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Abstract. Osmosis filters are based on drift–diffusion processes. They
offer nontrivial steady states with a number of interesting applications.
In this paper we present a fully discrete theory for linear osmosis filtering
that follows the structure of Weickert’s discrete framework for diffusion
filters. It regards the positive initial image as a vector and expresses its
evolution in terms of iterative matrix–vector multiplications. The matrix
differs from its diffusion counterpart by the fact that it is unsymmet-
ric. We assume that it satisfies four properties: vanishing column sums,
nonnegativity, irreducibility, and positive diagonal elements. Then the
resulting filter class preserves the average grey value and the positivity
of the solution. Using the Perron–Frobenius theory we prove that the
process converges to the unique eigenvector of the iteration matrix that
is positive and has the same average grey value as the initial image. We
show that our theory is directly applicable to explicit and implicit finite
difference discretisations. We establish a stability condition for the ex-
plicit scheme, and we prove that the implicit scheme is absolutely stable.
Both schemes converge to a steady state that solves the discrete elliptic
equation. This steady state can be reached efficiently when the implicit
scheme is equipped with a BiCGStab solver.

Keywords: osmosis filtering, drift–diffusion, finite difference methods,
BiCGStab

1 Introduction

Osmosis filtering relies on the idea of making diffusion filters unsymmetric. This
is achieved by supplementing it with a drift term that allows nontrivial steady
states. While specific applications of this idea to the fields of digital halftoning
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and numerical methods for hyperbolic conservation laws can be found in two ear-
lier publications [1, 2], the first comprehensive description of osmosis models for
a variety of visual computing applications is presented in our companion paper
[3]. In [3] we demonstrate that osmosis models are powerful tools for compact
data representation, for editing an existing image, and for fusing information
from different images. Most of these applications go far beyond of what can
be achieved with nonlinear diffusion filters, in spite of the fact that the osmosis
models in [3] are linear. Osmosis filters have some similarities to gradient domain
methods from computer graphics [4, 5], but offer additional advantages such as
invariance under multiplicative illumination changes.

Since osmosis can be interpreted as a modification of diffusion filtering and
there is a well-established theory for diffusion filters, it is natural to study which
results can be generalised from diffusion to osmosis. The goal of the present
paper is to provide a fully discrete theory for linear osmosis filtering that has
a similar structure as Weickert’s discrete framework for diffusion filters [6]. We
will see that this theory offers some fundamental differences to diffusion filters,
and that it is applicable to the design of osmosis algorithms that are not only
reliable, but also efficient.

Our paper is organised as follows. In Section 2 we review the basic structure
of continuous osmosis filters, and we consider finite difference discretisations
in space and time. This leads us to fully discrete osmosis filters that can be
expressed as iterative matrix–vector multiplications. Section 3 provides our the-
oretical framework for this filter class, in which we establish useful properties
such as preservation of positivity and convergence results. In Section 4 we apply
this theory to two popular finite difference discretisations: an explicit and an
implicit scheme. The performance of these schemes is evaluated in Section 5,
and a summary in Section 6 concludes our paper.

2 From Continuous to Discrete Osmosis

Before we can introduce a theory for discrete linear osmosis processes in visual
computing, we have to discuss the continuous concept first and show how it can
be turned into a discrete filter representation. This is the topic of the present
section.

2.1 Continuous Linear Osmosis Filtering

Let us consider a rectangular image domain Ω ⊂ R2 with boundary ∂Ω, and a
positive greyscale image f : Ω → R+. Moreover, assume we are given some drift
vector field d : Ω 7→ R2. Then a (linear) osmosis filter computes a processed
version u(x, t) of f(x) by solving the drift-diffusion PDE

∂tu = ∆u − div (du) on Ω × (0, T ], (1)
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with f as initial condition,

u(x, 0) = f(x) on Ω, (2)

and homogeneous Neumann boundary conditions. They specify a vanishing flux
in normal direction n to the image boundary ∂Ω:

〈∇u− du, n〉 = 0 on ∂Ω × (0, T ]. (3)

Let us now sketch three key properties of our osmosis model [3]:

(a) Preservation of the Average Grey Value:
Since the osmosis process is in divergence form, its solution preserves the
average grey value of the initial image:

1

|Ω|

∫

Ω

u(x, t) dx =
1

|Ω|

∫

Ω

f(x) dx ∀ t > 0 . (4)

This property can also be found for diffusion filters.

(b) Preservation of Positivity:
One can show that the solution remains positive for all times:

u(x, t) > 0 ∀x ∈ Ω, ∀t > 0. (5)

This is a weaker property than the maximum–minimum principle for diffu-
sion [6]. Osmosis may violate a maximum–minimum principle.

(c) Convergence to a Nontrivial Steady State:
The continuous linear osmosis model differs from a homogeneous diffusion
filter only by its drift term. However, the drift vector field d is a powerful
tool to steer its convergence: If d satisfies

d = ∇(ln v) =
∇v

v
(6)

with some positive image v, one can show that the osmosis process converges
to v up to a multiplicative constant which ensures preservation of the average
grey value of f . Thus, osmosis creates nontrivial steady states. This is a
fundamental difference to diffusion that allows only flat steady states [6].

Since d contains the gradient information of ln v, we may regard osmosis as a
process for data integration. In that sense it resembles so-called gradient domain
methods that are popular in computer graphics [4, 5]. Therefore, it is not sur-
prising that it can also be used for similar applications such as image editing
and image fusion. We refer to our companion paper [3] for such applications.
Other applications are concerned with alternative numerical schemes for hyper-
bolic conservation laws [2]. Moreover, also the PDE limit of a lattice Boltzmann
model for halftoning [1] is an osmosis equation.

Applying osmosis to colour images is as simple as applying it to greyscale
images: One proceeds separately in each RGB channel using the individual drift
vector fields of each channel.
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2.2 Finite Difference Discretisation

Let us now consider a finite difference space discretisation of the drift–diffusion
equation (1). We consider a grid size h in x- and y-direction, and we denote
by ui,j an approximation to u in the grid point ((i − 1

2
)h, (j − 1

2
)h))⊤. Setting

d = (d1, d2)
⊤, we approximate (1) by

u′
i,j =

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
−

1

h

(

d1,i+ 1

2
,j

ui+1,j+ui,j

2

− d1,i− 1

2
,j

ui,j+ui−1,j

2

)

−
1

h

(

d2,i,j+ 1

2

ui,j+1+ui,j

2
− d2,i,j− 1

2

ui,j+ui,j−1

2

)

(7)

This also holds for boundary points, if we mirror the image at its boundaries
and assume a zero drift vector across boundaries. Rearranging (7) gives

u′
i,j = ui+1,j

(
1

h2
−

d1,i+ 1

2
,j

2h

)

+ ui−1,j

(
1

h2
+

d1,i− 1

2
,j

2h

)

+ ui,j+1

(
1

h2
−

d2,i,j+ 1

2

2h

)

+ ui,j−1

(
1

h2
+

d2,i,j− 1

2

2h

)

+ ui,j

(

−
4

h2
−

d1,i+ 1

2
,j

2h
+

d1,i− 1

2
,j

2h
−

d2,i,j+ 1

2

2h
+

d2,i,j− 1

2

2h

)

. (8)

From now on we restrict ourselves to drift vector fields (d1(x), d2(x))
⊤ with

|d1(x)| <
2

h
, |d2(x)| <

2

h
∀x ∈ Ω. (9)

This ensures that in (8) the weights of all four neighbours of ui,j are positive.
We want to write this discretisation in a more compact notation. To this end,
we replace the double indexing in each pixel by a single index and assemble all
unknown grey values in a single vector u ∈ RN where N denotes the number of
pixels. Then we end up with the following dynamical system:

u(0) = f , (10)

u′(t) = Au(t) (11)

where the matrix A ∈ RN×N is unsymmetric. This differs from the diffusion
scenario that leads to symmetric matrices [6]. Since the weights of the neighbours
in (8) are positive, it follows that A has nonnegative off-diagonals. Moreover,
one can show that all column sums of A are zero and A is irreducible.

We have different options to discretise this ODE system in time. In the
simplest case one can consider the explicit scheme:

uk+1 − uk

τ
= Auk (12)
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where τ > 0 denotes the time step size, and the upper index k refers to an
approximation at time kτ . With P := I + τA, we can rearrange this scheme to

uk+1 = Puk (13)

An alternative time discretisation is given by the implicit scheme

uk+1 − uk

τ
= Auk+1. (14)

It requires to solve a linear system in the unknown vector uk+1. If the system
matrix is invertible, the problem can also be formally written as a matrix–vector
multiplication of type (13) with P := (I − τA)−1.

3 A Discrete Osmosis Theory

We have seen that both the explicit and the implicit scheme are examples of
numerical methods that can be written in the general form (13). This motivates
us to derive a general theory for discrete osmosis processes of this type. Here is
our main result.

Proposition 1. [Theory for Discrete Linear Osmosis]

Let f ∈ RN
+ and consider a process

u0 = f , (15)

uk+1 = Puk (k = 0, 1, ...) (16)

where the (unsymmetric) matrix P ∈ RN×N satisfies the following properties:

(DLO1) All column sums of P are 1.
(DLO2) P is nonnegative.
(DLO3) P is irreducible.
(DLO4) P has only positive diagonal entries.

Then the following results hold:

(a) The average grey value is preserved:

1

N

N∑

i=1

uk
i =

1

N

N∑

i=1

fi ∀ k > 0 . (17)

(b) The evolution preserves positivity:

uk
i > 0 ∀i ∈ {1, .., N}, ∀ k > 0 . (18)

(c) There exists a unique steady state for k → ∞. It is given by the eigenvector
v ∈ RN

+ of P to the eigenvalue 1, that has the same average grey value as f .
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Proof. Average grey value invariance and preservation of positivity are very
easily seen, while the convergence result requires some more technicalities.

(a) Average grey value invariance for osmosis has already been shown in [2],
where the reasoning is identical to the diffusion case [6, Proposition 4]:

(b) In order to verify preservation of positivity, we observe that applying one
osmosis step to the positive initial image f gives

u1
i = pi,i

︸︷︷︸

>0

fi
︸︷︷︸

>0

+
N∑

j=1

j 6=i

pi,j
︸︷︷︸

≥0

fj
︸︷︷︸

>0

> 0 ∀ i ∈ {1, ..., N} . (19)

Applying this reasoning iteratively ensures that uk is positive for all k > 0.
(c) To establish our convergence result, first we show that 1 is an eigenvalue of

P . As the eigenvalues of P and P⊤ are identical, we can exploit the unit
row sum of P⊤ instead of the unit column sum of P . Hence, we can compute

P⊤









1

1
...

1









=









∑N

j=1
p1,j

∑N

j=1
p2,j

...
∑N

j=1
pN,j









=









1

1
...

1









. (20)

Thus, 1 is an eigenvalue ofP⊤ and therefore also ofP . Note that (1, 1, . . . , 1)⊤

is an eigenvector for P⊤, but not for P .

Next we prove that all eigenvalues λ ∈ C with λ 6= 1 satisfy |λ| < 1. Since
P has unit column sums, its column sum norm satisfies ‖P ‖1 = 1. Thus,
we have |λ| ≤ 1. By Gershgorin’s theorem, all eigenvalues of P lie within
disks in the complex domain whose centres are given by the diagonal entries,
respectively. As the spectrum of eigenvalues of a matrix is the same as the
spectrum of eigenvalues of a transposed matrix, we can compute the set of
all Gershgorin disks as

Λ :=

N⋃

j=1






z ∈ C

∣
∣
∣
∣
∣
∣

|z − pj,j | ≤

N∑

i=1,i6=j

|pi,j |







︸ ︷︷ ︸

=:Bj

. (21)

Since P is nonnegative with unit column sums and positive diagonal ele-
ments, we conclude that

N∑

i=1,i6=j

|pi,j | =

N∑

i=1,i6=j

pi,j = 1− pj,j < 1. (22)

As it holds for all j that Bj ∩ {z ∈ C | |z| = 1} = {1}, we can describe Λ as

Λ ⊂ {z ∈ C | |z| < 1} ∪ {1}. (23)
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By the assumptions λ ∈ Λ and λ 6= 1, we have |λ| < 1.

For the final step of our convergence analysis, we need the following results
from the Perron-Frobenius theory (see e.g. Theorem 8.4.4 in [7]):
If A ∈ R

N×N is irreducible and nonnegative, then its spectral radius ρ(A)
is a simple eigenvalue of A. Moreover, there exists a positive eigenvector to
ρ(A).
Since ρ(P ) = 1, this theorem states that λ = 1 is a simple eigenvalue
and has a positive eigenvector. Hence, the iteration (15)–(16) attenuates all
components outside the eigenspace of λ = 1 to zero. Therefore, the process
converges to a vector v in the eigenspace of λ = 1. Since f ∈ RN

+ and the
iteration preserves the positive average grey value, it converges to a vector
v ∈ R

N with the same positive average grey value as f . Because of the cited
Perron-Frobenius result we know that v is positive. ⊓⊔

Our framework for discrete linear osmosis allows to analyse osmosis algo-
rithms in a very simple way: All one has to do is to check the four properties
(DLO1)–(DLO4). If they are satisfied, we can be sure that the filter preserves
the average grey value and the positivity of the original image, and we have full
control over its steady state.

It should be mentioned that this theory is very general: It does not rely on
any specific space discretisation on a regular grid. Without any alterations, it is
applicable to osmosis processes acting on graphs, on surface data, or on higher
dimensional data sets.

4 Application to Finite Difference Discretisations

Let us now apply our discrete osmosis theory to two important finite difference
discretisations that we have already mentioned: the explicit and the implicit
scheme. We will see that they are not only useful for computing the parabolic
time evolution, but also for the elliptic steady state.

4.1 The Parabolic Time Evolution

Applying Proposition 1 to the explicit and the implicit scheme gives the following
result.

Proposition 2. [Finite Difference Discretisations]

Let f ∈ R
N
+ and consider the semidiscrete linear osmosis evolution

u(0) = f , (24)

u′(t) = Au(t) (25)

where the (unsymmetric) matrix A = (ai,j) ∈ RN×N fulfils the following prop-
erties:
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(SLO1) All column sums of A are 0.
(SLO2) A has only nonnegative off-diagonal entries.
(SLO3) A is irreducible.

Then the following results hold:

(a) The explicit scheme
uk+1 = (I + τA)uk (26)

satisfies the requirements (DLO1)–(DLO4) for discrete linear osmosis pro-
cesses provided that

τ <
1

|ai,i|
∀ i ∈ {1, ..., N}. (27)

(b) The implicit scheme
(I − τA)uk+1 = uk (28)

satisfies (DLO1)–(DLO4) for all time step sizes τ > 0.

Proof. We check (DLO1)–(DLO4) by applying classical matrix analysis.

(a) It holds that ai,i 6= 0 because otherwise (SLO1) implies that the whole
column i of A is 0, and thus the digraph associated with A is not strongly
connected. This contradicts the irreducibility of A. The unit column sum
property (DLO1) follows directly from the zero column sums ofA. Moreover,
I+τA is nonnegative (DLO2) with positive diagonal elements (DLO4), since
(SLO2) holds true and τ fulfils (27). Clearly, (27) guarantees that I + τA

and A have the same digraph. Thus, I + τA is also irreducible (DLO3).
(b) We start by observing that I − τA is strictly column diagonally dominant:

From the zero column sum property (SLO1) it follows that

−aj,j =

N∑

i=1,i6=j

ai,j ∀ j ∈ {1, . . . , N} (29)

and thus

1− τaj,j > τ

N∑

i=1,i6=j

ai,j ∀ τ > 0. (30)

By (SLO2) the off-diagonals of A are nonnegative. Hence, we can apply
Gershgorin’s theorem to the columns of I−τA and conclude that this matrix
is nonsingular. Let us consider the row vector e := (1, 1, . . . , 1) with N

components. Clearly, (SLO1) means that I−τA has unit column sums. The
same holds true for its inverse since

e (I − τA) = e ⇐⇒ e = e (I − τA)−1. (31)

This proves (DLO1). The nonpositivity of the off-diagonals of I − τA and
its strict column diagonal dominance imply that I− τA is a nonsingular M-
matrix, cf. [8, Theorem 6.2.3 (C10)]. For any nonsingular M-matrix, it holds
that its inverse has only strictly positive entries; see [8, Theorem 6.2.7]. This
shows (DLO2)–(DLO4). ⊓⊔
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Proposition 2 gives stability results with respect to preservation of positivity.
Since also the average grey value is preserved, it follows that 0 < uk

j <
∑

i fi
for all j ∈ {1, ..., N} and for all k > 0. This ensures that also the ℓp norms of
the solution remain bounded for p > 1. Note that osmosis does not allow to
give stability results in terms of decreasing ℓp norms for p > 1, since comparable
properties for the Lp norms do not hold for the continuous equation: An osmosis
process that starts with a flat image and converges to a nonflat one with identical
average grey value may serve as counterexample. This shows that preservation
of positivity is a very natural stability criterion for osmosis.

For a spatial grid size of h = 1, the condition (9) becomes

|d1(x)| < 2, |d2(x)| < 2 ∀x ∈ Ω, (32)

and inspecting the central weight in (8) shows that |ai,i| < 8. Thus, the stability
condition (27) for the explicit scheme becomes τ < 1

8
. This stability bound

is half as large as the well-known stability limit of an explicit scheme for the
homogeneous 2-D diffusion equation ∂tu = ∆u.

The absolute stability of the implicit scheme is in full accordance with the
corresponding diffusion result from [6, Theorem 8]. The implicit scheme yields
nonsymmetric pentadiagonal systems of linear equations that are strictly diago-
nally dominant in their columns. Using the classical theory of regular splittings
[9], one can show that the Gauß-Seidel algorithm converges under these circum-
stances. More efficient alternatives include Krylov subspace methods such as the
BiCGStab method [10] and its preconditioned variants [11]. Implementing these
iterative methods is fairly straightforward. Also multigrid methods [12] appear
promising, but are more cumbersome to implement.

4.2 The Elliptic Steady State

For many applications of osmosis – such as the ones discussed in [3] – one is
mainly interested in the osmotic steady state. Thus, it appears tempting to
approximate the elliptic PDE

∆u− div (du) = 0 (33)

and its homogeneous Neumann boundary conditions directly with numerical
solvers. However, this can become unpleasant since the elliptic problem has in-
finitely many solutions: For any solution w(x), also cw(x) with some arbitrary
constant c is a solution.

This suggests to use also our parabolic time evolution schemes to obtain the
desired solution that is positive and has the same average grey value as the initial
image f . For the explicit scheme (26) the steady state w is characterised by

w = (I + τA)w (34)

and for the implicit scheme (28), it satisfies

(I − τA)w = w . (35)
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Interestingly both equations (34) and (35) are equivalent to

Aw = 0 (36)

which is a space discretisation of the elliptic PDE (33). Thus, we have the re-
markable situation that any stable time step size τ gives the correct elliptic
steady state w. This makes the implicit scheme with large τ attractive for this
task, if one has an efficient solver for the resulting linear systems of equations.

5 Experimental Evaluation

The preceding discrete osmosis framework provides general criteria that guar-
antee the reliability of osmosis schemes. However, it tells us nothing about their
speed. To evaluate the practical performance of the explicit and the implicit
scheme, let us now consider a typical image editing problem where one is inter-
ested in the osmotic steady state.

For our experiment we want to combine the two images from Figure 1(a) and
(b). They depict contemporary paintings of famous US presidents. The task is
to replace the face of George Washington with the face of Abraham Lincoln in
a seamless way. The image of Washington serves as initialisation of our osmosis
process. In order to apply osmosis, we first have to specify its drift vectors.
We choose the drift vectors of the Washington image where the binary mask
image of Fig. 1(c) is black, and the drift vectors of the Lincoln image where the
mask image is white. At the interface we perform arithmetic averaging of both
drift vector fields. With this combined drift vector field we compute the osmosis
evolution. Its steady state gives the seamlessly cloned image in Fig. 1(d).

Now let us discuss some numerical details. For a positive image f , we use the
following discretisation of its canonical drift vector field (d1, d2)

⊤ = ∇f
f

in the

sense of (6):

d1,i+ 1

2
,j =

2 (fi+1,j − fi,j)

h (fi+1,j + fi,j)
, d2,i,j+ 1

2

=
2 (fi,j+1 − fi,j)

h (fi,j+1 + fi,j)
. (37)

These vectors are fed into our space discretisation (7), and as time discretisation
we use the explicit and the implicit scheme. In the implicit case, we have tested
different solvers for the linear system of equations, including Gauß-Seidel, SOR,
BiCGStab, and two preconditioned BiCGStab variants. Because BiCGStab with-
out preconditioning offered the best performance, we only report results for this
solver here. Since we approach our steady state solution iteratively, we need a
stopping criterion: We compute the average ℓ1 distance per pixel between our
numerical solution and a precomputed ground truth. The iterations are stopped
if this error is less than 0.1, where the initial range of each colour channel is
[1, 256].

Table 1 shows a comparison of the CPU times for the explicit and the im-
plicit scheme for three different image sizes. The run times are obtained with a
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Fig. 1. Seamless image cloning with osmosis. From left to right: (a) Painting of George
Washington by Gilbert Stuart (Source: Wikimedia Commons, public domain work). (b)
Painting of Abraham Lincoln by George Story (Source: Wikimedia Commons, public
domain work). (c) Mask for the seamless image cloning. (d) Osmotic steady state
using combined drift vector fields.

Table 1. CPU times [s] and number of iterations for different image sizes and different
osmosis schemes. For the explicit scheme we use τ = 0.12, and in the implicit case
τ = 105.

image size explicit: time[s] iterations implicit: time[s] iterations

100× 115 14.689 61184 0.3179 2
200× 230 359.49 240115 4.5454 2
400× 460 4487.6 948484 61.909 3

double precision C implementation on a standard desktop PC with an Intel Xeon
processor, clocked at 3.2 GHz with single threading and without GPU support.
We observe that the implicit scheme with BiCGStab allows to reach the desired
steady state solution up to 79 times faster than the explicit scheme.

6 Summary and Conclusions

We have introduced a fully discrete theory for osmosis filters that can be ex-
pressed in terms of linear drift-diffusion equations. Its prerequisites differ from
the ones for discrete diffusion filtering by the fact that the iteration matrix is
not symmetric. We have seen that this seemingly small difference has a substan-
tial impact on properties such as maximum-minimum principles and nontrivial
steady states. The possibility to design interesting steady states is a key fea-
ture of osmosis filtering, and our paper has provided a discrete characterisation
of the osmotic steady state. Moreover, we have established stability results in
terms of preservation of positivity which is a very natural stability concept for
osmosis. We have shown that our theory is applicable to important finite dif-
ference approximations such as explicit and implicit schemes. Finally, we have
demonstrated that an implicit scheme with a BiCGStab solver also constitutes
an efficient method for obtaining the osmotic steady state. This method is not
very difficult to implement and can be two orders of magnitude faster than the
explicit scheme.
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In our ongoing work we are exploring alternative numerical options such as
multigrid solvers [12] and additive operator splittings (AOS) [13, 14]. Moreover,
we are establishing semidiscrete and continuous theories for osmosis filtering that
have a similar structure as their diffusion counterparts.
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