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Abstract

We introduce a novel numerical method for a re-
cently developed perspective Shape-from-Shading
model. In order to discretise the corresponding par-
tial differential equation (PDE), Prados et al. em-
ployed the dynamical programming principle yield-
ing a Hamilton-Jacobi-Bellman equation. We re-
duce that model to its essential, namely to the un-
derlying Hamilton-Jacobi equation. For this PDE,
we propose an efficient semi-implicit implementa-
tion. Numerical experiments show the usefulness
of our approach: Besides reasonable computational
times, the method is robust with respect to noise as
well as to the choice of the numerical initial condi-
tion which is a delicate point for many SFS algo-
rithms.

1 Introduction

The Shape-from-Shading (SFS) problem amounts
to compute the 3-D shape of a surface from the
brightness of exactly one given grey value image
of that surface. It is a classical problem in com-
puter vision, see e.g. [5, 6, 9, 21] and the references
therein for an overview.

The modeling of the SFS problem via the use of
a PDE was introduced by Horn [7, 8, 9], who also
coined the name ‘shape-from-shading’. The model
of Horn is the basis of all later works in that field.
As it is of importance in the context of our work, let
us mention some relevant features of the model of
Horn. On the modeling side, a distinguished ingre-
dient is the use of an orthographic camera, i.e., the
camera performs anorthographic projectionof the
scene of interest. Together with a point light source
at infinity, the PDE

|∇u| −
r

1

I2
− 1 = 0 (1)

can be derived [1], where
• u ≡ u(x) is the sought depth map,
• |.| denotes the Euclidean vector norm,
• I ≡ I(x) = E(x)

σ
is a normalised version of

the image brightness,σ depends on the albedo
of the surface and the intensity of the light
source,

• E ≡ E(x) is the brightness of the given grey-
value image.

TheEikonal equation(1) constitutes the SFS-model
widely studied in the literature. It is well-known
that the corresponding problem is ill-posed, often
shown via the so-calledconvex-concave ambiguity,
see e.g. [4, 9] for related discussions.

In [2, 12, 13, 14, 15, 17, 18, 19, 20] a new PDE
model for SFS is proposed. The setting of this new
model is given by using a pinhole camera and a
point light source at the optical center, thus incor-
porating aperspective projectioninstead of an or-
thographic one as in the classical case into the mod-
eling process.

This perspective approach yields theHamilton-
Jacobi equation

If
2

u

s

f2 |∇u|2 + (∇u · x)2

Q2
+ u2 =

1

u2
, (2)

wherex ∈ R
2 is in the image domainΩ as before,

and
• f is the focal length relating the optical center

of the camera and its retinal plane,

• Q ≡ Q(x) :=
f

q

|x|2 + f2

.

In order to obtain a viable numerical solver, Pra-
dos et al. use the dynamic programming principle.
The resulting numerical solver incorporates the so-
lution of an optimal control problem which can be
quite intricate; for some details see [12]. In con-
trast, Tankus et al. rely on the level set method; see
especially [20].
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In a recent paper, Cristiani et al. [4] employed a
semi-Lagrangian formulation of the above model to
construct a fast SFS solver, however, as also shown
in their paper, in contrast to our procedure their
method is very sensitive to the choice of initial data.

Our contribution. We consider directly the PDE
given in (2), and we show that it is possible to con-
struct arobustandefficentnumerical solver without
the need to rely on dynamic programming, or to turn
to the level set method. Another objective of us is
that it is easy to codein comparison to other ap-
proaches in the field. As experiments show, the nu-
merical routine we develop is also to a high degree
insensitive to perturbationsof initial data which can
be a delicate point for SFS algorithms.

Organisation of this paper. In Section 2, we
briefly review the modeling ingredients as well as
some fundamental properties of the resulting PDE
(2). In Section 3, we give a detailed description of
our numerical scheme, focusing on its construction
and the choice of the time step size. This discussion
is followed by numerical experiments in Section 4.
The paper is finished by concluding remarks.

2 Description of the model

In this paragraph, we briefly review the modeling
process of (2), thereby illuminating the roles of its
ingredients. For a more detailed description, see
e.g. [15]. Figure 1 is adopted from there.

Figure 1: Perspective projection with a point light
source located at the optical center.

Let Ω represent the rectangular image domain in
R

2. Consider then the surfaceS , representing the
object or scene of interest, parametrised by using

the functionS : Ω̄ → R3 with

S(x) =
fu(x)

q

|x|2 + f2

(x,−f)T
. (3)

As the two columns of the JacobianJ [S(x)] are
tangent vectors toS at the pointS(x), their cross-
product is a normal vector toS . Thus, a normal
vectorn(x) at the pointS(x) is given by

n(x) =

„

f∇u(x) − fu(x)

|x|2 + f2
x ,

∇u(x) · x +
fu(x)

|x|2 + f2
f

«T

. (4)

Assuming that the surface is Lambertian, the bright-
ness equation is

I(x) =
cos θ

r2
. (5)

Thereby,θ is the angle between the surface normal
vector and the (unit) light source directionL,

L (S(x)) =
1

q

|x|2 + f2

(−x, f)T
, (6)

andr is the distance of the corresponding surface
point to the light source. Employing the standard
formula forcos in (5),

cos θ = L (S(x)) · n(x)

|n(x)| , (7)

and evaluating the scalar product in (7), one obtains
the sought formula (2).

For convenience, we assume for our numerical
implementation, that the surfaceS is visible, i.e.,
it is in the front of the optical center, so thatu is
strictly positive. Then we use the change of vari-
ablesv = ln(u), yielding the PDE

If
2

Q

q

f2 |∇v|2 + (∇v · x)2 + Q2 = e
−2v

. (8)

This equation is the basis of our numerical scheme.
Remarks. (i) As discussed in [12], the corre-

sponding model was already considered in non-
PDE-form in [10, 11]. (ii) The benefit of the above
formulation is that the model is well-posed; for de-
tails see [12]. (iii) With different parametrizations
of the surfaceS , one arrives at different, yet to (8)
equivalent PDEs.



The PDE (8) needs to be supported by boundary
conditions, i.e.,v(x) := ϕ(x) for x ∈ ∂Ω. In this
setting, one can prove uniqueness of viscosity sub-
and supersolutions, see especially [12].

We will be interested in computing a viscos-
ity supersolution: this approach avoids the con-
vex/concave ambiguity often encountered in SFS
models. The corresponding theoretical setting can
be described viaϕ ≡ +∞; see the discussion
in [12]. The consequence is, that the boundary
condition becomes virtually unimportant, and we
could implement it like Dirichlet boundary condi-
tions given by a ‘large’ constant. In practice, we use
Neumann boundary conditions in order to avoid the
problem to set the latter, which works well. How-
ever, let us stress, that this particular consequence
arises by anEulerian formulationof the problem as
given by (8). It does not hold, e.g., in the case of
the recent semi-Lagrangian approach of Cristiani et
al. [4]. We test the use of both types of boundary
conditions in the section on numerical experiments.

3 Our numerical method

There are two main approaches in dealing with the
PDE of interest (8):

1. Treat it like a usual boundary value problem
and solve it directly.

2. Employ an additional ‘time’ variable and iter-
ate until a steady state is reached.

We will follow the second path: This guarantees
that we obtain an approximation of the viscosity su-
persolution. The logic is to choose an initial state
above the supersolution and converge to this closest
solution of (8) by iterating in ‘time’. Thus, the PDE
to discretise is

vt = (9)

− If
2

Q

q

f2 |∇xv|2 + (∇xv · x)2 + Q2

| {z }

=:A

+e
−2v

wherev ≡ v(x, t) now, and whereA is a useful
abbreviation for later use.

3.1 Scheme construction

We employ the standard notationvn
i,j :=

v (ih1, jh2, nτ ), whereh1 and h2 are the mesh
widths andi andj the coordinates of the pixel(i, j)
in x1- andx2-direction, respectively, and whereτ

is a time step size yet to be determined. The dis-
cretisation ofvt(x, t) we use is given by theEuler
forward formula

vt(x, t)|(x,t)=(ih1,jh2,nτ) ≈
vn+1

i,j − vn
i,j

τ
. (10)

A stable discretisationof the spatial derivatives in
∇xv is given by theupwindingconcept: As it is
well-known for the kind of PDEs like (9), the use of
central differences leads to artificial oscillations re-
sulting in a blow-up of the numerical solution [16].

The upwinding concept boils down to use one-
sided finite differences in the appropriate direction.
These are determined by following the characteris-
tics of the solution, thus realising wave-propagation
in the physically correct direction. Following the
derivation of Rouy and Tourin [16], one obtains

vx1
(x, t)|(x,t)=(ih1,jh2,t) (11)

≈ max

„

0,
vi+1,j − vi,j

h1
,

vi−1,j − vi,j

h1

«

,

vx2
(x, t)|(x,t)=(ih1,jh2,t) (12)

≈ max

„

0,
vi,j+1 − vi,j

h2
,

vi,j−1 − vi,j

h2

«

.

Note, that in (11)-(12), we have not specified the
time level yet.

The reason for the latter is due to computational
efficiency we would like to achieve. For this, we
employ aGauß-Seidel-type ideawhich works as
follows. Let us introduce a linear numeration of
pixels, i.e., we store the unknowns in a vector whose
length is the total number of pixels. We then set the
computational nodes in such a way, that we proceed
according to the ordering in Figure 2.

1 2 3 . . .

nx + 1 nx + 2 nx + 3 . . .

2nx + 1 2nx + 2 2nx + 3 . . .

3nx + 1 3nx + 2 3nx + 3 . . .

. . . . . . . . . . . .

Figure 2: Pixel ordering for the Gauß-Seidel-type
method.

Having a close look at formulae (11)-(12), we no-
tice that the stencil of the method incorporates the
data

vi,j+1

vi−1,j vi,j vi+1,j

vi,j−1

. (13)



This means, at a pixel(i, j) and iterating through
the pixel list as in Figure 2, we have already com-
putedvn+1

i,j+1 andvn+1
i−1,j . Thus, for the computation

of vn+1
i,j , we can use these already updated values to

achieve an accelerated convergence of our scheme.
To summarise, approximating spatial derivatives

at time t = nτ , the time levels within formulae
(11)-(12) are set by us as

max

 

0,
vn

i+1,j − vn
i,j

h1
,

vn+1
i−1,j − vn

i,j

h1

!

,

max

 

0,
vn+1

i,j+1 − vn
i,j

h2
,

vn
i,j−1 − vn

i,j

h2

!

,

(14)
respectively. For clarity, let us stress once more,
that the values from time level(n + 1)τ in (14) are
alreadyfixedfor the computation ofvn+1

i,j .
Turning to the discretisation ofI(x), Q(x) and

x in (9), we see that this issue amounts pixelwise to
simple explicit term evaluations, so that there is no
problem to deal with these terms.

We now turn, finally, to the source terme−2v

in (9). Source terms like this typically result in a
very small time step size when evaluatedexplicitly,
i.e., if at time levelt = nτ we approximate it via
exp

`
vn

i,j

´
. Especially, this results in iterates chang-

ing very slowly, leading to excessive computational
times in reaching steady state solutions. Thus, we
consider animplicit discretisation of it, writing

e
−2v(x,t)|(x,t)=(i,j,nτ) ≈ e

−2v
n+1

i,j . (15)

This component of our algorithm makes it neces-
sary to employ ineach pointan iterative solver of
the arising nonlinear equation: denoting bŷA the
discretised version of termA from (9), we obtain
by the Euler forward formula (10) pixelwise the up-
date formula

v
n+1
i,j = v

n
i,j − τÂ + τe

−2v
n+1

i,j (16)

which has to be solved forvn+1
i,j . We do this by

employing the classical Newton-method, letting it
iterate until convergence (which requires in practice
three or four iterations). In this context, let us stress
explicitly, that by (16) it does not become necessary
to solve a nonlinear system of equations: the task
amounts to solvepixelwisea quite harmlessone-
dimensionalnonlinear equation, done efficently by
the one-dimensional Newton-method.

To summarise, we propose a relatively simple-to-
implement, semi-implicit method, where the source
term is evaluated implicitly, and where already
computed values are taken into account wherever
possible accelerating convergence.

3.2 Choosing the time step size

We now discuss the most critical number that needs
to be specified, i.e., the time step sizeτ . It is well-
known, that implicitly discretised terms do not in-
corporate a restriction on the time step size. In fact,
for a completely implicit scheme, where all data in
(14) and (15) were from time level(n + 1)τ there
would theoretically not be a restriction on the al-
lowed time step size at all. However, a completely
implicit formulation results in a quite complicated
nonlinear system of equations to solve numerically,
which is contrary to the philosophy followed here
to propose an efficient easy-to-code scheme. In our
method, we discretise only the source term implic-
itly. Thus, the term in (15) does not impose a stabil-
ity restriction, whereas the contribution due tôA in
(16) should imply a stability bound.

In practice, estimates for an upper bound on the
time step size are often too restrictive for direct
use if the underlying problem involves many non-
linearities. An automatic choice based on such an
upper bound may thus result in unnecessarily long
computational times. Nevertheless, it yields a good
starting point for a user’s choice. We now proceed
in the line of these considerations, computing a rea-
sonable candidate for an initial choice of the time
step size. As indicated, we neglect for this the im-
plicitly discretised source term.

A meaningful stability criterion for numerical
methods for PDEs of the considered type is adis-
crete maximum-minimum-principle, i.e., ideally, the
numerical solution of each time step shall not pro-
duce oscillations by over- or undershooting neigh-
bouring data. This discrete stability criterion is
closely related to the notion of viscosity solutions
discussed in paragraph 2, as such viscosity solutions
enforce the corresponding property on the level of
the PDE-formulation [3].

Let us stress here, that it makes sense to establish
a discrete minimum-maximum-principle neglecting
in the corresponding computations the source term:
This has the character of establishing anecessary
conditionfor stability.



Let us have a close look at the terms of impor-
tance in the corresponding ‘reduced form’ of (16):

v
n+1
i,j = v

n
i,j − τÂ . (17)

Then the task arises to estimate
˛
˛
˛τÂ

˛
˛
˛

!

≤ max

 ˛
˛vn

i+1,j − vn
i,j

˛
˛

h1
,

˛
˛vn+1

i−1,j − vn
i,j

˛
˛

h1
,

˛
˛vn+1

i,j+1 − vn
i,j

˛
˛

h2
,

˛
˛vn

i,j−1 − vn
i,j

˛
˛

h2

!

. (18)

Let us note that, in (18), the valuesvn+1
i−1,j , vn+1

i,j+1

are already fixed so that it makes sense to incorpo-
rate these data from time level(n + 1)τ into the
computation.

For clarity, let us point out explicitly, that a dis-
crete maximum-minimum-principle holds if (18) is
satisfied: the right hand side amounts to the maxi-
mal absolute difference betweenvn

i,j and the other
given data within the computational stencil. Thus,
if (18) is met, the largest possible change due to an
update yields the maximum or minimum of this set,
respectively.

For abbreviation, let us now denote the quantity
on the right hand side of (18) byδv. Employing the
notation∇v̂ for the discretisation of∇v introduced
in (11)-(12) and (14), we can compute the following
estimates:

|∇v̂|2 ≤
“√

2δv2
”2

= 2δv
2
, (19)

(∇v̂ · x)2 ≤ (2x̂δv)2 = 4x̂2
δv

2
, (20)

where in (20) we have used

x̂ := max
i,j

(|i|h1, |j| h2) . (21)

Note, thatx̂ is a finite number but it can be quite
large.

Plugging (19)-(20) intoÂ yields

Â ≤ If
2

Q

p

f22δv2 + 4δv2x̂2 + Q2

≤ If

p

f2 + x̂2
p

2f2δv2 + 4x̂2δv2 + Q2 .

(22)

Up to (22), all steps involve rigorous estimates. As
we only seek an estimate for choosingτ here, we
may now employ the following simplification. As

Q is a number in(0, 1) generally small in compari-
son with the other arising terms – which also com-
prise a ‘pessimistic’ estimation – we may neglect
Q2, arriving at

max Â ≈ δvIf

p

f2 + x̂2
p

2f2 + 4x̂2 . (23)

From (18) and (23), as
˛
˛
˛τÂ

˛
˛
˛ ≤ δv shall hold, we

obtain after a few trivial manipulations the inequal-
ity

τ <
1

2If (f2 + x̂2)
. (24)

In SFS computations, the number on the right hand
side of (24) is often very small, in a typical setting
of our experiments around10−5 to 10−7. As in-
dicated, this number can be relaxed by some factor
as the estimation is pessimistic. Let us also note,
while the discrete maximum-minimum-principle is
enforced, on the other hand the theoretical maxi-
mum of local updates is allowed. This means, the
absolute size of the number does not matter as much
as it seems.

4 Numerical Experiments

In this paragraph, we show several numerical ex-
periments on synthetic images in order to assess the
performance of our algorithm.

The pyramid experiment. This experiment is
very useful for investigating and visualising the in-
fluence of initial and boundary conditions. The task
is to reconstruct the pyramid-shaped surface shown
in Figure 3. Figure 4 shows a photograph of this
surface withσ = 1000, f = 251.6, h1 = h2 = 1,
256× 256 pixels, whereσ denotes the factor deter-
mined by light source intensity and surface albedo,
andh1, h2 are as before the pixel widths inx1- and
x2-direction, respectively. The rendering was done
by ray-tracing the surface.

Note, as the surface consists of four triangles,
only these triangles can be hit in the ray-tracing pro-
cess. Consequently, the surface normal at the top of
the pyramid does not point towards the camera, re-
sulting in a maximum grey value of228 instead of
255. Hence, we cannot expect the sharp top of the
pyramid to be reconstructed perfectly.

As noted in the introduction, at the image bound-
ary we employ Neumann boundary conditions. The
algorithm was initialised with the constantv ≡
log 0.2, which is larger than the actual solution.



Figure 3: A pyramid shaped surface.

Let us point out here explicitly, that a constantv

is equivalent to a spherical surface in the untrans-
formed variableu. Figure 5 shows the surface cor-
responding to this constant initialisation.

Figure 6 shows a reconstruction of the surface us-
ing our method. As expected, the top of the pyra-
mid is flat instead of sharp. Due to the boundary
conditions, the reconstruction at the image bound-
ary is a bit too round compared to the ground truth.
However, overall the reconstruction of the pyramid
is good, even the edges of the pyramid are recon-
structed well.

As indicated before, our method does not rely on
a specific initialisation. In the previous experiment,
we initialised the algorithm with a constantv larger
than the actual solution. We can choose any such
constant, the reconstruction is always the same.

In fact, the method does not even need con-
stant initialisation. Figure 7 shows an alternative
initialisation for u with random data in the range
(0.18, 0.22). The result of the reconstruction is the
same as shown in Figure 6.

Note that the speed of the reconstruction depends

Figure 4: Input image for the pyramid surface.

Figure 5: Surface with constantv.

on how far the initialisation is away from the actual
solution and on the time step size. For ensuring sta-
bility, we need to use rather small time step sizes,
see Section 3.2, so we should try to find an initial-
isation larger than, but as close as possible to the
solution. In [12], it is shown that

v(x) = −0.5 log If
2 (25)

fulfils this. This initial image, however, is only de-
fined if I is strictly positive everywhere, i.e., if there
are no black pixels in the input image. With this
initialisation, a good reconstruction of the pyramid
image can be obtained in about one minute (C-code,
Pentium 4, 3.2 GHz). Figure 8 shows the surface
corresponding to this initialisation for the pyramid
input image.

The discussed experiments were all done without
any knowledge of the actual surface used within the



Figure 6: Reconstruction of the pyramid with Neu-
mann boundary conditions.

Figure 7: Surface with randomv.

algorithm. If we use exact Dirichlet boundary con-
ditions, i.e., if we set the values at the image bound-
ary to those of the ground truth, we obtain a nearly
perfect reconstruction, which is shown in Figure 9.

Prados et al. [12] suggest to use state constraints
boundary conditions, i.e., Dirichlet boundary con-
ditions with a very large constant at the boundary.
Since this means that very large gradients are gen-
erated at the boundary, it can easily be seen by tak-
ing into account (14), that state constraints bound-
ary conditions are practically the same as Neumann
boundary conditions (this is also true for the algo-
rithm of Prados et al.).

We implemented the algorithm from [12]. Figure
10 shows a reconstruction obtained by using this al-
gorithm. The result seems to be about as good as
the one computed by our method.

Figure 8: Initialisation withv = −0.5 log If2 for
the pyramid image.

Figure 9: Reconstruction of the pyramid with exact
Dirichlet boundary conditions.

Our algorithm is also robust with respect to noisy
input data. In order to verify this claim, we have
added Gaussian noise with standard deviation10 to
the input image. Figure 11 shows the correspond-
ing reconstruction using our method. The result is
nearly as good as without noise. The same holds
true for the scheme of Prados et al.. Using the latter
method, it is, however, necessary to reduce the time
step size a bit to ensure stability of the method. The
estimate given in [12] works very well for ”contin-
uous” input data, but for ”discontinous” input data
this estimate tends to be a bit too large, especially
near very dark pixels, which may affect the stability
of the scheme. Our method is perfectly stable using
the estimate from equation (24).

Quantitative comparison with the scheme of Pra-
dos et al.. We compare our results to those of the
algorithm of Prados et al. [12]. We compare both
reconstruction quality and run time. For a quanti-
tative comparison of both algorithms, we compare



Figure 10: Reconstruction of the pyramid with the
algorithm of Prados et al.

Figure 11: Reconstruction of the pyramid with
Gaussian noise added.

the averageL1-error

1

nxny

nxX

i=1

nyX

j=1

|u(i, j) − û(i, j)| , (26)

wherenx×ny is the image size,u the reconstructed
depth and̂u the ground truth.

Table 1:L1 errors ofu for the pyramid experiment.

Noise Our method Prados et al.
Without 0.0069 0.0070

Gaussian,σ = 5 0.0071 0.0072
Gaussian,σ = 10 0.0076 0.0074

Table 1 shows the errors of both algorithms for
the pyramid image with and without noise. Both
algorithms are quite robust under noise, the results
only get slightly worse. The quality of the result is
about equal. As a stopping criterion we employed

here a maximum change of a pixel value (inv) of
less than10−6, which is fairly low, good results
may as well be achieved with a larger value in less
computation time.

Table 2: Run times for the pyramid experiment.

Method Time
Prados et al. 322s

Our method, globalτ 102s
Our method, localτ 41s

In Table 2, we compare the run times of both
algorithms for the pyramid input image. Using a
constant time step size according to the estimate in
equation (24), we achieve a significantly better per-
formance than Prados et al.. However, note that our
implementation of the scheme in [12] is not optimal
in the sense that it makes use of several (expensive)
functions like atan, sin, cos, log, and exp in every
iteration (while our algorithm only uses exp in the
Newton step). One might speed it up, e.g. by using
lookup tables for those functions. Still, our algo-
rithm will be faster, and can be accellerated even
more by evaluating the estimate from equation 24
in every pixel instead of using a constant time step
size globally. For the pyramid image, we notice a
speedup of roughly a factor2.5 this way. Prados et
al. make also use of a local choice of the time step
size. All the run times in Table 2 are measured using
a C-implementation of both methods on a Pentium
4, 3.2 GHz,2 GB RAM running Linux, and both al-
gorithms have been initialised like in equation (25).

Summary of the pyramid experiment.We have
shown that our method works independently of the
particular choice of initial and boundary values. In
the simple setting of the pyramid experiment, the
scheme yields good results. The new algorithm has
proven robust to Gaussian noise added to the input
image. Compared to the method of Prados et al.,
we observe a significant speedup with a comparable
reconstruction quality.

The Mozart experiment. The Mozart experi-
ment is a well-known benchmark in the SFS area.
The ground truth is depicted in Figure 12.

As input image, we use the input image used in
[12, 15], which is shown in Figure 13. Parameters
for the reconstruction aref = 250, h1 = h2 = 1,
256× 256 pixels. Unfortunately, [12] does not give



the value forσ, we just assumeσ = 4 · 104, which
should be in a realistic range.

As a particular difficulty, the input data involve
a slight ‘break of the rules’, as it does not satisfy
the underlying modeling assumption that the face is
completely visible, which is obvious by the shad-
ows on its left and right hand side. These shadows
are indeed black pixels in the image, henceI(x)
vanishes at these pixels. However,I = 0 also
means our method will not move towards the so-
lution, but remain at the initialisation values. To
overcome this, we change all pixels in the input im-
age with grey value smaller than5 to a grey value
equal to5, this way, those pixels will also have the
ability to move away from the initialisation. Nev-
ertheless, the reconstruction of the Mozart image at
these pixels is very difficult.

Figure 14 shows a reconstruction of the Mozart
image using our method (with constant initialisa-
tion) and Neumann boundary conditions. The face
and the shoulders of Mozart are reconstructed very
well. The reconstruction is somewhat flat, but this
is the case for nearly every reconstruction of the
Mozart face. The (too high) reconstruction of the
background makes the reconstruction appear even
more flat.

Figure 12: Ground truth for the Mozart image.

At the boundary of the face, the reconstruction
proves to be very difficult, as we expected: Some
(dark) pixels are far off the ground truth. The back-
ground is not recovered very well, this is caused by
the boundary conditions (a sphere-like shape is as-

Figure 13: Mozart input image.

sumed at the image boundary) and by the difficulties
with the reconstruction of the face boundary.

The reconstruction using the method of Prados et
al. is again comparable to the one using our scheme,
so we do not give an additional corresponding figure
here. Since there are dark pixels in the input image,
we need to use a smaller time step size once again
to ensure convergence of the method of Prados et
al..

Concluding the Mozart experiment.Comparing
our result with those in [12] which can be consid-
ered as the state-of-the-art, the reconstruction qual-
ity of the face is similar. At the face boundary our
method performs a bit better while we have a much
smaller amount of outliers, yet the reconstruction
of the background is comparable. Altogether, our
method seems to do very well here, considering we
had to guessσ.

5 Concluding remarks

To conclude, we have shown that the constructed
numerical methods satisfies the intended goals:

• robustness of the scheme with respect to the
choice of initial data,

• moreover, robustness with respect to the im-
plementation of boundary conditions,

• robustness with respect to noisy data,
• numerical results are of the accuracy of state-

of-the-art methods in the field, yet the numeri-



Figure 14: Reconstruction of the Mozart surface.

cal solver is much simpler,
• the implementation of the numerical scheme is

of modest programming effort,
• computational times are reasonable.

Taking these aspects altogether, we have devised a
highly competitive method in the field, as well as a
good basis for further developments.

The work of us in the near future will be in two
areas: (i) Further improvement and analysis of the
numerical scheme, especially with respect to the
choice of the time stepping method, and (ii) the in-
vestigation of real-world applications of the model
in conjunction with the numerical scheme.
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