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Abstract. Shock filters are based in the idea to apply locally either
a dilation or an erosion process, depending on whether the pixel be-
longs to the influence zone of a maximum or a minimum. They create a
sharp shock between two influence zones and produce piecewise constant
segmentations. In this paper we design specific shock filters for the en-
hancement of coherent flow-like structures. They are based on the idea to
combine shock filtering with the robust orientation estimation by means
of the structure tensor. Experiments with greyscale and colour images
show that these novel filters may outperform previous shock filters as
well as coherence-enhancing diffusion filters.

1 Introduction

Shock filters belong to the class of morphological image enhancement methods.
Most of the current shock filters are based on modifications of Osher and Rudin’s
formulation in terms of partial differential equations (PDEs) [12]. Shock filters
offer a number of advantages: They create strong discontinuities at image edges,
and within a region the filtered signal becomes flat. Thus, shock filters create
segmentations. Since they do not increase the total variation of a signal, they
also possess inherent stability properties. Moreover, they satisfy a maximum–
minimum principle stating that the range of the filtered image remains within the
range of the original image. Thus, in contrast to many Fourier- or wavelet-based
strategies or linear methods in the spatial domain [19], over- and undershoots
such as Gibbs phenomena cannot appear. This makes shock filters attractive for
a number of applications where edge sharpening and a piecewise constant seg-
mentation is desired. Consequently, a number of interesting modifications of the
original schemes has been proposed [1, 5, 9, 11, 17]. All these variants, however,
still pursue the original intention of shock filtering, namely edge enhancement.

Diffusion filters constitute another successful class of PDE-based filters [14,
20]. Compared to shock filters, diffusion filters have stronger smoothing proper-
ties, which may be desirable in applications where noise is a problem. While many
diffusion filters act edge-enhancing, there are also so-called coherence-enhancing
diffusion filters [21, 22]. They are designed for the enhancement of oriented, flow-
like structures, appearing e.g. in fingerprint images. The basic idea is to diffuse



anisotropically along the flow field such that gaps can be closed. A number of
variants exist that have been applied to crease enhancement [18], seismic imaging
[7] or flow visualisation [15].

In some of these application areas, noise is not a severe problem. Then the
smoothing properties of coherence-enhancing diffusion are less important, while
it would be desirable to have stronger sharpening qualities. A first step in this
direction was pursued by a filter by Kimmel et al. [8], where backward diffusion
is used. Although the results look impressive, the authors mention instabilities
caused by the backward diffusion process. Thus the filter could only be used for
short times and favourable stability properties as in the case of shock filtering
cannot be observed.

The goal of the present paper is to address this problem by proposing a novel
class of shock filters, so-called coherence-enhancing shock filters. They combine
the stability properties of shock filters with the possibility of enhancing flow-
like structures. This is achieved by steering a shock filter with the orientation
information that is provided by the so-called structure tensor [2, 4, 16]. As a
result, our novel filter acts like a contrast-enhancing shock filter perpendicular
to the flow direction, while it creates a constant signal along the flow direction
by applying either a dilation or an erosion process.

Our paper is organised as follows. In Section 2 we review some important
aspects of shock filtering, and Section 3 describes the structure tensor as a tool
for reliable orientation estimation. Both ingredients are combined in Section 4,
where we introduce coherence-enhancing shock filters. Numerical aspects are
briefly sketched in Section 5. In Section 6 we present a number of experiments in
which the qualities of coherence-enhancing shock filtering are illustrated. Section
7 concludes the paper with a summary.

2 Shock Filters

Already in 1975, Kramer and Bruckner have proposed the first shock filter [10].
It is based on the idea to use a dilation process near a maximum and an erosion
process around a minimum. The decision whether a pixel belongs to the influence
zone of a maximum or a minimum is made on the basis of the Laplacian. If
the Laplacian is negative, then the pixel is considered to be in the influence
zone of a maximum, while it is regarded to belong to the influence zone of a
minimum if the Laplacian is positive. Iterating this procedure produces a sharp
discontinuity (shock) at the borderline between two influence zones. Within each
zone, a constant segment is created. Iterated shock filtering can thus be regarded
as a morphological segmentation method. The method of Kramer and Bruckner
has been formulated in a fully discrete way.

The term shock filtering has been introduced by Osher and Rudin in 1990
[12]. They proposed a continuous class of filters based on PDEs. The relation
of these methods to the discrete Kramer–Bruckner filter became evident several
years later [6, 17]. To explain the idea behind shock filtering, let us consider a



continuous image f : R
2 → R. Then a class of filtered images {u(x, y, t) | t ≥ 0}

of f(x, y) may be created by evolving f under the process

ut = −sign(4u) |∇u|, (1)

u(x, y, 0) = f(x, y), (2)

where subscripts denote partial derivatives, and ∇u = (ux, uy)
> is the (spatial)

gradient of u. The initial condition (2) ensures that the process starts at time
t = 0 with the original image f(x, y). The image evolution proceeds in the
following way: Assume that some pixel is in the influence zone of a maximum
where its Laplacian 4u := uxx + uyy is negative. Then (2) becomes

ut = |∇u|. (3)

Evolution under this PDE is known to produce at time t a dilation process with
a disk-shaped structuring element of radius t; see e.g. [3]. At the influence zone
of a minimum with 4u < 0, equation (2) can be reduced to an erosion equation
with a disk-shaped structuring element:

ut = −|∇u|. (4)

These considerations show that for increasing time, (1) increases the radius of
the structuring element until it reaches a zero-crossing of 4u, where the in-
fluence zones of a maximum and a minimum meet. Thus, the zero-crossings of
the Laplacian serve as an edge detector where a shock is produced that sepa-
rates adjacent segments. The dilation or erosion process ensures that within one
segment, the image becomes piecewise constant.

A number of modifications have been proposed in order to improve the per-
formance of shock filters. For instance, it has been mentioned in [12] that the
second directional derivative uηη with η ‖ ∇u can be a better edge detector
than 4u. In order to make the filters more robust against small scale details,
Alvarez and Mazorra [1] replaced the edge detector uηη by vηη with v := Kσ ∗u.
In this notation, Kσ is a Gaussian with standard deviation σ, and ∗ denotes
convolution. Taking into account these modifications the shock filter becomes

ut = −sign(vηη) |∇u|. (5)

3 The Structure Tensor

It is not surprising that the performance of the shock filter (5) strongly depends
on the direction η. Unfortunately, in the presence of flow-like structures (e.g.
fingerprints) it is well known that the gradient of a Gaussian-smoothed image
Kσ ∗ u does not give reliable information on the orientation, since parallel lines
lead to patterns with opposite gradients [21]. Smoothing them over a window
leads to cancellation effects, such that the resulting gradient direction shows
very large fluctuations. To circumvent this cancellation problem, a more reliable



descriptor of local structure is needed. To this end we replace ∇u by its tensor
product

J0(∇u) = ∇u∇u>. (6)

This matrix gives the same result for gradients with opposite sign, since J0(∇u) =
J0(−∇u). Now it is possible to average orientations by smoothing J0(∇u) com-
ponentwise with a Gaussian of standard deviation ρ:

Jρ(∇u) = Kρ ∗ (∇u∇u>). (7)

This 2× 2 matrix is called structure tensor (second-moment matrix, scatter ma-
trix, Förstner interest operator); see e.g. [2, 4, 16]. It is positive semidefinite, and
its orthonormal system of eigenvectors describes the directions where the local
contrast is maximal resp. minimal. This contrast is measured by its eigenvalues.

Let w be the normalised eigenvector corresponding to the largest eigenvalue.
In the following we shall call w the dominant eigenvector of Jρ. In a flow-like
pattern such as a fingerprint it describes the direction where the contrast change
is maximal. This is orthogonal to the orientation of the fingerprint lines.

4 Coherence-Enhancing Shock Filtering

Now we are in the position to apply our knowledge about the structure tensor
for designing novel shock filters. To this end, we replace the shock filter (5) by

ut = −sign(vww) |∇u| (8)

where v = Kσ ∗ u, and w is the normalised dominant eigenvector of the struc-
ture tensor Jρ(∇u). The direction w guarantees that this model creates shocks
orthogonal to the flow direction of the pattern. In this shock direction, contrast
differences are maximised. Along the perpendicular flow direction, either dilation
or erosion takes place. Thus, after some time, structures become constant along
the flow direction, and sharp shocks are formed orthogonal to it. Experimentally
one observes that after a finite time t, the evolution reaches a piecewise constant
segmentation where coherent, flow-like patterns are enhanced. Thus it is not
required to specify a stopping time.

The structure scale σ determines the size of the resulting flow-like patterns.
Increasing σ gives an increased distance between the resulting flow lines: Typi-
cally one obtains line thicknesses in the range of 2σ to 3σ. Often σ is chosen in
the range between 0.5 and 2 pixel units. It is the main parameter of the method
and has a strong impact on the result.

The integration scale ρ averages orientation information. Therefore, it helps
to stabilise the directional behaviour of the filter. In particular, it is possible to
close interrupted lines if ρ is equal or larger than the gap size. In order to enhance
coherent structures, the integration scale should be larger than the structure
scale. One may couple ρ to σ e.g. by setting ρ := 3σ. Since overestimations are
uncritical, setting ρ to a fixed value such as ρ := 5 is also a reasonable choice.



The simplest way to perform coherence-enhancing shock filtering on a mul-
tichannel image (f1(x, y), ..., fm(x, y))> consists of applying the process chan-
nelwise. Since this would create shocks at different locations for the different
channels, some synchronisation is desirable. Therefore, we use the PDE system

uit = −sign(vww) |∇ui| (i = 1, ..., m) (9)

where vww :=
∑m

i=1
viww, and w is the normalised dominant eigenvector of

the joint structure tensor Jρ(∇u) := Kρ ∗
∑m

i=1
∇ui ∇u>

i . Similar strategies are
used for coherence-enhancing diffusion of multichannel images [22]. Within finite
time, a piecewise constant segmentation can be observed where the segmentation
borders are identical for all channels.

5 Discretisation

For the algorithmic realisation of our shock filter, Gaussian convolution is ap-
proximated in the spatial domain by discretising the Gaussian, truncating it at
tree times its standard deviation and renormalising it such that the area under
the truncated Gaussian sums up to 1 again. Exploiting the separability and the
symmetry of the Gaussian is used for speeding up the computations.

For the structure tensor, spatial derivatives have been approximated using
Sobel masks. Since the structure tensor is a 2×2 matrix, one can easily compute
its eigenvalues and eigenvectors in an analytical way.

If w = (c, s)> denotes the normalised dominant eigenvector, then vww is
computed from c2vxx + 2csvxy + s2vyy, where the second-order derivatives vxx,
vxy and vyy are approximated by standard finite difference masks.

For computing the dilations and erosions, an explicit Osher-Sethian upwind
scheme is used [13]. This algorithm is stable and satisfies a discrete maximum–
minimum principle if the time step size restriction τ ≤ 0.5 is obeyed. Thus, our
shock filter cannot produce any over- and undershoots.

6 Experiments

We start our experimental section by comparing the difference between the con-
ventional shock filter (5) and coherence-enhancing shock filtering. This is illus-
trated with the fingerprint image in Figure 1. We observe that the directional
stabilisation by means of the structure tensor allows a piecewise constant seg-
mentation, where the coherence-enhancing shock filter closes interrupted lines
without affecting semantically important singularities in the fingerprint. A con-
ventional shock filter, on the other hand, may even widen the gaps and disconnect
previously connected structures.

In Figure 2, we compare our novel shock filter with coherence-enhancing
diffusion filtering [21, 22]. While both filters have been designed for the processing
of flow-like features, we observe that the diffusion filter acts smoothing while the
shock filter has very pronounced sharpening properties. In certain applications



Fig. 1. Comparison between conventional and coherence-enhancing shock filtering. (a)
Left: Fingerprint image, 186×186 pixels. (b) Middle: Stationary state using the shock
filter (5) with σ = 1.5. (c) Right: Stationary state using coherence-enhancing shock
filtering with σ = 1.5 and ρ = 5.

the latter one is thus an interesting alternative to coherence-enhancing diffusion
filtering.

Figure 3 shows the influence of the structure scale σ. It is the main parameter
of the filter and determines the resulting line thickness. Using values that are
larger than the thickness of the initial flow lines, one obtains very interesting,
almost artistic simplifications of flow-like images. The CPU time for filtering
such a 512 × 512 colour image on a PC with AMD Athlon 1800+ processor is
less than 10 seconds.

7 Summary and Conclusions

By combing the sharpening qualities of shock filters with the robust orientation
estimation of the structure tensor, we have introduced a novel class of image
enhancement methods: coherence-enhancing shock filters. These filters are de-
signed for visualising flow-like structures. They inherit a number of interesting
stability properties from conventional shock filters. These properties distinguish
them from most Fourier- and wavelet-based enhancement methods as well as
from classical methods in the spatial domain such as unsharp masking: Gibbs-
like artifacts do not occur, a discrete maximum-minimum principle holds, and
the total variation is not increasing. Experiments demonstrate that a piecewise
constant segmentation is obtained within finite time such that there is no need
to specify a stopping time. The process involves one main parameter: the struc-
ture scale σ which determines the distance between adjacent flow lines in the
resulting image. Our experiments show that coherence-enhancing shock filters
produce sharper results than coherence-enhancing diffusion filters, and that they
outperform conventional shock filters when flow-like patterns are to be processed.

In out future work we intend to explore a number of application fields for
coherence-enhancing shock filters. It can be expected that they are particularly
well-suited for some computer graphics applications such as flow visualisation.



Fig. 2. Comparison between coherence-enhancing diffusion and coherence-enhancing
shock filtering. (a) Left: Painting by Munch (The Cry, 1893; National Gallery, Oslo),
277 × 373 pixels. (b) Middle: Coherence-enhancing diffusion, σ = 0.5, ρ = 5, t = 10.
(c) Right: Coherence-enhancing shock filtering, stationary state, σ = 0.5, ρ = 5. This
is a colour image.
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