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Abstract. Although shape from shading (SfS) has been studied for al-
most four decades, the performance of most methods applied to real-
world images is still unsatisfactory: This is often caused by oversimplified
reflectance and projection models as well as by ignoring light attenuation
and nonconstant albedo behavior. We address this problem by proposing
a novel approach that combines three powerful concepts: (i) By means of
a Chan-Vese segmentation step, we partition the image into regions with
homogeneous reflectance properties. (ii) This homogeneity is further im-
proved by an adaptive thresholding that singles out unreliable details
which cause fluctuating albedos. Using an inpainting method based on
edge-enhancing anisotropic diffusion, structures are filled in such that
the albedo does no longer suffer from fluctuations. (iii) Finally a sophis-
ticated SfS method is used that features a perspective projection model,
considers physical light attenuation and models specular highlights. In
our experiments we demonstrate that each of these ingredients improves
the reconstruction quality significantly. Their combination within a sin-
gle method gives favorable perfomance also for images that are taken
under real-world conditions where simpler approaches fail.

1 Introduction

An ultimate goal in computer vision is the 3-D reconstruction of our real world
based on 2-D imagery. Although tremendous progress has been achieved when
reconstructing a 3-D surface from multiple images [1], problems are much more
severe when only a single image is available and the illumination is known. In our
paper we address this so-called shape-from-shading (SfS) problem by introducing
a novel framework that is particularly tailored to the difficulties one has to face
in real-world scenarios.

In the SfS problem, one usually assumes that a three-dimensional surface is
illuminated by a single light source whose direction is known. The goal is to
reconstruct this 3-D surface from the brightness variations within a single 2-D
image. It is evident that this is a very difficult task that requires a number of
additional, simplifying model assumptions in order to become tractable.

The investigation of SfS models was pioneered by Horn [2]. His orthographic
camera model and his Lambertian surface assumption became characteristic for
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numerous early SfS algorithms; see e.g. [3] for a survey. Another milestone in
the development of SfS models are the approaches of Prados et al. [4], Tankus
et al. [5], and Cristiani et al. [6]. They replaced the orthographic camera model
by a pinhole camera model performing a perspective projection, and they as-
sumed that the light source is located at the optical centre. Moreover, a light
attenuation term is considered in [4]. These ideas have been further extended
by Ahmed et al. [7] and by Vogel et al. [8]. In these works, the Lambertian
reflectance model is replaced by the more realistic model of Oren and Nayar
[9], which is particularly useful for skin surfaces, or by the Phong model from
computer graphics [10], which models specular highlights. Many experts agree
that Lambertian assumptions do not model realistic surfaces in an appropriate
way [7, 11, 9].

Although this development shows a clear evolution of SfS models towards
more realistic assumptions, most of these papers work on synthetic data. The
few ones that use real-world data sets usually do not consider more realistic
effects such as highlights or inhomogeneous reflectance properties as part of
their models. In view of these difficulties, it is not surprising that in order to
make SfS methods work in real-world applications, they had to be combined
with external expertise provided e.g. by face databases and machine learning
techniques [12] or by user-specified constraints [13].

Our Contribution. The goal of our paper is to show that by a more sophis-
ticated approach, SfS works for a larger class of real-world images, even when
no substantial a priori knowledge is available. To this end we combine three suc-
cessful concepts:
• In order to extract the object of interest for the SfS process we segment the
image with two level set approaches: the region-based Chan-Vese segmentation
model [14] and the edge-based geodesic active contour model [15, 16].
• We detect fluctuations in the albedo by a local adaptive thresholding [17] and
eliminate them by inpainting with edge-enhancing anisotropic diffusion [18].
• We use the non-Lambertian, perspective SfS model of Vogel et al. [8] that
belongs to the most realistic SfS techniques and takes into account highlights.

Related Work. In our experiments we demonstrate that it is exactly the
combination of the three successful concepts segmentation, albedo handling and
non-Lambertian SfS that is crucial for the performance of our method. However,
some related ideas with two combined concepts have been proposed in the lit-
erature. Concerning the combination of inpainting and SfS, Prados et al. [19]
applied an algorithm of Tschumperlé and Deriche [20] for inpainting the eyes
and the eyebrows for facial Lambertian SfS. Jin et al. [21] have combined a seg-
mentation step with 3-D reconstruction of Lambertian surfaces. Their method
also exploits multiple views.

Paper Organization. In Section 2, we present more details on the key
concepts of our combined method. An evaluation of their individual usefulness
is given in Section 3. The paper is concluded by a summary with outlook in
Section 4.
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2 Our Three-Stage Approach

Let us now have a more detailed look at the three key concepts that are combined
within our SfS framework in order to exclude the background, to handle albedo
variations and to deal with non-Lambertian surfaces.

2.1 Finding the Region of Interest – Segmentation

In a first step we separate the object of interest from the background. This
is necessary since both have incompatible reflectance properties. For this task
we use the active contour model of Chan and Vese [14]. This is a classic level-
set-based method that exploits the grey-value difference between object and
background.

The Chan-Vese model segments the image domain Ω ⊂ R2 into two regions
by minimising the difference between the image intensity f(x) : Ω → R and its
average value in each region. Additional constraints are imposed on the length of
the region boundary C and on the area inside C. This comes down to minimising
the energy

E (C, c1, c2) = µ length(C) + ν area(insideC)

+
∫

inside(C)

(f − c1)2dx +
∫

outside(C)

(f − c2)2dx, (1)

where c1 and c2 are the average values of f inside and outside C, and µ ≥ 0 and
ν ≥ 0 are weighting parameters. These weights are important to tune the object
detection: A large µ will give a coarse segmentation, while a small µ will detect
fine details. As a region-based segmentation model, the Chan-Vese method is
fast and robust with respect to initialisation and noise.

In order to further improve the localization of the object contour, we use
the Chan-Vese result as initialisation for the edge-based geodesic active contour
model [15, 16]. The governing evolution equation is given by

∂tφ = |∇φ| div
(
g (|∇fσ|) ∇φ

|∇φ|

)
on Ω × [0,∞),

φ(x, 0) = φ0(x) on Ω,
(2)

where φ(x, t) is a level-set function, φ0 a suitable initialisation and∇ = (∂x, ∂y)>

is the gradient operator. The edge stopping function g draws the contour towards
nearby edges in the presmoothed image fσ, which is obtained by convolving f
with a Gaussian with standard deviation σ. The function g(s2) is decreasing in
s. In our application we choose the Perona-Malik diffusivity gPM (s2) = (1 +
s2/λ2)−1, where λ > 0 is some contrast parameter [22]. If the object is bounded
by a pronouced edge, the edge-based active contours will generally result in a
sharper segmentation.

2.2 Ensuring a Homogeneous Albedo –
Inpainting by Edge Enhancing Diffusion

Generally, real-world objects do not have a constant albedo. To apply SfS we
need to ensure that the albedo does not vary within the segmented contour.
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In our approach we detect regions of differing albedo and fill in neighborhood
information to obtain homogeneous reflectance properties.

In order to identify regions with fluctuating albedo we use an adaptive thresh-
olding algorithm that works on local windows [17]. Adaptive thresholding is
robust with respect to varying illumination conditions within the scene and is
widely used in document analysis. Note that by slightly enlarging the identified
regions by morphological erosion we can improve the subsequent interpolation
result, preventing artifacts at the boundaries.

The next step is to interpolate the image in these regions. For this task we
choose edge-enhancing anisotropic diffusion (EED) [23]. It was shown to perform
better for image inpainting and scattered data interpolation than other PDE-
based methods [18]. The main idea behind EED is to allow smoothing within
homogeneous regions and along image edges, but to reduce smoothing across
them. To this end it makes use of a diffusion tensor. In the region that we want
to inpaint we solve the steady-state diffusion equation

0 = div
(
g(∇uσ∇u>σ )∇u

)
, (3)

with the boundary conditions specified by the surrounding data. Here uσ is a
smoothed version of the evolving image u, obtained by convolving it with a
Gaussian of standard deviation σ. The scalar-valued diffusivity g is applied to
the eigenvalues of the structure tensor ∇uσ∇u>σ , while leaving its eigenvectors
unchanged. This way, the first eigenvector of the diffusion tensor is parallel to
the edge detector ∇uσ. The desired filter effect comes from the fact that the
corresponding eigenvalue is given by g(|∇uσ|2), such that smoothing is reduced
at edges, where |∇uσ| is large. The second eigenvector is orthogonal to ∇uσ

with corresponding eigenvalue 1. For the diffusivity g one typically chooses the
Charbonnier diffusivity gC(s2) = (1+s2/λ2)−1/2, with contrast parameter λ > 0.

The interpolated image can be seen as an albedo-corrected version of the
original image, which now satisfies the assumption of a surface with homogeneous
reflectance properties.

2.3 3-D Reconstruction – Shape from Shading

Finally, we need to reconstruct the modified image from Section 2.2 within the
segmentation region obtained in Section 2.1. For this, we use the method of Vogel
et al. [8] incorporating the Phong reflectance model since real-world objects
feature non-Lambertian surfaces [11]. The model is formulated in terms of the
Hamilton-Jacobi equation

I − kaIa

Q
f2W − kdIde

−2v − WksIs

Q
e−2v

(
2Q2

W 2
− 1

)α

= 0 , (4)

where x = (x, y) ∈ R2 is in the image domain, and u > 0 with v := ln(u) is
the sought depth map. The other terms in (4) are given as follows. I := I(x) is
the brightness normalised to the interval [0, 1], and f is the focal length denoting
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the distance between the optical centre of the camera and the 2-D retinal plane.
The terms Q and W are given as

Q :=
f√

x2 + y2 + f2
, (5)

W :=
√

f2|∇v|2 + (∇v · x)2 + Q2 . (6)

Note that in (4), the underlying brightness equation reads as

I = kaIa +
∑

light sources

1
r2

(
kdId cos φ + ksIs(cos θ)α

)
. (7)

Here, φ is the angle between the surface normal at the point ũ := (x, u(x)) ∈ R3

and the light source direction as seen from ũ. The amount of specular light
reflected towards the camera is proportional to (cos θ)α, where θ is the angle
between the ideal (mirror) reflection direction of the incoming light and the
viewer direction at ũ. The parameter α models the roughness of the material:
For α →∞ one would obtain a model for a perfect mirror. Ia, Id, and Is are the
intensities of the ambient, diffuse, and specular components of light, respectively.
The constants ka, kd, and ks with ka + kd + ks ≤ 1 denote the ratio of ambient,
diffuse, and specular reflection [10].

For solving the PDE (4), we use the algorithm proposed by Breuß et al., for
details see [24].

3 Real-World Experiments

In this section, we evaluate our proposed framework on real-world images. Fig-
ure 1 (a) shows a picture of a cup taken with a digital camera in our office
environment. The image has size 408×306 with quadratic pixels of 1.61 µm side
length. The focal length of the camera is 70.2 mm.

Figure 1 (b) shows a reconstruction of this surface using the SfS method of
Prados and Faugeras [4]. Note that this is already an advanced SfS method,
which uses a perspective projection model on Lambertian surfaces and considers
the physical light attenuation term. The parameters used for the reconstruction
were f = 5435 = 70.2 mm/1.61 µm and γ = 100000, where γ is the calibration
parameter used in the model of Prados et al. [4, 19]. Note that this parameter
can be chosen arbitrarily, since it will only scale the reconstruction uniformly in
all dimensions.

We can clearly see that the reconstruction fails completely in the background,
at the transition from foreground to background, and at textures and highlights
on the cup. Now, we demonstrate step by step how our proposed framework
helps to improve this reconstruction.

In the next experiment, we perform a segmentation as proposed in Section
2.1. Using the parameters ν = 0, µ = 10 for Chan-Vese postprocessed by geodesic
active contours with λ = 3.6, we obtain the segmented cup shown in Figure 2
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Fig. 1. (a) Photograph of a cup. (b) Lambertian reconstruction.

Fig. 2. (a) Segmented version of the cup image. (b) Lambertian reconstruction of the
segmented image.

(a). Now we reduce the reconstruction to only this area. The resulting surface
using a Lambertian model for reconstruction is shown in Figure 2 (b). Clearly,
this improves the reconstruction of the cup. It is still oddly shaped, but on its
boundaries, the reconstruction is substantially better.

In the next experiment, we adapt the albedo in the textured regions using
the procedure described in Section 2.2. We perform an adaptive thresholding
on the image within the cup area, taking a 100 × 100 window. This gives the
inpainting region, which is the black template in Figure 3 (a).

After a morphological erosion of this inpainting region in order to enlarge its
size, we apply EED with the parameters λ = 2 and σ = 0.3 to inpaint the image
there. The inpainted image is shown in Figure 3 (b). This image can be regarded
as a constant-albedo version of the original image, within the segmented area.
Note that this image still contains specular highlights.

Now, we reconstruct the surface from the segmented and inpainted data.
Figure 3 (c) shows the corresponding reconstruction. We still use the Lambertian
model by Prados et al here. The shape of the cup obtained by this Lambertian
model looks quite reasonable. However, the cup is estimated much too close to
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Fig. 3. (a) Inpainting region obtained by adaptive thresholding. (b) Inpainted image.
(c) Reconstruction of the inpainted image using a Lambertian model

the camera, in particular at specular highlights. Note that the handle, which is
pointing slightly towards the background in the original image, is pulled to the
front.

As a final step, we switch to the more advanced SfS model of Vogel et al.
[8], which assumes Phong reflectance properties. With the parameters Is = Id =
100000, kd = 0.6, ks = 0.4, α = 6, we obtain the reconstruction shown in Figure
4 (a). The parameters have been estimated manually, where only α and the ratio
between kd and ks is really relevant. The magnitude of Is and Id will only scale
the reconstruction. This yields a fairly realistic reconstruction of the cup. Its
shape is recovered well, as is its size and the distance to the camera. The handle
is now approximately at the correct position, and even at specular highlights the
reconstruction is satisfactory. Compared to the results without any preprocessing
in Figure 1 (b), the reconstruction quality is improved dramatically. Figure 4 (b)
shows the recovered shape rendered with the texture from the input image.

To show the applicability of our framework to other images, we applied it to
two other real-world images shown in Figure 5. The impact of the different steps
of our framework for these experiments is similar to those of the first experiment.
This will be investigated in more detail in future work. The first image shows a
computer mouse on a table. Mouse and table obviously have different materials,
and the logo of the manufacturer on the mouse has a different colour than
the rest of the mouse. The gap between the buttons makes the reconstruction
additionally difficult, since we have shadows there, which contradict the model
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Fig. 4. (a) Reconstruction of the cup using the Phong model. (b) Rendered version of
the final reconstruction.

assumptions. Since for this example, foreground and background have similar
brightness, we made use of the hue channel in the segmentation step. Figure 6
(a) shows the reconstruction of the mouse. The mouse is recovered very well,
including the slots on the buttons, and nearly perfect even at the gaps between
the buttons.

Figure 5 (b) is a photograph of a book. The background is quite inhomoge-
neous and would lead to distortions of the shape if reconstructed unsegmented.
The book has some texture on it in different colours and brightnesses. The re-
construction in Figure 6 (b), however, is quite convincing.

4 Conclusions and Outlook

The key message of our paper is the proof that shape from shading is possible
under the difficult conditions of real-world images, even without the need to
include knowledge-based techniques. This has been achieved by a sophisticated
three-stage model that incorporates object segmentation, albedo inpainting and
non-Lambertian shape from shading. Our experiments demonstrate that shape
from shading has the potential of becoming a serious alternative in computer
vision systems when other techniques are difficult to apply. In our future work
we will focus on exploring this potential further.
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