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Abstract. Although variational methods are popular techniques in the
context of shape-from-shading, they are in general restricted to indirect
approaches that only estimate the gradient of the surface depth. Such
methods suffer from two drawbacks: (i) They need additional constraints
to enforce the integrability of the solution. (ii) They require the applica-
tion of depth-from-gradient algorithms to obtain the actual surface. In
this paper we present three novel approaches that avoid the aforemen-
tioned drawbacks by construction: (i) First, we present a method that
is based on homogeneous higher order regularisation. Thus it becomes
possible to estimate the surface depth directly by solving a single partial
differential equation. (ii) Secondly, we develop a refined technique that
adapts this higher order regularisation to semantically important struc-
tures in the original image. This addresses another drawback of existing
variational methods: the blurring of the results due to the regularisation.
(iii) Thirdly, we present an even further improved approach, in which the
smoothness process is steered directly by the evolving depth map. This
in turn allows to tackle the well-known problem of spontaneous concave-
convex switches in the solution. In our experimental section both qualita-
tive and quantitative experiments on standard shape-from-shading data
sets are performed. A comparison to the popular variational method of
Frankot and Chellappa shows the superiority of all three approaches.
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1 Introduction

The recovery of the 3-D shape of a surface from a single shaded image is one of
the classical reconstruction problems in computer vision. Since the first proto-
typical approach of Horn three decades ago [5], a variety of algorithms have been
developed; see e.g. [9,16]. In particular, two classes of shape-from-shading meth-
ods are frequently used in the literature: propagation techniques that recover the
shape by propagating information from a set of known surface points (critical
points) to the whole image [5, 8,11, 15, 13], and variational methods that compute
the solution as minimiser of a suitable energy functional [7,2,4]. In this paper



we focus on the latter class of techniques. Although variational methods have
been very popular in the 80s, they have stopped being considered already one
decade later, when propagation approaches started to dominate. In this context,
they have been critisised to suffer from a number of drawbacks [11]:

o Indirect Strategy. In contrast to many other techniques that allow a direct
estimation of the depth field [10,12], variational methods have the reputa-
tion to be only applicable for the recovery of the gradient field of the surface
depth. Such indirect variational approaches are e.g. the methods of Horn and
Brooks [2] and the algorithm of Frankot and Chellappa [4]. These methods
compute first the gradient field of the depth and then have to rely on the
subsequent application of a depth-from-gradient technique [4, 1].

e No Intrinsic Integrability. Moreover, indirect techniques also require the use
of integrability constraints to prevent impossible solutions [2, 6,4]: If the two
gradient functions in z- and y-direction — let them be given by p(z,y) and
q(z,y), respectively — are computed independently from each other, there is
no guarantee that there exists a common depth map z(z,y) for which holds
p(z,y) = zz(z,y) and ¢(z,y) = zy(x,y). Such integrability constraints have
been first introduced by Horn and Brooks in [6]. However, since these con-
straints only encourage the integrability of the solution, but not enforce it,
still intermediate steps are necessary that backproject the estimated gradi-
ent field into the range of admitted solutions [4].

e Quver-Regularisation. Furthermore, since variational methods are based on
a regularising smoothness assumption, it has often been remarked that this
regularisation introduces a strong blurring in the solution that may dete-
riorate the quality of the reconstruction [11]. This issue has recently been
researched by Agrawal et al. [1], however, only with respect to variational
depth-from-gradient techniques. For direct variational shape-from-shading
approaches such an investigation of adaptive regularisers is missing.

o Spontaneous Concave-Conver Switches. Finally, it is well-known that shape-
from-shading in its original formulation (orthographic projection, Lamber-
tian surface) is an ill-posed problem [5]. Due to the related concave-convex
ambiguity, spontaneous switches in the solution may occur if the strength of
the regularisation is too low. In this context one should note by incorporating
knowledge on the surface at critical points [11] or assuming other conditions
such as perspective instead of a orthographic projection [14], shape-from-
shading can be turned into a partially or even fully well-posed problem.
In this case the problem of spontaneous switches does not occur. However,
since we restrict ourselves to the classical problem formulation without prior
information, this issue remains relevant for us.

In our paper all four aspects are addressed. We show by the example of the
methods of Horn and Brooks [2] and of Frankot and Chellappa [4] how the



use of higher order smoothness terms allows a direct computation of the sur-
face depth. Consequently, no shape-from-gradient algorithms are required and
all integrability constraints become obsolete by construction. Moreover, we in-
vestigate how the smoothness term of our novel method can be adapted. This
also includes a strategy to cope with spontaneous concave-convex switches in
the solution.

Our paper is organised as follows. In Section 2, we give a short review on
the shape-from-shading problem, while in Section 3 we discuss the indirect ap-
proaches of Horn and Brooks and Frankot and Chellappa. Based on the outcome
of this discussion, we then develop a novel direct variational approach for shape-
from-shading in Section 4. In Section 5 we extend this approach by adaptive
smoothing strategies. We propose variants that are based on image- and depth-
driven smoothness terms. In Section 6, experiments for all three novel algorithms
are presented, while the summary in Section 7 concludes this paper.

2 The Shape-from-Shading Problem

Let us consider a shaded image as a function f(z,y) where (z,y) denotes the lo-
cation within a rectangular image domain (2. Furthermore, let us assume that the
surface z(z,y) depicted in this image has been illuminated by a single light source
only and that its reflectance properties can be expressed in terms of a reflectance
map R(zz(z,y), 2y(2,y)). Such a reflectance map is a function that describes the
amount of light reflected by the surface in viewing direction depending on its gra-
dient (2, (z,y), zy(z,y)) . Then, solving the shape-from-shading problem means
to find a suitable surface z(z,y) such that the amount of light reflected by it
equals the grey value that is observed at the corresponding pixel of the image:

f=R(zz,2y)- (1)

In the literature this equation is known as the image irradiance equation [5,6].
Further assumptions in the classical shape-from-shading problem [5] are that the
shaded image was obtained by an orthographic projection and that the surface
is a Lambertian surface , i.e. the reflectance map reads

R(zz,2y) = p-(s,n) (2)
where n denotes the unit surface normal

1 %
n=——=| -z |, (3)
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s stands for the light source direction, and p is the albedo of the surface — a con-
stant that specifies the ratio of scattered to incident light. Evidently, this prob-
lem is ill-posed: For surfaces that are illuminated from above, i.e. s = (0,0,1)%,
both the surface z and its negative counterpart —z are solutions of the image
irradiance equation. As we will see later, this ambiguity yields the well-known
concave-convex switches in the solution.



3 Variational Shape-from-Shading

In order to solve the classical shape-from-shading problem, numerous variational
approaches have been proposed in the literature. All these approaches, however,
are based on an indirect two-step strategy: First the surface gradient is com-
puted, then the actual surface is determined. Two typical representatives the
method of Horn and Brooks [2] and its improved variant by Frankot and Chel-
lappa [4]. In the following both approaches are discussed in detail.

3.1 Horn and Brooks

One of the first variational methods for shape-from-shading that still enjoys great
popularity is the approach by Horn and Brooks [2]. This approach computes the
surface gradient Vz = (2,2,) =: (p,q) as minimiser of the following energy
functional:

B0 = [ ((/-RG0) +a(Vof +1VeP) ) dody. (4

While the first term (the data term) penalises deviations from the image irra-
diance equation, the second term (the smoothness term) assumes the recovered
surface derivatives p and ¢ to be smooth. The degree of smoothness of the solu-
tion is steered by a regularisation parameter a > 0.

Obviously, this method suffers from two drawbacks: First of all, it is not
considered explicitly in the formulation of the energy functional that p and ¢
are derivatives of a common surface z. Thus it is not surprising that in most
cases there might not even exist a surface z with Vz = (p, ¢) for the computed
solution. Secondly, even if the integrability would be enforced by means of other
constraints during the solution process of (4) as proposed in [6,4], it is not
trivial to actually obtain the desired surface z. Additional depth-from-gradient
techniques [4,1] are necessary anyway to compute the actual surface.

3.2 Frankot and Chellappa

Frankot and Chellappa [4] proposed a solution to both the integrability problem
and the problem of recovering the depth from the gradient field. After each
iteration step of the Horn and Brooks algorithm, they project the computed
gradient (p, ) onto the closest integrable pair of functions (p,q) by minimising

[ (=52 +1a=a7) dady. )

To this end, they compute the Discrete Fourier Transforms (DFT) of p and ¢
and perform the projection step in the frequency domain. Moreover, they also
propose a way to integrate (p,q) in the frequency domain. However, from a
modelling point of view such an alternating approach is neither desirable nor
is its convergence mathematically understood. Hence, it would be much more
natural to estimate the surface depth z directly.



4 'Who Dares Wins: Higher Order Regularisation

For solving both previously discussed problems more reliably, we propose the
following strategy: By considering the actual approach of Horn and Brooks in
(4) and replacing p by 2, and g by z,, we obtain a direct variational shape-from-
shading method that overcomes all integrability problems by construction. The
corresponding energy functional of this novel approach is given by

BE) = [ ((F~Rlew )P + o+ 22, +5,) ) dady. (6)

=|[Hess(z) | %

Please note that all integrability problems only vanish if this energy functional is
solved for z — and not for z, and z, as proposed in [4]. Such a direct computation
of z also offers another advantage: Since it guarantees that z,, = zy;, we obtain
a second order smoothness term in a natural way (the smoothness term in (4)
is only a first order regulariser). This new smoothness term can be identified as
the squared Frobenius norm of the Hessian.

Following the calculus of variations [3], we know that a minimiser of an energy
functional must satisfy its Euler-Lagrange equation(s). For our novel approach
this partial differential equation is given by

:% <(f — R(zs,2y))Rz, (zw,zy)) + a%((f = R(2s,2))R, (Z”Zy))

+a (zwwww + 2zwzyy + zyyyy) :

0
(7)

As one can see, our new regulariser results in a homogeneous fourth order dif-
fusion term. Evidently, this makes its discretisation more complicated than the
one of a standard second order diffusion expression. However, a common strategy
proved to be very successful in this case: By discretising the continuous func-
tional in (6) and computing its derivatives a suitable discretisation for (7) can
be derived that even contains the correct boundary conditions.

In order to solve the resulting nonlinear system of equations, we apply a
Jacobi-like method as proposed in [6]. Thereby the complete data term is taken
from the old iteration step. In this context, one should note that the solution
of this equation system may not be unique, since our energy functional is not
strictly convex. This means that the solution we find might not be the global
minimum of the functional, but only a local one. Although one can avoid this
problem by manually providing the algorithm with the correct shape at the
image boundary and occluding boundaries (and thus turn the classical shape-
from-shading task into a well-posed problem), we want to tackle the original
problem and thus intentionally refrain from providing this this prior knowledge.

5 Adaptive Higher Order Regularisation

It turns out that the shape of simple images can be reconstructed well using small
weights a for the smoothness term. However, for complex images with many



edges and occluding boundaries, it is necessary to use a stronger smoothness
term to obtain a convergent iteration. Evidently this decreases the accuracy of
the reconstruction. In the following we present two additional approaches that
tackle this problem: By adapting the smoothness term either to the input image
or to the depth map they reduce the amount of unnecessary regularisation and
thus allow for a more precise reconstruction of the final surface.

5.1 Image-Driven Regularisation

So far, our variational approach from Section 4 only uses a homogeneous smooth-
ness term, i.e. a regulariser that does not distinguish between different locations
in the image. However, it is well known that at discontinuities the information
provided by the input image is very poor. Consequently, the regularisation at
such locations should be much stronger than in flat areas, where the shape of
the surface is easy to reconstruct. In other words: One can improve the recon-
struction quality in flat areas by regularising less.

In order to model this observation, we propose a modified approach that
adapts its regularisation to the local image structure. It is given by the energy
functional

Be) = [ ((f = Reews2) + aB(VSP) [Hess(2)}) dody. (9

that makes use of a weighting function g(|V f|?) in the smoothness term. Con-
sidering |V f| as an edge indicator, this weighting function should be large where
|V f| > 0, and small where |V f| = 0. Thus, any positive, monotonically increas-
ing function g can be chosen for this task. In the context of our image-driven

approach, we use
g(s?) = V82 + € (9)

where € > 0 is a small positive constant that ensures at least a small amount of
regularisation. As one can easily verify, this function attains its minimum value
€ at s2 = 0 and approaches the identity function for large s2.

As for our homogeneous method, the minimisation of (8) requires to solve
its Euler-Lagrange equations. In the case of image-driven regularisation they are
given by

0= ((f = Rl ) Recear2) + 1 ((F = RGeos )R, (20%))) (10

v (g (09I P)2ee) + 2505 (9)20) 4 5 (809 10) )

Compared to the Euler-Lagrange equation 7 of our shape-from-shading method
with homogeneous higher order regularisation, the adaptive smoothness term
induces a linear fourth order diffusion process, where g plays the role of a dif-
fusivity function. Again, we suggest to derive a suitable discretisation for this
equation by discretising the continuous functional and computing its derivatives.
The obtained equation system is then solved once more by a Jacobi-like iteration
step.



5.2 Depth-Driven Regularisation

In our second approach, we proposed to use edge information of the input im-
age f to control the strength of the regularisation. However, in particular with
respect to situations where frequent convex-concave switching artifacts occur, it
may make much more sense to adapt the weight of the induced diffusion pro-
cess to the edge information of the evolving depth map instead. This has the
following reason: Since such artifacts manifest themselves in large gradients in
the recovered surface, they can be tackled by increasing the smoothness at the
corresponding locations.

Therefore, we propose to replace the image gradient |Vf| in the Euler-
Lagrange equations of the image-driven case by the depth gradient |Vz|. Thus,
equation (10) turns into the following PDE:

0=4 (1 = Rz, 2)Res (22, ) + a% (7 = Rze 2R, (22 0)) - (1)

i ( 2 (12)zes) +2 6i2y (5192220 + (%;(g(WzIZ’)Zyy)) .

One should note that in contrast to the image-driven approach, this approach
is now based on a fourth order diffusion process which is nonlinear. However,
essentially the same strategy as in the previous two cases can be applied to solve
this equation numerically.

6 Experiments

Let us now investigate the reconstruction quality of all of our three novel tech-
niques. To this end, we perform experiments using two popular shape-from-
shading test images: the penny and the Mozart face [16]. Moreover, we compared
the results of our techniques to the reconstruction of the algorithm of Frankot
and Chellappa. This allows to analyse the advantages of the presented meth-
ods in a systematic way. With respect to the presented results for the method
of Frankot and Chellappa, one should note that we also refrained in their case
from providing information about singular points or occluding boundaries to the
algorithm (this was also done in their original paper). In this way a fair compar-
ison can be guaranteed. The parameter o was optimised manually to minimise
the average Lj-error (12).

6.1 The Penny

In our first experiment, we used the penny image of size 128 x 128 pixels depicted
in Figure 1. It shows the surface of a coin with Lambertian reflectance properties.
This data set is challenging due to several reasons: One one hand the surface
of the contain is a large-scale structure with a sharp edge at the top. Since we
assume the surface to be smooth, this part should be difficult to reconstruct.
On the other hand the coin is mainly concave, with convex engravings. The



algorithm does not incorporate this shape information. So if the general shape
of the coin was convex, this would be a good reconstruction as well. Moreover,,
the engravings on the coin are a problem themselves: While the head of Abraham
Lincoln is pretty large, there are also writings on the coin, which are small-scale
structures that are very difficult to recover.

In the left column of Figure 1, the computed reconstructions for the penny
image are shown. Using the Frankot-Chellappa algorithm, we obtain a very curvy
surface: Some parts of the surface are convex, some concave. Moreover, the edge
of the coin is hardly recovered at all. Our homogeneously regularised algorithm
improves this result: Lincoln is reconstructed relatively well, and the coin edges
are also recovered much better. The surface at the edge, however, is partly esti-
mated to be convex, partly to be concave. The image-driven algorithm has the
same problem at the coin edge, however, the detailed structures are recovered
much shaper. Nevertheless, we can observe that the surface tends to switch be-
tween concave and convex shape spontaneously — this can be observed very well
at Lincoln’s hair. Using depth-driven regularisation, these artifacts disappear al-
most completely. The reconstruction now looks somewhat like a coin (although
its general shape is convex instead of concave). In the middle column, the back-
projections of the reconstructions are compared. As one can see, the reconstruc-
tions using the Frankot-Chellappa algorithm and our homogeneously regularised
algorithm are quite blurry, the writings are hardly readable and details of Lin-
coln are lost. With our algorithms based on adaptive higher order regularisation
this blurring is reduced significantly: Much more details are preserved and in
the case of the image-driven smoothness term even the engravings are readable
very well. This is also confirmed by our error plots in the right column. There,
the absolute differences between the ground truth and the backprojections of
the reconstructions are shown (scaled by a factor 12 to improve visibility of the
error).

6.2 The Mozart Face

In our second experiment we computed the reconstructions for the Mozart face
of size 256 x 256. In this case, the task is even more difficult than in the case
of the penny, since the original surface is very complex. As a consequence, the
image contains many edges and singular points which may result in numerous
concave-convex switchings in the reconstruction.

The computed surfaces presented in the first column of Figure 2 show similar
tendencies as for the penny image. While the result for the Frankot-Chellappa
algorithm is curvy and suffers significantly from a higher number of concave-
convex switchings, the reconstruction using our homogeneously regularised al-
gorithm is already slightly better. However, once again the approaches based
on adaptive higher order regularisation yield the most detailed reconstructions:
While the image-driven approach gives the sharpest results, it still suffers from
several concave-convex switches. In the case of the depth-driven approach these
switches are almost not existent. The backprojected images in the central col-
umn look once again very reasonable for all approaches. However, the error plots



Fig. 1. The Penny. Left to right: Depth map, orthographic projection from above,
difference image (scaled by factor 12). Top to bottom: Ground truth, Frankot-Chellappa,
homogeneous regularisation, image-driven regularisation, depth-driven regularisation.



in the right column reveal the superiority of the proposed approaches: Again, for
the Frankot-Chellappa algorithm, the error is spread all over the image, while
it is mainly concentrated to edges in the adaptively regularised reconstructions.
Thereby, the concave-convex switching artifacts lead to scar-like artifacts. These
artifacts are greatly reduced in the case of our depth-driven algorithm.

For a quantitative inspection of our qualitative results, we used the average
Ly -error of the image irradiance equation [16] (the error in the backprojection
of the reconstructed surface), which is given by

E = ﬁ /Q |f(2,y) — R(za(x,9), 2y (w,y))| dw dy . (12)

The error rates in 1 confirm our qualitative observations from Figure 2. As
one can see, the reconstruction quality of the new algorithms is clearly better
than the one of Frankot-Chellappa: Improvements up to 33% with the depth-
driven approach are possible.

Table 1. Error rates for the Mozart image

Approach Error E

Frankot-Chellappa 0.0192
Homogeneous Regularisation 0.0176
Image-Driven Regularisation 0.0138
Depth-Driven Regularisation 0.0127

7 Summary and Conclusions

In this paper we introduced three novel variational approaches for solving the
classical shape-from-shading problem. Unlike existing techniques that first com-
pute the surface gradient and then recover the actual surface, all these ap-
proaches recover the desired surface directly within a single partial differential
equation. Thus additional constraints to enforce the integrability of the solu-
tion and the subsequent application of depth-from-gradient algorithms became
obsolete. Within this three methods, we developed one approach based on ho-
mogeneous regularisation, while the other two adapt their smoothing behaviour
either to edges in the original image or edges the evolving depth map. Results
show a clear advantage of all three concepts, whereby the image-driven approach
yielded the sharpest results, while the depth-driven approach gave the best re-
constructions itself.

We hope that by deriving such direct approaches, we can revive the research
in the field of variational shape-from-shading methods. As other areas in com-
puter vision show — such as stereo reconstruction or optical flow estimation —
there is a large potential in variational methods. This potential has evidently
not yet been exploited for the purpose of shape-from-shading.



Fig. 2. Mozart’s face. Left to right: Depth map, orthographic projection from above,
difference image (scaled by factor 12). Top to bottom: Ground truth, Frankot-Chellappa,
homogeneous regularisation, image-driven regularisation, depth-driven regularisation.
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