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Abstract. Osmosis is a transport phenomenon that is omnipresent in
nature. It differs from diffusion by the fact that it allows nonconstant
steady states. In our paper we lay the foundations of osmosis filtering for
visual computing applications. We model filters with osmotic properties
by means of linear drift-diffusion processes. They preserve the average
grey value and the nonnegativity of the initial image. Most interestingly,
however, we show how the nonconstant steady state of an osmosis evolu-
tion can be steered by its drift vector field. We interpret this behaviour as
a data integration mechanism. In the integrable case, we characterise the
steady state as a minimiser of a suitable energy functional. In the nonin-
tegrable case, we can exploit osmosis as a framework to fuse incompatible
data in a visually convincing way. Osmotic data fusion differs from gradi-
ent domain methods by its intrinsic invariance under multiplicative grey
scale changes. The osmosis framework constitutes a novel class of meth-
ods that can be taylored to solve various problems in image processing,
computer vision, and computer graphics. We demonstrate its versatility
by proposing osmosis models for compact image respresentation, shadow
removal, and seamless image cloning.

Keywords: osmosis, drift–diffusion, Fokker–Planck equation, diffusion
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1 Introduction

While diffusion processes are frequently used in image processing, computer
vision and computer graphics, there is a closely related transport phenomenon in
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nature that is basically unexplored in visual computing applications: It is called
osmosis [1]. Osmosis describes transport through a semipermeable membrane in
such a way that in its steady state, the liquid concentrations on both sides of the
membrane can differ. Osmosis is the primary mechanism for transporting water
in and out of cells, and it has many applications in medicine and engineering.
It can be seen as the nonsymmetric counterpart of diffusion. Since diffusion can
only model symmetric transport processes, it leads to flat steady states [2].

Our Contributions. The goal of our paper is to lay the foundations of
osmosis filtering for visual computing applications. In contrast to osmosis in
natural systems we do not need two different phases (water and salt) and a
membrane that is only permeable for one of them: We can obtain nonconstant
steady states within a single phase that represents the grey value. All we have
to do is to supplement diffusion with a drift term. The resulting drift-diffusion
process is also in divergence form and thus preserves the average grey value of
the initial image, but it allows to have full control over its nonflat steady state:
We show that we can design osmosis filters that converge to any specified image.
Most importantly, we shall see that osmosis has the ability to integrate conflict-
ing gradient data in a visually convincing way. This enables many applications
beyond classical data regularisation tasks. In particular, we show the potential
of osmosis for three prototypical problems: compact data representation, shadow
removal, and image editing. Interestingly, these applications do not require any
nonlinearities: The richness of the drift term permits to reach these goals already
within a linear setting.

Paper Structure. In Section 2 we describe our drift-diffusion framework
for continuous osmosis filters, analyse its essential properties, and interprete os-
mosis processes as models for data integration. Afterwards we sketch a simple
numerical scheme in Section 3. Applications of osmosis models to visual com-
puting problems are described in Section 4, and our paper is concluded with a
summary in Section 5.

Related Work. While diffusion filters are often combined with data fidelity
terms, there are not many combinations with a drift term in divergence form so
far. Hagenburg et al. [3] have proposed a lattice Boltzmann model for dithering
that approximates a nonlinear drift-diffusion equation in the continuous limit.
However, they did not investigate this continuous model any further. In [4] it
was shown that a combination of a discrete osmosis model with a stabilised
backward diffusion filter is useful for designing numerical schemes for hyper-
bolic conservation laws that benefit from low numerical diffusion. Moreover, this
discrete osmosis model has been interpreted as a nonsymmetric Markov chain,
while discrete diffusion filters lead to symmetric Markov chains. Illner and Ne-
unzert [5] have investigated so-called directed diffusion processes that converge
to a specified background image, but did not apply them to image processing
problems.

With respect to their ability to integrate incompatible gradient data, osmosis
methods can be related to gradient domain methods. In computer vision, gradi-
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ent domain methods are used for shape from shading [6], for shadow removal [7],
and as models for retinex [8]. In computer graphics they are useful for a number
of image editing and fusion problems; see e.g. [9, 10]. Relations between osmo-
sis and gradient domain methods are discussed in Section 2.3, and Section 4.3
gives an experimental comparison. With respect to their invariance under multi-
plicative brightness changes, osmosis methods also resemble Georgiev’s covariant
derivative framework [11], but appear to be easier to understand.

Since our drift-diffusion formulation of osmosis filtering can be interpreted
in a stochastic way as Fokker-Planck equation [12], it has some structural sim-
ilarities to work by Sochen [13] that deals with a stochastic justification of the
Beltrami flow. He mentions the potential benefit of drift terms but did not carry
out any experiments. The Fokker-Planck equation has also been used by Wang
and Hancock [14] for performing probabilistic relaxation labelling on graphs.

While the present paper focuses on the continuous theory and introduces
specific models for different visual computing applications, we have also authored
a companion paper that establishes a fully discrete theory for osmosis and studies
efficient numerical methods [15].

2 Continuous Linear Osmosis Filtering

2.1 Drift–Diffusion Model

We consider a rectangular image domain Ω ⊂ R2 with boundary ∂Ω. A rea-
sonable osmosis theory for greyscale images requires a positive initial image
f : Ω → R+. Moreover, we assume that we can choose some drift vector field
d : Ω → R2. As we will see below, it allows us to steer the osmosis process to
a desired nonflat steady state. Then a (linear) osmosis filter computes a fam-
ily {u(x, t) | t ≥ 0} of processed versions of f(x) by solving the drift-diffusion
equation

∂tu = ∆u − div (du) on Ω × (0, T ], (1)

with f as initial condition,

u(x, 0) = f(x) on Ω, (2)

and homogeneous Neumann boundary conditions:

〈∇u− du, n〉 = 0 on ∂Ω × (0, T ]. (3)

Here 〈., .〉 denotes the Euclidean inner product, and n is the outer normal vector
to the image boundary ∂Ω. Thus, the boundary conditions specify a vanishing
flux across the image boundaries.

Extending linear osmosis to colour images does not create specific problems:
One proceeds separately in each RGB channel using individual drift vector fields
in each channel.
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2.2 Theoretical Properties

While the main focus of our paper is on modelling aspects, successful modelling
is impossible without some insights into essential theoretical properties. They
are summarised in the following proposition.

Proposition 1. [Theory for Continuous Linear Osmosis]

A classical solution of the linear osmosis process (1)–(3) with positive initial
image f : Ω → R+ and drift vector field d : Ω → R2 satisfies the following
properties:

(a) The average grey value is preserved:

1

|Ω|

∫
Ω

u(x, t) dx =
1

|Ω|

∫
Ω

f(x) dx ∀ t > 0 . (4)

(b) The evolution preserves nonnegativity:

u(x, t) ≥ 0 ∀x ∈ Ω, ∀t > 0. (5)

(c) If d satisfies

d = ∇(ln v) =
∇v

v
(6)

with some positive image v, then the follwoing holds:
The steady state equation

∆u − div (du) = 0 (7)

is equivalent to the Euler-Lagrange equation of the energy functional

E(u) =

∫
Ω

v
∣∣∣∇(u

v

)∣∣∣2 dx. (8)

Moreover, the steady state solution of the osmosis process is given by w(x) =
µf

µv
v(x), where µf and µv denote the average grey values of f and v.

Proof.

(a) Let µ(t) := 1
|Ω|
∫
Ω
u(x, t) dx denote the average grey value at time t ≥ 0.

Using the divergence theorem and the homogeneous Neumann boundary
conditions we obtain

dµ

dt
=

1

|Ω|

∫
Ω

∂tu dx =
1

|Ω|

∫
Ω

div (∇u− du) dx

=

∫
∂Ω

〈∇u− du,n〉 dS = 0. (9)

Thus, the average grey value remains constant over time.
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(b) Assume that T > 0 is the smallest time where minx,t u(x, t) = 0, and that
this minimum is attained in some inner point ξ. Thus, ∇u(ξ, T ) = 0, and
we have

∂tu(ξ, T ) = ∆u(ξ, T ) − u(ξ, T )︸ ︷︷ ︸
=0

divd − d>∇u(ξ, T )︸ ︷︷ ︸
=0

. (10)

This shows that in (ξ, T )> the osmosis evolution behaves like the diffusion
equation ∂tu = ∆u. It is well known that for diffusion with homogeneous
Neumann boundary conditions the minimum cannot decrease in time; see
e.g. [2]. Thus, the solution of the osmosis process remains nonnegative.

(c) The energy functional (8) can be rewritten as

E(u) =

∫
Ω

F (u,∇u) dx (11)

with

F (u,∇u) =
|v∇u− u∇v|2

v3
. (12)

From the calculus of variations we know that any minimiser of E(u) satisfies
the Euler-Lagrange equation

0 = Fu − ∂xFux − ∂yFuy (13)

with homogeneous Neumann boundary conditions, where x = (x, y)> and
subscripts denote partial derivatives. With F from (12) this becomes after
some simplifications

0 = −2v div

(
v∇u− u∇v

v3

)
− 4∇>v (v∇u− u∇v)

v3
. (14)

Using

div
(
v∇

(u
v

))
= v2 div

(
v∇u− u∇v

v3

)
+

2∇>v (v∇u− u∇v)

v2
(15)

the Euler-Lagrange equation can be written as

0 = − 2

v
div
(
v∇

(u
v

))
. (16)

It is easy to check that this is equivalent to (7) if d = ∇v
v with v > 0.

Straightforward computations also show that one obtains (3) as boundary
condition on ∂Ω.
It is clear that an image v with d = ∇v

v also fulfils the steady state equation
(7) of the osmosis evolution with homogeneous Neumann boundary condi-
tions. However, note that with v also cv with any constant c is a solution of
this problem. Since the osmosis evolution preserves the average grey value
and the nonnegativity of the initial image, it can only converge to a rescaled
version w of v that is nonnegative and has the same average grey value as
the original image f . Thus, w(x) =

µf

µv
v(x). ut
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Fig. 1. Convergence of osmosis to a specified image. From left to right: (a) Original
image, 512 × 512 pixels. Each channel has the same mean value as the mandrill test
image. (b) Osmosis result at evolution time t = 50. (c) t = 1000. (d) t = 250000 gives
a steady state that is identical to the mandrill image.

Preservation of the average grey value does not distinguish osmosis from diffu-
sion filtering [2]. However, while diffusion filtering satisfies a maximum–minimum
principle [2], osmosis only fulfils a weaker form of stability, namely preservation
of nonnegativity. We conjecture that it is possible to establish preservation of
strict positivity, since this also holds in the fully discrete case [15].

Proposition 1 implies that osmosis permits nontrivial steady states. This is
a fundamental difference to diffusion that allows only flat steady states [2]. Of
course, these steady state results should be accompanied by a formal convergence
analysis. This is mathematically more involved and will be presented in a journal
version of our paper.

Figure 1 illustrates such a convergence behaviour. Starting from a flat initial
image, we can choose the drift vector field such that osmosis converges to the
mandrill test image: If v = (v1, v2, v3)> is the RGB image of the mandrill, the
drift vector in channel i is chosen as ∇(ln vi).

2.3 Osmosis as a Process for Data Integration

We have seen that for d := ∇(ln v), osmosis converges to a multiplicatively
rescaled version of v. This motivates us to call d[v] := ∇(ln v) the canonical
drift vector field of the image v. Since d[v] contains derivative information of the
steady state, we may regard osmosis as a process for data integration.

Obviously it is not very exciting to design an osmosis process that converges
to an image which we know already. However, much more interesting situations
arise when we modify the drift vector field, e.g. by setting certain components
to zero, or by fusing the canonical drift vector fields of different images. Such
applications will be considered in Section 4. Although in general the new drift
vector field will be nonintegrable, osmosis will still create a steady state that aims
at finding a good compromise between all conflicting constraints. In that sense
osmosis resembles gradient domain methods that are popular both in computer
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vision [6–8] and in computer graphics [10, 9]. Let us analyse these connections
in more detail.

Gradient domain methods integrate a (possibly nonintegrable) gradient field
approximation p = (p1, p2)> by minimising the energy

E(u) =

∫
Ω

|∇u− p|2 dx. (17)

The corresponding Euler–Lagrange equation that a minimiser w has to fulfil is
given by the Poisson equation

∆w = divp. (18)

In the integrable case with p = ∇v, it is clear that an additive shift of v gives
the same p. Thus, gradient domain methods can recover v up to an additive
constant.

On the other hand, an osmotic steady state w satisfies

∆w = div (dw). (19)

An integrable osmosis setting with d = ∇(ln v) is invariant under multiplicative
rescalings of v. In this sense it resembles Georgiev’s covariant derivative frame-
work [11], but appear to be easier to comprehend. For computer vision applica-
tions where illumination changes are often modelled as multiplicative changes of
the grey values, this multiplicative invariance of osmosis is preferable over the
additive invariance of gradient domain methods.

In the nonintegrable case, gradient domain methods and osmosis can give
different results that cannot be transformed into each other by simple additive
or multiplicative grey value changes.

3 A Simple Numerical Scheme

To keep our paper self-contained, let us now sketch a simple explicit finite differ-
ence scheme for our osmosis model. For more numerical details and more efficient
schemes we refer to [15], where a general fully discrete theory for osmosis filtering
is established.

We consider a grid size h in x- and y-direction, and a time step size τ > 0.
Moreover, we denote by uki,j an approximation to u in the grid point ((i−1

2 )h, (j−
1
2 )h))> at time kτ . Setting d = (d1, d2)>, a straightforward finite difference
discretisation of (1) is given by

uk+1
i,j − uki,j

τ
=

uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j
h2

− 1

h

(
d1,i+ 1

2 ,j

uki+1,j + uki,j
2

− d1,i− 1
2 ,j

uki,j + uki−1,j
2

)

− 1

h

(
d2,i,j+ 1

2

uki,j+1 + uki,j
2

− d2,i,j− 1
2

uki,j + uki,j−1
2

)
. (20)
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It allows to compute the results at time level k+1 from the data at level k. This
scheme also holds for boundary points, if we mirror the image at its boundaries
and assume a zero drift vector across boundaries.

For some positive image v, we obtain a discrete approximation of its canonical
drift vector field (d1[v], d2[v])> = ∇v

v at intermediate grid points via

d1,i+ 1
2 ,j

=
2 (vi+1,j − vi,j)
h (vi+1,j + vi,j)

, d2,i,j+ 1
2

=
2 (vi,j+1 − vi,j)
h (vi,j+1 + vi,j)

. (21)

In [15] we show that the scheme (20)–(21) preserves positivity and converges to
its unique steady state if the time step size satisfies

τ <
h2

8
. (22)

4 Application to Visual Computing Problems

In order to illustrate the potential of osmosis models to solve visual computing
problems, we study three fairly different applications: compact image represen-
tation, shadow removal, and seamless image cloning. All results below display
steady states that have been computed with the numerical scheme from Sec-
tion 3 with h := 1 and τ := 0.1. One can achieve positivity of a bytewise coded
initial image by adding an offset value of ε > 0 such that each channel lies in the
range [ε, 255+ε]. Offset values should not be too large to avoid that they have
a visible impact on the result. We choose ε := 1.

4.1 Compact Data Representation

Let us now investigate if osmosis processes can be useful for compact image
representations. There has been a long tradition of reconstructing images from
their information near edges; see e.g. [16, 17]. One may for instance store the grey
values on both sides of the edges as Dirichlet data, and interpolate the remaining
data by solving the Laplace equation ∆u = 0 in between. While this requires to
store two grey values per edge point, it appears tempting to use osmosis and keep
only the magnitude of the induced drift vector at each edge pixel, since we know
that its direction is orthogonal to the edge contour. All drift vectors that are not
adjacent to edges are set to zero, such that homogeneous diffusion interpolation
is performed. This is illustrated in Figure 2. We observe that this compact image
representation works well at step edges, while the contrasts that are reproduced
at smooth edges appear somewhat too low. This proof-of-concept application
indicates that osmosis can become a valuable tool for encoding step edges within
a more comprehensive image compression approach based in partial differential
equations (PDEs). More details will be reported in forthcoming publications.
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Fig. 2. Osmosis for compact image representation. (a) Left: Original image. (b) Mid-
dle: Canny edges, amounting to 9.6% of all pixels. (c) Right: Reconstruction using
the average grey value of the orginal image and the canonical drift vectors in the edges.

4.2 Shadow Removal

Many computer vision tasks such as segmentation, tracking, and object recog-
nition benefit from the removal of shadows. To this end, one wants to identify
the shadow region and adapt its brightness to the brightness of the rest of the
image. Several methods have been proposed to find suitable shadow edges; see
[18] and the references therein. Here we assume that the shadow edges are given,
and we concentrate on the brightness adaptation problem. So far, this brightness
adaptation has been achieved for example with gradient domain methods [7] or
with pyramid-based approaches [18].

Interestingly the invariance of osmosis under global multiplicative greyscale
changes offers a particularly elegant solution for this task: If one models shadows
as a local multiplicative illumination change within the image, then this only
affects the canonical drift vectors at the transition between the shadow and
the rest of the image. Thus, shadow removal can be accomplished by simply
modifying the canonical drift vectors at the shadow boundaries. Setting them to
zero at these locations turns osmosis locally into homogoneneous diffusion and
guarantees a continuous transition. An osmosis evolution that starts with the
original image and uses these modified drift vectors converges to a steady state
where the shadow has been removed. Osmosis shadow removal has no problems
recovering texture details in the shadow part which in an important criterion in
state-of-the-art methods [19].

Figure 3 illustrates these ideas. If one uses the original image as initialisation,
the results will be somewhat too dark due to the shadow region and the fact
that osmosis preserves the average grey value (or colour value in each channel).
As a remedy, one may want to rescale the results such that the values in the
non-shadow region approximate the ones in the initial image. This is done in
Figure 3(d).
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Fig. 3. Shadow removal by osmosis. (a) Top left: Original image (400× 299 pixels).
(b) Top right: User-selected shadow boundaries. In these boundaries all drift vectors
are set to zero (homogeneous diffusion). In the other areas, the canonical drift vectors
are used. (c) Bottom left: Osmosis reconstruction with (a) as initialisation. (d)
Bottom right: Multiplicative rescaling of (c) such that the colours in the non-shadow
regions approximate the ones in (a).

4.3 Seamless Image Cloning

The property of osmosis to fuse incompatible information can also be used for
seamless image cloning. Figure 4 illustrates the problem: Two images f1 and f2
are to be merged such that f2 replaces image information of f1. The rectangular
image domain of the original image f1 is denoted by Ω, and the image domain
that is to be inserted is Γ . Its boundary is given by ∂Γ .

The classical gradient domain method for seamless image cloning is Poisson
image editing [10]. It creates a fused image by solving the Poisson equation (18)
with gradient data p = ∇f2 in Γ and Dirichlet boundary conditions u = f1 on
∂Γ . By construction, this localises the influence of the patch to the domain Γ .

To provide an osmosis-based alternative to Poisson image editing, we proceed
as follows: We use the canonical drift vectors of f1 in Ω \ Γ , and the ones of f2
in Γ . At the interface ∂Γ , we use the arithmetic mean of both drift vectors. The
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Fig. 4. Illustration of the image editing problem.

Fig. 5. Seamless image cloning (cf. [4]). (a) Top left: Painting of Euler. (b) Top mid-
dle: Drawing of Lagrange (with selected face region). (c) Top right: Direct cloning
of Lagrange on top of Euler’s face. (d) Bottom left: Poisson image editing with
Dirichlet data of Euler at the interface. (e) Bottom right: Osmosis image editing
with averaged drift vector fields at the interface. Source of original images: Wikimedia
Commons.
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Fig. 6. Comparison between Poisson image editing and osmosis image editing when the
contrast of the inserted patch is not optimal. (a) Top left: Original image (400× 300
pixels). (b) Top right: Direct cloning of a patch where the RGB values have been
multiplied by a factor 0.25. (c) Bottom left: Poisson image editing suffers from the
poor contrast whithin the cloned patch. (d) Bottom right: Osmosis image editing
gives a much better contrast reconstruction.

process is initialised with f1 on the entire rectangular image domain Ω, and its
steady state gives the cloned image.

Figure 5 juxtaposes the results of Poisson image editing and osmosis image
editing for an application where we want to clone the face of Lagrange on the
body of Euler. While both methods give seamless results, Poisson image editing
is unable to adapt the higher contrast of the face of Lagrange to the lower con-
trast of the Euler image. Section 2.3 gives an explanation for this phenomenon:
Gradient domain methods allow only additive grey value shifts, and additive
shifts cannot influence the contrast. Osmosis image editing, on the other hand,
enables multiplicative changes that can also adapt the contrast. This is one rea-
son why the osmosis result in Fig. 5(f) comes visually closer to the original Euler
image in Fig. 5(a). A second reason results from the averaging of the canonical
drift vectors at the interface ∂Γ . This makes the influence of the osmosis editing
global, which also contributes to a more harmonic impression.
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Fig. 6 presents a synthetic experiment that is taylored to visualise the dif-
ferences between gradient domain editing and osmosis editing. We have reduced
the contrast in the mouth region of the teddy bear by multiplying the RGB
values by 0.25. While gradient domain editing cannot increase the contrast in
the cloned patch, this is no problem for osmosis image editing.

These discussions show that there are two reasons for the superiority of osmo-
sis image editing over Poisson image editing: boundary conditions that avoid a
strict localisation, and the ability of osmosis to perform multiplicative brightness
adaptations instead of additive ones.

5 Summary and Conclusions

We have advocated osmosis as a novel concept for visual computing. It is surpris-
ing that after decades of intensive research on PDE methods in image analysis,
this important process in nature has been widely ignored by our research com-
munity so far. While osmosis filters differ from homogeneous diffusion filtering
“only” by their drift term, this term has a fundamental consequence: It creates
nonconstant steady states that can be controlled in a transparent way by the drift
vector field. This offers interesting application areas that go far beyond the clas-
sical image regularisation and enhancement applications of diffusion methods.
We have illustrated this potential by using osmosis for compact image repre-
sentation, shadow removal, and seamless image cloning. While many diffusion
filters rely on nonlinear concepts and may even require singular diffusivities or
anisotropic diffusion tensors, our osmosis models show their high versatility al-
ready within a purely linear setting. Moreover, unlike gradient domain methods,
osmosis is intrinsically invariant under global multiplicative changes of the grey
values. In view of their promising potential, it is our hope that osmosis modelling
will become a widely applied framework for visual computing.

Obviously our paper can only serve as a starting point, and there are many
ways to continue research on osmosis processes for image analysis and synthesis.
While our applications have exploited the nontrivial steady states of osmosis
processes, it would also be interesting to see if the evolution itself has useful
applications. On a theoretical side, we are working on a complete well-posedness
and convergence theory for continuous linear osmosis processes, and we are also
establishing a linear osmosis theory for semidiscrete and fully discrete processes;
see [15] for first results. Last but not least, we will also consider nonlinear gen-
eralisations of our linear osmosis framework.
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