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Abstract. In this work, we extend the applicability of perspective Shape
from Shading to images incorporating non-Lambertian surfaces. To this
end, we derive a new model inspired by the perspective model for Lam-
bertian surfaces recently studied by Prados et al. and the Phong re-
flection model incorporating ambient, diffuse and specular components.
Besides the detailed description of the modeling process, we propose an
efficient and stable semi-implicit numerical realisation of the resulting
Hamilton-Jacobi equation. Numerical experiments on both synthetic and
simple real-world images show the benefits of our new model: While com-
putational times stay modest, a large qualitative gain can be achieved.

1 Introduction

Given a single greyscale image, the shape-from-shading (SFS) problem amounts
to computing the 3-D depth of depicted objects. It is a classical problem in
computer vision with many potential applications, see [1–3] and the references
therein for an overview.

In early SFS models, the camera is performing an orthographic projection of
the scene of interest, which is assumed to be composed of Lambertian surfaces.
Let us especially honour the pioneering works of Horn [1, 4] who was also the
first to model the problem via the use of a partial differential equation (PDE).

For orthographic SFS models, there have been some attempts to extend the
range of applicability to non-Lambertian surfaces [5, 6]. However, orthographic
models usually suffer from ill-posedness, especially in the form of the so-called
convex-concave ambiguities [3]. Moreover, the orthographic camera model yields
reconstruction results not of convincing quality in most situations [3].

The problem of ill-posedness can be dealt with successfully by using a per-
spective camera model, see e.g. [3, 7–10]. As our model incorporates for a special
choice of parameters the perpective model for Lambertian surfaces widely stud-
ied in the literature, let us give some more details on these. Assuming a pinhole
camera model and a point light source at the optical center, the perspective SFS
model for Lambertian surfaces amounts to the Hamilton-Jacobi equation
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where x ∈ R2 is in the image domain Ω, |.| denotes the Euclidean norm, and

– u := u(x) is the sought depth map,
– I := I(x) is the normalised brightness of the given grey-value image
– f is the focal length relating the optical center and its retinal plane,

– Q := Q(x) := f/

√
|x|2 + f2 .

As already indicated, perspective models such as (1) yield superior depth
maps compared to orthographic models. However, up to now there does not
exist a reliable and easy-to-use PDE-based model incorporating non-Lambertian
surfaces. An interesting, yet not very sophisticated attempt to incorporate other
surface models into perspective SFS is given in [11].

Our contribution. In our paper, we introduce a detailed model of a new
PDE for perspective SFS incorporating non-Lambertian surfaces. It is clearly
stated at which point the Phong reflection model we use for this purpose is
taken into account. A second objective is to give an efficient and easy-to-code
algorithm. We realise this aim by using the algorithm of Vogel et al. [12] for
perspective SFS and Lambertian surfaces as a basis. As our experiments show,
we achieve a considerable gain concerning the quality of computed depth maps,
and we obtain reasonable results even for simple real-world images.

Organisation of the paper. In Section 2, we present the model process
in detail. In Section 3, a thorough description of the numerical scheme is given.
Following a discussion of experiments in Section 4, the paper is finished by
concluding remarks.

2 Description of the Model

Consider the surface S representing the object or scene of interest depicted in
a given image, parameterised by using the function S : Ω̄ → R3, Ω ⊂ R2 [12],
with

S(x) =
fu(x)√
|x|2 + f2

(x,−f)T︸ ︷︷ ︸
∈R2×R

. (2)

As the two columns of the Jacobian J [S(x)] are tangent vectors to S at the
point S(x), their cross-product gives a normal vector n(x) at S(x) by

n(x) =

(
f∇u(x)− fu(x)

|x|2 + f2
x , ∇u(x) · x +

fu(x)
|x|2 + f2

f

)T

. (3)

Up to this point, the model is largely identical to the one for perspective SFS
[3]. However, we assume that the surface properties can be described by a Phong
reflection model [13, 14], and thus we introduce the brightness equation

I(x) = kaIa +
∑

light sources

1
r2

(kdId cos φ + ksIs(cos θ)α) . (4)
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Let us comment on equation (4) in some detail: Ia, Id, and Is are the intensities of
the ambient, diffuse, and specular components of the reflected light, respectively.
Accordingly, the constants ka, kd, and ks with ka+kd+ks ≤ 1 denote the ratio of
ambient, diffuse, and specular reflection. The light attenuation factor 1/r2, where
r is the distance between light source and surface, is taken into account. The
intensity of diffusely reflected light in each direction is proportional to the cosine
of the angle φ between surface normal and light source direction. The amount
of specular light reflected towards the viewer is proportional to (cos θ)α, where
θ is the angle between the ideal (mirror) reflection direction of the incoming
light and the viewer direction, and α is a constant modeling the roughness of
the material. For α →∞ this describes an ideal mirror reflection.

We restrict the model to a single light source at the optical center of the
camera [15]. As in this case the view direction and light source direction are
the same, we obtain θ = 2φ. Moreover we restrict the model to scalar valued
intensities as we only consider greyscale images. Then equation (4) becomes

I(x) = kaIa +
1
r2

(
kd(N · L)Id + ks(2(N · L)2 − 1)αIs

)
, (5)

with N = n(x)
|n(x)| being the unit normal vector at the surface at point x, and L is

the unit light vector which points towards the optical center of the camera. The
scalar products N ·L arise since cos φ = N·L and cos θ = cos 2φ = 2(cos φ)2−1 =
2(N · L)2 − 1. As the normalised light source direction is given by

L (S(x)) =
(
|x|2 + f2

)−1/2

(−x, f)T
, (6)

we can evaluate the scalar products yielding

N · L (S(x)) = fu(x)
(
|n(x)|

√
|x|2 + f2

)−1

. (7)

By use of r = fu(x), we obtain from (5-7)

I(x) = kaIa +
1

f2u(x)2
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− 1
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)
, (8)

where |n(x)| =
√

f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2 and with

Q(x) =
√

f2/(|x|2 + f2) . (9)

The PDE (8) is of Hamilton-Jacobi-type. We now rewrite (8), yielding

(I(x)− kaIa)
f2|n(x)|

Q(x)u(x)
− kdId

u(x)2
− |n(x)|ksIs

u(x)3Q(x)

(
2u(x)2Q(x)2

|n(x)|2
− 1
)α

= 0 . (10)

We assume – as usual when dealing with this problem – that the surface
S is visible, so that u is strictly positive. Then we use the change of variables
v = ln(u) which especially implies

|n(x)|
u(x)

=
√

f2|∇v(x)|2 + (∇v(x) · x)2 + Q(x)2 , (11)
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since ∇v(x) = 1
u(x)∇u(x). Neglecting the notational dependence on x ∈ R2, we

finally obtain the PDE

JW − kdIde
−2v − WksIs

Q
e−2v

(
2Q2

W 2
− 1
)α

= 0 (12)

where

:= J(x) = (I(x)− kaIa)f2/Q(x) , (13)

W := W (x) =
√

f2|∇v|2 + (∇v · x)2 + Q(x)2 . (14)

Note that in the Phong model, the cosine in the specular term is usually
replaced by zero if cos θ = 2Q(x)2

W (x)2 − 1 < 0.

3 Numerical Method

In order to solve the arising boundary value problem (12), we employ the method
of artificial time. As it is well-known, this is one of the most successful strategies
to deal with static Hamilton-Jacobi equations, see e.g. [16] and the references
therein. This means, we introduce a pseudo-time variable t riting v := v (x, t),
and we iterate in this pseudo-time until a steady state defined by vt = 0 is
attained.

Thus, for v = v(x, t), we opt to solve the time-dependent PDE

vt = JW − ksIse
−2v W

Q

(
2Q2

W 2
− 1
)α

︸ ︷︷ ︸
=:A

−kdIde
−2v . (15)

Discretisation. We employ the following standard notation: vn
i,j denotes the

approximation of v (ih1, jh2, nτ), i and j are the coordinates of the pixel (i, j)
in x1- and x2-direction, h1 and h2 are the corresponding mesh widths, and τ is
a time step size which needs to be chosen automatically or by the user.

We approximate the time derivative vt by the Euler forward method, i.e.,

vt(x, t)|(x,t)=(ih1,jh2,nτ) ≈
vn+1

i,j − vn
i,j

τ
. (16)

Let us now consider the spatial terms. The discretisation of I(x) and Q(x) is
simple as these terms can be evaluated pointwise at all pixels (i, j). As a building
block for the discretisation of spatial derivatives incorporated in W , we use the
stable upwind-type discretisation of Rouy and Tourin [16]:

vx1(ih1, jh2, ·) ≈ h−1
1 max (0, vi+1,j − vi,j , vi−1,j − vi,j) , (17)

vx2(ih1, jh2, ·) ≈ h−1
2 max (0, vi,j+1 − vi,j , vi,j−1 − vi,j) . (18)

Note that in (17), (18) the time level is not yet specified, as we wish to employ a
Gauß-Seidel-type idea, compare e.g. [12]. To this end, notice that at pixel (i, j)
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the data vi,j+1, vi−1,j , vi,j , vi+1,j , vi,j−1 are used. Iterating pixel-wise over the
computational grid, ascending in i and descending in j, we incorporate already
updated values into the scheme. This yields the formulae

vx1(x, t)|(x,t)=(ih1,jh2,nτ) ≈ h−1
1 max

(
0, vn

i+1,j − vn
i,j , vn+1

i−1,j − vn
i,j

)
, (19)

vx2(x, t)|(x,t)=(ih1,jh2,nτ) ≈ h−1
2 max

(
0, vn+1

i,j+1 − vn
i,j , vn

i,j−1 − vn
i,j

)
. (20)

Let us emphasize that the data vn+1
i,j+1 and vn+1

i−1,j in (19),(20) are already com-
puted via the described procedure, so that they are fixed and one can safely use
them for the computation of vn+1

i,j .
Being a factor before W , we discretise ksIse

−2v at pixel (i, j) using known
data as it is the case in the remainder of this term, i.e., setting ksIse

−2vn
i,j .

Finally, let us consider the source term kdIde
−2v. Source terms like this en-

force the use of very small time step sizes when evaluated explicitly, leading to
very long computational times. Thus, we discretise it implicitly by

kdIde
−2v(x,t)|(x,t)=(i,j,nτ) ≈ kdIde

−2vn+1
i,j . (21)

Letting Â denote the discretised version of term A from (15), we obtain by (16)
the update formula

vn+1
i,j = vn

i,j − τÂ− τkdIde
−2vn+1

i,j (22)

which has to be solved for vn+1
i,j . We treat the nonlinear equation (22) by use of

the classical one-dimensional Newton method, which convergences in practice in
3-4 iterations.

To summarize our algorithm, we (i) initialize v := −0.5 log If2, (ii) iterate
using equation (22) until the pixel-wise error in v is smaller than some predefined
small constant ε in every pixel.

Note that it is possible to do a rigorous stability analysis, yielding a reliable
estimate for τ useful for computations, compare [12] for an example of such a
procedure.

4 Experiments

Let us now present experiments on both synthetic and real images. In all these
experiments we use the method developed above. Let us note, that the method
was compared to other recent methods in the field in the context of perspec-
tive SFS with Lambertian reflectance [12]. In the latter context, the proposed
algorithm has turned out to be by far the most efficient numerical scheme.

Using synthetic test scenes, the ground truth is known, so that we can com-
pare the reconstructions with it and get a quantitative measure of the error.

Reality, however, is different: Recent SFS methods consider only Lambertian
surfaces, while in reality such surfaces do not exist. Although the Phong model
is only an approximation to the physical reality, surfaces rendered with it ap-
pear much more realistic. In order to evaluate the benefit of the Phong-based
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approach for real-world images, we only consider synthetic surfaces rendered
with the Phong model and ks > 0. We use Neumann boundary conditions in all
experiments.

Fig. 1. The vase: Ground truth surface and rendered image.

The Vase Experiment. In our first experiment, we use a classic SFS test
scene: The vase [2]. Figure 1 shows the ground truth together with a rendered
version. It has been rendered by ray-tracing the surface which complies to our
model with f = 110, h1 = h2 = 1, Id = Is = 3000, kd = 0.6, ks = 0.4, ka = 0,
128× 128 pixels, and α = 4.

Fig. 2. Reconstructions of the vase. Left: Lambertian model, Right: Phong model.

In Fig. 2 we find reconstructions using our new model and the Lambertian
model from [3, 12] employing the known parameters. The reconstruction with the
Lambertian model looks distorted. The whole surface is pulled towards the light
source, located at (0, 0, 0). The effect is most prominent at specular highlights.
At the boundary of vase and background, we observe a strong smoothing, which
is normal when using a Lambertian model. The shape of the reconstruction using
our new model is quite close to the original shape. It has the right distance from
the camera and the correct size. The boundary of the vase is smooth, too, but the
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transition is clearly sharper than the one obtained using the Lambertian model.
In Tab. 1, we compare the reconstruction with the ground truth. We observe a

Table 1. Average L1 errors for the vase experiment.

Phong model Lambertian model

Error in u 0.042 0.088
Error in v 0.049 0.101

Relative error in u 4.62% 9.66%

considerable improvement using our model. The computational times are about
one minute, which is just a bit slower than the Lambertian algorithm. Note that
we omitted the relative error in v since v = log u.

Let us now evaluate the performance of our method on noisy input images.
Figure 3 shows the vase input image distorted by Gaussian noise with standard
deviations σ = 5 and σ = 10. This is quite a lot of noise for shape from shading
applications.

Fig. 3. The vase: Noisy input images. Left: σ = 5, Right: σ = 10.

Figure 4 shows the reconstructions of both noisy images using our new
method. In both cases, the general shapes are preserved quite well, only the
fine structure of the surface looks a bit noisy. Despite the strong noise in the
input data, we get good reconstructions. The error levels in Tab. 2 support this
impression. For the image distorted with only a little noise, we get almost the
same reconstruction error as in the noiseless experiment. With the second image,
the error is a bit higher, but almost the same. The method performs very stable
under noise. For experiments with noise on Lambertian surfaces compare [3, 12].
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Fig. 4. The vase: Reconstructions of noisy data. Left: σ = 5, Right: σ = 10.

Table 2. Average L1 errors for the vase experiment on noisy images.

Noise, σ = 5 Noise, σ = 10

Error in u 0.047 0.050
Error in v 0.051 0.054

Relative error in u 5.33% 5.49%

The Cup Experiment. In Fig. 5, we see a photograph of a plastic cup,
taken with a normal digital camera with flashlight. In this image, several model
assumptions are violated.

– We do not have the same surface throughout the image.
– The flashlight is not located at the optical center, creating shadows in the

image.
– Some parts of the scene reflect on the surface of the cup, especially on the

left.
– The image was taken in a room that was darkened, but certainly was not

pitch black, and there was some ambient light reflected from the walls of the
room.

Fig. 5. Photograph of a plastic cup.
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Figure 6 shows reconstructions using Phong and Lambertian models, respec-
tively. Parameters for the Phong reconstruction were f = 1500, h1 = h2 = 1,
Is = Id = Ia = 2000, ka = 0.1, kd = 0.5, ks = 0.4, and α = 4. We used some
ambient lighting to compensate for ambient light present in the room. For the
Lambertian reconstruction we used the same parameters, but with ks = 0. In
the Phong reconstruction, the plate in the background is flat like it should be. In
the Lambertian reconstruction, we see artifacts at specular highlights on the cup
where the surface is pulled towards the light source: The cup is estimated much
too close to the camera (not observable in Fig. 6). In the Phong reconstruction,
we hardly see artifacts. At the specular highlights, we have an almost normal
shape. Even the handle of the cup and the plate are recovered very well.

Fig. 6. Reconstructions of the cup. Left: Lambertian model. Right: Phong model.

5 Summary

We have introduced a Phong-type perspective SFS model that yields much more
accurate results than its Lambertian counterpart. Moreover, we have seen that
also real-world images and noisy images can be tackled successfully by our new
model. This is an important step towards making SFS ideas applicable to a
larger range of real-world problems.

Our ongoing work is concerned with more complicated illumination models
as this step will improve the applicability of SFS to real-world problems, as well
as algorithmic speedups. We also propose to use the current model with the
presented technique for automated document analysis, which will be the subject
of future work.
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