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Abstract. Shape from Shading (SfS) is one of the oldest problems in
image analysis that is modelled by partial differential equations (PDEs).
The goal of SfS is to compute from a single 2-D image a reconstruction of
the depicted 3-D scene. To this end, the brightness variation in the image
and the knowledge of illumination conditions are used. While the quality
of models has reached maturity, there is still the need for efficient nu-
merical methods that enable to compute sophisticated SfS processes for
large images in reasonable time. In this paper we address this problem.
We consider a so-called Fast Marching (FM) scheme,which is one of the
most efficient numerical approaches available. However, the FM scheme
is not trivial to use for modern non-linear SfS models. We show how
this is done for a recent SfS model incorporating the non-Lambertian
reflectance model of Phong. Numerical experiments demonstrate that –
without compromising quality – our FM scheme is two orders of magni-
tude faster than standard methods.

1 Introduction

Given a single 2-D image, the aim of Shape from Shading (SfS) is to infer the
3-D depth of the surface of depicted objects. For this, SfS uses the brightness
variation in the image together with information on intensity and position of
the light source. Much progress has been achieved in the last years in modelling
SfS. As proper model components have been identified, SfS is now considered
to be a well-posed problem. In recent model extensions, also non-Lambertian
surfaces are taken into account within this well-posed framework. Thus, SfS has
reached a reasonable level of maturity. However, these advances on the modelling
side also lead to new challenges for numerical methods in this field. In order to
obtain 3-D reconstructions of good quality it is recommended to use modern,
highly non-linear SfS models together with large, high-resolution input images.
Thus, a proper algorithm must be able to deal with the arising large non-linear
problems in reasonable computing time. In this paper, we show how to use a
Fast Marching (FM) scheme for this purpose. It turns out that this is not trivial
because of the involved non-linearities.

Brief history of SfS models. The SfS-problem is a classic problem in com-
puter vision. It was introduced in the works of Horn [1]. In particular, his model



assumptions of an orthographic camera and Lambertian surface reflectance be-
came a standard for early SfS research, see the review article [2]. However, the
authors of [2] also concluded that orthographic SfS models do not perform well
on synthetic data, and even worse on real-world images.

In recent years, sophisticated models employing a more realistic perspective
projection have been developed [3–5]. In [5], it was shown that the perspective
camera model, together with a point light source at the optical centre of the
camera and a non-linear light attenuation term, leads to the well-posedness of
the SfS-task. Recently, this class of perspective SfS models has been extended
to cover also non-Lambertian surface reflectance. In [6], the Lambertian diffuse
reflection has been substituted by the model of Oren and Nayar [7] for the
purpose of facial recognition. Another approach has been introduced in [8], where
the reflectance model of Phong [9] well-known from computer graphics is used.

The Fast Marching method. The SfS models of interest infer the problem
to solve boundary value problems for a class of non-linear hyperbolic partial dif-
ferential equations (PDEs) called Hamiton-Jacobi equations. The fast marching
(FM) method is an efficient technique for solving such problems. It was intro-
duced by Tsitsiklis [10] and further developed by Sethian [11].

Our contribution. We show how to use the FM technique for the highly
nonlinear, perspective SfS model given in [8] which especially incorporates light
attenuation and the non-Lambertian reflectance model of Phong.

In particular, we address the following issues. We consider the problem to
compute an initial guess of the depth in surface points with the minimal distance
to the camera. The estimation is non-trivial for highly non-linear models such as
the one we use. For this estimate, a suitable set of corresponding image points
needs to be identified in advance. In order to realise the scheme, one also needs
to perform in each discretisation point a fixed-point iteration, for which we give
a well-working scheme here.

Having solved these problems, we compare the method with other schemes in
the Lambertian case, confirming that our FM scheme is two orders of magnitude
faster without a trade-off in accuracy. Then we apply the FM scheme directly
for Phong-type non-Lambertian SfS of objects in real-world images taken with
a standard digital camera. We show that our FM scheme delivers high-quality
results in just a few seconds of computing time, while the method from [8] we
compare with takes hours for computing comparable results.

Relation to previous work. It is quite well-known that FM schemes may
outperform other discretisation methods for the class of problems we are in-
terested in, provided it is possible to construct such a scheme. The potential
usefulness of FM schemes has also been noticed by other authors in the field of
SfS. The first one who applied FM to the SfS problem was Sethian [11]. The
model he considered was the classic orthographic Lambertian model with a sin-
gle far light source. Later, Kimmel and Sethian used FM for the same set-up but
with an oblique light source [12]. In [13], Yuen et al. apply FM at a Lambertian
model incorporating a perspective projection. Let us note that this model is
formulated in terms of unknown surface normals – in contrast to the unknown



depth as in [5, 3] – and it does not include a light attenuation term. Tankus et
al. perform FM at a perspective Lambertian model also not incorporating light
attenuation [14]. In [15], Prados and Soatto develop a FM approach based on
ideas from optimal control theory. However, while they claim that their approach
holds for perspective SfS with Lambertian reflectance, they only show computa-
tional results of their scheme for the classic orthographic model also considered
in [11]. The paper [16] is an extension of the work [13], addressing problems with
strong gradients of the authors’ previous method arising by occluded regions.

As it is of importance in the context of this paper, let us stress that up
to now the light attenuation has not been taken consequently into account in
FM, and that non-Lambertian reflectance models have not been considered at
all within an FM scheme. Note that exactly terms corresponding to these model
assumptions yield strong non-linear contributions.

Paper organisation. After briefly introducing the Phong-type SfS model
in Section 2, we describe in Section 3 in detail its discretisation of the SfS model,
making use of the FM method. We then proceed elaborating on the choice of
points featuring the initial guess of the 3-D depth in Section 4. Sections 5 and 6
are devoted to the experimental evaluation and a conclusion, respectively.

2 The Perspective SfS Model with Phong-type

Reflectance

The SfS model we deal with in this paper is given in [8]. We briefly review here
the developments in that work.

The Phong reflection model. It is adequate to begin the presentation of
the SfS model with the modeling ansatz given by the brightness equation due to
Phong [9]. Assuming thereby the presence of only one light source, it reads as

I = kaIa +
1

r2

(

kdId cosφ + ksIs(cos θ)α
)

(1)

where I := I(x) is the normalised grey value of the image pixel located at

x = (x1, x2)
T

∈ R
2, and r = uf is the distance of the surface point from the

light source. In (1), the intensities of ambient, diffuse, and specular components
of light are denoted by Ia, Id and Is, respectively. In analogous notation, the
constants ka, kd, and ks with ka + kd + ks ≤ 1 denote the ratio of ambient,
diffuse, and specular reflection.

Discussing the light reflection contributions, the ambient light models a base
intensity in the depicted scene, i.e., a basic illumination present everywhere.
The diffusely reflected light in each direction is proportional to the cosine of the
angle φ between surface normal and light source direction. In our scenario, the
latter is identical to the direction of the optical centre. The amount of specular
light also reflected in this direction is proportional to (cos θ)α, where θ is the
angle between the ideal (mirror) reflection direction of the incoming light and
the optical centre. The number α is a constant depending on the roughness of
the material. An ideal mirror reflection can be described via α → ∞. Note also



that the cosine in the specular term is to be set to zero if it yields negative
values.

The SfS model. Plugging in appropriate expressions, the brightness equa-
tion (1) yields a nonlinear Hamilton-Jacobi equation. For details of the derivation
see [8]. One (usual) important model assumption not mentioned up to now is the
visibility of the surface. This means that it is in the front of the optical centre,
so that the unknown 3-D depth u is strictly positive. Employing then the change
of variables v := v(x) = ln(u(x)), the resulting model is given by

JM − kdId exp (−2v) −
MksIs

Q
exp (−2v)

(

2Q2

M2
− 1

)α

= 0 , (2)

where J(x) = (I − kaIa)f2/Q, M(x) =
√

f2|∇v|2 + (∇v · x)2 + Q2, and Q(x) =

f/

√

|x|
2

+ f2. In this description, |.| is the Euclidean vector norm and f is the
focal length relating the optical centre of the camera and the retinal plane.

The terms occuring in (2) can be distinguished by their ordering correspond-
ing to their appearance within the brightness equation (1).

Note that ∇v =
(

∂
∂x1

v, ∂
∂x2

v
)T

=: (vx1
, vx2

)T contains first-order spa-

tial derivatives, and thus the given model is a first-order PDE. It needs to be
supplemented by boundary conditions: for details see the section concerned with
experiments. The expressions in (2) are also the basis for our numerical imple-
mentation of the FM scheme.

3 Discretisation and Fast Marching Implementation

It is of importance to discretise the occuring spatial derivatives in the correct
fashion, as in the case of hyperbolic PDEs like the currently given Hamilton-
Jacobi equation it is well-known that simply using central differences leads to a
blow-up of numerical solutions. In order to ensure the stability of our algorithm
as well as the validity of reasonable theoretical properties, we thus employ an
upwind method as in [5, 4, 8].

Spatial Discretisation. We use the following conventions:

– vi,j denotes the approximation of v (ih1, jh2), where

– i and j are the coordinates of the pixel (i, j) in x1- and x2-direction, respec-
tively, and

– h1 and h2 are the corresponding mesh widths in our pixel grid.

Then the spatial discretisation of derivatives reads as

vx1
(ih1, jh2) ≈ h−1

1 min (0, vi+1,j − vi,j , vi−1,j − vi,j) , (3)

vx2
(ih1, jh2) ≈ h−1

2
min (0, vi,j+1 − vi,j , vi,j−1 − vi,j) . (4)

Terms like Q, I and exp (−2v) can be evaluated pointwise at (i, j), so that we
have completely defined the spatial discretisation of (2). We refrain from writing



down the complete discrete expression of the scheme, as this is quite cumbersome
and does not give more insight.

Fast Marching. Let us now turn to the FM method. We only sketch here
the idea behind it, as there are many extensive descriptions available in the
literature, see especially [11].

The basic principle behind the FM scheme applied in the SfS setting is to
advance monotonically a front from the foreground of the depicted object to
the background. Thereby, the pixels are distinguished by the labels ’known’,
’trial’ and ’far’, respectively, referring thereby via ’known’ and ’trial’ to the
corresponding 3-D depth.

In the beginning, all pixels are labelled as ’far’ with their depth values set
to infinity. However, since the FM method propagates information from the
foreground to the background, it relies on correct depth values being supplied in
the pixel which is most in the foreground, i.e. the pixel with minimum depth. In
the case of complex images which consist of multiple segments, for each of these
segments the correct depth in the point with minimum depth must be supplied.
These points are called singular points. These singular points are then marked
as ’trial’, which concludes the initialisation of the method.

For FM methods on SfS it is common to just require this data to be pro-
vided. Other methods like [5], however, do not require the knowledge of given
initial depth data. We therefore aim at estimating very precisely the locations
of singular points and obtain a SfS method using the FM scheme that does not
rely on any depth information to be provided. The task of estimating this data
will be the subject of the next section.

The ’trial’ candidate with the smallest computed depth is then marked as
’known’, taking the computed 3-D depth in this point as the estimate. The pixels
adjacent in terms of the stencil to the new set of known points are updated with
respect to their label, marking them as ’trial’. The described process is then
repeated until all image pixels are marked ’known’.

Fixed-Point Iteration. Updating the depth at ’trial’ points consists of
solving the discrete form of (2) for v in this point. In contrast to other SfS
techniques using FM, we need to solve a nonlinear equation. This is not trivial
in our case, since near the solution, the derivative of (2) is very low, making
standard solvers like the Newton method diverge in most cases. To avoid this,
we employ the Regula Falsi: Starting with two values v1 and v2 such that v1 < v2

and the left-hand side L of (2) is negative in v1 and positive in v2, one chooses

v3 :=
L(v2)v2 − L(v1)v1

L(v2) − L(v1)
, (5)

which is between v1 and v2. If L at v3 is negative, set v1 := v3, otherwise set
v2 := v3. Repeating this until v1 and v2 are very close together yields an estimate
for the solution of (2) in this pixel. Note that computing the derivatives involves
computing a minimum. Depending on v1, v2 and v3, these minima might change
within the estimation process. Thus, it is necessary to update the values of
v1, v2, v3 during the process.



4 Estimating the Initial Depth

The FM methods for SFS rely on the knowledge of ground truth data at sin-
gular points, i.e. at points with locally minimal depth. However, in general this
kind of data is not given. Thus, these depth values need to be estimated. In
the experimental section, we will show that a good estimate is crucial for the
reconstruction quality.

In most other works, this issue is neglected. In [4], the problem is solved by
obtaining an initial estimate for the depth using an orthographic SfS method.
Their perspective method, however, is not comparable with the one used in this
paper, since they neglect the light attenuation term. By doing this, their solution
is invariant to multiplicative scalings of the depth. This is not true in our case. To
obtain a working method, we either need to know the correct depth at singular
points or estimate both the singular points and their depth.

In this section, we will introduce ways to estimate the locations of singular
points and estimate their depths as correctly as possible.

Lambertian Case. For simplicity, we first focus on the Lambertian case,
i.e. ka = ks = 0, kd = 1. In this simplified model, the brightness of a pixel is
determined by two main factors: (i) The angle between surface normal and light
source direction φ and (ii) the light attenuation because of the distance of the
surface point to the light source. Directly from the model (1) we obtain the
simple equation

I = Id

cosφ

u2f2
. (6)

Assuming the surface to be continuously differentiable, the points of minimal
depth are the points where the derivatives of the depth vanish, which means the
surface normal points directly to the viewer. This results in φ = 0, which leads
by use of cos 0 = 1 and re-arranging (6) to

u =

√

Id

1

If2
. (7)

Knowing the coordinates of singular points, we can compute the depth. It re-
mains to determine the coordinates of singular points. Singular points are lo-
cal minima in depth. Since minima in depth mean both less attenuation and
a maximum Lambertian reflectance, this suggests that local maxima in image
brightness are the singular points. At the image boundary, it might happen that
we have brightness maxima that do not satisfy φ = 0. In this case, there can be
errors. In most cases, this does not affect the reconstruction quality significantly.

Due to sampling and quantisation artifacts, it is possible that this estimate
might be slightly off, both in the location of singular points and in the estimated
depth. This effect is usually rather small.

In conclusion, we propose to search local maxima in the image and estimate
their depth according to equation (7). Boundary pixels should not be consid-
ered, since the estimate might be incorrect due to φ not being zero. The points



obtained in this way should be marked as ’trial’ points for the subsequent FM
method. In the Phong case which follows we use the same approach.

Phong Case. To obtain a good estimate for singular points in the general
case, we review the model equation again. Essentially, we have

I = kaIa +
kdId cosφ + ksIs (cos θ)

α

u2f2
. (8)

At singular points, we have φ = θ = 0, which simplifies equation (8) to

I = kaIa +
kdId + ksIs

u2f2
. (9)

Now, after shifting the grey values down by the ambient brightness to I − kaIa,
we can separate diffuse and specular light and compute the diffuse brightness I ′

by

I ′ =
kdId

kdId + ksIs

(I − kaIa) . (10)

Now, we can make use of the equation (7) using I ′ instead of I.

5 Experiments

In this section, we evaluate the presented method on both synthetic and real-
world images. We discuss the accuracy and importance of the initial estimates
at singular points. In comparison to other methods in the field, we evaluate the
accuracy and the performance of our method.

Note that for none of the experiments, any a-priori depth information is used.
In the cases where we need depth initialisation at singular points, we use the
estimation method introduced in Section 4.

Lambertian case. First, we restrict the method to diffuse reflection only.
We compare the reconstruction quality and performance with the methods of
Prados et al. [5], Cristiani et al. [17], and Vogel et al. [18], which use all the same
Lambertian model, but different schemes. Visually, the reconstructions of these
methods are almost identical. Their performance, however, is different.

Figure 1 shows the vase surface [2], a classic test surface for SfS algorithms,
and a rendered version of this surface using a Lambertian model. The rendering
parameters are f = 492, Id = 100000, 128× 128 pixels.

When detecting the local maxima, we notice that around the maxima, we
have more than just one point with the same maximal grey value. This is a result
from the quantisation of the image. Since we set the depth estimates of these
points to ’trial’, only one of them will be used as an actual depth estimate. This
might not be the actual position of the singular point, but it is close.

Figure 2 shows the reconstructions of the vase surface using both the pre-
sented method and the reference methods. The results are visually very similar.
In Figure 2, also a reconstruction can be found where we manually chose a wrong
depth at the singular points, i.e. we multiplied the estimates with a factor 0.9.
We can see that this distorts the reconstruction.



Fig. 1. Vase surface and Lambertian rendered image.

Fig. 2. Reconstruction of the vase using a Lambertian model. Left: Reference methods.
Middle: Our method. Right: Wrong depth estimate.

Table 1 supports our visual impression. It shows the relative average depth
errors for the reconstructions. With the correct depth estimates, our method
is about as good as the three reference methods. In fact, all reconstructions
are nearly perfect. The quality of the reconstruction using the faulty estimation
technique is a lot worse. This means the correctness of our initial guess is crucial
for the reconstruction quality.

Phong case. Now we evaluate the method on a synthetic image rendered
using the Phong reflectance model. We compare to the same methods as before,
but since the reference methods only consider a Lambertian model, we addition-
ally compare to the method of Vogel et al. [8] using the Phong model.

Figure 3 shows a rendered version and the ground truth of the Mozart face [2],
a classic test image. This time, we rendered the image using the Phong reflectance
model. Parameters for the rendering are f = 500, Id = Is = 100000, kd =

Table 1. Results of the Lambertian vase experiment.

Method Depth Error Initialisation Time Computation Time

Prados et al. 0.39% ≈ 0s 36.99s

Cristiani et al. 0.31% ≈ 0s 28.89s

Vogel et al. 0.32% ≈ 0s 2.96s

Our method 0.39% 0.02s 0.39s

Wrong initialisation 8.15% 0.02s 0.39s



Fig. 3. Mozart surface and rendered image using the Phong model.

Fig. 4. Reconstructions of the Mozart surface. Left: Lambertian methods. Middle:
Vogel et al. using the Phong model. Right: Our method.

0.7, ks = 0.3, α = 5. Note that the Mozart face is a perfect test image for
multiple sectors in an image, of which each has its own singular point.

In Figure 4, we show reconstructions of the Mozart face using our method, the
method of Vogel et al., and the three Lambertian reference methods. The Phong
reconstructions are clearly more accurate than the Lambertian ones. Table 2
shows the reconstruction errors and computation times of the Mozart experi-
ment. We notice that the error of our method is about equal to the one of the
method of Vogel et al., and it the Lambertian methods w.r.t. quality.

Again, our method is up to two orders of magnitude faster than any of the
other methods. Another important observation is that the performance gain is
much larger on the Mozart test image compared to the vase. The reason for this
is the larger size of the Mozart image.

Table 2. Results of the Phong Mozart experiment. Methods marked with (L) use a
Lambertian model for the reconstruction.

Method Depth Error Initialisation Time Computation Time

Prados et al. (L) 12.58% 0.02s 158.62s

Cristiani et al. (L) 12.17% 0.02s 170.37s

Vogel et al. (L) 12.56% 0.02s 16.33s

Vogel et al. 5.39% 0.02s 68.76s

Our method 5.07% 0.03s 1.85s



Fig. 5. Real input image: Rook, knight, and pawn.

Fig. 6. Reconstructions of chess figures. Left: [8] with Phong. Right: Our method.

This suggests that on high-resolution images, our method might have a clear
advantage over other methods in the field. This is particularly interesting for
real-world images. Many authors apply their methods to relatively small test
images, at most 256 × 256 pixels, usually even much less. We now apply our
method to a full-size real-world image with 8 megapixels. On such images, the
reference methods take very long to converge.

A Real-World Experiment. Figure 5 shows a photograph of three chess
figures: a rook, a knight, and a pawn. The original image has size 3264 × 2448
and has been taken with a digital camera with flash in a darkened room.

For the reconstruction, we used the known square pixel sizes of 1.61µm and
the known focal length of 70.2mm. This gives for pixel size 1 a relative focal
length of f = 43478, which we used for the reconstruction. Since scaling Ia, Id and
Is only stretches the reconstructed surface by a factor that depends quadratically
on the scaling factor, their magnitude is not important for the reconstruction
process. For simplicity, we just chose them all equal to 100000. We manually
estimated the other parameters to kd = 0.6, ks = 0.4 and α = 10. We neglected
ambient light, i.e. we set ka = 0.



Table 3. Run times of the chess experiment. (S) marks experiments on a downsampled
image of size 408 × 306, (F) denotes the full, high-resolution image.

Method Iterations Initialisation Time Computation Time

Vogel et al. (S) 296 0.03s 139.8s

Our method (S) 1 0.07s 2.8s

Vogel et al. (F) 1207 1.98s 38645s

Our method (F) 1 2.9s 263.2s

Figure 6 shows reconstructions of the high-resolution version of the image
using our method and the method of Vogel et al., both with the same parameters.
The reconstruction using our method looks much smoother than the one with
the method of Vogel et al.. This can be explained by the different numerics of
both methods. Our method starts at singular points and reconstructs the surface
from near to far, while the other method treats all depths equally. For images
like this, i.e. images with light objects in front of a dark background, our method
has the clear advantage of recovering the object of interest first, such that this
part is not distorted by artifacts caused by the background.

Table 3 shows the computation times compared to a test using a downsam-
pled version of the image. While the computation times of our method are very
low, the computation times of the iterative reference method are extremely high,
especially for the large input image. This makes our method still applicable even
on large images, outshining other methods with respect to computation time. It
also shows that the performance gain of using FM for SfS increases with the size
of the input image.

6 Conclusion

We have shown that the FM scheme is the method of choice for modern SfS mod-
els that incorporate light attenuation and non-Lambertian reflectance. Without
compromising quality it is two orders of magnitude faster than other approaches.
We demonstrated that it is possible to estimate initial depths to obtain a method
that does not rely on the knowledge of initial data.

By combining state-of-the-art SfS models and proper numerical methods, it
becomes possible to tackle real-world data with image sizes of many megapixels.
This is far beyond the size of the model problems that are considered in many
SfS papers.
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