basic Methods

2.1 Wavelet Shrinkage

Wavelet shrinkage has been made popular by a series of papers by Donoho
and Johnstone (see e.g. [9, 10]). Assume we are given some discrete 1-D
signal f = (fi)i∈Z that we may also interpret as a piecewise constant func-
tion. Then the discrete wavelet transform represents f in terms of shifted
versions of a dilated scaling function ϕ, and shifted and dilated versions of
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a wavelet function ψ. In case of orthonormal wavelets, this gives

f =
∑

i∈Z

〈f, ϕn
i 〉ϕn

i +

n
∑

j=−∞

∑

i∈Z

〈f, ψj
i 〉ψ

j
i , (1.1)

where ψj
i (s) := 2−j/2ψ(2−js− i) and where 〈·, ·〉 denotes the inner product

in L2(R). If the measurement f is corrupted by moderate white Gaussian
noise, then this noise is contained to a small amount in all wavelet coeffi-
cients 〈f, ψj

i 〉, while the original signal is in general determined by a few
significant wavelet coefficients [12]. Therefore, wavelet shrinkage attempts
to eliminate noise from the wavelet coefficients by the following three-step
procedure:

1. Analysis: Transform the noisy data f to the wavelet coefficients dj
i =

〈f, ψj
i 〉 and scaling function coefficients cni = 〈f, ϕn

i 〉 according to
(1.1).

2. Shrinkage: Apply a shrinkage function Sθ with a threshold parameter
θ to the wavelet coefficients, i.e., Sθ(d

j
i ) = Sθ(〈f, ψj

i 〉).

3. Synthesis: Reconstruct the denoised version u of f from the shrunken
wavelet coefficients:

u :=
∑

i∈Z

〈f, ϕn
i 〉ϕn

i +

n
∑

j=−∞

∑

i∈Z

Sθ(〈f, ψj
i 〉)ψ

j
i . (1.2)

In this paper we pay particular attention to Haar wavelets, well suited for
piecewise constant signals with discontinuities. The Haar wavelet and Haar
scaling functions are given respectively by

ψ(x) = 1[0, 1
2
) − 1[ 1

2
,1), (1.3)

ϕ(x) = 1[0,1) (1.4)

where 1[a,b) denotes the characteristic function, equal to 1 on [a, b) and
zero everywhere else. In the case of the so-called soft wavelet shrinkage [9],
one uses the shrinkage function

Sθ(s) :=

{

s− θ sgn s if |s| > θ,
0 if |s| ≤ θ.

(1.5)

2.2 Nonlinear Diffusion Filtering

The basic idea behind nonlinear diffusion filtering [18, 21] in the 1-D case
is to obtain a family u(x, t) of filtered versions of a continuous signal f(x)
as the solution of a suitable diffusion process

ut = (g(|ux|)ux)x (1.6)
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with f as initial condition,

u(x, 0) = f(x)

and reflecting boundary conditions. Here subscripts denote partial deriva-
tives, and the diffusion time t is a simplification parameter: Larger values
correspond to more pronounced filtering.

The diffusivity g(|ux|) is a nonnegative function that controls the amount
of diffusion. Usually, it is decreasing in |ux|. This ensures that strong edges
are less blurred by the diffusion filter than low-contrast details. In this
chapter, the total variation (TV) diffusivity

g(|s|) =
1

|s| (1.7)

plays an important role, since the resulting TV diffusion [1, 8] does not
require to specify additional contrast parameters, leads to scale invariant
filters, has finite extinction time, interesting shape-preserving qualities, and
is equivalent to TV regularisation [19] in the 1-D setting; see the references
in [22] for more details.

Unfortunately, TV diffusion is not unproblematic in practice: In cor-
responding numerical algorithms the unbounded diffusivity requires in-
finitesimally small time steps or creates very ill-conditioned linear systems.
Therefore, TV diffusion is often approximated by a model with bounded
diffusivity:

ut =

(

1
√

ε2 + u2
x

ux

)

x

(1.8)

This regularisation, however, may introduce undesirable blurring effects
and destroy some of the favourable properties of unregularised TV diffusion.

3 Relations for Space-Discrete Diffusion

In this section we study connections between soft Haar wavelet shrinkage
and nonlinear diffusion with TV diffusivity in the space-discrete case. This
allows us to find analytical solutions for simple scenarios. They are used as
building blocks for numerical schemes for TV diffusion.

3.1 Equivalence for Two-Pixel Signals

We start by considering wavelet shrinkage of a two-pixel signal (f0, f1) in
the Haar basis [20]. Its coefficients with respect to the scaling function
ϕ = ( 1√

2
, 1√

2
) and the wavelet ψ = ( 1√

2
, −1√

2
) are given by

c =
f0 + f1√

2
, d =

f0 − f1√
2

. (1.9)
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Soft thresholding of the wavelet coefficient yields

Sθ(d) =

{

d− θ sgn d if |d| > θ,
0 if |d| ≤ θ,

(1.10)

leading to the filtered signal (u0, u1) with

u0(θ) =

{

f0 + θ√
2

sgn (f1−f0) if θ < |f1−f0|/
√

2,

(f0 + f1)/2 else,
(1.11)

u1(θ) =

{

f1 − θ√
2

sgn (f1−f0) if θ < |f1−f0|/
√

2,

(f0 + f1)/2 else.
(1.12)

On the other hand, space discrete TV diffusion of a two-pixel signal with
reflecting boundary conditions and grid size 1 creates the dynamical system

u̇0 = sgn (u1−u0) (1.13)

u̇1 = −sgn (u1−u0) (1.14)

with initial conditions u0(0) = f0 and u1(0) = f1. The dot denotes differ-
entiation with respect to time. It is easy to verify that this system with
discontinuous right hand side has the unique analytical solution

u0(t) =

{

f0 + t sgn (f1−f0) if t < |f1−f0|/2,
(f0 + f1)/2 else,

(1.15)

u1(t) =

{

f1 − t sgn (f1−f0) if t < |f1−f0|/2,
(f0 + f1)/2 else.

(1.16)

Interestingly, this is equivalent to soft Haar wavelet shrinkage with thresh-
old θ =

√
2t. Moreover, we observe that a finite extinction time is obvious

in the two-pixel model and that no problems with degenerated diffusivities
appear [20].

3.2 A Wavelet-Inspired Scheme for TV Diffusion of Signals

Let us now investigate if we can also benefit from the 2-pixel equivalences
in the case of general discrete 1-D signals with N pixels. To this end, we
perform a wavelet decomposition on the finest scale only. Haar wavelets
create natural two-pixel pairings, but unfortunately, their shrinkage is not
shift invariant. As a remedy, Coifman and Donoho have proposed to apply
cycle spinning [6]: On one hand, shrinkage is performed on the original
signal. In parallel to this the signal is shifted by 1 pixel, shrinkage is per-
formed, and then the result is shifted back. Averaging both filtered signals
creates a process that is shift invariant by construction.

Interestingly this procedure does also inspire a novel numerical scheme
for TV diffusion. It uses the analytical solution of the two-pixel model as a
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FIGURE 2. (a) Top left: Original signal without noise. (b) Top right: With
additive Gaussian noise, SNR=8 dB. (c) Bottom left: Result with two-pixel
scheme. SNR = 24.5 dB. (d) Bottom right: Result with classical regularised
scheme. SNR = 24.6 dB. From [20].

building block. With the two-pixel model, TV diffusion with time step size
2τ is performed on all pixel pairs (u2i, u2i+1). In parallel we perform TV
diffusion on all pixel pairs (u2i−1, u2i). Averaging both results leads to the
following numerical scheme for TV diffusion [20]:

uk+1
i = uk

i +
τ

h
sgn (uk

i+1 − uk
i ) min

(

1,
h

4τ
|uk

i+1 − uk
i |
)

− τ

h
sgn (uk

i − uk
i−1) min

(

1,
h

4τ
|uk

i − uk
i−1|

)

, (1.17)

where the upper index k denotes the time level kτ , and h is the spatial grid
size. Although this scheme is explicit, it is even absolutely stably since it
is based on a linear combination of analytical two-pixel interactions that
satisfy a maximum–minimum principle. Moreover, it can be shown that
the scheme is also conditionally consistent to the continuous TV diffusion
[20]. It should be noted that it does not require any regularisation of the
diffusivity such as (1.8), and hence does not suffer from corresponding
dissipative artifacts at edges. In Figure 2 it is shown that it is a competitive
alternative to conventional schemes based that approximate regularised TV
diffusion.
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FIGURE 3. (a) Left: Original image, 93×93 pixels. (b) Middle: Standard explicit
scheme for regularised TV diffusion (ε = 0.01, τ = 0.0025, 10000 iterations).
(c) Right: Same with four-pixel scheme without regularisation (τ = 0.1, 250
iterations). Note that 40 times larger time steps are used. From [22].

3.3 Generalisations to Images

Interestingly, the considerations in Subsections 3.1 and 3.2 can be gener-
alised to the 2-D setting [22]. By considering an image with 2×2 pixels, one
shows that soft Haar wavelet shrinkage and space-discrete TV diffusion are
equivalent by deriving the same analytical solution for both processes. In
order to use this 4-pixel solution as a building block for a numerical scheme
for 2-D TV diffusion, we consider the four 2× 2 cells containing some pixel
(i, j). By computing their analytical solutions and averaging the results,
we obtain a wavelet-inspired numerical scheme for 2-D TV diffusion. In the
same way as its 1-D counterpart, it is explicit, absolutely stable, condition-
ally consistent, and does not require any regularisation of the singular TV
diffusion equation. Compared to classical explicit discretisations based on
regularised TV diffusion, it creates sharper edges, even when significantly
larger time step sizes are used; see Figure 3.

4 Relations for Fully Discrete Diffusion

The previous section focused on space-discrete TV diffusion and soft Haar
wavelet shrinkage. This restriction allowed us to derive analytical solutions
for both paradigms. In order to obtain additonal connections let us now
investigate fully discrete nonlinear diffusion with arbitrary diffusivities and
Haar wavelet shrinkage with general shrinkage functions.

4.1 Diffusion-Inspired Shrinkage Functions

Let us consider a discrete signal (fi)i∈Z. It is easily seen that one cycle of
shift-invariant Haar wavelet shrinkage on a single level creates a filtered
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signal (ui)i∈Z with

ui =
fi−1 + 2fi + fi+1

4
+

√
2

4
Sθ

(

fi − fi+1√
2

)

−
√

2

4
Sθ

(

fi−1 − fi√
2

)

. (1.18)

On the other hand, the first iteration of an explicit (Euler forward) scheme
for a nonlinear diffusion filter with initial state f , time step size τ and
spatial step size 1 leads to

ui − fi

τ
= g(|fi+1−fi|) (fi+1−fi) − g(|fk

i −fk
i−1|) (fk

i −fk
i−1), (1.19)

which can be rewritten as

ui =
fi−1 + 2fi + fi+1

4
+ (fi − fi+1)

(

1

4
− τ g(|fi − fi+1|)

)

− (fi−1 − fi)

(

1

4
− τ g(|fi−1 − fi|)

)

. (1.20)

Comparing (1.18) and (1.20) shows that both methods are equivalent if

√
2

4
Sθ

(

s√
2

)

= s

(

1

4
− τ g(|s|)

)

. (1.21)

This formula states a general correspondence between a shrinkage function
Sθ of a shift-invariant single scale Haar wavelet shrinkage and the diffusiv-
ity g of an explicit nonlinear diffusion scheme [15]. It does not only allow
to reinterpret a number of shrinkage strategies as nonlinear diffusion fil-
ters (Figure 4), it also leads to novel, diffusion-inspired shrinkage functions
(Figure 5). Interestingly, some of these diffusion-inspired shrinkage func-
tions turn out to belong to the ones with the best denoising capabilities
[15]. A detailed analysis of this connection in terms of extremum principles,
monotonicity preservation and sign stability can be found in [16].

4.2 Wavelet Shrinkage with Improved Rotation Invariance

In order to extend our results from 1-D signals to 2-D greyscale images,
we have to specify the 2-D Haar Wavelet transform first. It is based on
a lowpass filter L with coefficients ( 1√

2
, 1√

2
) and a highpass filter H with

coefficients ( 1√
2
,− 1√

2
) Applying the 1-D filters L and H alternatingly in x

and y direction gives a 2-D Haar wavelet decomposition with the following
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FIGURE 4. (a) Top: Four popular shrinkage functions: soft, garrote, firm, and
hard shrinkage. (b) Bottom: Corresponding diffusivities. From [15].
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FIGURE 5. (a) Top: Four popular diffusivities: linear, Charbonnier, Per-
ona–Malik, and Weickert diffusivity. (b) Bottom: Corresponding shrinkage func-
tions. From [15].
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FIGURE 6. (a) Left: Original image. (b) Right: The first three levels of a 2-D
Haar wavelet decomposition.

structure:

vl+1 = L(x) ∗ L(y) ∗ vl, (1.22)

wl+1
y = L(x) ∗H(y) ∗ vl, (1.23)

wl+1
x = H(x) ∗ L(y) ∗ vl, (1.24)

wl+1
xy = H(x) ∗H(y) ∗ vl (1.25)

with v0 := f . Figure 6 illustrates this principle.
The basic idea behind classical 2-D wavelet shrinkage is now to shrink all

wavelet coefficients wy , wx and wxy separately according to their magni-
tude. If shift invariance is required, one averages the results for the 4 shift
possibilities. However, even in this case, one usually observes a severe lack
of rotation invariance.

In order to address this problem, let us investigate 2-D nonlinear diffusion
filtering. In its isotropic variant with a scalar-valued diffusivity [18], it is
based on the rotationally invariant equation

ut = div(g(|∇u|)∇u) (1.26)

In a similar way as in the 1-D situation, one can now consider explicit
discretisations and relate the diffusivities to shrinkage functions for shift
invariant Haar wavelet shrinkage. In contrast to classical shrinkage where
the wavelet coefficients are shrunken separately, this leads to novel shrink-
age rules where the wavelets are coupled [14], e.g.

S(wx) = wx

(

1 − 4 τ g
(√

w2
x + w2

y + 2w2
xy

))

, (1.27)

S(wy) = wy

(

1 − 4 τ g
(√

w2
x + w2

y + 2w2
xy

))

, (1.28)

S(wxy) = wxy

(

1 − 4 τ g
(√

w2
x + w2

y + 2w2
xy

))

. (1.29)
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FIGURE 7. (a) Left: original images. (b) Middle: reconstruction after iter-
ated shift invariant hard wavelet shrinkage. (c) Right: reconstruction by a diffu-
sion-inspired wavelet shrinkage with much better rotation invariance. From [14].

Because of the rotation invariance of the nonlinear diffusion equation, one
can expect that these shrinkage rules lead to a significantly better real-
isiation of rotation invariance than classical 2-D wavelet shrinkage. These
expectations are confirmed by the experiments in Figure 7.

4.3 Diffusion-Inspired Wavelet Shrinkage of Colour Images

While we have investigated diffusion-inspired shrinkage of greyscale images
in the previous section, let us now turn our attention to colour images.
In this case wavelet shrinkage is frequently applied such that the different
colour channels (e.g. RGB or YUV) are shrunken separately. This can result
in a lack of synchronisation that creates artifacts at colour edges.

For nonlinear diffusion filtering of colour images, one often uses a process
with a joint diffusivity that steers the evolution of all three channels [11].
In the continuous setting such an evolution has the structure

∂tui = div
(

g
((

3
∑

j=1

|∇uj |2
)1/2)

∇ui

)

(1.30)

where the index i specifies the colour channel. By considering an explicit
discretisation and relating it to wavelet shrinkage, we end up with shrinkage
rules where all channels are coupled. Figure 8 illustrates that this diffusion-
inspired shrinkage of colour images leads to a more convincing behaviour
at edges where all channels remain synchronised.
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FIGURE 8. (a) Left: Zoom into an original image. (b) Middle: After classi-
cal wavelet shrinkage without coupling the RGB channels. (c) Right: Wavelet
shrinkage with diffusion-inspired channel coupling.

5 Wavelets with Higher Vanishing Moments

Up to now we have only considered relations between Haar wavelet shrink-
age and nonlinear diffusion with diffusivities depending on first order deriva-
tives. In this section, we will see that there exists also a relation between one
step of translation invariant wavelet shrinkage with wavelets having m ≥ 1
vanishing moments and explicit difference schemes of diffusion-like equa-
tions whose diffusivities include m-th order derivatives. To our knowledge
these relations have not been considered in the literature before.

For the sake of simplicity, we restrict our attention to the periodic set-
ting, i.e., in the following all indices are taken modulo N . We are concerned
with wavelet filters hi := (hi

0, . . . , h
i
Mi−1), i = 1, 2 having the perfect re-

construction property

1

2

(

M0−1
∑

k=0

h0
kh

0
k−l +

M1−1
∑

k=0

h1
kh

1
k−l

)

= δ0,l. (1.31)

Moreover, we assume that h1 has m ≥ 1 vanishing moments:

M1−1
∑

k=0

kr h1
k = 0, r = 0, . . . ,m− 1, (1.32)

M1−1
∑

k=0

km h1
k = γm 6= 0. (1.33)

Examples of such filters are for m = 1 the Haar filter pair

h0 :=
1√
2
(1, 1), h1 :=

1√
2
(1,−1) (1.34)
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with γ1 = −1/
√

2, and for m = 2 the Daubechies filter pair

h0 :=
1

4
√

2

(

1 +
√

3, 3 +
√

3, 3 −
√

3, 1 −
√

3
)

, (1.35)

h1 :=
1

4
√

2

(

−1 +
√

3, 3 −
√

3, −3 −
√

3, 1 +
√

3
)

(1.36)

with γ2 =
√

3/
√

2. Then the three steps of wavelet shrinkage applied to the
signal f := (f0, . . . , fN−1) read as follows:

• Analysis step: For j = 0, . . . , N − 1, we compute

cj :=

M0−1
∑

k=0

h0
kfk+j =

N−1
∑

k=0

h0
k−jfk, (1.37)

dj :=

M1−1
∑

k=0

h1
kfk+j =

N−1
∑

k=0

h1
k−jfk, . (1.38)

• Shrinkage step: For j = 0, . . . , N − 1 we shrink the highpass coeffi-
cients dj as Sθ(dj), j = 0, . . . , N − 1.

• Synthesis step: For j = 0, . . . , N − 1, we compute

uj :=
1

2

(

M0−1
∑

k=0

h0
k cj−k +

M1−1
∑

k=0

h1
k Sθ(dj−k)

)

. (1.39)

Assume now that the samples fk := f(kh) with h := 1/N were taken from
a sufficiently smooth periodic function with period 1. Then we obtain by
the Taylor expansion that

fk+l =

m
∑

r=0

(kh)r

r!
f (r)(lh) + O(hm+1). (1.40)

Since h1 has m vanishing moments, it follows with (1.38) that

dl =

m
∑

r=0

hr

r!
f (r)(lh)

M1−1
∑

k=0

kr h1
k + O(hm+1)

=
hm

m!
f (m)(lh)γm + O(hm+1). (1.41)

Thus,

f (m)(lh) =
m!

γmhm
dl + O(h). (1.42)

Similarly, we conclude that

f (m)(lh) =
(−1)mm!

γmhm

M1−1
∑

k=0

h1
kfl−k + O(h). (1.43)



14 Joachim Weickert, Gabriele Steidl, Pavel Mrázek, Martin Welk, Thomas Brox

Let us now consider a higher-order diffusion-like equation with periodic
boundary conditions:

ut =
(

(g(|u(m)|)u(m)
)(m)

, (1.44)

u(x, 0) = f(x), (1.45)

u(r)(0) = u(r)(1), r = 0, . . . , 2m− 1. (1.46)

We approximate the inner and outer m–th derivatives by (1.42) and (1.43),
respectively. This results in

ut(jh) ≈ (−1)m(m!)2

(γmhm)2

M1−1
∑

k=0

h1
k g

(∣

∣

∣

∣

m!

γmhm
dj−k

∣

∣

∣

∣

)

dj−k . (1.47)

Finally, the approximation of ut by a forward difference with time step τ
leads to an iterative scheme whose first step reads

u
(1)
j := fj + τ

(−1)m(m!)2

(γmhm)2

M1−1
∑

k=0

h1
k g

(∣

∣

∣

∣

m!

γmhm
dj−k

∣

∣

∣

∣

)

dj−k . (1.48)

Since our filter pair has the perfect reconstruction property (1.31), we have

with Sθ(s) = s in (1.39) that uj = fj . Thus, u
(1)
j can be rewritten as

u
(1)
j =

1

2

(

M0−1
∑

k=0

h0
k cj−k +

M1−1
∑

k=0

h1
kdj−k ·

·
(

1 + 2τ
(−1)m(m!)2

(γmhm)2
g

(∣

∣

∣

∣

m! dj−k

γmhm

∣

∣

∣

∣

)))

. (1.49)

Comparing this equation with (1.39) we see that the signal obtained by
wavelet shrinkage coincides with those of the first step of our iterative
scheme if

Sθ

(

γmh
m

m!
s

)

= s

(

γmh
m

m!
+ 2τ

(−1)mm!

γmhm
g (|s|)

)

. (1.50)

This fundamental relation generalises (1.21). It gives the connection be-
tween the shinkage function Sθ of single scale, shift-invariant wavelet shrink-
age with m vanishing moments and the “diffusivity” g of the diffusion-like
PDE (1.44) of order 2m. For m = 1 it coincides with our result (1.21) for
Haar wavelet shrinkage. For m = 2 we obtain

Sθ

( √
3

2
√

2
s

)

= s

( √
3

2
√

2
+ τ

4
√

2√
3
g(|s|)

)

. (1.51)
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6 Summary

The goal of this chapter was to give a survey on connections between two
discontinuity-preserving paradigms for signal and image denoising: wavelet
shrinkage and nonlinear diffusion filtering. Unlike most other researchers in
this field we focused on discrete connections. It turned out that the wavelet
and the diffusion community can indeed learn much from each other.
Focusing on soft Haar wavelet shrinkage and space-discrete TV diffusion,
we showed that diffusion filters can benefit from wavelet shrinkage: It was
possible to derive wavelet-inspired schemes for TV diffusion that are ex-
plicit, absolutely stable, do not require regularisations in order to cope with
singularities, and perform favourably.
On the other hand, investigating fully discrete schemes for nonlinear dif-
fusion filtering and its higher-order generalisations allowed us to find a
general relation between its diffusivity and the shrinkage function of shift-
invariant wavelet shrinkage on a single scale. This led to diffusion-inspired
shrinkage functions with competitive performance, to shrinkage rules with
improved rotation invariance, and to coupling strategies for wavelet shrink-
age of colour images. Hence, also wavelet methods can benefit from diffusion
methods.
These connections give rise to the question whether it is also possible to
design hybrid methods that benefit from both worlds by attempting to
combine the efficiency of wavelet strategies with the quality of diffusion
methods. They can be either regarded as iterated shift-invariant wavelet
shrinkage methods, or as multiscale diffusion filters. First experiments con-
firm that this is indeed an interesting class of methods [17]. Performing a
theoretical analysis of the connections between single-step multiscale pro-
cedures and iterated single scale methods, however, still leads to a lot of
challenging questions. They are a topic of our current research.
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[74] Dirk Lorenz and Torsten Köhler. A comparison of denoising methods for one dimensional
time series. 2005 January. ISBN 3-88722-649-6.

[75] Esther Klann, Peter Maass, and Ronny Ramlau. Tikhonov regularization with wavelet
shrinkage for linear inverse problems. 2005 January.

[76] Eduardo Valenzuela-Domı́nguez and Jürgen Franke. A bernstein inequality for strongly
mixing spatial random processes. 2005 January. ISBN 3-88722-650-X.
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