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Preface
Vision, modeling, and visualization are rapidly converging disciplines. Often the three fields are treated
separately, each with their own methodology and terminology. However, in many applications they must
work hand in hand to evoke cross-fertilization and new research directions. Prominent examples are image
and video-based rendering, 3D-TV, and medical visualization. Also, due to the proliferation of digital
photography and high-speed graphics accelerators, image-based modeling and the corresponding vision
and visualization techniques have become a highly relevant research topic.

The Vision, Modeling, and Visualization 2007 workshop addresses the entire spectrum of techniques
and applications in this combined field, from data acquisition over processing to visualization, including
perceptional issues. This workshop is the twelfth in a series of annual meetings organized by different
research centers and groups. After highly successful meetings at various locations, this year’s event takes
place in Saarbrücken, Germany.

The call for papers drew 49 contributions from 15 different countries. Each submission was anonymously
reviewed by two members of the Program Committee and two external reviewers. These proceedings con-
tain the 27 papers which were accepted. They present an excellent cross section of ongoing research in the
fields of vision, modeling, and visualization. The papers are organized in 7 sessions: Visualization, GPU,
3D Acquisition and Processing, 2D/3D Image Processing, Mesh Processing, Learning and Recognition,
and Medical Visualization.

In addition, we are happy that three internationally renowned experts have accepted our invitation to
present keynote speeches:

• Thomas Vetter, University of Basel, Switzerland
• Michael Goesele, TU Darmstadt, Germany
• Ramesh Raskar, Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

Furthermore, the workshop features a special session entitled Gigapixel displays, a challenge for visualiza-
tion? organized by the BW-FIT reserach cluster on gigapixel visualization.

The conference is organized by the Computer Graphics Group at the Max Planck Institute for Computer
Science and by Saarland University in cooperation with the Max Planck Center for Visual Computing and
Communication. Carsten Stoll and Conny Liegl have managed the conference web-site and the conference
management system. The proceedings have been assembled by Oliver Schall and Wolfram von Funck.
Sabine Budde is the conference secretary and Christel Weins is the financial and social events coordinator.

Saarbrücken, November 2007

Hendrik Lensch, Bodo Rosenhahn, Hans-Peter Seidel, Philipp Slusallek, and Joachim Weickert
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Invited Talk

Morphable Models for Faces, Skulls and Cars

Thomas Vetter

Department of Computer Science
University of Basel, Switzerland

Abstract

Morphable models constitute a unifying framework for the analysis and synthesis of images. In the field
of Computer Graphics, they are applied to model photo-realistic face images; in the domain of Computer
Vision, they are used in face recognition applications compensating variations across pose, illumination
and facial expressions. Morphable face models draw on prior knowledge of human faces in the form of
a general face model, learned from examples of other faces. By exploiting the correspondences between
all examples, these models introduce a vector space structure on the examples that allows to synthesize
novel photo-realistic images. Image analysis can be performed by fitting such a flexible model to novel
images. Then, the model parameters yielding the optimal reconstruction are used to code or analyze the
face depicted. In this talk, I start with a quick review on morphable face models and will discuss some
of its limitations for face recognition applications based on skin detail analysis. In a second part I will
report on current work on building morphable models of human bones and skulls. Here we use a novel data
registration technique that does not require a parametric representation of the example data. Finally, I will
conclude with presenting a Morphable Model for the design and modification of automotive shapes.
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Surface Glyphs for Visualizing Multimodal Volume Data

Timo Ropinski1, Michael Specht1,2, Jennis Meyer-Spradow1, Klaus Hinrichs1, Bernhard Preim2

1Visualization and Computer Graphics Working Group (VisCG), University of Münster
2Department of Simulation and Graphics (ISG), University of Magdeburg

Email: {ropinski, spech m01, spradow, khh}@math.uni-muenster.de,
preim@isg.cs.uni-magdeburg.de

Abstract

In this paper we present concepts for integrating
glyphs into volumetric data sets. These concepts
have been developed with the goal to make glyph-
based visualization of multimodal volumetric data
sets more flexible and intuitive. We propose a
surface-based glyph placement strategy reducing
visual clutter as well as image-space glyph aggre-
gation. Thus the user is not distracted by unwanted
clustering, and his focus of attention can rather be
guided using appropriate visual appearances. Fur-
thermore, we present techniques to make the setup
of glyph-based visualizations more intuitive. These
concepts have been integrated into a user interface
which supports easy configuration and comparison
of different glyph setups. Based on the chosen
setup a visual legend is generated automatically to
make a step towards quantitative visual analysis.
We will discuss the placement strategy as well as
the glyph setup process, explain the used render-
ing techniques and provide application examples of
multimodal visualizations using the proposed con-
cepts.

1 Introduction

Multimodal volume visualization has to deal with
the proper integration of data obtained from dif-
ferent sources. In the medical domain acquisition
of different modalities is about to become a daily
routine since modern scanners such as PET/CT,
PET/MRT or SPECT/CT can be used to capture
multiple registered volume data sets. PET data sets
which usually have a lower resolution than CT data
sets represent a functional image, e.g., metabolism
activity, while CT data sets provide a detailed mor-
phological image. To benefit from both modalities,
they have to be visualized simultaneously in an in-

tegrated manner. In contrast to these modalities ad-
ditional data can be derived from a given volume
data set and visualized with our technique. For in-
stance, cardiac wall thickness or wall motion can be
calculated from time-varying medical data sets. The
use of multimodal volumetric data sets is manifold
not only in medicine but also in areas like meteo-
rology and seismology. Furthermore, many physi-
cal simulations, e.g., fluid dynamics or quality in-
surance simulations, produce multimodal volumet-
ric data sets.

A common approach to visualize volumetric data
sets containing two modalities is to generate a fu-
sion image by blending between these. For in-
stance, modern medical workstations support such
a fusion imaging to explore registered PET/CT data
sets and allow the user to control the degree of
blending by using a slider. This fusion imaging
has two drawbacks. First, this form of user control
introduces an additional degree of freedom which
makes it difficult to find adequate visualization pa-
rameters. Second, quantification becomes more dif-
ficult since the blending has a major influence on
the colors used to represent intensities stored within
the data sets, and the colors may interfere with the
surface shading. While these issues may be man-
ageable when dealing with only two modalities, the
blended fusion image is insufficient if more than
two modalities have to be taken into account.

Using glyphs in volume visualization is not
new [6, 7, 8]. However, most of the proposed
work has rather focussed on ways glyphs can be
used to visualize information than on how to flex-
ibly setup this information and make it quantifiable.
The contribution of this paper is to make glyphs
more usable as a tool for multimodal volume vi-
sualization. Therefore we propose a surface-based
glyph placing strategy which decreases unwanted
glyph clustering and reduces clutter by minimizing
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glyph occlusion. Furthermore, we will introduce a
user interface, which allows an easy configuration
of a glyph setup, i.e., the definition how properties
are represented by glyphs and how the glyphs are
placed. Based on this setup we describe how to
generate a visual legend which is a necessary step
towards a quantitative visual analysis of glyph visu-
alizations.

The paper is structured as follows. In the next
section related work is discussed. The so called
surface glyphs and details regarding their place-
ment are discussed in Section 3. In order to sup-
port a flexible and intuitive setup of a glyph-based
visualization we propose some techniques accom-
panied with appropriate user interface concepts in
Section 4. The used rendering technique is briefly
described in Section 5, while application examples
are given in Section 6. The paper concludes in Sec-
tion 7.

2 Related Work

This section briefly discusses some work related to
the topic of this paper, but does not intend to give
a complete overview of glyph visualization tech-
niques used in scientific as well as information visu-
alization. Moreover, we focus on those techniques
which are related to our approach for visualizing
volumetric multimodal data sets.

Ward [18] states that glyph-based visualization is
a powerful method for providing multimodal infor-
mation, by adding iconic glyphs to a scene in order
to display various variables through various proper-
ties such as shape or color. In his work he describes
and classifies different glyph placing strategies and
proposes rules for their usage in the context of in-
formation visualization.

In the field of scientific visualization diffusion
tensor imaging (DTI) is probably the domain where
the usage of glyphs has been most intensively in-
vestigated [10, 17, 8]. Most of the work published
in this area focuses rather on choosing an appro-
priate glyph shape in order to transmit informa-
tion [5] than on positioning of the glyphs. For in-
stance, in [8] superquadrics are used to convey the
principal eigenvectors of a diffusion tensor in or-
der to depict the microstructure of white-matter tis-
sue of the human brain. The distinct glyphs are
placed in a regular grid and controlled by a frac-
tional anisotropy threshold in order to minimize vi-

sual clutter. Jankun-Kelly and Mehta [6] have used
superquadric ellipsoid glyphs to visualize traceless
tensor data.

To achieve a beneficial glyph visualization, not
only the shape of the used glyphs but also their
placement is essential. In [10] a stochastically jit-
tered placing of glyphs is described with the goal to
eliminate the possibly distracting effects of a grid
placement. In 2006 Kindlmann and Westin [7] have
proposed a glyph packing strategy allowing a tex-
ture like appearance of a glyph aggregation. In con-
trast to the approach presented in this paper only
one modality, i.e., DTI data, is used, while our
glyph placing strategy is based on the fusion of mul-
tiple modalities. In [13] spherical glyphs are ex-
ploited to visualize cardiac MR data in order to al-
low an exploration of the structure as well as the
function of the myocard.

Besides in the medical domain glyphs are also
used in other areas dealing with multimodal data.
Nayak et al. [12] have used glyphs in order to visu-
alize seismic data representing the measured, time-
dependent, 3D wave field of an earthquake recorded
by a seismic network. Reina and Ertl [14] have pro-
posed a technique for depicting molecular dynamics
by means of hardware-accelerated glyph rendering,
and Saunders et al. [15] have proposed the use of
circular glyphs for visualizing nano particles in for-
mation.

Besides using glyphs there are other strategies
to visualize multi-field volume data. Recently Ak-
iba et al. [1] have presented a novel user interface
concept to support the identification of correlation.
Their technique exploits linked views as well as par-
allel coordinates and is demonstrated by visualizing
the hurricane Isabel data set. Similar to the concepts
presented in [4] their approach supports brushing,
to allow the user to formulate the current interest.
Blaas et al. have introduced a technique which also
exploits linked views [3]. Besides a physical view
they use a feature-space view to visualize multi-
field data.

3 Surface Glyphs

Glyph placement is crucial in order to achieve
meaningful glyph-enhanced visualizations. Glyphs
that occlude each other or occlude big portions of
the volume can easily counteract the information in-
crease intended by the use of glyphs. Therefore it
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must be ensured that glyph occlusion is minimized,
and that not too many glyphs are placed.

A basic approach for placing glyphs is to super-
impose a regular three-dimensional grid on the vol-
umetric data set and to place the glyphs at the grid
points (see Figure 1(a)). However, this method has
two drawbacks. First, the introduced grid structures
do not necessarily match the structure of the under-
lying data set, e.g., in the example the underlying
data set shows a round, smooth sphere. Second,
placing glyphs in a regular grid may lead to the false
impression of a glyph aggregation resulting from
the glyph positions in image space. These aggrega-
tions attract the user’s attention, although the user’s
focus could be better guided by the visual appear-
ance of the glyphs, i.e., by the glyph properties and
user-defined glyph property mapping functions (see
Section 6).

To eliminate these drawbacks, we propose a
surface-based glyph placement strategy. It achieves
a feasible glyph distribution that fulfills both of the
requirements stated above by placing glyphs on iso-
surfaces of a volumetric data set. A straightfor-
ward way of defining such an isosurface is to spec-
ify an isovalue as it is done in isosurface rendering.
The effect of isosurface placement is that glyphs
are placed at points that are exactly located on an
isosurface (see Figure 1(b)). Isosurface placement
leads to fewer glyph occlusions and also avoids mis-
leading glyph aggregation in image space.

A possible approach to realize isosurface glyph
placement is to calculate a polygonal mesh using
the marching cubes algorithm [11], and then to ran-
domly choose polygons and place glyphs on them.

(a) Regular grid placement. (b) Isosurface placement.

Figure 1: Comparison of the regular grid and iso-
surface glyph placement methods. The result of the
isosurface placement is visually more pleasing be-
cause the glyphs are evenly distributed on the sur-
face and occlusion is minimized.

Uniform distribution could be achieved by calcu-
lating the surface area of each polygon and tak-
ing polygon surface area distribution into account
when polygons are chosen randomly. Apparently,
the contiguous surface resulting from the march-
ing cubes algorithm is not necessary for isosurface
glyph placement. Distinct glyphs should be placed
at certain locations near an or even exactly on an
isosurface, but it does not matter whether two lo-
cations of interest are directly connected by an iso-
surface. This makes the marching cubes approach
inappropriate, especially if one considers the com-
plexity and ambiguous special cases.

Therefore we propose a simpler method, which
proceeds in two steps. The first step resembles
closely the first step of the marching cubes algo-
rithm. A three-dimensional boolean array having in
each direction the size of the volumetric data source
minus one is allocated. Each boolean array element
corresponds to a cell which is determined by an oc-
tuple of adjacent voxels from the data set. In the
first step, the marking step, the array is traversed,
and for each cell the data source is evaluated at each
of its eight vertices. A cell is marked if the values
indicate that the isosurface passes through it, i.e., if
the eight values are not all greater than or not all
less than the specified isovalue. In the second step,
the placement step, marked cells are repeatedly ex-
tracted from the array until none are left. A glyph
is placed at every marked cell and adjusted inside
that cell in such a way that it is located exactly on
the specified isosurface while remaining as close as
possible to the center of the cell. This is achieved by
subdividing the cell into eight sub-cells and query-
ing the data source at the eight vertices of each sub-
cell. Among all sub-cells the isosurface is deter-
mined to run through, the sub-cell with the smallest
distance to the root cell’s center is chosen and recur-
sively subdivided. Finally, all cells within a user-
specified world space distance from the current cell
are cleared in order to create a certain amount of
empty space around each glyph.

Although the images resulting from the isosur-
face placement method are good for simple, generic
data sets, a problem arises when real-world data is
used. As depicted in Figure 2(a), it is possible that
glyphs seem to be placed below the surface (this ef-
fect can be seen in the region of the ear) or placed
not at all because isosurfaces may be very close and
run parallel to each other, so that glyphs are dis-
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tributed on both surfaces. Figure 2(b) reveals that
the missing and misplaced glyphs have been placed
on the inside surface of the skull.

In order to provide a solution for misplaced
glyphs, the isosurface placement method has been
restricted to visible isosurfaces only. Visible isosur-
face placement assumes that isosurfaces that are not
visible to the viewer can not be of any interest and
hence, they should be ignored in the cell marking
step. This additional condition for the marking step
is implemented by casting axis-aligned rays into the
volume data set, starting at each outer cell and di-
rected into the data set. When one cell has been
marked by a ray, this ray is terminated so that in the
end only cells visible from the outside have been
marked. With this restriction we resolve ambigui-
ties as those shown in Figure 2.

4 Glyph Visualization Setup

We have identified the following work flow for cre-
ating glyph-enhanced volume visualizations. Ini-
tially, after the user has loaded the contributing
data sets the glyph modeling has to be carried out.
Therefore the user selects a glyph prototype and
specifies a mapping function which maps the infor-
mation contained in the volume data sets to glyph
properties, e.g., color or size. Finally the desired
glyph placement method is chosen and the glyphs
are arranged within a volume data set to represent
information located at their position. Our proposed
user interface assisting during the glyph setup con-
sists of two parts, one window for glyph modeling
and an overlayed graphical legend supporting eval-
uation of glyph-enhanced visualizations.

4.1 Glyph Shapes

Each glyph prototype is characterized by a set of
properties through which information can be visu-
alized. Depending on the desired visualization and
the glyph properties, the suitability of glyph pro-
totypes varies. Therefore the user has to choose a
suitable glyph prototype for a certain task. The ba-
sic properties which are shared by all glyph proto-
types are color, opacity and size, while more sophis-
ticated glyph prototypes offer further possibilities to
convey information by additional glyph properties.

The glyph prototypes described in this paper
are based on the superquadric shapes presented

(a) r = 0 (b) r = 0.25 (c) r = 0.5 (d) r = 0.75 (e) r = 1

(f) r = 0 (g) r = 0.25 (h) r = 0.5 (i) r = 0.75 (j) r = 1

(k) t = 0.2 (l) t = 0.4 (m) t = 0.6 (n) t = 0.8 (o) t = 1

Figure 3: The supersphere and supertorus proto-
types with varying parameters for roundness r (up-
per two rows), and the supertorus prototype with
varying parameters for thickness t (lower row).

in [2]. In contrast to cuboid or ellipsoid glyphs,
superquadrics have the advantage that a multitude
of parameters can be mapped unambiguously. For
instance, when using ellipsoids or cuboids an awk-
ward viewing direction may result in visual ambi-
guity, i.e., different shapes are not distinguishable
after projected onto the view plane [8]. For the sake
of simplicity, some parameters of the original su-
perquadric shapes have been made constant or com-
bined in order to obtain intuitive shapes that can be
interpreted easily: the supersphere and the super-
torus. In contrast to the original superquadric el-
lipsoid which takes three radii as parameters, the
supersphere has a fixed radius of 1. Glyph prop-
erties defined by the supersphere prototype are the
scalar parameters α and β, which are derivations
from the original superquadric ellipsoid α′ and β′.
The purpose of this simplification is a more easy
setup as well as interpretation process. Thus it is
more intuitive to define the roundness of the surface
because their default value is 0 and the perceived
change in roundness and edge sharpness resulting
from adjusting α and β is linear. The conversion
from supersphere α and β to the original α′ and β′

is given by:

α′ = 2α (1)

β′ = 2β (2)

In the original equations, the base shape (plain
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(a) (b) (c)

Figure 2: Glyphs are distributed on front- and back-facing surfaces (a), semi-transparent isosurfaces reveal
the hidden glyphs (b). Application of visible isosurface placement (c).

sphere or torus) results from α′ = β′ = 1. Less
roundness can be achieved with 0 > α′ < 1 and
0 > β′ < 1, sharper edges can be achieved with
α′ > 1 and β′ > 1. With the conversion applied,
the base shape results from α = β = 0, less round-
ness is achieved with α < 0 and β < 0, sharper
edges are achieved with α > 0 and β > 0, and the
change in sharpness or roundness is linear and thus
more suitable for user interaction. However, these
prototypes are still rather complex because the in-
terpretation of the α and β values is not very intu-
itive. For example, two supertori perceived as ‘not
round’ can have different parameters. In order to re-
solve such ambiguities, simplified versions of both
supersphere and supertorus prototypes have been
created in which the α and β parameters are com-
bined into a parameter r that represents the round-
ness of the object expressed by a value in the range
from 0 (angular) to 1 (round). The conversion from
r to α and β is defined by the equation

α = β = 5 · r − 5. (3)

This results in a value between 0 and 5 serv-
ing as good values for round resp. non-round su-
perquadrics (see Figure 3).

The supertorus prototype is defined by an addi-
tional scalar t that represents the thickness of the
torus. In comparison to the original superquadric
shapes, the supersphere and supertorus prototypes
are easier to interpret because an estimation of the
roundness r seems rather trivial when compared to
an estimation of the parameters α and β used in the
original equations. Even for users with no math-
ematical background it should be easy to interpret
the roundness and thickness values.

The complex glyph modeling task can be done
with the help of the user interface depicted in Figure
5, whereas the interface elements are arranged ac-
cording to the work flow of the glyph modeling pro-
cess. After all data sets have been loaded, a glyph
prototype has to be chosen from a list of available
prototypes. The currently chosen glyph prototype is
shown in the prototype window (see upper overlay
in Figure 5). To save screen space, glyph proper-
ties of interest can be expanded or hidden, e.g., in
Figure 5, the roundness and thickness properties are
currently expanded.

4.2 Glyph Property Mapping

For specifying the property mapping function,
which maps input values from scalar data sources
to scalar glyph property values, the user can con-
trol a set of mapping keys. Each mapping key de-
fines a pair of source and destination values. The
specification of the mapping function is similar to
specifying a transfer function. An example is shown
in Figure 4, where two keys are used to define the
mapping behavior. In order to provide the possibil-
ity to put emphasis on certain glyphs, steps can be
introduced in a mapping function by splitting keys
and defining different destination values for points
to the left and to the right of the key (see Figure 4).
If the mapping function is evaluated for a source
value other than those defined by the keys, linear
interpolation between the keys to the left and the
right of the queried location is used. If the mapping
function is queried for locations that do not lie be-
tween two mapping keys, the value of the nearest
mapping key is returned.

In the mapping function window (see lower over-
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lay in Figure 5), a mapping function can be defined
by modifying mapping keys within the canvas span-
ning the complete range of possible input and out-
put values. In addition to the mapping function, a
scalar data source must be chosen that should be
linked to the glyph property and that the mapping
function should be applied to. The mapping can-
vas supports the user by providing the possibility
to display the histogram of the current data source.
After the glyph properties have been adjusted, a
glyph placement method is chosen along with a data
source the glyph placement is applied to. When
the glyph prototype and the placement method have
been set up, the glyph modeling is finished and the
glyphs can be rendered.

4.3 Glyph Legend

To allow the interpretation of a glyph-enhanced vi-
sualization, it is necessary that the glyph mapping
process is transparent, such that the user can de-
rive the source information from a glyph’s repre-
sentation. Therefore we propose a glyph legend
which represents the mapping function graphically.
Since only those glyph properties that are dependent
on data sources actually convey information, only
these properties are of interest within a glyph leg-
end. Thus a legend can be constructed from a num-
ber of rows each depicting how a property of inter-
est relates to its underlying data source. If multiple
properties depend on the same data source, these
properties can be combined into a single row be-
cause for each of these properties, the data source is
queried at exactly the same location and thus returns
exactly the same value.

For generating the glyph legend, all data sources
that are linked through a mapping function are taken
into account. Thus, for each data source involved,
a row is added to the legend that indicates how the

Figure 4: An example mapping function with two
mapping keys. The second key is split.

Figure 5: The glyph modeling user interface with
the glyph prototype window and the graphical glyph
mapping function editor displaying the histogram of
the current scalar data source.

Figure 6: In the minimal glyph legend only key
glyphs are displayed.

data source influences the visual appearance of the
glyph. All glyph properties that are connected to
the current row’s data source through the mapping
function are determined and printed in the row cap-
tion to clarify which properties are conveyed by the
glyph icons. Furthermore, for all mapping keys an
icon of the glyph prototype is added to the row,
showing the glyph prototype with the resulting rep-
resentation inherently defined by the mapping func-
tion. In the cases of split mapping keys, two glyph
icons representing both left and right mapping key
destination values are rendered and separated by a
vertical line to emphasize the fact that a split map-
ping key is displayed. A legend created in such a
way can be seen in Figure 6.

A more comprehensive legend can be created by
inserting supplementary keys in cases where the dif-
ferences between two consecutive mapping keys’
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Figure 7: In the the extended glyph legend, glyphs are inserted at certain locations in order to bridge large
differences.

destination values are large. A possible approach
to extend the legend is to find pairs of consecu-
tive mapping keys for which the change of at least
one property exceeds a certain threshold and to add
the appropriate glyph representations to the legend.
Such an extended legend is shown in Figure 7.

5 Rendering

To allow simultaneous display of volumetric data
and polygonal glyphs, we have extended the GPU-
based ray casting technique [9], which is solely ap-
plicable to render volumetric data sets. The inte-
gration of opaque glyphs is quite easy. In order
to combine opaque geometry with GPU-based ray
casting, it is sufficient to modify the end points of
each ray by drawing the additional polygons on top
of the proxy geometry’s back faces (see Figure 8).
Thus each ray terminates as soon as it hits a poly-
gon. Glyphs can be integrated by initially rendering
them to the background and afterwards blending the
ray-casting results using the modified exit parame-
ters shown in Figure 8(c).

Figure 8: The entry and exit parameters for GPU-
based volume ray-casting (left,middle). The exit pa-
rameters are modified in order to integrate opaque
glyphs positioned on a sphere (right).

6 Application Examples

This section discusses some examples of the de-
scribed glyph-enhanced volume visualization ap-
plied to the NCAT PET/CT data set [16] as well as
the hurricane Isabel data set.

In contrast to Computed Tomography which re-
veals the inner structure of a subject, Positron Emis-
sion Tomography is used to get information about
metabolic activity inside a living subject. Because
PET images are of much lower resolution than CT
data sets, it is difficult to tell where points in the im-
age are located within the subject because the mor-
phological context as provided by Computed To-
mography is missing. To avoid such problems, a
combined CT/PET scan can be performed. The re-
sult of such a scan are a PET data set and a CT data
set. The latter provides contextual information and
is registered with the PET data.

A method of displaying CT and PET data simul-
taneously is PET/CT fusion imaging, in which a
color gradient is applied to the PET image and sub-
sequently both images are combined into a single
fusion image. However, this fusion makes quanti-
zation difficult, since the PET color mapping is in-
fluenced by the color of the blended CT data.

The visualizations presented in Figure 9(a) and
in Figure 9(b) are alternatives to common PET/CT
fusion imaging. A volume rendering of the CT data
provides the context for the PET data which is con-
veyed by glyphs. In order to demonstrate that in
glyph-enhanced volume visualization the glyphs are
completely independent of the type of volume ren-
dering applied to the context data, both direct vol-
ume rendering (see Figure 9(a)) and X-ray simu-
lation (see Figure 9(b)) are shown. In both exam-
ples, different attempts to direct the viewer’s atten-
tion to important regions of the volume are demon-
strated. In Figure 9(a), the supertorus thickness is
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used to highlight the lesion on the left ventricle ev-
ident from the PET data. The thickness is mapped
in a way that the user’s attention is directed towards
regions of unusually low metabolic activity, which
are shown by using thicker supertori. Furthermore,
the glyph orientation is adjusted to match the nor-
mal vectors of the heart surface, resulting in min-
imal occlusion and the effect that the glyphs look
like glued to the surface. In Figure 9(b) regions of
high PET activity are visualized in an unobtrusive
manner in order to highlight regions of low PET ac-
tivity.

The previous example could have been visual-
ized to a certain extent by using non-glyph tech-
niques. For instance a simple color coding could
have been used in order to visualize the PET ac-
tivity. However, in order to make this visualiza-
tion quantifiable, the shading should not influence
the shown color. Therefore the data set would have
been rendered without shading, which would de-
stroy the shape through shading cue. Another pos-
sibility would be using stippling. The CT data set
could be rendered using regular phong shading and
the PET intensity could be depicted by superimpos-
ing a stippling pattern, which intensity is altered
based on the PET intensity. While this approach
allows an integration of the PET information into
a CT visualization without loosing the shape from
shading, it is limited to the usage of two modalities.

The hurricane Isabel data used for the visualiza-
tion presented in Figure 10 consists of many modal-
ities including cloud water, cloud ice, graupel, rain,
snow, vapor, pressure, temperature and wind direc-
tion. The goal is to visualize some of these variables
simultaneously in order to allow visual exploration
of the value distribution and to identify correlations.
Two of these variables plus the sum of three further
variables are depicted by the glyphs in the image.
Temperature is depicted by hue in a range from blue
(cold) to red (warm). Air pressure is depicted by the
supertorus thickness, a combination that allows for
intuitive interpretation because of the analogy to a
bicycle tire. The amounts of graupel, rain and snow
are accumulated to the total amount of precipitation
and depicted by the roundness of the glyphs.

Similar to applying color mapping, the glyph-
based visualization allows to get a quick overview
of the value distribution. For instance it can be seen
that the temperature is highest within the eye of the
storm decreasing with increasing distance to it. Ad-

ditionally we can see that the pressure is very low
inside the eye and increasing with increasing dis-
tance to the eye. Since we are using supertorus
glyphs, besides the thickness we can also use the
roundness to represent a variable. With the precip-
itation mapped to roundness, it can be seen that it
is highest in the vicinity of the eye of the storm and
it becomes clear that it is not uniformly decreasing
with the distance to the eye. Moreover the precip-
itation is highest behind the eye of the storm (the
direction of movement is towards the upper left).

Although this example shows the potential of
glyph-based visualizations it also demonstrates the
limits when applying it to multimodal data having
many variables. The remaining glyph properties
that could be used to depict more scalar variables
are saturation, lightness, opacity and scale. Satura-
tion cannot be used to convey detailed information
if hue is used to depict other data at the same time,
because when the saturation value is approaching 0,
correct interpretation of the hue value becomes in-
creasingly difficult. When lightness is used, the in-
terpretation of the hue value becomes difficult when
the lightness value approaches 0 or 1. These effects
lead to the conclusion that in most cases, only one
data source can be depicted by the color properties,
although simultaneous display of three completely
unrelated variables seems possible. Furthermore,
size is potentially inappropriate for conveying data
as well because the data-determined size of a glyph
conflicts with its size due to perspective projection.
Additionally, shape perception becomes very diffi-
cult when glyphs are small.

Besides the glyph property mapping, the surface
used for glyph orientation has to be defined. When
having modalities which provide contextual infor-
mation, e.g. a CT scan, this definition is quite easy.
However, in the general case this task needs more
attention. Sometimes it might even be desirable
to have a dynamic surface, i.e., a 2D slice moving
through the data set.

In both presented examples a non-continuous
mapping can be used to further emphasize dif-
ferences, e.g., when reaching a certain threshold.
In the first example this can be used to show
only glyphs representing abnormal PET intensities,
while the one representing normal ones can be omit-
ted by assigning transparency or minimal size.
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(a) PET/CT DVR. (b) PET/CT x-ray.

Figure 9: Cardiac wall motion and activity, derived from PET/CT data, depicted with different glyph setups.

7 Conclusion and Future Work

In this paper we have presented concepts for easy
setup and interpretation of glyph-based visualiza-
tions. We have introduced modifications of su-
perquadric glyphs and have discussed a surface-
based glyph placement strategy which binds glyphs
to a surface of interest. To make a step towards a
quantifiable glyph-based visualization, we have in-
troduced a visual glyph legend.

In the future more improvements for generating
glyph configurations could be considered. An im-
portant outcome of this development could be de-
sign guidelines specifying which glyph properties
are best suited for depicting certain information.
In some cases also non-symmetric glyphs could be
helpful, e.g., for visualizing velocity or a direction
of movement. In addition, during glyph modeling
the user should be notified about glyph properties
potentially shadowing each other.
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Abstract

In our work we present techniques for illustra-
tive rendering of interpreted seismic volume data
by adopting elements from geology book illustra-
tions. We also introduce combined visualization
techniques of interpreted and uninterpreted data for
validation, comparison and interdisciplinary com-
munication reasons. We introduce the concept of
smooth transitions between these two semantical
levels. To achieve this we present transfer func-
tions that map seismic volume attributes to 2D tex-
tures that flow according to a deformation volume
describing the buckling and discontinuities of the
layers of the seismic data.

Figure 1: Geological and rendered illustrations.
Top left: A cutout with extruding features. Top
right: Textured layers with a fault discontinuity in
the middle. Pictures are from Grotzinger et al. [6].
Bottom: Illustration rendered with our techniques.

1 Introduction

In geology faults and horizons are central subsur-
face structures. The earth has a layer-like structure
and horizons are defined as the surfaces that sepa-
rate one layer from another. Tension in the crust of
the earth deforms the layers over time and creates
cracks. These so called faults are more or less ver-
tical discontinuities of the layers.

Geological illustrations in text books try to con-
vey faults, horizons and other structures of the earth
by using different artistic techniques as seen in the
top of Figure 1. The illustrator draws a cubical sub-
section of the earth defining the area of interest. The
horizons and faults are represented by textures flow-
ing inside the layers that are discontinuous across
faults. The textures are drawn on the exterior side
faces of the cubical subsection whose extent we
hereby refer to as the roaming box. Axis-aligned
cutouts with textures on the interior side faces are
used to show features inside the cubical subsection.
The cutouts sometimes contain extruding 3D fea-
tures. Our illustrative renderings adopt all these
techniques as seen in the bottom of Figure 1.

Figure 2 presents the flow from data acquisition
to data visualization. The faults, horizons and other
subsurface structures are discovered by geoscien-
tists interpreting volumetric descriptions of the sub-
surface. These volumetric descriptions are typically
obtained in geophysical surveys by processing the
reflections of waves sent into the surface. The vol-
ume storing the reflection data is called the reflec-
tion volume. In a time consuming process the faults
and horizons are manually found from the reflec-
tion volume and stored as surfaces. Several seismic
attributes can be computed from the reflection data
such as acoustic impedance (Ai) and the ratio be-
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tween the pressure and shear wave (Vp/Vs). We
will refer to these volumes as seismic attributes.

Coming up with a good visualization of inter-
preted data can be difficult, therefore we propose
to use illustrative techniques. Illustrations are be-
ing used when there are certain high level aspects
of a complex image, such as interpreted informa-
tion, that need to be communicated in a simple way.
Rendering of interpreted seismic data as illustra-
tions has several advantages. It simplifies the visu-
alization and emphasizes the elements of interest in
order to disseminate gained knowledge from the in-
terpretation process. Making a good illustration for
scientific purposes takes time. Being able to ren-
der geological illustrations is advantageous both for
quickly creating static images to illustrate geolog-
ical books and for interactive oil exploration when
interpreted survey data needs to be communicated
as part of decision making.

Interpreting seismic data is a time consuming
manual process and it is important to verify the in-
terpretation with the underlying data source. By
combining visualizations of interpreted and uninter-
preted data it is possible to perform comparisons
and look for deviations. This is another goal in
our work. We propose to visualize the interpreted
data as geological illustrations and to visualize un-
interpreted data using color coded cutting planes
and regular volume rendering. We present how to
combine these two representations. The user can
control the balance between these two visualization
styles to fit his or her needs. For interdisciplinary
communication reasons visualizations can be made
to have the right balance between interpreted data
which contains semantical information understand-
able by lay men to uninterpreted data which con-
tains the information-rich underlying data material
understandable by domain experts.

To our knowledge the concept of creating auto-
matic illustrations of seismic data has not been thor-
oughly explored before, neither in the geophysics
nor in the visualization research community. We
also believe this applies to combined rendering of
interpreted and uninterpreted seismic data.

We start with related work in Chapter 2. After an
overview in Chapter 3 we describe the calculation
of the texture flow in chapter 4. In chapter 5 we
use the calculated flow in combination with texture
transfer functions to texturize the cutting planes on
the side faces of the cubical subsection and on the

cutout. In chapter 6 we describe volume rendering
for displaying the cutout and the surroundings and
we specify how this is integrated with the rendering
of textures during ray casting. Finally future work
and conclusions are presented in chapter 7. The bot-
tom half of Figure 2 shows a high level overview of
the paper.

Figure 2: Overview of the process from data col-
lection to visualization. The paper covers the lower
three colored rectangles in chapter 4, 5 and 6.

2 Related work

We first review work dealing with illustrative tech-
niques and then review work in the field of seis-
mic visualization. Illustrative rendering is a non-
photo realistic visualization technique using the ad-
vantages of conveying information through illustra-
tions. In recent years several illustrative rendering
techniques, mainly in the domain of anatomical vi-
sualization, but none in the domain of seismic visu-
alization, have been proposed. Some of these tech-
niques deal with applying textures from reference
images.

Owada et al. [11] present an interactive system
for texturing arbitrary cuts through polygonal ob-
jects. The user defines the texture flow by spec-
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ifying a flow field and a distance field on the cut
which is used in the texture synthesis to create a tex-
ture on the cut that follows the flow. Their method
is general and therefore requires user interaction to
specify the deformation and the texture. We calcu-
late a parameterization up front so texturing can be
achieved quickly and without the need for texture
synthesis. In our approach many of the parameters
defining the visualization are known prior to render-
ing, therefore less user specification is required

There are also several papers dealing with tex-
tures in medical volume rendering. Lu and Ebert [9]
generate illustrative renderings of color and scalar
3D volumes by applying textures sampled from il-
lustrations and photographs. 3D textures are created
by combining color information from the illustra-
tions with 3D volume data of a corresponding area.
Finally the 3D textures are made tileable with Wang
Cubes. With segmented volume data they apply the
corresponding 3D textures on each segment. With
unsegmented scalar data they use a transfer func-
tion to map scalar voxel values to the 3D textures
in a similar way to what we propose. They do not
deal with multi-attribute texture transfer functions
and with deforming the textures to follow the un-
derlying flow of the data as we do. In addition their
method of calculating the textures is tailored to han-
dle 3D textures whereas we use 2D textures.

Dong and Clapworthy [4] present a technique
that achieves 3D texture synthesis following the tex-
ture orientation of 3D muscle data. Their algo-
rithm has two steps. First they determine the tex-
ture orientation by looking at the gradient data of
the volume and by using a direction limited Hough
transform. Second they perform a volumetric tex-
ture synthesis based on the orientation data. In our
work, instead of considering the volume for evalu-
ating texture flow, we consider the geometric layers.
In addition the texture synthesis of Dong and Clap-
worthy has the drawback of not working on textures
with large interior variation as textures in geologic
illustrations commonly have.

Wang and Mueller [14] use 3D texture synthe-
sis to achieve sub-resolution zooming into volumet-
ric data. With 2D images of several zoom levels
of a tissue, they synthesize 3D volume textures for
each level and use constrained texture synthesis dur-
ing zooming to blend smoothly between the levels.
They address the issue of sub-resolution details but
do not consider texture flow.

In the domain of seismic processing
GeoChron [10] is a formal model for parame-
terizing the layers defined by faults and horizons.
The GeoChron model allows for several inputs
which act as constraints to the parameterization.
It considers the physical processes behind the
deformation whereas our parameterization is
fully defined by the fault and the horizon data.
We believe that for illustration purposes a less
physically accurate and computationally less
intensive algorithm requiring a minimal amount of
input and expertise such as our parameterization
is preferable. However since our visualization
algorithm is decoupled from the parameterization,
it would also accept a GeoChron parameterization.

Cutouts on seismic data and interaction in VR
was presented in the work by Ropinski et al. [13]
where they use volume rendering with two trans-
fer functions. One transfer function is used for the
volume inside a user defined box and one trans-
fer function is used for the volume outside. We
incorporate and extend this concept in our work.
Several papers on visualizing seismic data exist.
Some deal with automatic horizon extraction [2]
or fault extraction [2, 7], others deal with handling
large volumes [2, 12], but none deal with illustra-
tive rendering. Somewhat related is the disserta-
tion of Frank [5] where the GeoChron parameter-
ization [10] is used as a lookup to unfold and flat-
ten a seismic data volume. In commercial systems
seismic attribute data is presented with volume ren-
dering and geometric surfaces are used to present
horizons and faults.

3 Overview of the rendering process

Our methods render interactively the illustrative
features found in geological images. Texturing is
achieved by rendering deformed 2D textures on the
exterior side faces of the roaming box and on the
interior side faces of the cutout. For each layer the
user assigns a texture and the texture’s horizontal
and vertical repeat rate. To also represent seismic
attributes the user can assign textures and opacities
to intervals of the seismic attribute values. These
attribute textures are then blended and laid over the
layer textures. We represent extruding features in
the cutouts by volume rendering using a color trans-
fer function together with a depth based opacity
transfer function. The opacity is a function of the
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layer depth and the transparency can be set to re-
strict volume rendering to certain layers or to cer-
tain depths within a layer. Also in the surrounding
area outside the cutout we perform volume render-
ing that can be restricted to certain layers or to cer-
tain depths within a layer. In the surrounding area
the voxel colors are equal to the average color of
the 2D texture used in the layer the voxel is in. This
gives a consistent coloring with the cutting plane
textures as can be seen in the bottom of Figure 2 and
the top of Figure 10. There we render opaquely the
top and bottom horizon with the average color of the
2D texture in the horizons. To visualize the unin-
terpreted seismic data we render the cutting planes
and the surrounding volume with the color trans-
fer function used for the cutout volume rendering.
The user can smoothly change between the uninter-
preted data rendering and the interpreted illustrative
textured rendering by changing the blending factor.
An overview of the texturing process can be seen
in Figure 6 while the lower part of Figure 2 shows
how the texturing fits into the 3D visualization. In
the next three chapters the details of the visualiza-
tion process described above is presented.

4 Layer parameterization

We parameterize the volume to render 2D planar
textures following the flow of the layers and to
achieve depth controlled volume rendering. Using
the coordinate system shown in Figure 3d we define
horizons as non-intersecting surfaces stacked in the
z-direction of the typez = H(x, y) and faults as
non intersecting surfaces stacked in the x-direction
of the typex = F (y, z) or in the y-direction of
the typey = F (x, z). The faults, horizons and the
side faces of the roaming box divide the volume into
subvolumes which we will refer to as slabs. Con-
versely, each of these slabs is horizontally confined
by what we will refer to as the upper and lower hori-
zon and are laterally confined by fault surfaces and
the side faces of the roaming box (see Figure 3a).

There exists no unique solution to parameterize
a volume. We have designed the parameterization
so that it represents the slabs in a flattened version
where horizons and the layer between are planar.
Figure 3d shows the parameterization coordinate
system(u, v, w) embedded in the world coordinate
system(x, y, z).

The parameterization consists of several steps.

First the upper and lower horizon of the slab is
extended by extrapolation (see dotted lines in Fig-
ure 3a). We do this extension to get a correct vol-
umetric parameterization close to the vertical slab
borders. Then the lower horizon surface is parame-
terized and the depth parameterw is calculated for
the volume, (see curves in Figure 3b). Finally the
2D parameterization of the lower horizon is pro-
jected into the volume along the gradient field of the
w parameter (blue curves in Figure 3c), resulting in
a 3D parameterized slab.

Figure 3: A 2D version of the steps needed for pa-
rameterizing a slab is shown in a-c. The world and
the parameter coordinate system is shown in d.

Let wp = {x, y, z} ∈ R3 be a point inW (orld
space), andpp = {u, v, w} ∈ R3 be the corre-
sponding point inP (arameter space). We represent
the mapping fromW to P asP : W → P where

pp = P(wp) = {Pu(wp), Pv(wp), Pw(wp)}

Let minupper(wp) andminlower(wp) express the
Euclidean distance fromwp to the closest point on
the upper and lower horizon respectively. Thew

parameter, or layer depth, is defined as:

Pw(wp) =
minlower(wp)

minlower(wp) + minupper(wp)

minupper andminlower are found by discretizing
the upper/lower horizon into a point cloud. For
discretizing we linearly subsample the horizon grid
four times, and store the points in a kd-tree for effi-
cient searching. Note thatPw does not express the
distance to the closest surface as found by a distance
transform, but the relative distance between the up-
per and lower horizon, it maps the lower horizon to
0, the upper horizon to 1 and is linear in between. In
effect it flattens the layer and defines a local depth
measure on it. See curves in Figure 3b.
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We now have aw parameterization of the slab.
The(u, v) values in the slab are found by projecting
the(u, v) values from the parameterized lower hori-
zon, which is described in 4.2. Projections into the
volume is done along the streamlines seen as blue
curves in Figure 3c which are defined by the vector
field∇Pw. ∇Pw is calculated using central differ-
ences. For each voxel we trace along the streamline
in the opposite gradient direction toward the lower
horizon, seen as a green arrow in Figure 3c. We as-
sign to the voxel the(u, v) value of the intersected
point on the lower horizon.

Assigning(u, v) values for the voxels inside the
slab that are close to the vertical slab borders might
result in streamlines leaving the slab and entering an
area wherePw has not been calculated. See green
arrow in Figure 3c. We have extended the horizons
with the method described in 4.1 prior to thew pa-
rameterization and prior to the(u, v) parameteriza-
tion of the bottom horizon. By doing this we have
gradient data outside the slab as well as a param-
eterized surface outside the lower horizon which
makes it possible to calculate streamlines leaving
the slab. The parameterization procedure ensures
that the(u, v) parameterization is orthogonal to the
w parameterization which in turn will result in an-
gle preservation in the 2D textures. The parameteri-
zation works well for surfaces of low curvature and
without folds as seen in this application but would
require some extension for handling other types of
surfaces.

The parameterization is done on each slab and is
stored in an RGB volume consisting of the(u, v, w)
parameters. The parameters of each slab are all in
the [0, 1] range. To encode segmentation informa-
tion for each slab we scale and shift thew andu

parameter values. Each layer’sw values are scaled
and shifted such that values go from 0 at the lower
horizon in the bottom layer to 1 at the upper hori-
zon in the top layer with each layer having equally
sized intervals. Similarly, theu values are scaled
and shifted on each side of the fault. At the left side
of the fault in Figure 4 theu values are between
0 and 0.5 and on the right side they are between
0.5 and 1. The segmentation information is used
for having different textures in different layers and
possibly on different sides of faults. The parame-
terization is not meant to be geologically accurate
but to act as a tool for 2D texturing and depth de-
pendent volume rendering. The goal is to achieve

Figure 4: The parameterizationRGB volume.
White lines have been added on horizons. There
is a color change across the fault due to shifting and
scaling of theu parameter.

images with illustrative quality. The two following
sections will describe the horizon extrapolation and
the bottom horizon parameterization which was as-
sumed to be done prior to the layer parameterization
but were not explained in detail.

4.1 Horizon extrapolation

For parameterization of areas close to the vertical
slab borders we need surface information beyond
the horizon borders as described earlier. To achieve
this we carry out a simple surface extrapolation in
all directions. First we extrapolate the surface in
positive and negativex direction by considering the
surface as a collection of curves parallel to thex

axis and extending the endpoints of the curves in
tangential direction. See normals and dotted lines
in Figure 3a. We then do the same procedure on
the resulting surface in positive and negativey di-
rections. Finally we crop the horizons so that their
projections to thexy plane are rectangular and so
that sufficient data exists beyond their original bor-
ders. On our data we ended up with a heuristic ex-
tension of 20 percent of the horizon length in each
direction to correctly parameterize the areas close
to the vertical slab borders.

4.2 Surface parameterization

For the(u, v) parameterization of the lower hori-
zon surface we calculate a parameterization that lo-
cally minimizes the area distortion. Red dots on
Figure 3b show the corresponding 1D version. The
parameterization is created with the CGAL library
[1] using the discrete authalic parameterization [3].
The parameterization defines(u, v) values for each
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vertex on the surface. The parameterization is con-
strained by giving initial values to the surface bor-
ders whose projection to thexy plane forms a rect-
angle due to the surface extrapolation. For the initial
values we clockwise assign the border vertices with
values (0,0) (0,1), (1,0) and (1,1) and interpolate
the values along each edge with equidistant spac-
ing. We now have a(u, v) parameterization of the
lower horizon and aw parameterization of the slab.

4.3 Interpolation problem around hori-
zons and faults

The parameterization volume is a discrete specifica-
tion of our parameterization function. With trilinear
sampling we get a smoother function which how-
ever leads to invalid interpolation in cells on slab
boundaries where the eight cell corners are in dif-
ferent slabs. We calculate new values for the invalid
corners by extrapolating from valid neighbor val-
ues. Then we perform the trilinear interpolation for
the new corner values on the GPU. The extrapola-
tion will try to assign a new value for invalid corners
by considering the corner’s two neighbors in posi-
tive x direction. If both are valid then their values
are linearly extrapolated and assigned to the corner.
If not, then the search continues in negativex direc-
tion and then similarly iny andz direction. In rare
occasions the procedure fails to extrapolate all the
invalid corner values and an erroneous interpolation
is performed. The resulting artifacts will be notice-
ably only at the slab borders and will be of the same
size as a voxel in the parameterization volume. The
procedure improves the quality of the renderings as
can be seen in Figure 5.

4.4 2D texture mapping on axis-aligned
cutting planes

Our parameterization volume now makes it possi-
ble to apply an undeformed 3D texture stored in pa-
rameter space and deform it into world space for
texturing voxels in our layers. However this would
require to first generate 3D textures which is a re-
search topic in its own as investigated by Lu and
Ebert [9]. Since we are going to texture axis-
aligned cutting planes as done in geological illustra-
tions we can reduce the problem to a 2D texturing
problem. This has several advantages. 2D tileable
textures are easy to generate, take little space, and
can be sampled from illustrations directly. With our

Figure 5: Fault and interpolation problems. In a)
linear interpolation is used. In b) extrapolation as
described in 4.3 improves the quality. In c) we
see the parameterization of the zoomed-in rectangle
with extrapolation as opposed to without in (d). In
(e) we see the parameterization with nearest neigh-
bor interpolation showing the resolution of the pa-
rameterization.

method the 2D textures maintain coherency when
moving the cutting planes and we have better con-
trol over the repetitive appearance than for 3D tex-
tures. However we need to define a transformation
from 3D parameter space(u, v, w) to 2D parameter
space(u′, v′). The mapping is straightforward. For
texturing in thexz plane we use the(u, w) values,
for texturing in theyz plane we use(v, w) and for
texturing in thexy plane we use(u, v) values. The
mapping conserves the angle preservation property
of the 3D parameterization.

5 Layer texturing

This chapter presents three transfer functions that
are being used together to texture and color cutting
planes. First we present the layer texture transfer
function, abbreviated as layer TTF. It assigns tex-
tures to each layer. Then we present the scalar tex-
ture transfer function, abbreviated as scalar TTF.
It assigns textures and opacities to regions having
seismic attribute values in certain ranges. The re-
sulting scalar TTF texture for a cutting plane is
blended according to its opacities with the layer
TTF texture using the over operator. The com-
bined results are cutting planes with deformed tex-
tures similar to the ones in geology illustrations.
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Finally we present the concept of smoothly mov-
ing from illustratively rendered cutting planes to
color coded cutting planes. Here seismic attribute
values are mapped to colors using a color transfer
function, abbreviated as color TF. See Figure 6 for
an overview and Figure 7 for a texture example.
Visualizing horizon, fault, deformation and seismic

Figure 6: Overview of how textures are combined.
Layer TTF, scalar TTF and color TFs are explained
in 5.1, 5.2 and 5.3 respectively.

attribute information through textures has several
advantages. By looking at Figure 7 one sees that
textures communicate the id, orientation and com-
pression of layers on a local scale. An example is
given with the two small patches in the black circles
in Figure 7. The texture of a patch reveals its layer
id. The angles in the texture express the orientation
of the layer in that area. Compression is presented
through the vertical texture repeats in a layer. Since
the vertical texture repeats are constant throughout
the layer (there are always 16.5 bricks stacked in
the height in layer 1 in Figure 7), compression will
be high where the layer is thin and low where the
layer is thick. It is possible to see that the texture
patch in the left circle is slightly more compressed
than the texture patch in the right circle of Figure 7.
Finally, by letting both the horizontal and vertical
texture repeat rate be a function of an underlying
scalar value, scalar data can be presented in the tex-
ture as seen Figure 8. All this information is com-
municated with textures even on zoom scales where

no horizons are visible, and also when zooming be-
yond the resolution of the seismic attribute volume.
On such sub-resolution scales color transfer func-
tions yield blocky or monotonous colored results
whereas textures give aesthetically pleasing results.
One can imagine zooming past the attribute volume
resolution when inspecting overlaid high resolution
data, such as bore well core data.

Figure 7: Combination of layer TTF and scalar TTF
for the reflectance volume. The brown brick texture
shows areas of high scalar values and the violet tex-
ture shows areas of low scalar values.

5.1 Layer texture transfer function (TTF)

To texture the cutting planes we use 2DRGB tex-
tures with wrap-around and bilinear filtering. They
are taken from geological illustrations, and mapped
on the layers. We use a layer TTF that maps from
a voxel’sw parameter value to a texture id, a hori-
zontal and vertical texture repeat rate and an opacity
value: layerttf (w) = {layerId, hrep, vrep, α}.
The opacity value is only used later in the cutout
volume rendering. Sincew varies in distinct inter-
vals for each layer, each layer can have its own tex-
ture assigned. Texture variations within one layer
such as having different textures in the top and bot-
tom half of the same layer or having different tex-
tures on each side of a fault is also possible.

5.2 Scalar texture transfer function (TTF)

While the layer TTF represents the interpreted hori-
zons as textures, the scalar TTF represents uninter-
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preted seismic attribute data as textures. The scalar
TTF is equal to the layer TTF except that it is the
seismic attribute values that are used as look up val-
ues. This makes it possible to control the textural
appearance for regions on the cutting plane which
have seismic attribute values in certain ranges. The
scalar TTF texture is overlaid on the layer TTF tex-
ture using the over operator. Theα value defines its
transparency in the various regions. This combined
view expresses how individual seismic attributes re-
late to layers, i.e., if intervals of an attribute are con-
fined within certain layers or change significantly
(or subtly) between layers. It also represents a uni-
fied visualization of layer data and seismic attribute
data through textures.

Typically the repeat rates of a scalar texture are
taken from the layer it is drawn on. However the
user can set multiplicative factors in the repeat val-
ues in the scalar TTF to change this. We do this by
default so textures can maintain the same repeat fac-
tors when crossing layers of different thicknesses.
For a layer twice as thick as another one the verti-
cal repeat of the thick layer’s texture will be half of
the thin layer’s. A scalar texture crossing the lay-
ers would abruptly change its repeat rates. To have
consistent repeats across layers as can be seen for
the brown brick texture in Figure 7, the user can
change in the layer TTF the vertical repeat for the
thin layer to half of what it is for the thick layer.

The selection of repeat rates for the textures is
highly dependent on the degree of zoom. When
zooming out, textures will be perceived as being
too high frequent and when zooming in they will be
perceived as being too low frequent. For this rea-
son we multiply all the repeat factors with a global
user definable repeat factor which is manually set
according to the zoom level.

5.3 Rendering uninterpreted and inter-
preted data

To inspect the uninterpreted data directly on cutting
planes we apply the color TF on the scalar values of
a seismic attribute. We also introduce the concept
of a continuous transition from illustrative render-
ing of interpreted data to rendering of uninterpreted
data. The transition is done by smoothly blending
from visualizing textured cutting planes to visualiz-
ing cutting planes colored by the color TF with seis-
mic attribute values. This not only gives a smooth

Figure 8: Layer TTF, scalar TTF and color TF com-
bined. Instead of using different textures on inter-
vals of the scalar values we use the same texture
with four different repeat rates. It is difficult to dis-
cern the textures in a). In b) we blend in colors from
the color TF to more easily discern the textures.

transition from one mode to the other but also in-
troduces an intermediate rendering mode where in-
terpreted data is superimposed on the uninterpreted
data. The balance between the two data sources can
be adjusted to get what the user perceives as an opti-
mal balance between the rendering techniques. See
Figure 10.

6 Rendering cutouts and surround-
ings

We implement volume rendering with one transfer
function for the cutout and another one for the sur-
roundings to support different rendering styles. By
doing this we can achieve rendering of extruding
features in the cutout and opaque ground rendering
in the surroundings as seen in geological illustra-
tions.

For volume rendering in the cutout we use the
color TF on seismic attribute data introduced ear-
lier. To specify transparencies in the volume ren-
dering we extend the color TF with anα channel.
By multiplying a voxel’sα value from the color TF
with theα value from the layer TTF we can adjust
the transparencies based on thew value of the sam-
ple. Now we can do volume rendering on selected
layers by manipulating theα in the layer TTF and
making layers transparent or semitransparent.

For visualizing the surroundings we do volume
rendering where each voxel is given the average
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color of the 2D texture at the voxel position. The
average color is precalculated for each 2D tex-
ture. The opacity is controlled by a separate opac-
ity transfer function for the surroundings. It maps
the w parameter to opacities enabling a layer ori-
ented volume rendering of the surroundings. The
opacity can then be set for instance to render certain
horizon surfaces or layers semitransparently. When
performing smooth transitions from rendering of in-
terpreted data to rendering of uninterpreted data we
go from using the average color of the 2D texture at
the voxel position to using the voxel’s color accord-
ing to the color TF and the seismic attribute value
at that position. In the images of this article we ren-
der the top and bottom horizon opaquely to get an
opaque ground as seen in geological illustrations.

In the following paragraphs we describe how vol-
ume rendering is combined with texturing of the
cutting planes. We perform ray casting with empty
space skipping as suggested by Krüger and West-
ermann [8]. The entry and exit point of each ray
is further clipped to the roaming box. Volume ren-
dering with the transfer function for the surround-
ing is performed outside the cutout, while the trans-
fer function for the cutout is used inside the cutout.
Texturing is done at points where the parameteriza-
tion volume intersects the exterior of the roaming
box or the interior of the cutout box. See Figure 9
for a 2D depiction which acts as a reference to the
following description. Texturing is done at the entry

Figure 9: Combining volume rendering with texture
rendering. The green line depicts the entry points.
The yellow lines show where texturing is done. Red
ray segments show where the cutout transfer func-
tion is used and blue ray segments show where the
surrounding transfer function is used

point if the entry point is inside the parameter vol-
ume (green/yellow border). If not volume rendering
with the transfer function for the surrounding is per-
formed until the end point (upper blue ray) or until
the cutout is intersected. If the cutout is intersected
then volume rendering with the transfer function for

the cutout is used (red segments) until the cutout
exit point is reached. If the cutout exit point is in-
side the parameter volume texturing is performed
(yellow border). If not, ray casting with the trans-
fer function for the surrounding is performed until
the exit point. A ray is always terminated if opacity
reaches 1.

By doing volume rendering only on selected lay-
ers we can easily achieve the effect seen in geologi-
cal illustrations of extruding layers in the cutouts.
For exploration of the seismic data this is useful
when the user wants to consider only one layer at
a time. For instance the oil reserves are typically
trapped between horizons in so called reservoirs. If
the expert wants to perform volume rendering to ex-
plore such a reservoir it would be natural to con-
fine the volume rendering to the layer the reservoir
is in. See the bottom of Figure 1 for an example
of volume rendering in a cutout limited to a layer.
It shows a combined texture and volume rendering
with an extruding layer. Volume rendering is per-
formed only for layer 3 with brown color to mimic
a geological illustration. The layer discontinuity is
due to a fault. Turquoise patches on the textures
show areas with high reflection values. Figure 10
shows a smooth transition from illustrative render-
ing to seismic attribute rendering.

The texture calculation and volume rendering is
performed on the GPU in a single pass. With a
Geforce 8800 GTX graphics card and an image size
of 800×800 we achieve 5 frames per second. With-
out the extrapolation as described in 4.3 the frame
rate is doubled. The three component parameteri-
zation volume is of size128 × 128 × 128 and the
reflectance volume of size240 × 271 × 500. The
Ai volume is of size96 × 96 × 500 and covers a
smaller area than the reflectance volume. The 2D
textures are each of size64× 64. A filmclip can be
seen on

http://www.cg.tuwien.ac.at/resear
ch/publications/2007/patel_danie
l_2007_IRSD/patel_daniel_2007_IR
SD-movie%20clip.avi

7 Conclusions and future work

We have presented a technique for illustrative ren-
dering of interpreted geological data. We have also
shown how to create combined visualizations of in-
terpreted and uninterpreted seismic data for valida-
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Figure 10: Blending from illustrative rendering to
uninterpreted data rendering of the Ai attribute.
Volume rendering is performed in areas with high
Ai values. On the right of the cutout one can see
how the green area having high Ai values corre-
sponds to a layer. The black areas contain no data.

tion and comparison reasons and for creating visu-
alizations that can be targeted to anyone from lay-
men to domain experts. On the technical side we
have presented the concept of 2D texture transfer
functions with deformed textures.

Illustrative techniques can make it faster to eval-
uate large oil prospects. It can also improve com-
munication between different stakeholders and to-
wards media, public sector and politicians. In the
future we will look into methods making it possible
to do illustrative rendering of uninterpreted data.
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Abstract

Hierarchical Network Maps are a scalable approach
to the presentation of IP-related measurements on
the global Internet. This study focuses on how to
extend them for emphasizing the source destina-
tion relationship of network traffic aggregated on IP
prefix, autonomous system, country, or continent.
Edge bundles consisting of several spline curves vi-
sually group traffic that shares common ancestor
nodes along the IP/AS hierarchy.

1 Introduction

Today, signature-based and anomaly-based intru-
sion detection is considered the state-of-the-art for
network security. However, fine-tuning parameters
and analyzing the output of these methods can be
complex, tedious, and even impossible when done
manually. If this situation was not challenging
enough, current malware trends suggest an increase
in security incidents for the foreseeable future. The
health of the network infrastructure clearly depends
on the effectiveness of both manual and automated
methods to analyze, comprehend, and disseminate
understanding of large network data sets.

Hierarchical Network Maps (HNMaps) are an
approach to the presentation of IP-related measure-
ments on the global Internet. They are based on
a hierarchy (prefix → AS → country →
continent) on top of all Internet subnet prefixes
and displayed using a space-filling visualization
technique. This pixel-conservative approach is ap-
propriate as display space is a scarce resource when
displaying about 200,000 IP prefixes at once.

In previous work, we considered network statis-
tics observed at a single vantage point (arriving at or
leaving from a particular gateway) and displayed it
either by its source or destination in the IP address
space. In this study, we consider traffic being trans-

ferred through multiple routers, such as in service
provider networks. The use of edge bundles enables
visually displaying and detecting patterns through
accumulative effects within nodes of the AS/IP hi-
erarchy. The novelty of this approach lies in its ca-
pability to support the formation of a mental model
that places each autonomous system or IP prefix on
a map while linking nodes according to the traffic
under consideration, and at the same time limiting
visual clutter.

The rest of this paper is structured as follows:
we briefly discuss the employed database technol-
ogy to speed up the backend of our application
and review related work. Our HNMap appraoch
is then discussed and extended through so-called
edge-bundles. Afterwards, we examine generation
of random data and apply the presented methods be-
fore assessing the overall contribution.

2 Efficient querying of large IP-
related data sets

To support visualization that is fast enough for in-
teractive data exploration, we need not only to con-
sider efficient rendering techniques, but also be
aware of database technology as precondition for
flexibility in querying different data sets as well as
for speed. We therefore briefly regard the multi-
dimensional data model ([13]) which stores large
amounts of facts with associated numerical mea-
sure in data cubes that are particularly well-suited
for data analysis (in contrast to storing of trans-
actional data). Queries aggregate measure values
over a range of dimensional values to provide re-
sults such as the number of security events aggre-
gated on each AS in a given country (dimension IP
hierarchy) at a certain day (dimension time). Figure
1 shows the user interface to specify the database
query and visualization parameters.
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Figure 1: Specifying the database query and visual-
ization parameters.

Using the snowflake schema, a separate table is
created for each level of the dimension IP address
and the tables’ entries are linked accordingly. For
example, each IP address is linked to the tuple of
its advertised IP prefix, which in turn is linked to its
AS, etc. Pre-joining the lowest level of the IP hier-
archy with all its upper level entries avoids expen-
sive join operations during interactive analysis and
thus considerably speeds up queries. IP addresses
are grouped by IP prefix→ autonomous system→
country→ continent and we thus obtain the hierar-
chy as shown in Table 1.

Table 1: IP/AS hierarchy

Level Name Entries
1 continents 7
2 countries 190
3 autonomous systems 23054
4 prefixes 197427

The snowflake schema is not limited to the di-
mension IP hierarchy, but can be - depending on the
analysis field - easily extended to various dimen-
sions, such as time, protocol, ports, or type of event.

3 Related Work

A common way of displaying hierarchical data is
in layouts where child nodes are placed inside par-
ent node boundaries. Such displays provide spatial
locality for nodes under the same parent, and visu-
ally emphasize the sizes of sets at all levels in the
hierarchy. Usually, leaf nodes may have labels or
additional statistical attributes that may be encoded
graphically as relative object size or color.

The most important layouts of this type are
Treemaps – space-filling layouts of nested rectan-

gles, of which there are several main variants. The
earliest variant was the slice-and-dice Treemap [8].
Here, display space is partitioned into slices whose
sizes are proportional to to the sum of the nodes
they contain. At each hierarchy level this proce-
dure is repeated recursively, rendering child nodes
inside parent rectangles while alternating between
horizontal and vertical layouts. This is not diffi-
cult to program and can run efficiently, but long,
thin rectangles arise, which are hard to perceive and
compare visually.

Squarified Treemaps [3], remedy this deficiency
by using rectangles with controlled aspect ratios.
Rectangles are prioritized by size, so large ones are
treated as the most critical ones for layout. This
improves the appearance of Treemaps, but does not
preserve the input node order, which is also a prob-
lem in some applications. This drawback was no-
ticed, and Ordered Treemaps [2] were introduced to
address it.

An alternative, non-Treemap layout algorithm
which is not space filling was applied in [7] to the
visualization of computer security data. Their pro-
posed method maps hosts to rectangles, and subnets
to larger enclosing rectangles. In contrast to this
method, the approach proposed here has the goal
of integrating both geographic and abstract layouts
in the same view, and scaling up to the entire IPv4
address space.

Another related area is recent work on rectangu-
lar layouts in cartography, such as rectangular car-
tograms [5] which optimize the layout of rectangles
with respect to area, shape, topology, relative po-
sition, and display space utilization. A genetic al-
gorithm has been applied to find a good compro-
mise between the objective functions describing the
above mentioned properties. This technique renders
layouts offline, not interactively and does not yet ex-
ploit hierarchical structures.

HNMap [11] supports the formation of a mental
model of measurements reflecting the global Inter-
net. It combines several layout techniques to cope
with a large, multilevel AS/IP hierarchy in a tool
that runs fast enough for interactive response. In
another study [10], we evaluated alternative layouts
and reported a case study with network data from
a web server, a university network gateway, and
an intrusion detection system (IDS) from a service
provider to gain deeper insight into these large data
sets.
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Figure 2: Multi-resolution HNMap approach to display aggregated IP-referenced measurements of prefixes
(middle), ASes (left), countries (right), and continents (bottom) using a bi-color scale.

Drawing network traffic as lines on top of maps
is well-known and has been studied in the carto-
graphic community. Unfortunately, highly inter-
connected nodes lead to a lot of visual clutter and
make it difficult to recognize any structure. Becker
et al. [1] attack the problem by inventing line short-
ening and visualizing an adjacency matrix instead
of geographic objects. Brushing has also been rec-
ommended [15].

A further approach to show the movement of ob-
jects from one location to another are so-called flow
maps. Traditionally, these flow maps were hand
drawn to reduce visual clutter introduced by over-
lapping flows. Phan et al. presented a method for
generating well-drawn maps, which allow users to
see the differences in magnitude among the flows
while minimizing the amount of clutter [14]. How-
ever, interpretation of flow maps with multiple van-
tage points stays challenging.

A recent study [6] handles the problem of vi-
sual clutter elegantly: a hierarchical classification
of nodes is exploited for bundling lines that connect
leaf nodes, to visually emphasize correlations. In-

spired by this work, we draw edge bundles on top of
HNMaps in this paper. This enables us to view end-
to-end relationships in network data sets, instead of
limiting our analysis to the outgoing or incoming
traffic from a single vantage point.

4 Hierarchical Network Map

In visualizing times series of network statistics, set-
ting node (rectangle) sizes proportional to a time
series variable leads to confusing displays, due to
repositioning of nodes between HNMap frames.
Figure 2 shows the multi-resolution HNMap ap-
proach addressing spatial memory by fixing node
positions to facilitate tracing through time. A rea-
sonable approach to this is to make node sizes pro-
portional to the number of IP addresses contained,
which is static in our experiments.

The general visualization paradigm of our tech-
nique places child nodes within the bounds of their
parent node’s rectangle. This results in a grouping
operation which adds semantic meaning to the oth-
erwise unstructured data. The benefit is obvious for
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the parent child relationship among the continent
and country as well as the AS and prefix nodes.
However, the relationship between countries and
ASes is not always clear. For this, we rely on statis-
tics for each IP within an AS, which we obtained
from a commercial GeoIP database [12]. Unfortu-
nately, the country information within the registra-
tion services of ARIN, RIPE, AFRINIC, APNIC,
LACNIC as obtained from [16] were uncomplete
and sometimes misleading (a lot of ASes are regis-
tered to EU rather than a country).

The upper two levels of the AS/IP hierarchy are
geographic entities. In general, geographic visual-
ization is often very compelling– two-dimensional
maps are familiar to most people as a convention
for representing three-dimensional reality. Remark-
ably enough, mental models derived from maps
are effective for many tasks even when extreme
scales and nonlinear transformations are involved.
Many approaches have been investigated for show-
ing geographically-related as well as more abstract
information on maps [4].

As a similarity measure for the AS level, we cal-
culated the middle IP address of each AS by averag-
ing the weighted middle IP address of all its adver-
tised IP prefixes. This information is only meaning-
ful to a certain extent as ASes sharing similar pre-
fixes are positioned next to each other, but it does
not take connectivity among ASes into account.

The lowest level of the hierarchy consists of the
prefixes which have a clearly defined order. Our
system therefore offers the capability to display this
level using the Ordered Strip Treemap [2] with a
line-wise sorting order. However, the HistoMap 1D
method scales better to the large hierarchy data at
hand with respect to visibility of small prefixes, lay-
out preservations, and rendering performance (cf.
[10]). The hierarchy levels can be interactively
drilled-down or rolled-up. The mouse cursor high-
lights the measure for one particular hierarchy node
and labels for the current hierarchy level as well as
all parent nodes. When loading a data set, prun-
ing nodes with little or no traffic frees space for the
current analysis and retaining layout stability at the
same time becomes an important aspect [10]. Since
this paper is a continuation of our previous work,
we discard nodes with no traffic in the HNMaps pre-
sented in this study.

Large differences in sizes between IP prefixes,
ASes, countries, and even continents turn visual

comparison of the respective rectangles into a chal-
lenge, especially when dealing with ordinary com-
puter displays as opposed to wall-sized displays.
We opted for a compromise by scaling the IP prefix
sizes (number of contained IP addresses) and there-
fore indirectly also the upper level aggregates using
square-root or, alternatively, logarithmic scaling:

fsqrt(x) =
√

x (1)

flog(x) = log x + 1 (2)

The effects of node size scaling are illustrated in
Figure 3. Note that the size of the upper level rect-
angles is determined through the sum of the scaled
child nodes.

(a) linear

(b) square-root

(c) logarithmic

Figure 3: Effects of scaling on the space-filling lay-
out demonstrated on some IP prefixes in Germany.

In the proposed visualization, the value of a
measure of interest is encoded as color, using a
fixed color scale and logarithmic normalization:
colorindex(v) = log(v + 1)/log(vmax + 1). The
user is free to move the transition point (white) in
the bi-color scale (blue to red) to focus his analysis
on a range of values. When drawing edge-bundles,
we substitute the blue-red color scale with a white-
black color scale for the HNMap in the background
to improve visibility of the bundles.
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(a) Straight connection lines (b) Exploiting hierarchical structure (c) Compromise through edge bundles

Figure 4: Comparison of different strategies to draw adjacency relationships among nodes of the IP/AS
hierarchy on top of the HNMap.

In some cases, analyzing an absolute measure
of network traffic (e.g., number of connections or
bytes transferred) provides hardly any insight in the
time-varying dynamics of the data. Therefore, we
calculate and display the change over time in some
analysis scenarios.

5 Drawing routed traffic for multiple
sources and destinations

Figure 4 shows three different approaches to draw
adjacency relationships among nodes of the IP/AS
hierarchy. (a) The problem of visual clutter is obvi-
ous when straight lines are drawn. (b) Simply con-
necting with the upper level nodes of the hierarchy
removes visual clutter, but adds a lot of ambiguity,
e.g. the lines connecting the left star (U.S.) and the
stars in Europe (middle) – one for every country –
are overdrawn several hundred times. (c) An inter-
esting compromise is to use so-called edge bundles
and transparency effects to combine the advantages
of the latter approaches.

5.1 Edge Bundles

A recenty study proposed a way of using spline
curves to draw adjacency relationships among
nodes organized in a hierarchy [6]. Figure 5 il-
lustrates how we use hierarchy structure to draw
a spline curve between two leaf nodes. Pstart

(green) is the center of the source rectangle rep-
resenting a node in the IP/AS hierarchy and Pend

(red) the center of the destination rectangle. All
points Pi (green, blue, and red) from Pstart over
LCA(Pstart, Pend) (least common ancestor) to

Pend form the cubic B-spline’s control polygon.
Because many splines share the same LCA (in this
case the center point of the world rectangle), we do
not use them for the control path.

EuropeNorth America
US

DEAS123

AS553

Figure 5: Spline (red) with control polygon (gray)

The degree of the B-spline used to control the
bundling strength. In our experiments, a degree of 6
has proven to be a good choice for the cases where
we have enough control points.

5.2 Edge Coloring

In general, we considered two options for coloring
the edges, namely (a) use of color to convey the
amount of traffic transferred and (b) use of color
to distinguish edges. For the first case (see Fig. 6),
we employed a heat map color scale from yellow
to red using 50 to 0 percent alpha blending to vi-
sually weight the high traffic links. Naturally, the
less important splines were drawn first. For the sec-
ond case (see Fig. 7), we chose a HSI color map
with constant saturation and intensity which is sil-
houetted against the background. The largely vary-
ing colors make tracing of single splines easier, but
we noticed that users were strongly distracted by the
colorful display.
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Figure 6: HNMap with edge bundles showing the 500 most important connections of one-day incoming and
outgoing traffic of our university gateway (the anonymized destination/source is semi-randomly chosen).
Color combined with transparency and line width communicate the amount of traffic of each spline.

5.3 Interaction design

In our opinion, the task of tracing splines is not
solvable by means of coloring as soon as their num-
ber excels about one hundred nodes. We therefore
tried to tackle the problem through interaction. Ba-
sically, there are two possible interaction scenarios.
The first scenario is that a particular spline or re-
gion is selected, refined, and visually highlighted.
Selecting a spline or a region by the start and end
points of the splines is relatively intuitive to imple-
ment using the spatial data structure of the HNMap
application.

However, the second scenario comprises marking
a whole bundle of splines and was discarded since
the implementation becomes tedious at this place
(probably a point in polygon test for each pixel of
all splines).

After specifying the start or end points of the
splines using mouse interaction, we redraw all
splines using their previous RGB color values – the

not selected splines with higher alpha blending and
the selected ones without transparency effects on
top. This allows the user to easily trance the few
highlighted splines to their end.

5.4 Data Simulation

As it was impossible to obtain real traffic data from
service providers for publishing, we settled on us-
ing real netflow data from our university gateway
and substituted the internal source IP prefix with a
randomized one according to algorithm 1.

This randomization schema is based upon the
assumption that nodes with more traffic are more
likely to communicate with several other nodes,
whereas the opposite applies to low traffic nodes.

Figures 6 and 7 demonstrate the outcome of our
randomization schema based upon a one-day traffic
load of our university gateway. The images high-
light the high-level connectivity information while
still being able to recognize the low-level relations
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Figure 7: HNMap with randomly colored edge bundles makes splines more distinguishable. The amount of
traffic is expressed only through spline width.

begin
SortedList← all unprocessed nodes and
weights
while |SortedList| > 0 do

(nmin, tmin)←
SortedList.removeMin()
(nrand, trand)←
SortedList.RandomSample()
drawSpline(nmin, nrand, tmin)
SortedList.update(nrand, trand −
tmin)

end

Algorithm 1: Randomization schema to simulate
backbone provider traffic.

to a large extent. The strong bundling effects in
North America (center left) are explainable through
the proximity of two control points to each other
(North America, United States).

6 Findings and Evaluation

Edge bundles offer the possibility to convey source
destination relationships on top of the HNMap and
thus leverage the application from a purely mea-
surement based analytical approach to a more com-
plete view on large-scale network traffic. Since it is
very challenging to trace single splines as soon as
a certain volume of traffic links are placed on the
map, we experimented with the RGB and alpha val-
ues of the spline colors. Mouse interaction is used
to select splines at their start or end points in order
to silhouet them from the remaining splines.

When monitoring larger networks, focusing the
analysis on a particular type of traffic, for example
communication of hijacked computers of a botnet,
helps to significantly reduce the number of nodes
and connections to be displayed.

During the analysis, further detailed information
of other attributes of the data set at hand can be dis-
played using bar charts or the Radial Traffic Ana-
lyzer [9]. One major drawback of our approach is
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that conveying significance of splines or to distin-
guishing them through color disqualifies the visual
variable color for being used to indicate direction of
traffic flows.

7 Conclusion

HNMaps visually represent network traffic aggre-
gated on IP prefixes, ASes, countries, or conti-
nents and can be used for exploration of large
IP-related data sets. In this study, we extended
HNMaps through edge bundles to emphasize the
source destination relationship of network traffic.
Rather than representing new visualization or anal-
ysis techniques, we combined two existing methods
and applied them to large-scale network traffic to
gain deeper insight.

In order to facilitate tracing of splines, which rep-
resent source destination relationships among net-
works or abstract nodes of the IP hierarchy, we
compared two alternative coloring schemes. More-
over, mouse interaction was proposed to visually
enhance network traffic links of interest.
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Abstract

Molecular dynamics simulations are today a widely
used tool in many research fields. Such simula-
tions produce large time-dependent data sets, which
need to be interactively visualised allowing effi-
cient exploration. On the other hand, commonly
used point-based rendering of the individual par-
ticles usually fails to emphasise global contiguous
structures like particle clusters. To solve this issue,
we want to visualise these data sets using metaballs.
Free particles form individual spheres while clus-
tered particles result in larger closed shapes. Using
image-space hardware-accelerated techniques pro-
vides interactive frame rates and high visual qual-
ity. We present two approaches evaluating the meta-
balls shapes on the graphics hardware. The first ap-
proach uses a vicinity data structure stored in graph-
ics memory to evaluate the metaballs shape in a sin-
gle rendering pass. The second approach uses mul-
tiple rendering passes to approximate the metaballs
shape on a per pixel basis.

1 Introduction

A large number of technical and scientific problems
can nowadays be solved using molecular dynam-
ics simulations. One such example is nucleation,
i. e. the state change from a vapour into the liquid
phase. This process is found in many physical phe-
nomena, e. g. the formation of atmospheric clouds
or the processes inside steam turbines, where a de-
tailed knowledge of the dynamics of condensation
processes can help to optimise energy efficiency and
avoid problems with droplets of macroscopic size.
The liquid phase emerges through spontaneous den-
sity fluctuations in the vapour which lead to the
formation of molecular clusters, the predecessors
of liquid droplets. The figures 1, 9, and 10 show
such nucleation data sets. For the calculation of
key properties like the nucleation rate, it is essential

to make use of a meaningful definition of molec-
ular clusters, which currently is a not completely
resolved issue.

The visualisation of the simulation results, espe-
cially the emphasis of molecular clusters, is there-
fore essential for analysing simulation results and
cluster detection algorithms. Point-based rendering
of such data sets is a common practice and delivers
fast visualisations of large amounts of particles, but
does not convey the detailed shapes of clusters and
obscures their real extents — an effect the users do
not desire (see figure 1). On the other side, with
metaballs [1] a much more suitable technique for
solving this issue exists, since they form a closed
and compact surface. However, current metaball
rendering techniques either require costly isosur-
face extraction or are based on time-consuming ray-
casting, which prevents interactive visualisation of
time-based data sets.

This paper presents our efforts to enable interac-
tive visualisation of clusters in molecular dynam-
ics data sets as metaballs. We think that image-
space approaches are more promising in this con-
text since they do not rely on preprocessing, like
isosurface extraction, and hence should permit ren-
dering of time-dependent data sets. Furthermore,
image-space techniques, which include raycasting,
should achieve an optimal visual quality without a
prohibitively fine tessellation of the isosurfaces.

The remainder of this document is structured as
follows: Section 2 briefly describes the theoretical
background of metaballs and existing rendering al-
gorithms. In section 3, we describe two approaches
for implementing metaballs in image-space, one us-
ing additional texture memory and one using multi-
ple rendering passes for solving the occlusion prob-
lem. Section 4 presents the results of our perfor-
mance measurements and is followed by some final
conclusions.

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek,J. Weickert (Editors)



Figure 1: Point-based visualisation of an argon nucleation simulation data set. The left image highlights
molecular clusters using different colours, the middle image uses ellipsoids and the right one uses metaballs.
The metaball visualisation shows a closed surface of the molecule clusterswhile not exaggerating their size.

2 Related Work

The metaball technique was introduced by Blinn [1]
for displaying molecular models and was originally
calledblobs. The idea is visualising molecules as
isosurfaces in the simulation of an electron density
field. Blinn uses the exponential function

D(r) = exp(−ar
2)

as field function, which is derived from the density
function of a hydrogen atom, withr being the dis-
tance of the current sampling point from the cen-
tre of the current metaball. The sum of the density
functions of all atoms parameterised with the dis-
tance from the sampling point then yields the value
of the density field at this point.

The notion ofmetaballsfor the same concept
goes back to Nishimura et al. [11][12], who use a
piecewise quadratic field function. Several other
field functions have been proposed later on, like a
degree six polynomial by Wyvill et al. [16] or the
degree four polynomial

D(r) =
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with R being the radius of the influence sphere of
the current metaball by Murakami et al. [9][12]. For
a radiusr > R, D(r) = 0 is assumed.

Two typical approaches of displaying metaballs
are raycasting the density field and thus rendering
the isosurface directly as suggested by Blinn or ex-
tracting the surface using the Marching Cubes Al-
gorithm [7] and rendering it like any other mesh.

Using state-of-the-art graphics hardware, Nvidia
showed how to use vertex and geometry shaders to
evaluate the density field function and generate ge-
ometry on the GPU [13]. Kooten et al. [6] employed
a point-based method for visualising metaballs on
the GPU. Their goal is to render fluid surfaces made
up of metaballs, e. g. water in a glass. To achieve
this goal, they render a large number of particles
which are forced on the implicit surface of the meta-
balls by velocity constraints and use a spatial hash-
ing method for evaluating the density field on the
GPU. Using repulsion forces between the particles,
these are uniformly distributed over the surface and
thus finally cover the whole metaballs, if their num-
ber is sufficiently large.

Earlier, Microsoft showed in their DirectX
SDK [8] an image-based approach for achieving a
metaball-like effect. They accumulate the density
function and the surface normals via additive blend-
ing in off screen buffers during multiple rendering
passes. As the approach has no depth information,
it is limited to metaballs on a single plane.

Our framework for particle data visualisation [3],
which the extension for displaying metaballs pre-
sented in this paper is intended for, uses glyphs
based on the ellipsoid splatting technique presented
by Gumhold [4], or more precisely, the approach
by Klein et al. [5], which unfolds each glyph from
a single point sprite vertex. The algorithm uses
e. g. for an ellipsoid the centre point, the three
radii and an orientation quaternion to compute the
outline of the projected glyph in the vertex shader.
The size of the projection determines the size of the
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point sprite. The fragment shader then raycasts the
glyph for each pixel the point sprite generates. This
method does not only allow for raycasting spherical
and ellipsoidal glyphs, but also more complicated
ones like dipoles, arrows andtubelets[14].

3 Image-Based Metaball Rendering

The density function we use in our work is a scaled
version of the function presented in equation 1:

D(r) =
16

9
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with R being the radius of the sphere forming the
metaball,r ≥ 0, and assumingD(r) = 0 for
r > 2R . The idea behind these factors is to gener-
ate a visually coherent impression when switching
from raycasted spherical glyphs to metaball render-
ing or when mixing different glyphs and the meta-
ball rendering. We choose the influence radius to
be the doubled particle size of our data sets, and
the thresholdt for the isosurface in the density field
is chosen such that a sphere, which does not form a
metaball, looks identical to raycasted sphere glyphs.
The scaling of the function with16

9
results in the

density being one at the distance of the original
sphere radius, i. e.D(R) = 1. Figure 2 shows
a plot of our density function. However, our ap-
proaches are not limited to these choices. With mi-
nor changes to the used shader programs, it is possi-
ble to use any other density function, as long as the
function has a finite support, any other influence ra-
dius, and any threshold value.

The two approaches presented in sections 3.1
and 3.2 have the common goal to produce a meta-
ball visualisation from spheres, which are solely
specified through their centre and radius, in image
space without generating geometry. They therefore
also share the same problem of occluded fragments,
which will be described more detailed in the follow-
ing section.

Our first idea to overcome this problem was mak-
ing the missing information available to the frag-
ment shader via aVicinity Texture. The metaballs
then can be rendered as point sprites in a single pass
without processing the whole image area but at the
expense of an increased number of expensive tex-
ture accesses. This approach is closely related to the
glyph raycasting in our framework and described in
section 3.1.

D(r)

r

2

2

1,5

1

1,5
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0
10,50

Figure 2: The density function from equation 2 with
R = 1.

Our second approach, which is elaborated in sec-
tion 3.2, goes quite in the opposite direction: in-
stead of generating fewer but more expensive frag-
ments, it constructs the metaballs from a lot of rela-
tively cheap fragments in several rendering passes.
Reminding of depth peeling [2], the final image re-
sults from a viewport aligned imaginary plane be-
ing moved through the data set. In each pass, the
density function is evaluated for each pixel and the
plane is moved by a distance value provided by
an oracle. If these steps are adequately long and
enough of them have been made, the surface of all
metaballs should have been found.

3.1 Vicinity Texture

The main problem when trying to evaluate 3D meta-
balls in image space is occlusion, which prevents
an accumulation of the density function by simply
rendering the projection of the influence spheres of
the particles. E. g. even if one knew in advance
that P1 in figure 3 will not contribute to a meta-
ball and therefore only rendered the surely opaque
sphere with radiusR instead of the whole influence
sphere with radius2R, none of the fragments gen-
erated byP3 would be visible. Consequently, when
accumulating the density within the projected in-
fluence sphere ofP2, the contribution ofP3 and
therefore also the dotted metaball surface connect-
ing P2 andP3 would be missing.

One would have to know for every fragment gen-
erated by an influence sphere which other spheres
contribute to it, i. e. this information would have to
be available on the graphics card. Kooten et al. [6]
use a reversed version of the spatial hash table pre-
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View Direction

P2 P3

P1

R

R

Figure 3: Occluded fragments hamper the image
space computation of metaballs: the dashed influ-
ence sphere ofP3 is completely occluded byP1.
Therefore, it is not possible to accumulate the den-
sity function correctly in image space. As the con-
tribution of P3 is completely missing, the dotted
metaball surface cannot be found andP2 appears
as normal sphere.

sented by Teschner et al. [15] to obtain for a certain
area of the screen all relevant particles. Depending
on the size of the grid subdividing the screen space,
this hash table can become quite big, and as we in-
tend to use the metaball visualisation in combina-
tion with glyphs raycasted on the GPU as described
by Klein et al. [5] we chose to attach the vicinity in-
formation not to the screen position but to the ver-
tices defining the object-space centre of the spheres.
This has also the advantage that our map is view-
independent and must only be updated, if the po-
sition of the vertices changes. Thus, we construct
in a pre-processing step a texture which holds for
each sphere the object-space position and the radius
of all other spheres which are near enough to con-
tribute to the density field. Before each set of influ-
encing spheres, an extra entry holding the number
of positions to follow is added. The coordinates of
this counter are set as texture coordinates of the ver-
tex. All spheres which do not have neighbours with
which they potentially form a metaball are omitted
in order not to waste texture memory.

Having the above-mentioned lookup table for the
influencing spheres, the rendering of the metaballs
happens in a single pass: the centre positions of the
spheres are rendered as point sprites and the vertex
shader adjusts the screen space size of the point to
hold all the pixels of the projected sphere. For that,

the desired object-space sphere radius is passed as
homogenous coordinate of the vertex. The sign of
the homogenous coordinate is additionally used to
determine, whether the current sphere potentially
forms a metaball. If it can form a metaball, its ra-
dius is doubled in order to make the sphere enclose
the whole space where our density function (equa-
tion 2) does not vanish. In the fragment shader, the
sphere is then raycasted, and as long as it surely
cannot be part of a metaball the intersection point
between the viewing ray and the sphere just has to
be lit to complete the pixel [5].

If, however, the current sphere can form a meta-
ball, we must determine whether it actually does so,
and where the threshold valuet is reached for the
first time. For these purposes, we sample the den-
sity field within the influence sphere, whose bound-
ary we just have computed, while advancing on the
viewing ray until the end of the influence sphere. At
each sampling point, the density function is evalu-
ated on-the-fly for the current sphere and the ones
in their neighbour list. If the sum of the densi-
ties, which is the final density at the sampling point,
is sufficiently close to the isovaluet, the sampling
ends.

Figure 4: Influence of the recursive refinement of
the isosurface. The colour denotes the length of the
ray from the surface of the influence sphere to the
isosurface in the density field. The leftmost image
shows the result for only ten sampling points, the
middle one for ten sampling points and four addi-
tional refinement steps, and the rightmost one for
50 sampling points.

It requires, however, a prohibitively large number
of samples per pixel in order to find a sufficiently
good isosurface in the density field. But the num-
ber of required samples can be effectively limited if
the sampling is stopped once the density is above
the threshold for the first time and the desired point
on the isosurface is then searched by bisecting the
previous sampling step recursively. Figure 4 shows
this effect for four recursive refinement steps.
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Once the isosurface of the metaball in the density
field has been found, the OpenGL-conform depth
of the fragment can be computed like for a normal
sphere or any other glyph. For lighting the metaball
surface, the normals are approximated as the sum
of the normals of the contributing spheres weighted
with the respective density contribution [8]. Since
the accumulated density on the surface results to
one, the weighted summation of normal vectors is
equivalent to the use of barycentric coordinates and
thus a legitimate interpolation.

3.2 The Walking Depth Plane

As we found that the texture lookup in the vicinity
texture poses heavy load on the graphics card (see
section 4), we tried an alternative approach without
using a texture-based data structure. The goal was
to remove the texture lookup as bottleneck and ad-
ditionally to avoid restraints on data set sizes due to
the available texture memory. The main idea of this
approach is to use multiple rendering passes to ap-
proximate the correct isosurface through a moving
plane of depth values.

Two frame buffer objects with 16 bit float RGB
channels are used to store the needed data. The first
buffer, calledλ-buffer from now on, is used to store
the depth of the pixel in image space, which approx-
imates the targeted isosurface in means of the dis-
tance from position of the camera in world space
coordinates. In a second channel of this buffer the
maximum distance value for the pixel is stored as
information for the termination criterion. The sec-
ond buffer — we will refer to this one as density
buffer — is used to evaluate the density field at the
depths provided by theλ-buffer. Using these two
buffers, the algorithm works as follows:

3.2.1 Initialising the λ-Buffer

The first rendering pass (Step 1 in figure 5) is used
to initialise theλ-buffer. The starting and maximum
depth values over all spheres for each pixel are cal-
culated by raycasting the influence spheres of each
particle. Depending on whether the starting or the
maximum values are calculated, the front or back
side of the spherical glyphs are raycasted. The min-
imum or maximum over all glyphs is determined us-
ing OpenGL depth tests. The pixels which are not
set by any fragment of these glyphs are initialised
using the clear colour value. Since these pixels will

1. : Initialize

λ-Bu�er

2. : Evaluat e

Densit y Field

3. : Change

λ-Bu�er

4. : Generate  

Output Image

Density Fr ame

Bu�er Object

λ Frame

Bu�er Object

Figure 5: The different rendering passes of the
Walking Depth Planeapproach, together with the
two frame buffer objects involved. The solid lines
represent the control flow, while the dashed lines
represent access to the frame buffer objects.

never be part of a metaball, their values must only
trigger the loop termination criterion and have not
to be comparable to realλ values calculated using
the initialisation sphere glyphs.

3.2.2 Evaluation of the Depth Field

After the initialisation step, the approximation of
the metaball surface is done by repeating steps 2
and 3 (see figure 5). This loop and its termination
are controlled by the CPU.

The evaluation of the density field in step 2 is
very similar to the initialisation pass. The individ-
ual spheres are uploaded as points with the addi-
tional information of the influence radius of the den-
sity function. But instead of raycasting an implicit
surface of the sphere, the density function for the
sphere is evaluated at the position calculated from
the viewing ray of the given pixel and the depth
value stored in theλ-buffer. All density portions
of all spheres are accumulated by performing addi-
tive blending on the float frame buffer the values
are written to. To improve the upcoming update
of the λ-buffer the density field can be evaluated
at multiple depths at one time by summing the den-
sity at a specific depth in a separate channel of the
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frame buffer object. Using a single RGB colour at-
tachment allows for evaluating the density field at
three positions at a time, which allow for a more
substantiated guess of the next sampling position.
A similar use of colour channels was presented in
[10] for performing RBF-based volume rendering
through splatting on up to four slices in one pass.

3.2.3 Moving the Depth Plane

The third step is to change the values of theλ-buffer
and thus to move the surface described by these
values closer to the targeted isosurface. Since the
values are stored in a float colour attachment, they
can be increased and decreased using alpha blend-
ing and fragments with a colour value describing the
change step. It is also possible to use twoλ-buffers
used alternately. This way the calculation of theλ

values for the next pass could not only consider the
evaluated depth value, but also the currentλ values.
However, since we wanted to minimise the use of
textures, we chose to use a rather simple oracle for
computing the step size and direction from only the
lastλ value.

The direction of the step is directly given by the
density value of the current pixel. If the density
is below the threshold, the step must go forward
into the viewing plane, and if the density is above
the threshold, we already missed the isosurface and
must step back. While this is intuitive, choosing a
step size is not. The radius of the smallest sphere
can be used as maximum step size. It is then still
possible to miss a rather thin connection between
spheres, but this is an intrinsic problem of any sam-
pling. However, in all of our data sets this problem
does not occur unless rendering time-dependent in-
terpolated data sets with changing molecule sizes.

To approximate the targeted isosurface with suf-
ficient precision, the step size must be decreased as
the density reaches the threshold value. This de-
crease is controlled by an oracle. Since the den-
sity is a summation from several density functions,
it is not possible to precisely determine the required
step size. Therefore, we use two simple heuristics
as our oracle. We can use the fact that in our molec-
ular dynamics data sets the spherical particles only
interpenetrate each other a little to our advantage
here. Hence, the summed density functions charac-
teristics does not differ dramatically from the indi-
vidual function. As approximation to these charac-

Figure 6: Metaball isosurface approximation af-
ter different number of iterations. Upper left im-
age shows final output image of theWalking Depth
Planeapproach. The other images show the con-
tent of theλ-buffer after different numbers of itera-
tions (from upper right to lower left): directly after
initialisation, after 5, 10, 15, and 31 (final result)
iterations.

teristics we used quadratic attenuation for steps into
the viewing plane and linear attenuation for steps
out of the viewing plane: the step size|∆| is

|∆| =

8

>

<

>

:

∆max(1− D̃(~x)2) for D̃(~x) < t− ǫ

1

2
∆max(D̃(~x)− 1) for D̃(~x) > t + ǫ

0 otherwise

with ∆max being the maximum step size,t the
threshold,ǫ the approximation tolerance, and̃D(~x)
the summed density over all metaballs in the data
set at the position~x. Experimental results showed
that this oracle is quite effective. Figure 6 shows the
evolution of theλ values using the oracle with a data
set consisting of rather huge metaballs formed by
several individual spheres, making it hard to predict
the correct step size as already mentioned above.
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3.2.4 Terminating the Loop

The last issue to be solved is to define and to evalu-
ate the criteria for terminating the iteration loop. As
the maximum step size is known, the required itera-
tions can be computed using this value and the size
of the bounding box. This, of course, is only true
as long as the oracle does not decrease the step size
adaptively. Therefore, the maximum number of it-
erations must be increased, e. g. by a factor of two.
For the data set shown in figure 6, the calculated
value is 16 resulting in a maximum number of iter-
ations of 32, which is a very good prediction. How-
ever, if the sphere radii are quite small, as in most
of the data sets we present, the maximum number
of iterations gets overestimated. An overall iter-
ation maximum is used to prevent the application
from visually freezing. As second mechanism en-
suring the responsiveness of the application, a max-
imum execution time for the iteration loop is used: a
minimum frame rate can be defined, which will be
reached under all circumstances by early termina-
tion of the loop at the cost of worse approximation
of the isosurface in the background of the data set.
In our test runs we used a minimum frame rate of 1
FPS.

The last termination criterion of our software
is the approximation of the isosurface, which is
directly given by the density value calculated in
step 2. If this value is sufficiently close to the
threshold, the pixel is marked as finished, by setting
the value of the depth buffer of both frame buffer
objects to zero, which is done in one pass since both
frame buffer objects share the same depth attach-
ment. If a given percentage of all pixels is marked
as finished, the iteration loop is terminated. Fig-
ure 7 shows such terminated pixels after a few it-
erations. The straight forward approach to evalu-
ate this criterion would be using occlusion queries
and count the created fragments relative to the size
of the viewport. However, this is not possible on
many systems, including all computers we tested
our software on, because occlusion queries seam
not to count fragments generated into a frame buffer
object. As fall back solutions, one could count all
texels with a value of zero in an additional render-
ing step or reading the whole image back and count
them on the CPU. However, the overhead for both
solutions is so big that it actually is the best idea to
abandon this criterion and to rely on the other ones,
which perform sufficiently well.

Figure 7: The metaball of the same data set as
shown in figure 6 after 5, 10, 20, and 30 iterations
(from upper left to lower right). The red colour
channel encodes the finished pixels black (showing
the isosurface in cyan) and unfinished pixels red.

3.2.5 Shading

The final output image is generated by deferred
shading in step 4. After the iteration loop termi-
nated, theλ-buffer holds the approximated distance
values of all required points on the targeted isosur-
face. In an additional rendering pass, the density
field is again evaluated at the positions stored in
theλ-buffer for computing the surface normal vec-
tors and the colours similarly as described in sec-
tion 3.1. A final rendering into the real window’s
frame buffer uses the values from the frame buffer
objects to write fragments with OpenGL-conform
depth and a colour calculated by a phong lighting
using the colours and normal vectors.

4 Results

As already mentioned, our goal was to interac-
tively visualise molecular dynamics data sets with
our metaball methods. Tables 1 and 3 show per-
formance measurements for six different data sets.
TheArgondata set (figure 1) is a nucleation simu-
lation of argon with 5000 molecules. TheEthane
data set (figure 9) — the largest in our tests — con-
sists of 25000 molecules and shows a nucleation
process in a supersaturated configuration. Render-
ings of these two data sets using theWalking Depth
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Figure 8: Disulfide
Bond Formation Protein
from the Protein Data
Base consisting of 1454
particles.

Figure 9: A nucleation
simulation of supersat-
urated ethane consisting
of 25000 elements.

Figure 10: Undersam-
pling artifacts when ren-
dering the ethane data
sets with the Moving
Depth Plane and only
100 steps.

Figure 11: Missed
surface parts (arrow)
due to undersampling
by the Vicinity Texture
approach.

Planeapproach are shown in the video accompany-
ing this paper, captured in real time from the desk-
top. The data sets three to five,Sim-1(figure 12,
bottom left image),Sim-2(figure 12, top images)
andSim-3(figures 6, 7 and 11), are generated test
data sets used while developing our software. They
were created using a random placement, only con-
trolling that the overlapping of spheres is limited.
The sixth data set,1A2J (figure 8), is a Disulfide
Bond Formation Protein imported from the Protein
Data Base as example of the applicability of our
method to other kinds of data sets.

Table 1: Rendering Performance ofVicinity Texture
implementation. The processing time specifies the
time needed to build up the required data structure
texture (view-independent) using a plane-sweep al-
gorithm.

Data Set # of Processing FPS
Spheres Time

Argon 5000 113 ms 0.1
Ethane 25000 2568 ms 0.2
Sim-1 100 <1 ms 61.0
Sim-2 500 1 ms 4.0
Sim-3 100 <1 ms 4.0
1A2J 1454 12 ms 0.14

Table 1 shows timing results for theVicinity Tex-
ture implementation. It is striking that the ap-
proach shows an extremely poor performance for
data sets with large metaball clusterings as our real-

Table 2: Number of potential metaball members in
the different data sets: Non-empty groups are the
spheres which have at least one neighbour which
is close enough to form a metaball with. Spheres
which can never form a metaball are counted as
empty groups. The last column shows the mini-
mum, average and maximum vicinity group size in
the data set.

Data Set Non-empty Empty Min/Avg/
Groups Groups Max Size

Argon 3684 1316 1/39.3/125
Ethane 24838 162 1/85.2/178
Sim-1 40 60 1/1.7/4
Sim-2 305 195 1/1.6/7
Sim-3 99 1 2/8.0/17
1A2J 1454 0 2/6.9/13

world data sets are. We attribute this to the tremen-
dous number of texture fetches required during the
on-the-fly evaluation of the density function. Es-
pecially noticeable is the fact that the frame rate
for the Sim-1data set is 15 times higher than for
the Sim-3 data set, although both consist of 100
spheres. Table 2 points out, why: it shows, how
many spheres are potentially part of a metaball, i. e.
have a non-empty vicinity groups, and how many
are normal spheres. As for theSim-3data set nearly
all spheres are potential metaballs, the number of
texture accesses is much higher than forSim-1. The
most extreme data set is the 1A2J data set, which
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Figure 12: Results of the potential metaball detec-
tion during the preprocessing: metaballs and po-
tential metaballs are coloured red, normal spheres
cyan. The upper left image shows classification for
the 500-element Sim-2 data set, the one right of that
shows a close up view of the center area. One can
see that actually only very few metaballs are gener-
ated. The lower row shows the Sim-1 and the 1A2J
data set. In the last-mentioned one, all spheres form
one large metaball.

forms one large metaball and therefore has no nor-
mal sphere (Figure 12, bottom left image).

One interesting fact about theVicinity Texture
approach is that it scales quite well with the im-
age resolution. The1600 × 1200 rendering of the
Sim-1data set reaches the same frame rate as on
a 5122 viewport. We attribute this to the fact that
the texture fetching capability of the graphics hard-
ware is not completely utilised for the small num-
ber of fragments generated in the small viewport.
For theSim-2data set the frame rate drops from
4.0 to 2.0 FPS, because the number of filled pix-
els, which cause time-consuming texture fetches,
increases while texture access posed heavy load on
the GPU already for the small picture.

Table 3 shows performance values for theWalk-
ing Depth Planeapproach. Since the approach does
not only depend on the complexity of the data set,
but also on the maximum number of iterations, we
provide rendering performance values for all six
data sets using exactly 100 iterations. Increasing or
decreasing the maximum number of iterations intu-
itively decreases or increases the frame rates. No

Table 3: Rendering Performance ofWalking Depth
PlaneImplementation for different maximum itera-
tion counts.

Data Set # of Maximum # of FPS
Spheres Iterations

Argon 5000 100 13
Ethane 25000 100 5
Sim-1 100 100 61
Sim-2 500 100 15
Sim-2 500 80 19
Sim-3 100 100 15
Sim-3 100 31 61
1A2J 1454 100 21
1A2J 1454 250 11

rendering, except for the rendering of1A2J with
100 iterations, created any visual artifacts due to in-
sufficient number of iterations (see figure 10). The
Vicinity Textureapproach can also suffer from typ-
ical undersampling artifacts like holes the in meta-
ball surface and from jittering of the surface nor-
mals (see figure 11) as we often can afford only very
few sampling steps per pixel.

We ran our performance tests on an Intel Core2
Duo 6600 processor with 2.40 GHz, 2 GB memory,
and an NVidia GeForce 8800 GTX graphics card
with 768 MB graphics memory. The viewport size
was5122 for all tests.

5 Conclusions

In this paper, we showed how to interactively render
metaballs from large particle data sets. We tried two
different techniques, of which the first one turned
out to perform disappointingly with real-world data
sets. The tremendous number of texture accesses
required by this approach simply poses a too heavy
load on the graphics card, but the evaluation of the
density function only for fragments generated by
the influence spheres limits the impact of the view-
port size after all. As the current linear layout of
the vicinity texture is probably unfavourable with
regard to caching, it should be investigated whether
spatial grouping of the entries can improve the ren-
dering performance.

We described a second approach using multiple
rendering passes to approximate the surfaces of the
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metaballs. Its rendering performance is quite good
on state-of-the-art GPUs, and as it does not require
any pre-processing it is even possible to visualise
time-dependent data sets on the fly. However, the
rendering speed is tightly connected to the viewport
size and the method may generate visual artifacts if
the number of iterations is insufficient. The current
termination criteria and estimation of required iter-
ations cannot effectively prevent these if the size of
a molecule changes over time and falls below the
pre-computed maximum step size.

Another problem is noticeable in figure 7 when
comparing the upper right and lower left images.
Although ten iterations lie between these images,
the differences are almost indiscernible. We at-
tribute this to the fact that the empty space between
the spheres cannot efficiently be skipped without
additional effort. Therefore, empty-space-skipping
is a feature we want to implement in the future.

We also hope that this and further optimisations
can improve the rendering performance to interac-
tively handle data sets consisting of hundred thou-
sands of particles, which are not uncommon in the
application area of our software, and to support
larger output sizes.
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Abstract

Improving rendering speed in the visualization of
very large volumetric data without loss of informa-
tion is still a challenge. State of the art methods
focus on data reduction by omitting content which
does not contribute to the final image. In order to
further decrease the amount of data, we present a
general approach for applying common sequential
data compression schemes to blocks of data, which
can be decoded on-the-fly by the graphics process-
ing unit (GPU) in a single render pass. Subse-
quently, the block can be rendered with common
axis-aligned texture based rendering techniques.
For our implementation, we use Huffman coding
as compression scheme utilizing the capabilities of
modern graphics hardware to implement the decod-
ing step in a fragment shader. As a result of our ap-
proach, up to 3.2 times more data can be transmitted
to or held in texture memory of graphics hardware
without loss of information.

1 Introduction

Due to the enormous development of commercial
graphics hardware in the recent years, today it
is possible to render three-dimensional datasets in
very high quality at interactive frame rates [8, 12,
20, 25]. However, this applies only to data which
completely fits into texture memory (today up to 1.5
GB), so that the full performance of the graphics
processing units (GPUs) can be exploited. For large
datasets which exceed this limit, the volume has to
be divided into smaller bricks which, each for itself,
fit into video memory. If the whole dataset can not
reside in video memory, however, all visible bricks
have to be transferred to the graphics hardware for
the rendering of every single frame. Due to the
bandwidth limitations of the corresponding trans-

mission channel (for PCI Express theoretically up
to 4 GB/s), conventional techniques lead to frame
rates which are far behind interactivity [3]. Unfor-
tunately, neither the transmission channel nor the
graphics memory is expected to increase to such an
extent that this problem will be solved. On the con-
trary, the development of medical imaging devices
and the computational power for numerical simula-
tions will lead to datasets of further increasing size.

In the recent years, various approaches have been
published to tackle this problem (see Section 2).
As the transmission channel is the bottleneck of
the rendering pipeline, the general idea is to re-
duce the amount of data which has to be transferred
to the graphics hardware. So far, the primary fo-
cus has been on omitting content which does not
contribute to the final image. By means of culling
and multi-resolution techniques, the amount of data
transfer can be significantly decreased, but in most
cases these algorithms do not suffice to gain in-
teractive frame rates without accepting loss of in-
formation. These approaches, however, reduce the
amount of data merely by selecting its relevant por-
tions, but finally transmit those in an uncompressed
format. Regarding the various compression tech-
niques which are used in computer science, there
seems to be still much potential to further decrease
the data amount by using other coding schemes.

Unfortunately, almost any traditional compres-
sion technique is not directly implementable on
GPU. A major restriction is the sequential order
of most CPU-based compression schemes, whereas
the parallel architecture of GPUs is optimized for
accessing the memory randomly in 2D or 3D. Ex-
ceptions are lossy approaches like vector quantiza-
tion, which would be preferable due to their high
compression ratios [22]. However, they comprise
the severe problem that even the smallest error can
be increased to an arbitrary size by a high-frequent

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, J. Weickert (Editors)



transfer function. Thus, for controlling this error it
is mandatory to consider classification during com-
pression, leading to the handicap that the expensive
decoding step has to be performed at runtime.

In this work, we avoid this problem by means
of a general lossless approach for applying sequen-
tial data compression schemes to bricks of volu-
metric data, which are decoded and rendered on-
the-fly in a two-pass strategy. The basic idea of
the decompression pass is that each fragment de-
codes a stripe of texels along one axis of a single
block. Altogether, all slices of this block are de-
compressed, which can be rendered in a subsequent
render pass using common 2D texture based tech-
niques. As only one block is decoded at the same
time and the other blocks can be held in video mem-
ory in the compressed format, larger datasets can be
held on GPU than without compression. For even
larger datasets, requiring a continuous data transfer,
the compression leads to a higher data throughput.
As a proof of concept, we apply Huffman coding
on volumetric data and implement its decoding step
in a fragment shader by exploiting features of mod-
ern graphics hardware. To further improve the com-
pression ratio, we combine decorrelation techniques
like predictive coding with the Huffman coder.

The remainder of this paper is structured as fol-
lows. After a review of related work in Section
2, we describe the basic idea of applying sequen-
tial data compression techniques on volumetric data
and our general two-pass strategy for decompres-
sion and rendering. In Section 4, we go into details
of the implementation of Huffman encoding and de-
coding. Subsequently, we present some decorrela-
tion techniques for improving the compression ra-
tio. In Section 6, we show and discuss our experi-
mental results. Finally, we present our conclusions
and give some ideas of future work.

2 Related Work

While compression in general is an old and well ex-
plored area of research, its application on volume
data for the purpose of rendering is a rather new
field of study. Using various different techniques
like wavelet transforms, early publications have fo-
cused on the data reduction in main memory and on
storage devices [10, 18, 21]. In these approaches,
however, the dataset has to be decoded before it
is transmitted to the graphics hardware. Thus, the

amount of data which has to be transferred to and
stored in video memory is unaffected.

One of the first ideas to tackle this particular
problem has been level-of-detail (LOD) rendering
(also known as multi-resolution rendering) [13, 24]
in which parts of the volume are rendered in lower
resolution in order to decrease the amount of data.
Based on this concept various approaches have been
published, which differ in the division of the volume
and the algorithm for selecting an appropriate LOD
for each block [5, 7, 15, 16]. In addition, all pro-
posed approaches are combined with some sort of
data compression, but again only with the intent of
reducing the amount of data in main memory.

The first approach including some kind of de-
compression on graphics hardware has been tex-
ture packing [11, 14]. The basic idea is to reor-
ganize the non-empty content such that it fits into
a smaller texture. The original volume is then re-
placed by one or more indexing textures, in which
the packed blocks are referenced. To be more suit-
able to the transfer function, the sub-blocks can also
be grouped in different textures according to their
value range instead of their local coherence.

Exploiting the texturing capabilities of modern
graphics hardware in a similar fashion, Schneider
and Westermann [22] present an implementation of
vector quantization on GPU. In order to achieve bet-
ter quality, the data is divided into 43 blocks, which
are decomposed into a multi-resolution representa-
tion. With this approach, compression factors of up
to 64:3 can be achieved, but in contrast to the loss-
less packing techniques it leads to a significant loss
of information. Depending on the transfer function,
these errors result in more or less visible artifacts.

Furthermore, there are vector quantization tech-
niques which are directly supported by modern
GPUs and which can be specified during texture
definition (e.g. S3 texture compression). However,
the compression schemes are very simple and the
quality is not acceptable for volume rendering.

Similar to vector quantization, we focus on the
explicit encoding of volume data. However, by em-
ploying lossless compression schemes we avoid its
primary problem. Regarding all other publications,
our approach could be used in combination with
these, as they transmit the volume data in an uncom-
pressed format. Besides the visualization of static
data, this applies to many methods for rendering
time-varying datasets as well [1, 6, 23].
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Figure 1: For data encoding, the block is decomposed into parallel stripes of voxels (a). The bit data of the
encoded stripes is stored within a single bit stream and an index texture is used for referencing the first bit
of each stripe (b). For decoding, a quad is rendered with the size of the index texture and each fragment
decodes one stripe of the block. The decoded scalar values are written into different color channels of
multiple render targets (c), which are used as textures for volume rendering in a subsequent render pass (d).

In reference to our implementation, the strategy
is most similar to deferred filtering [4]. In contrast
to its iterated decompression, however, we can de-
code a whole block in a single render pass. Apart
from that, our approach has the same benefits such
as continuous reconstruction.

3 General Approach for the Use of Se-
quential Data Compression Schemes
on GPU

Sequential data compression schemes gain high
compression factors by packing information into a
bit stream, which is encoded and decoded in serial
order, e.g. if the end of a codeword determines the
beginning of the subsequent one. Modern graphics
hardware, on the other hand, owes its performance
primarily on its highly parallel streaming architec-
ture including independent processing of fragments
within a single render pass. In order to exploit the
benefits of modern GPUs as well as of sequential
encoding algorithms, we divide every data block
(e.g. a brick or a LOD-block) into parallel stripes of
n voxels (see Figure 1(a)), which are independently
decoded, but for itself in sequential order.

3.1 Encoding, Decoding, and Rendering

During encoding, which is performed only once on
CPU in a preprocessing step, the stripes are packed
into a single bit array and a index texture is used to

store the references to the first bit of each stripe (see
Figure 1(b)).

For the decoding of the according block on GPU,
a quad is rendered having the same size as the in-
dex texture. By accessing this texture, each frag-
ment retrieves the reference to the encoded data,
from where it can start decoding of the correspond-
ing stripe. As each decoded texel has to be interme-
diately stored in order to be available for the subse-
quent render pass, the length n of each stripe is lim-
ited by the writing capabilities of the GPU. Since
the index structure represents some overhead com-
pared to the original compression scheme, n should
be maximized. Assuming that we have to deal with
scalar data, we use all distinct color channels of a
frame buffer object (FBO) with multiple render tar-
gets for storing the decoded texels (see Figure 1(c)).
Hence, for modern graphics hardware with 8 render
targets and 4 color channels, up to 32 texels can be
stored, or in other words, up to 32 slices can be de-
compressed in a single render pass.

In the render pass, the render targets are bound
as textures, which can be used for common axis-
aligned texture based rendering. The only differ-
ence to the standard implementation is an addi-
tional selection of the corresponding color channel,
as four slices are encoded within a single RGBA-
texture. This can simply be implemented by using
a uniform variable and a single dot product.

One disadvantage of axis-aligned rendering is
that three different stacks of slices have to be avail-
able per block in order to reduce artifacts. As our
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Figure 2: Our approach allows decoding of blocks with size I×J×K (K ≤ n), where n is the number of
writable symbols per fragment in a single render pass. However, blocks with K > n can also be decoded
at once, if we decompose each into m = dK/ne subblocks of depth n (a) and rearrange the data (b).

scheme is restricted to decode slices along its de-
composition axis, this overhead applies to our ap-
proach as well. Due to the continuous data transfer,
however, this additional amount of data solely af-
fects the main memory, which is significantly larger
than the texture memory.

3.2 Handling of Large Blocks

Resulting from our approach, it is possible to de-
code a volume of any size I×J×K (with K ≤ n) in
a single render pass. For a combination with brick-
ing or LOD-rendering this size is usually sufficient.
However, the decompression of larger blocks with
K > n is possible as well by reordering all texels
(i, j, k) ∈ (I, J, K) as follows:(

i
j
k

)
→

( dk/ne+ i
j

k mod n

)
As can be seen in Figure 2, the rearranged block

has a size of (I · dK/ne, J, n), which can directly
be encoded and decoded as described above. In the
rendering pass, we simply have to adapt the texture
coordinates accordingly.

3.3 Data Structures

For the implementation of the decoding step on
graphics hardware, the before mentioned data struc-
tures have to be mapped to data types of a fragment
shader. The index texture can be stored as a 2D
texture with dimensions I × J (or I · dK/ne × J

for rearranged blocks). By means of the novel
gpu shader4 extension of OpenGL, the bit offsets
can be directly stored in integer format, with a res-
olution of either 16 or 32 bits. Since we address
single bits, 16 bits suffice for blocks of size L3 with
L ≤ 16 and 32 bits for L ≤ 512.

According to the one-dimensional nature of the
bit data, the best fitting data structure would be a
buffer texture, a new data structure which is nothing
but a simple array. However, in our implementa-
tion on a GeForce 8800 GTX (driver: 100.14.11)
we have achieved better performance by mapping
the bit data on a two-dimensional texture. We use
RGBA8-values as internal format, since our exper-
iments have shown that on the given hardware it
is the best trade-off between the reduction of texel
fetches and the costs for extracting a sequence of
bits.

4 Huffman Coding for Texture Com-
pression on GPU

Based on the previously described concept, the de-
coding step of sequential data compression schemes
is generally implementable on graphics hardware.
For our experimental implementation, we have de-
cided to use Huffman coding [9] as basis for our
compression scheme. Huffman coding is the most
effective codeword based entropy encoding scheme
and is used for many different compression algo-
rithms (e.g. DEFLATE) and popular multimedia
codecs (e.g. JPEG and MP3).
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Figure 3: The shader pass for Huffman decoding is performed as follows: First, the pointer to the stripe’s bit
data (red bits) is initialized by fetching the offset from the index texture. From the current position, the next
lmax (e.g. 6) bits are extracted and used as index for accessing the look-up Table (2). The according entry
(blue bits represent the codeword) provides the decoded symbol (luminance value), which is stored in the
current color channel of the frame buffer object (3), and the length of the decoded codeword (alpha-value),
which is used to update the read position of the bit data (4). The steps (2) to (4) are repeated n times until
every element of the stripe is decoded and stored in the multiple render targets.

Like any codeword based algorithm, it defines a
new alphabet of prefix-free codewords, such that
the length of the codes is proportional to the self-
information of the encoded symbols. During com-
pression, the symbols of equal length are replaced
by the bit-strings of the new alphabet and for de-
compression the codewords are transferred back to
the original values.

4.1 Encoding on CPU

As for any codeword based entropy coding scheme,
compression of some given data is divided into
three successive steps: Calculation of weights (most
usual probabilities) for each symbol, generation of
a prefix-free alphabet based on these weights, and
finally encoding of data by replacing the original
symbols with the bit-strings of the codewords.

In our implementation, the weights are computed
by counting the frequency of occurrence for the dis-
tinct values in the whole dataset. The prefix-free
alphabet is generated by successively creating a bi-
nary tree according to the optimum coding proce-
dure of Huffman [9]. Finally, each block is sep-
arately encoded for the three decomposition axes.
The encoding itself is performed stripe by stripe, so
that we have a bit stream and a two-dimensional in-

dexing array representing the data as described in
Section 3.

Without a doubt, higher compression factors
would be obtainable with a local codebook per
block. However, as the according information has
to be transferred to the graphics hardware as well, it
is much more appropriate to use a global one, which
can reside in video memory all the time.

4.2 Additional Data Structures

Besides the bit data and the index texture (see Sec-
tion 3.3), we need information for storing the prefix-
free alphabet on the graphics hardware. Due to per-
formance issues, this is done by means of a look-
up table (LUT), with 2lmax entries representing the
possible bit string of length lmax, where lmax is the
maximal length of a codeword in the alphabet. For
the creation of the look-up table, the indices of the
entries are regarded as bit strings. For each entry
the codeword is determined, which is prefix to this
bit string. The corresponding symbol and the length
of the codeword are stored in the table (see Figure
3). Thus, reading the next lmax bits as index, we
can decode the current symbol and determine the
bit offset for the read position by a single look-up.
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As we have to store two components, the LUT-
entries are represented by luminance-alpha values
with a bit-resolution according to the given volume
data (8- or 16-bit). Note that the look-up table may
be rather large. For 2lmax entries with 2 color chan-
nels and 2 bytes per channel for 16-bit data, it re-
quires 2lmax+2 bytes. Depending on the actual size
of the video memory, it might be better to adapt the
generated alphabet in extreme cases, so that lmax is
restricted to some predefined value.

4.3 Decoding on GPU

By means of the introduced data structures, Huff-
man decoding can be directly implemented in a sin-
gle render pass. For this purpose, a quad with the
size of the index texture is rendered into a frame-
buffer object with multiple render targets, as already
described in Section 3.1. The indexing texture is
bound as texture to the quad, so that each fragment
can read bit data offset of the corresponding stripe.
The decoding pass is then performed as follows:

init read position of the bit data;
for each element to be decoded {

read next l_max bits;
get according LUT-Entry;
write symbol of LUT-Entry;
update read position;

}

This procedure is illustrated in Figure 3. First,
the pointer to the first bit is fetched from the index
texture according to the fragment’s texture coordi-
nates. After this initialization, the next lmax bits are
read from the bit texture according to the bit pointer.
This is done incrementally, i.e. in each step only
those texels are fetched, which have not been read
so far.

The extraction of the index for the look-up ta-
ble is done by a few shifting, swizzling, and arith-
metic operations. With this index as texture coordi-
nate, the according LUT-entry is fetched. Its alpha
value is added to the bit pointer in order to update
the read position and its luminance value is the de-
coded symbol. In order to avoid difficult branching,
all symbols are stored in a intermediate array and
finally written to the render targets at the end of the
shader.

5 Improving the Compression Ratio

For improving the compression ratio, we suggest
the use of decorrelation techniques, i.e. some pre-
processing which concentrates the information to a
small part of the data whereas rather large parts con-
tain only a low amount of self-information. Due to
the characteristics of volumetric data, it seems ob-
vious that this is possible by exploiting the local co-
herence of neighboring voxels.

For this purpose, we have implemented several
predictive schemes. That means, we try to estimate
the value of a symbol by some given rule and the
information of the previously decoded symbols, and
store instead of the original value vi its difference di

to a predicted one pi (di = pi − vi).
In the decoding step, the same rule is applied

to predict the value and the difference is added in
order to obtain the original value. For appropriate
schemes, the differences di are in most cases very
small and thus, have a frequency distribution which
is much better suited for coding schemes like Huff-
man coding than the original values vi.

The following schemes have been implemented:

• Constant Prediction
Each voxel is estimated to be have the same
value as its predecessor along a single stripe
and the divergence is Huffman encoded.

• Linear Prediction
Values are predicted by linear extrapolation of
the two previous elements and the differences
are compressed using Huffman coding.

• Least Square Prediction
A linear function is computed to approximate
the three previous voxel values by the least
square method and the function is evaluated
for the element, of which the value is esti-
mated. The divergence is encoded using Huff-
man coding.

• Low Resolution Approximation
Use of a low resolution volume with a quarter
of the resolution for each dimension to approx-
imate the data. The differences are encoded
using Huffman coding.

One benefit of the suggested schemes is their
easy integration into the decoding shader as we just
have to add a few additional arithmetic operations.
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However, in the former three schemes the first one
to three symbols can not be estimated using the ac-
cording predictor. Thus, we either have to treat
these elements as a special estimation case or have
to load them as initial data. As the original values
and the differences are different kinds of data con-
sidering their probability distribution, we suggest to
store the first slice as initial data separately in an un-
compressed format. In order to avoid an additional
texture and an additional look-up, this information
can be encoded in the index texture. For predictive
schemes, which require more than one previous ele-
ment, the prediction is simplified for the first values.

Another issue of using predictive schemes is that
we have to encode a different alphabet, since a
prediction can lead to rational and negative num-
bers. As a consequence, the new alphabet may have
much more elements, which can have negative ef-
fects when applying Huffman coding on the data,
e.g. if we have to deal with a larger look-up ta-
ble (see Section 4.2). In order to circumvent this
problem, we round any predicted value before com-
puting the difference to the original one. Hence,
the original data range of [0, max] can be at most
increased to [−max, max]. Note that this step does
not include any loss of information. We only have to
take care, that we round the prediction in the same
manner during encoding and decoding.

6 Results

Subsequently, we present performance measure-
ments according to a prototype implementation of
our algorithm. As we deal with data compression,
we focus on the compression efficiency as well as
the times for encoding and decoding. Note that
our approach is lossless, so that the image qual-
ity is identical to the original dataset. All results
have been obtained by using a GeForce 8800 GTX
with 768 MB local video memory on a 3.40GHz
Intel Pentium 4 HT with 2GB main memory under
Linux.

For the validation of our approach and the sug-
gested decorrelation techniques, the different com-
pression schemes have been applied to volumetric
data of different modalities (CT, MRI), applications
(medicine, industry), and quality (noise). The first
dataset is Bruce Gooch’s Brain, which can be re-
garded as a rather good MRI scan of a human head.
The knee dataset, known from the Transfer Func-

Dataset Mod. / bits Resolution Size
Brain MRI / 12 2562 × 156 20 MB
Knee MRI / 12 5122 × 87 44 MB
Engine CT / 8 2562 × 110 7 MB
Abdomen CT / 12 5122 × 463 232 MB
Piggy CT / 12 5122 × 134 67 MB

Table 1: Datasets used for experiments.

tion Bake-off [19], is a MRI scan of a human knee
containing a high amount of noise. The third dataset
is an industrial CT scan of an engine block with two
cylinders, which has been taken by General Elec-
tric, USA. Like most industrial scans, the exam-
ined object does consist of just a few materials –
in this case, two materials plus air. The abdomen
dataset is a CT scan of a belly in prone orientation in
usual image quality, which has been captured at the
Walter Reed Army Medical Center, USA. The last
dataset is the piggy bank from the Computer Graph-
ics Group at the University of Erlangen, Germany,
which is a very clean CT scan containing only a few
materials (ceramic piggy bank, wooden plate, and
chocolate coins) and a large amount of air. Size and
resolution of the datasets are shown in Table 1.

6.1 Compression Efficiency

The compression factors (uncompressed size / com-
pressed size) for the different schemes and datasets
(brick size: 323) are shown in Table 2. For the pre-
dictive schemes (constant, linear, and least square)
the initial slice was stored in an uncompressed for-
mat. Due to our focus on reducing the data transfer,
the compressed size includes all data but the look-
up table, which resides in video memory during ren-
dering.

As can be seen, compression factors up to 3.2
have been achieved depending on the compression
scheme and the dataset. Comparing the different
decorrelation techniques, constant prediction ob-
tains the highest compression for three of the five
datasets. Furthermore, it is near the maximal ratio
for the brain dataset and only for the piggy bank
significantly smaller than more complex coding
schemes. Even if it is the most simple idea, constant
prediction seems to cope best with the high-frequent
noise of typical datasets. When these discontinu-
ities are less (e.g. if a dataset is smoothed due to
visualization purposes), linear and least square pre-
diction yield even higher compression. Besides the
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Algorithm Brain Engine Knee Abdomen Piggy
Without Decorrelation 2.43 1.46 1.45 1.74 1.90
Constant Prediction 2.50 1.83 1.65 2.01 2.84
Linear Prediction 2.29 1.67 1.64 1.94 3.20
Least Square Prediction 2.36 1.67 1.59 1.92 2.97
Low Resolution Approx. 2.56 1.67 1.52 1.91 2.14

Table 2: Compression factors (uncompressed / compressed size) for the different decorrelation techniques
and datasets (brick size: 323). The highest and lowest compression factor are emphasized (bold / italic).

afore mentioned decorrelation techniques, we have
also experimented with wavelet transforms. With-
out a quantization of data, however, it did not prove
to be beneficial.

With reference to the different properties of the
datasets, the amount of noise, the portion of air, and
the number of different materials have major impact
on the compression ratio. Note that the rather low
compression factor for the engine dataset is due to
its 8-bit resolution compared to the 12-bit precision
of all other datasets, which have to be stored with
16-bit as a 12-bit format is not supported by GPU.

6.2 Decoding Performance

Besides the compression ratio, the decoding effi-
ciency is of major importance for our approach. Ap-
plying the algorithm without decorrelation or with
constant prediction as described above, the decom-
pression rates vary between 35 and 48 MB/s for
the different datasets. This is a considerably lower
data throughput compared to the bandwidth of PCI
Express (usually is up to 1 GB/s in practice), i.e.
our approach has a worse performance than brick-
ing without compression. Based on some bench-
marking, however, we found out that a major hin-
drance of performance was the use of all 8 render
targets. By using only 4 render targets, which has
been already supported by the previous hardware
generations, the decoding throughput has been im-
proved to a range of 570 to 750 MB/s for our testing
datasets.

Thus, even if the current driver (version:
100.14.11) might not yet be fully optimized regard-
ing the new GPU features, the performance of our
algorithm is currently only in the range of the ac-
tual transmission bandwidth to the video memory.
The major bottleneck of the shader performance is
the high number of dependent texture look-ups for

Huffman decoding. The decoding of each symbol
depends on the previous one in the stripe, so that be-
sides the prediction no operations can be executed
until the next LUT-entry is fetched. Hence, the per-
formance is dominated by the memory latency of
graphics hardware.

Hence, using Huffman Coding is optimal with
respect to codeword based entropy encoding, but
not optimal regarding the decoding performance on
graphics hardware. In order to achieve decoding
performance significantly above the transmission
bandwidth to the video memory, there is need for
other coding schemes which are more suitable for
the implementation on GPU. In addition, optimiza-
tions are imaginable to speed up the performance
for a part of the stripes, for example by regarding
properties of the current transfer function.

6.3 Encoding Performance

The encoding of data has to be applied only once for
each dataset. Afterwards it can be held on a server
in the compressed format and directly be used for
rendering. Thus, the encoding performance is of
rather low importance and its implementation was
no target of significant optimizations.

Regarding the different prediction schemes (con-
stant, linear and least square) and Huffman without
decorrelation, the compression of the data along one
stack of slices took up to 5 seconds for the datasets
brain and engine, up to 14 seconds for the piggy
bank and the knee, and up to 74 seconds for the
abdomen. The data throughput (measured by orig-
inal size / compression time) is in the range of 3.2
to 6.5 MB/s. According to its higher complexity,
low resolution approximation had a lower through-
put (1.4 − 4.1 MB/s) and took up to three times
longer than the other compression schemes.
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6.4 Comparison to Other Approaches

The comparison to other compression approaches
can be seen twofold. On the one hand, we can com-
pare our results with the approach of Schneider and
Westermann [22]. Their vector quantization scheme
can yield compression factors up to 64:3, which is
far beyond our results. However, this compression
scheme contains a significant loss of information
and thus, cannot be directly compared to our ap-
proach.

On the other hand, we can compare our algorithm
with lossless CPU-based compression schemes, like
GNU zip, which is based on Lempel-Ziv coding
[26] of bytes, and bzip, which is based on the
Burrows-Wheeler transform [2] and Huffman cod-
ing. The former one compresses Bruce Gooch’s
brain in about 4.6 seconds to a factor of 2.42. De-
compression took only 0.36 seconds, resulting in a
data throughput of 56.8 MB per second. The lat-
ter one compresses the dataset by a factor of 3.34
within 6.4 seconds. The time required for decoding
is 2.6 seconds, resulting in a throuput of 18.1 MB/s.
Compared to these results, our algorithm outper-
forms both schemes regarding the data throughput
for decompression and achieves in addition higher
compression factor (2.50) than GNU zip.

Nevertheless, even better compression ratios
would definitely be possible by means of algo-
rithms which are specialized on grey-level images
(e.g. Glicbawls [17]) or images in general (e.g.
JPEG2000). However, these compression schemes
are highly specialized and far too complex for an
implementation on graphics hardware for the pur-
pose of interactive rendering.

7 Conclusion and Future Work

In this paper, we presented a novel approach for
assigning sequential data compression schemes to
volumetric data for the purpose of volume render-
ing. The general algorithm uses the capabilities
of modern graphics hardware to decode blocks of
data in a single render pass. The decoded data
is stored in multiple render targets, which can be
used as textures for rendering in a subsequent ren-
der pass. Our experimental implementation of using
Huffman coding along with prediction schemes has
gained compression factor up to 3.2, which can be
used to decrease the transmission time for blocks as

well as to increase the amount of information which
can be held in the video memory.

The decoding throughput was in the range of the
transmission rate of PCI Express in practice. Hence,
our experimental implementation represents so far
no better alternative. However, as LOD-rendering
is quite a well-explored field of research and real
data compression has been so far restricted to vector
quantization, we believe that our general approach
represents a new possibility to implement various
compression schemes on GPU. With Huffman cod-
ing, representing the optimal codeword based en-
tropy encoding scheme, we have shown what com-
pression factors are possible without loss of infor-
mation and how expensive it is to achieve such ra-
tios.

Due to this results, future work will be twofold.
On the one hand, we will focus on increasing the
performance of our approach. This includes the de-
velopment of better suited coding schemes as well
as additional optimization, e.g. by considering the
transfer function. On the other hand, there is need
to develop schemes which achieve higher compres-
sion ratios. This will not be possible without loss
of information. In contrast to vector quantizations,
however, it is possible to keep the error of quanti-
zation below some given threshold. Alternatively, it
may be possible to predefine some properties of the
transfer function which are beneficial for encoding
the data, e.g. to define a data range associated with
air.

In summary, we believe that this approach pro-
vides various possibilities to find an optimal trade-
off between quality and rendering speed. Thus,
it is an optimal complement to the various multi-
resolution and texture packing techniques, which
have so far transferred data in an uncompressed
manner.
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Abstract

In this paper we present an efficient data structure
and algorithms for GPU ray tracing of secondary ef-
fects like reflections, refractions and shadows. Our
method extends previous work on layered depth
cubes in that it uses layered depth cubes as an adap-
tive space partitioning scheme for ray tracing. We
propose a new method to efficiently build LDCs on
the GPU using geometry shaders available in Di-
rect3D 10. The overhead of peeling the scene mul-
tiple times can thus be avoided. We further show
that the traversal of secondary rays is greatly accel-
erated by exploiting a two level hierarchy and the
adaptive nature of the LDC. Due to the computa-
tional and bandwidth capacities available on recent
GPUs our method enables high-quality rendering of
staticanddynamic scenes at interactive rates.

1 Introduction and Related Work

Since the early years of computer graphics there has
been interest in ray tracing due to its potential for
the accurate rendering of complex light phenomena.
Over the last few years, there was an ever grow-
ing interest due to the observation that interactive
ray tracing can now be achieved on custom hard-
ware [8, 23, 22], or by using a cluster of custom
computers [19, 26]. Recent advances in hardware
and software technology, including specialized ray
tracing chips [25] as well as advanced space parti-
tioning and traversal schemes [27, 30], have even
shown that ray tracing is potentially suited for real
time applications like computer games and virtual
environments.

Simultaneously, considerable effort has been put
into the implementation of ray tracing on pro-
grammable graphics hardware. Inspired by the
early work of Purcell et al. [21] and Carr et al. [2],
in a number of succeeding implementations it was
shown that the capabilities of recent GPU stream ar-

chitectures including parallelism across stream ele-
ments and low-latency memory interfaces can ef-
fectively be used for ray tracing [17]. While these
approaches were solely based on uniform space par-
titioning schemes, recent work has also demon-
strated the possibility to build and traverse adaptive
spatial hierarchies on the GPU [15]. Hereafter, Fo-
ley and Sugerman [5] as well as Popov et al. [20] in-
dependently examined stack operations—a feature
not well-supported by the GPU—and they reported
a significant performance gain by using a stackless
traversal algorithm for kd-trees. Alternatively, Carr
et al. [3] represented surfaces as geometry images
and introduced linked bounding volume hierarchies
to avoid conditionals and stack operations. By tak-
ing advantage of the GPU to construct these hier-
archies, for the first time the authors could demon-
strate real-time GPU ray tracing of dynamic scenes.

Despite all the advancements in GPU ray tracing,
including efficient approximations for ray-object
intersection using pre-computed environment im-
posters [14] and ray-object penetration depths [31],
it can still not be denied that high quality ray tracing
using optimized CPU codes performs favorable or
even faster than many GPU implementations. The
main reason why rasterization hardware is not per-
fectly suited for ray tracing is the inability of cur-
rent GPUs to efficiently determine ray-object inter-
sections for rays others than view rays. This makes
it difficult to accurately simulate secondary effects
like reflections, refractions, and shadows, as such
effects require parts of the scene to be rendered mul-
tiple times under different projections, i.e. onto dif-
ferent receivers. Although possible in principle, it
was shown by Wand and Straßer [28] for the ren-
dering of underwater caustics that this approach is
not practicable in general.

On the other hand it can be observed that a sig-
nificant part of the render time in typical 3D appli-
cations is shading, and it is well accepted that the
GPU outperforms the CPU in this respect. Appar-
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Figure 1: Method demonstration: Cubemap reflections (left), our method (middle) and software ray tracing
(right). On a single Geforce 8800 GTX our method renders the scene into a 1280x1024 image at 3 fps.

ently, due to the GPUs inability to effectively ex-
ploit adaptive space partitioning schemes this ad-
vantage is entirely amortized in ray tracing. Our
motivation is thus to overcome GPU limitations in
finding ray-object intersections, at the same time
exploiting the intrinsic strength of these architec-
tures to shade billions of fragments in real-time.

1.1 Contribution

The main contribution of this paper is a new GPU
approach for ray tracing of secondary effects like re-
flections, refractions and shadows. This is achieved
by using an adaptive spatial data structure at ex-
treme resolution, and by providing novel meth-
ods to construct and traverse this data structure on
the GPU. Just as proposed by Lischinski and Rap-
poport [13], our data structure represents the scene
as a set of layered depth images (LDI) [24, 16, 6]
along three orthogonal projections. According to
Lischinski and Rappoport [13] we will refer to this
structure as the layered depth cube (LDC). We ex-
tend LDCs in the following ways:
• LDIs are constructed via depth peeling [4], but

we employ Direct3D 10 functionality so that
the scene only has to be peeled once to gener-
ate LDIs along multiple viewing directions. To
accelerate the LDC construction every poly-
gon is rendered only into the LDI capturing the
scene from the direction most perpendicular to
this polygon (see Figure 5). To accommodate
deferred shading the LDC stores not only frag-
ment depth, but also interpolated colors and
texture values as well as normals. The process
leads to a view independent scene representa-
tion using a minimal number of samples.

• For each LDI a two level hierarchy is built.
This method is similar to the empty space
skipping structure used by Krüger and Wester-
mann [11]. Entries in this low resolution repre-
sentation of one LDC direction store for each
bundle the minimum and maximum distances
from a reference plane perpendicular to the di-
rection of projection.

• We present an efficient ray-object intersection
test using LDCs. As in each LDI the samples
lie on a 2D raster we perform ray traversal in
these rasters alternatively. This method is sim-
ilar to screen-space ray tracing described by
Krüger et al. [10], but it has a major advan-
tage: The hierarchical representation is used
to skip regions in these rasters not containing
any structures a ray could intersect with.

As both the LDC construction and the traversal
are performed on the GPU the rasterization capac-
ities of recent architectures can effectively be ex-
ploited. In particular, since our approach does not
require any pre-process to modify the initial scene
representation it can be used in the same way to ren-
der dynamic scenes or scenes created or modified
on the GPU. Some results of our approach together
with a comparison to cubemap reflections and soft-
ware ray tracing are shown in Figures 1 and 2.

The remainder of this paper is organized as fol-
lows: In the next chapter we will discuss the LDC
construction in particular the use of Direct3D 10
features to speed up this process. We will then de-
scribe how this structure can be efficiently traversed
on the GPU. Next, we explain the integration of the
LDC construction and the ray traversal into the ren-
dering algorithm. Finally, we analyze the perfor-
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Figure 2: Method demonstration: Cubemap reflections (left), our method (middle) and software ray tracing
(right). On a single Geforce 8800 GTX our method renders the scene into a 1280x1024 image at 5 and 3
fps, respectively.

mance of the major components of our system, and
we conclude the paper with some remarks about fu-
ture research in this field.

1.2 LDC Construction

To efficiently construct LDCs on the GPU we first
employ depth peeling [4] to generate LDIs along
three orthogonal viewing directions. Depth-peeling
requires multiple rendering passes. For each pixel,
in then-th pass the(n−1)-th nearest fragments are
rejected in a fragment program and the closest of
all remaining fragments is retained by the standard
depth test. A floating point texture map—the depth
map—is used to communicate the depth of the sur-
viving fragments to the next pass. The number of
rendering passes is equal to the objects depth com-
plexity, i.e. the maximum number of object points
falling into a single pixel. This number is deter-
mined by rendering the objects once and by count-
ing at each pixel the number of fragments falling
into it during rasterization. The maximum over all
pixels is then collected in a log-step reduce-max op-
eration [12].

Although more efficient depth peeling vari-
ants exist, for instance the method proposed by
Wexler et al. [29] showing linear complexity in the
number of polygons compared to quadratic com-
plexity of standard depth peeling, in the current
work we favor the more complex approach. This
is because it does not require any pre-processing
and thus can be used for the processing of dynamic
scenes and scenes modified or generated on the
GPU.

1.2.1 Construction using Geometry Shader

In this chapter we describe how to efficiently gen-
erate an LDC that captures the entire scene. From
the text it should become clear that the same ap-
proach can of course be used to generate LDCs for
separate objects in the scene. In particular for rigid
objects this allows us to pre-compute the LDC once
and to exclude it from depth peeling in successive
frames. LDC construction greatly benefits from lat-
est graphics APIs and hardware as explained in the
following paragraphs.

Input Data

Input Assembler
Stage (IA)

Vertex Shader
Stage (VS)

Geometry Shader
Stage (GS)

Stream Output
Stage (SO)

Rasterizer Stage
(RS)

Pixel Shader
Stage (PS)

Output Merger
Stage (OM)

Output Data

Memory
Resources:

Buffers,
Textures,

Constant Buffers

Buffer

Texture, Constant Buffer

Texture, Constant Buffer

Texture, Constant Buffer

Buffer

States

Buffer, Texture, Constant Buffer

Figure 3: The Direct3D 10 rendering pipeline. Pro-
grammable stages are drawn in yellow. Note in
particular the new programmable Geometry Shader
stage after the Vertex Shader.

One of the key novelties of Direct3D 10 capa-
ble hardware [1] is a new programmable stage in
the rendering pipeline. This stage—the Geometry
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Shader—is placed directly after the Vertex Shader
stage (see Figure 3). In contrast to the Vertex Shader
the Geometry Shader takes as input an entire graph-
ics primitive (e.g. a triangle or a triangle and its
neighbors) and outputs zero to multiple new prim-
itives. This is achieved by letting the Geometry
Shader append the new primitives to one or mul-
tiple output streams. The LDC construction algo-
rithm makes use of this feature and binds multiple
output streams called render targets (MRTs) to the
Geometry Shader. Note that these MRTs are differ-
ent from the ones known in the Pixel Shader stage.

While MRTs in the Pixel Shader are used to
output multiple color values at the very end of
the pipeline, to each Geometry Shader MRT its
own rasterizer, Pixel Shader stack, depth and color
buffers are associated. One can even assign another
stack of Pixel Shader MRTs to each of these sepa-
rate pipelines (see Figure 4).

GS MRT

Input Data

Input Assembler
Stage (IA)

Vertex Shader
Stage (VS)

Geometry Shader
Stage (GS)

Rasterizer Stage
(RS)

Pixel Shader
Stage (PS)

Output Merger
Stage (OM)

Rasterizer Stage
(RS)

Pixel Shader
Stage (PS)

Output Merger
Stage (OM)

PS MRT

...

PS MRT PS MRT PS MRT

... ...

GS MRT

Figure 4: This figure depicts the difference between
MRTs used in the Geometry Shader and in the Pixel
Shader stage.

Without the functionality provided by the Ge-
ometry Shader LDC construction requires the en-
tire scene to be rendered three times. By using
the Geometry Shader MRTs we only need to pro-
cess and rasterize the scene once. This is achieved

by letting the Vertex Shader perform the geometry
transformation excluding the viewing transforma-
tion. Transformed vertices are then combined to
triangles and sent to the Geometry Shader stage.
Here, face normals are computed for every trian-
gle and compared against the three directions along
which peeling is performed. Triangles are then ras-
terized into the MRT which captures those parts of
the scene most perpendicular to its projection direc-
tion (see Figure 5). In this way every triangle has to
be processed and rasterized only once. This method
not only reduces GPU load to one third, but it also
reduces the depth complexity along all three direc-
tions since lesser primitives appear in either target.

Furthermore, as no primitive is rasterized into
more than one MRT the process avoids storage of
redundant samples in different projection directions
thus leading to an optimal view independent scene
representation. As mentioned earlier, each Geom-
etry Shader MRT pipeline can have multiple Pixel
Shader MRTs at its very end (see Figure 4), we use
this additional possibility to capture multiple val-
ues at once. In particular we use two Pixel Shader
MRTs, one target to store the normal and depth in-
formation of the fragments and a second target for
texture and color information. In the final render-
ing step we use the later values to perform deferred
shading of the reflected and refracted surfaces.

Z

Y

X

Figure 5: This figure shows how triangles are pro-
jected into only one LDI stack depending on their
face normal orientation.

By using the Geometry Shader MRTs the com-
plexity of our algorithm to construct the LDC is
reduced tomax(depthComplexity) passes. How-
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ever, with the advent of layered depth/color buffers
at the end of the rendering pipeline we expect our
construction procedure to become even more effi-
cient. For a long time such a functionality is present
on GPUs (e.g. ATI/AMDs FBuffer technology [9])
though it has not yet been exposed. On the other
hand we perceive an ever growing demand for depth
peeling in a number of applications ranging from
order independent transparency [4] and CSG ren-
dering [7] to volume rendering applications [18]
and real-time rendering [10]. As a consequence
we expect graphics APIs to support these features
in the foreseeable future. Then, the generation of
LDCs could even be performed in one single ren-
dering pass.

1.3 Two Level LDC

An LDC exhibits an extremely adaptive and com-
pact representation of the scene, yet it lacks the hier-
archical nature of other space partitioning schemes
such as octrees or kd-trees. It is on the other hand
well known that such schemes can greatly acceler-
ate ray tracing in that they allow for an efficient de-
termination of ray-object intersections.

To generate a two-level LDC we first compute
the LDC as described above. Then a single low res-
olution data structure is generated for every LDI.
This structure is built only on the depth values
whereas the the normal and texture stacks remain
unchanged. For the generation of ann×m reduced
empty space skipping texture we employ a custom
pixel shader, that performs a max/min computation
on a grid ofn×m fragments from all LDI layers in
one direction (see Figure 6). Such a texture can be
seen as an axis aligned bounding box, which will be
used later on to efficiently skip empty space in the
scene.

Equipped with the acceleration texture as de-
scribed we will now show how to exploit this data
structure for GPU ray tracing.

1.4 Ray Traversal

To traverse rays through a two level LDI we employ
an approach similar to the one proposed by Krüger
and Westermann [11]. We perform a modified DDA
algorithm to find the coarse level grid cells inter-
sected by the ray. Therefore the ray is tested against
the depth range stored in the cells of the accelera-
tion texture being hit. If an intersection is found we

Acceleration
Texture

LDI Layer 0 LDI Layer 1

Figure 6: The image shows how two LDI layers
(top) are combined into a single acceleration texture
(bottom). This texture effectively stores bounding
boxes around all LDI layers for a givenn×m grid
in this case2× 2.

step down to the LDIs and use the same DDA al-
gorithm within then × m block. If an intersection
with one of the values stored in the LDIs is found
we terminate the ray traversal, otherwise we con-
tinue at the next block in the coarser empty space
skipping texture.

In the way described we subsequently process
one peel direction after another. Note that if an in-
tersection in one direction is found this intersection
does not necessarily has to be the first intersection
along the ray. However, in this case we can change
the end point of the ray to the position of that in-
tersection, continually reducing the remaining dis-
tance to be considered along the ray. After all layers
have been traversed the intersection point between
the ray and an object in the scene is found, or just
the intersection with the LDCs bounding box. This
information is used later on for shading the reflected
sample point.

2 Rendering

After having described both the two level data struc-
ture used to represent a scene on the GPU and an
efficient ray traversal scheme for this data structure
we will now present the rendering algorithm that
finally generates an image of the scene. This al-
gorithm renders the scene in three passes. In the
first pass—which itself consists of multiple sub-
passes—the LDC capturing the scene is generated.
In the second pass “primary ray-object intersec-
tions” are determined by rasterizing the scene un-
der the current viewing transformation. In the third
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pass the secondary rays are traced in the LDC to
simulate reflections, refractions and shadows.

While passes one and two are clear, pass three
needs some further explanations.

2.1 Ray Tracing and Shading

After the second pass the scene as seen from the cur-
rent view point, appropriately shaded but without
any secondary effects, has been generated. In this
image we need to find for every specular receiver
the points in the scene from where to receive an ad-
ditional radiance contribution. Therefore we pro-
ceed in two steps. In the first step we render reflec-
tive/refractive objects by employing a pixel shader
program that computes for every fragment the fol-
lowing values:
• the reflection vector
• the intersection of this vector with the LDC
• the parallel projection of the reflection vector

into the three orthogonal LDIs
The later two quantities are stored in three render

targets, of which we use the first to store the inter-
section point and the remaining two to store pro-
jected directions (see Figure 7). In the second step
we use these values to perform the LDC traversal
as described in the previous section. This results
in either an intersection point with an object in the
scene or with the scene’s bounding box. In the lat-
ter case we simply perform a lookup into an envi-
ronment map to compute the color of the reflection.
In the former case we lookup the normal and the
color generated for the intersected point in the LDC
construction, and we use this information to shade
the reflected point. Finally, the color seen along the
primary rays is combined with the color of the sec-
ondary ray and rendered into the color buffer.

3 Results

We have tested the proposed GPU ray tracing tech-
nique in a number of different scenarios consist-
ing of several thousands up to hundreds of thou-
sands triangles. Images of such scenes together
with ground truth images generated by a software
ray tracer are given in Figures 1 and 2. At the end
of this chapter some additional examples including
shadowing and refractions are shown. In contrast to
the first four examples, in the fifth example a dy-
namic object is rendered using vertex shader skin-

Y

X

Z

Figure 7: This image illustrates the four values gen-
erated prior to the ray traversal. Firstly, the intersec-
tion point between the reflected ray and the bound-
ing box yellow) is computed. Next, the ray is pro-
jected into the three orthogonal LDIs (red, green,
blue).

ning. In this case the LDC is constructed on-the-fly
in every frame of the animation (see Figure 10).

All of our tests were run on a single core Pentium
4 equipped with a NVIDIA Geforce 8800 GTX
graphics card with 768 MB local video memory. In
all of our tests1K × 1K LDIs were used to sam-
ple the objects along three orthogonal viewing di-
rections. Note that this corresponds to a resolution
of the spatial data structures of1K

3. However, as
we store 16 Bit floating point depth values in every
LDI this resolution is in fact significantly higher. As
we only capture those areas in space where some
objects are present, our approach requires consid-
erably less memory than other techniques using a
uniform grid structure to represent the scene.

All objects are encoded as indexed vertex arrays
stored in GPU memory. In all our experiments an
intersection was determined if the distance between
a point on the secondary ray and a fragment coded
in the LDC was less than0.001 in world space.
This tolerance was also used in all other examples
throughout this paper. It can be seen in all our ex-
amples that the scene is adequately sampled by the
LDC and GPU ray tracing produces almost exactly
the same results as the software ray tracer running
in double floating point precision on the CPU.

Representative timings in milliseconds (ms) for
GPU ray casting of secondary effects in the four ex-
ample scenes are listed in Table 1. The number of
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LDIs required to capture the scenes adequately are
8, 12, 7, 6 and 6 respectively. The values in columns
labeled (A) show the amount of time spent by the
GPU for LDC construction. Columns labeled (B)
show the time spent for ray tracing including ren-
dering of the final result. Performance was mea-
sured using LDIs at512 × 512 and1K × 1K reso-
lution. All tests were rendered into a1280 × 1024
viewport (see Figures 8 to 10) .

Figure 8: Two reflective teapots above a mirroring
plane and the EG07 Phlegmatic Dragon with a re-
flective surface. Note the reflection of the dragons
face on its nose.

As the timings show, by means of the proposed
technique secondary effects in very complex scenes
can be simulated at interactive rates and convinc-
ing quality. In particular it can be observed that the

LDI resolution
512 x 512 1024 x 1024
A B A B

Bunny 7 61 19 115
(8192 tris)
Car 9 82 25 250
(20264 tris)
Dragon 12 205 31 441
(120K tris)
Max Planck 19 160 53 346
(300K tris)
Tiny (animation) 5 44 16 95
(1628 tris)

Table 1: Timing statistics (in ms) for different
scenes.

LDC construction is fast enough to allow for on-
the-fly capturing of reasonable scenes. This prop-
erty makes it possible to render dynamic objects at
high frame rates and quality.

4 Conclusions and Future Work

In this work we have described a technique for GPU
ray tracing of secondary effects. By using a view-
independent, two level LDI representation in com-
bination with an adaptive ray traversal scheme on
the GPU interactive rendering of such effects is pos-
sible. We have shown how to construct LDCs effi-
ciently on the GPU by exploiting recent function-
ality on Direct3D 10 capable graphics hardware to-
gether with the intrinsic strength of these architec-
tures to shade millions of points in real-time. As our
timings indicate, the proposed techniques enable in-
teractive ray tracing of complex scenes at high ac-
curacy. In comparison to software ray tracing visual
artifacts are marginal.

Due to the efficiency of the LDC construction it
is in particular possible to integrate this process into
the rendering pass. This enables the rendering of
dynamic objects without any additional modifica-
tions of the proposed algorithm. As the construction
process only requires objects to be available in any
renderable format our method can also deal with ob-
jects being modified or constructed on the GPU.

In the future, we will investigate how to further
improve the performance of the proposed rendering
technique. In particular we will focus on the prob-
lem how to effectively exploit the internal RGBA
pipeline on current GPUs. In principle this can be
done in two ways: Firstly, by storing four LDIs into
one RGBA texture target and thus by providing the
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possibility to trace every ray in four depth layers
simultaneously. Secondly, by tracing four rays si-
multaneously in one fragment program. As both
optimizations are greatly influenced by the ability
of recent GPUs to effectively exit shader programs,
a detailed analysis of the performance gains for dif-
ferent scenes and architectures is required. Further-
more, we plan to compare our two-level accelera-
tion structure to fully octree or kd-tree hierarchies.
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Figure 9: These Images depict from top to bottom.
Shadows of a complex tree computed by our ap-
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Figure 10: Various renderings using the proposed GPU ray casting are shown. Note that the rightmost
figure in the middle row is one snapshot out of a GPU animation using vertex-skinning. In the last row we
show cubemap reflections (left) and reflections rendered with our method (middle) and with a software ray
tracer (right).
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Abstract

We present a new GPU-based ray-casting method
for the visualization of time-varying structured grid
volume datasets that uses frame-to-frame coherence
in order to speed-up rendering. This method allows
users to visualize the data through time steps of dif-
ferent sizes, forward and backward. At each frame,
it avoids casting rays through pixels that have not
changed their intensity in relation to the previously
generated frame. To do so, we ray-cast a 3D texture
that contains the current value of the voxels and the
instant in which this value changes. Thus, as we
sample a ray, we are able to compute when the pixel
intensity will change. The 3D texture is updated at
each frame on the GPU using a run-length encoding
of the voxel values through time stored in a 2D tex-
ture. This method significantly speed-ups rendering
of frame-to-frame coherent time-varying datasets.

1 Introduction

In the last years, GPU-based implementations of
volume ray-casting have renewed the interest for
this rendering technique which is accurate and flex-
ible, but too slow to provide interactivity when it
runs on the CPU. Several GPU-based ray-casters
for structured grids have been proposed, first based
on multiple rendering passes [9] and, more recently,
thanks to the new dynamic branching functionality,
on a single rendering pass [21].

Many different acceleration techniques have
been proposed to accelerate classical CPU-based
volume ray-casting of static volume data. They are
mostly aimed at performing empty-space-leaping,
i.e. avoiding sampling rays through empty regions
of the volume. These techniques can roughly be
subdivided into two groups. The first category in-
cludes the methods employing distance maps [4]
[20] or spatial subdivisions of the volume such as
minmax octrees [10] in order to adaptively sample

regions and to skip empty ones. The second group
is composed of methods that consider that, usually,
users explore datasets by visualizing them several
times, changing continuously the viewpoint around.
They exploit the coherence between successive vi-
sualizations by using the position of the first signif-
icant voxel along a ray in order to compute where
sampling should start at the current frame [5] [25].
The first group of techniques is more difficult to
map to GPU ray-casting, but, for the second one,
an efficient GPU driven implementation has been
proposed [8].

Several attempts have been made to speed up
ray-casting of time-varying datasets following two
basic approaches similar to those used for static
data: global data structuring or frame-to-frame co-
herence. The first strategy extends hierarchical data
structures to the temporal dimension. The second
strategy exploits frame-to-frame coherence in order
to avoid casting unchanged rays. Shen and Johnson
[19] use this idea and store incremental voxel mod-
els at each frame. They project the modified voxels
and recast only the rays affected by these projec-
tions. Tost et al. [23] avoid the voxels projection
using a double structure: in image-space, a tempo-
ral buffer that stores for each pixel the next instant
of time in which the pixel must be recomputed, and
in object-space a Temporal Run-Length Encoding
of the voxel values through time.

All these time-varying data rendering techniques
have proven to reduce significantly the rendering
time. However, since they run on the CPU, they
are not fast enough to provide continuous sequences
of animation and to provide interactivity in time-
varying data exploration. In this paper, we pro-
pose to fit the last frame-to-frame coherent ray-
casting approach for time-varying data in the ren-
dering pipeline of the GPU ray-casting. This way,
our approach benefits both from software-based and
hardware-based accelerations. It casts only modi-
fied rays and performs space-leaping on these rays.
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It can be used to explore time-varying datasets
through a static camera or with a moving camera
if it is combined with a GPU-based space-leaping
technique for static data [8].

2 Related work

2.1 Static Data and moving camera

When the dataset is static, the position of the first
non-transparent voxels hit by the rays can be stored
and reprojected for the next camera position in or-
der to estimate the new ray sampling starting posi-
tions. The reprojection introduces a cost overhead
that can be of minor importance if the space leaping
gain is important, which is generally the case for
isosurface rendering.

This idea was first proposed by Gudmundsen and
Radén [5] for parallel projections and further devel-
oped by Yagel and Shi [25] for perspective projec-
tions. These authors store in an auxiliary coordinate
buffer the coordinates of the first non-transparent
voxel encountered by the ray emitted at each pixel.
Wan et al. [24] found that, being point-based, this
method can create artificial hole pixels, that can be
corrected using a cell-reprojection scheme. Yoon
et al. [26] reproject rays instead of reprojecting
hitpoints or cells. Klein at al. [8] proposed a
GPU single-pass implementation of the reprojec-
tion technique that uses an off-screen floating-point
render target to store the hitpoints. Their approach
achieves a speed-up of more than a factor of two
for isosurface rendering. It is complemented by a a
selective supersampling that reduces aliasing.

2.2 Frame-to-frame coherent rendering of
time-varying volume datasets

The idea of taking advantage of frame-to-frame co-
herence has been exploited in time-varying polygo-
nal scenes for visibility computations [6] and global
illumination [7]. It has also been used in order
to speed up isosurface extraction in indirect time-
varying volume rendering [22].

For direct volume rendering, two main ap-
proaches have been proposed: to treat time-varying
data as ann−D model withn = 4 [14], or to sepa-
rate the time dimension from the spatial ones. In the
second approach, at each frame, the data values cor-
responding to that instant of time must be loaded.

Reinhard et al. [15] have addressed the I/O bottle-
neck of time-varying fields in the context of ray-
casting isosurfaces. They partition each time step
into a number of files containing a small range of
iso-values. They use a multiprocessor architecture
such that, during rendering, while one processor
reads the next time step, the other ones render the
data currently in memory. Binotto et al. [2] propose
to compress highly coherent time-varying datasets
into 3D textures using a simple indexing scheme
mechanism that can be implemented using fragment
shaders. Youmesy et al. [27] accelerate data load at
each frame using a differential histogram table that
takes into account data coherence.

Temporal coherency can also be taken into ac-
count during rendering. Several authors have ex-
ploited it in various algorithms: ray-casting, shear-
warp [1], texture-mapping [12] [16] [2] and splat-
ting [27]. We herein focus on the first group. Ma et
al. [13] construct a Branch-on Need Octree (BON)
for every instant of time and merge the subtrees
that are identical in successive BONs. They pro-
pose to ray-cast the first BON completely and only
the modified subtrees of the following BONs. The
Temporal Space Tree (TSP)[18] is a spatial octree
that stores at each node a binary tree representing
the evolution of the subtree through time. The TSP
tree can also store partial sub-images to acceler-
ate ray-casting rendering. It has also been used to
speed up texture-based rendering [3]. In addition,
a wavelet-based variant of the TSP (WTSP) has re-
cently been published [17].

Shen and Johnson [19] exploit ray coherence
when the property values inside the voxels change
along time and the camera remains static. Given
the initial data sets, this method constructs a voxel
model for the first frame and a set of incremental
models for the successive frames, composed of the
coordinates of the modified voxels and their values.
The first frame is computed from scratch. The next
frames are computed by determining which pixels
are affected by the modified voxels of the corre-
sponding incremental file, updating the voxel model
and recasting only the modified rays. This strategy
produces a significant speed up of the animation if
the incremental files are small, i.e., the number of
modified voxels is low. Liao et al. [11] improve
this technique by computing an additional differen-
tial file that stores the position of the changed pix-
els. At each frame, the rays are either computed
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following Shen et al.’s strategy or using the differ-
ential file, i.e. avoiding the cost of projection of the
modified voxels.

Finally, Tost et al. [23] use a double structure.
In image-space, they compute a temporal buffer
that stores for each pixel the next instant of time
in which the pixel must be recomputed. In object-
space, they codify the variation of the property val-
ues through time using a Temporal Run-Length En-
coding (TRL). At each frame, only the rays corre-
sponding to pixels that need to be updated at the
current frame are cast. The TRL of the voxels vis-
ited along a ray are used to update the temporal
buffer. Space leaping is also provided by storing
in the temporal buffer the position of the first non-
empty voxel.

Our approach maps this last method on the GPU.
In addition, we extend it by allowing users to vi-
sualize the data not only from frame to frame but
through time steps of different sizes, forward as
well as backward. Moreover, we can combine our
approach with the GPU-based reprojection tech-
nique, and thus we support changes in the cam-
era position during the visualization of time-varying
data.

3 Frame-to-frame coherent GPU ray-
casting of time-varying volume data

Before giving details of the implementation, we
present an overview on how the basic approach of
[23] can be mapped to the GPU. The basic GPU
ray-casting that we have implemented is based on
a single pass using the dynamic flow control in the
fragment processor available in recent GPUs [21].
We first render the front faces of the bounding box
of the voxel model. Then, we cast only the rays in-
side the box, starting sampling at the projected posi-
tions. For each ray, we sample the volume, fetching
the sample points from a 3D texture map that stores
the density and the gradient values, taking advan-
tage of the hardware-based 3D interpolation.

For time-varying data, since we want to avoid
recasting rays through pixels that haven’t changed
their intensity in relation to the previously rendered
frame, we need to store for each ray its intensity
and the next and previous time step at which this in-
tensity changes. We use these instants in the depth
buffer in order to take advantage of the depth bound
test to avoid casting unchanged rays. We also store

the first non-empty hitpoint in order to know the
starting sampling point or to compute it by repro-
jection, when the camera position changes. We call
these data structuresTime Buffers (TB).

In order to compute the next instant at which the
ray intensity changes, we use a run-length codifica-
tion of the voxels values through time (Time Run-
Length encoding, TRL). Each code is composed of
a value and the number of time steps in which this
value remains constant. This codification is com-
puted in a pre-process according to a user-defined
error. When a ray is cast, its next (or previous) in-
stant of intensity change is computed using the min-
imum (or maximum) change instant of the current
codes of all the visited voxels. In Section 3.1, we
explain how we store the TRL in the GPU.

The basic algorithm is shown in Figure 1. Ren-
dering starts at the first frame by projecting the
front faces of the volume bounding box. Pixels out-
side the projection are defined asinactiveand not
cast. Activepixels can remain constant in relation
to the previously rendered frame or they may have
changed and need to be recomputed. In the former
case we call themfreshpixels and, in the latter case,
expired pixels. At the first frame allactivepixels
are set as beingexpiredpixels. After the first frame
has been rendered, while the user explores the time-
varying data, the same process is repeated. At each
iteration, several changes can occur: instant of time,
camera, transfer function and lights. A change in
time leads to update the 3D texture. A change in the
camera activates the reprojection mechanism. Fi-
nally, changes that modify all the active pixels in-
tensity yields to set all them toexpired.

Hitpoints initialization
Set all active pixels asexpired
Renderexpiredactive pixels
repeat {

if frame changes
Update 3DTexture

if camera changes
ReProjection

if camera or transfer function or lights change
Set all active pixels asexpired

Renderexpiredactive pixels
}

Figure 1: Main algorithm.
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3.1 Data structures

The Time Buffers (TB) are implemented as a Frame
Buffer Object (FBO) with a depth attachment and
three image-size color attachments:color texture,
hitpoint textureand info texture. All these textures
have the FP32RGBA format with 32 floating-point
for each channel (see Figure 2).

Figure 2: The time buffers FBO.

We store the current ray intensity (RGBA) in the
color texture, the first non-empty hitpoint position
in the hitpoint texture, and, in theinfo texture, the
next (tnext) and previous(tprev) instant at which
the ray intensity changes. This leaves us 2 data
channels in this texture. We use them to enhance
space-leaping. Often, users use the transfer func-
tion to select subsets of the volume, by assigning
zero opacity to non-empty unselected regions. In
this case, not only empty regions of the volume but
also non-selected ones can be skipped (see Figure
3). To do so, we store in the two left channels of
the info texturethe distance between the first non-
empty position and the first (stepini) and last points
(stepend) of the visible part of the volume.

The Time Run-Length (TRL) representa-
tion of the time-varying voxel model stores
for every voxel vi a sequence of codes com-
posed of the voxel value and the number of
time steps in which this value remains con-
stant within a user-defined error:codes(vi) =
< valuek, nframesk >, k = 1 . . . ncodes(vi).

Figure 3: Space leaping empty regions (in white)
and non-selected regions (in light gray). The val-
uesstepini andstepend define the selected interval
along the ray (in dark gray).

Figure 4: TRL structure in the GPU: current values
3D texture and 2D time codes texture.

This information is stored in a 2D texture(time
codes texture)sorted using the voxel coordinates
as a primary key and time as secondary key (see
Figure 4). For ray-casting, we use a 3D texture
(current values texture)that stores the current value
of all the voxels and their next(tnext)and previous
(tprev) instants of change. At each frame, this 3D
texture is updated, also on the GPU, using the 2D
texture. To do so, for all the voxels in thecurrent
values texture, we also store an index to the current
code in thetime codes texture.

3.2 Handling expired pixels

The mechanism used to prevent recasting rays
throughfreshpixels is the depth bounds test. This
test restricts render to the pixels which depth value
falls within a user specific range between 0 and 1.
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We scale and bias into an interval of 0 to 1 the val-
ues of tprev and tnext in the info texture. There-
fore, when data exploration is forward, i.e., positive
increase in the time dimension, we write thetnext
value into the depth buffer. Then, before render-
ing we set the depth bounds range to[0 . . . fcur],
beingfcur the current normalized frame. This en-
sures that during rendering pixels changing further
on time are not rendered.

When data exploration is backward (i.e. dimin-
ishing time), we write thetprev values into the
depth buffer and set the depth bounds range to
[fcur+1 . . . 1]. When the direction of data explo-
ration changes, since the depth values correspond
to the previous direction, they must be rewritten ac-
cording to the new direction before rendering.

For the first frame and whenever the transfer
function or the lights change, all theactivepixels
must expire. We write 0 for all the pixels of the
depth buffer if the exploration if forward, and1 oth-
erwise.

3.3 Initialization

Let cvt(v) denote the information stored in thecur-
rent values textureat voxelv and letvalue(i) and
nframes(i) represent the property value and the
number of frames stored at codei in the time codes
texture. The current values textureis initialized
in the CPU and next transferred to the GPU. We
use an auxiliary table that stores for each voxelv

an index to its first code (idxv) in the time codes
texture. Thus, the value of a voxelv of the cur-
rent values textureis computed as:idxv, the prop-
erty value of the codeidxv and the corresponding
tprev and tnext values computed respectively as1
and the number of frames ofidxv : cvt(v) =<

idxv, valueidxv
, 1, nframesidxv

>.
As described above, thehitpoint textureis initial-

ized on the GPU by projecting the front faces of the
volume bounding box. For each projected pixel, a
fragment shader is activated, that computes the first
non-empty voxel.

3.4 Rendering

Render is performed onexpired pixels only. For
every pixel, the fragment shader shown in Figure 5
traverses the texture along the ray betweenstepini

andstepend until maximum opacity is reached. It

computes the pixel intensity, and itstnextandtprev
values.

uniform sampler3D Curr;
uniform sampler1D LUT;
uniform sampler2DRect Hitpoint;
uniform sampler2DRect Info;
uniform vec3 camera;
uniform vec3 stepsize;
uniform float forward;
void main(void)
{

vec4 dst = vec4(0,0,0,0);
vec3 position = texture2DRect (Hitpoint,glTexCoord[0].xy);
vec3 direction = normalize(position - camera);
vec3 step = direction * stepsize;
float tnext = 1.0, tprev = 0.0;
vec4 i = texture2DRect(Info,glTexCoord[0].xy);
position = position + step * stepini(i);
for(int b = 0; b< stepend(i); b++)
{

vec4 v = texture3D(Curr, position);
vec4 src = texture1D(LUT,value(v));
dst = (1.0 - dst.a) * src + dst;
tnext = min(tnext,next(v));
tprev = max(tprev,prev(v));
position = position + step;
if (dst.a> 0.98) break;

}
gl FragData[0] = dst;
gl FragData[1] = vec4(tprev,tnext,stepini(i),stepend(i));
if (forward)

gl FragDepth = tnext;
else

gl FragDepth = tprev;
}

Figure 5: Coherent ray-casting fragment shader.
For simplicity, this shader only computes volume
rendering without illumination.

3.5 Updating the current values texture

At each new time step of the dataset, the 3Dcurrent
values textureis updated using the 2Dtime codes
texture. Before the 8th serie of the NVidia cards,
it was not possible to update a 3D texture without
transferring all the volume from the CPU. The only
mechanism available to modify a 3D texture in the
GPU was to codify the 3D texture as a 2D texture.
A 2D texture can be attached to a FBO, so we can
write on it in the GPU. With the new series and the
glFramebufferTexture3DEXTextension, it is possi-
ble to attach a slice of a 3D texture to an FBO. We
use this extension to update the 3D texture by slic-
ing it by z-sorted planes. For each slice, we per-
form two steps: first, we determine the voxels that
must be updated, and next we update these voxels
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using the depth test to restrict the second step to
only them.

A voxel must be updated, if the current frame
is not between itstnext and tprev values in the
3D current values texture. The first step uses a
fragment shader that checks this condition. For
the second step, we need to take into account that
the 3D texture holds absolute time steps (tnext
and tprev) whereas the 2D texture stores relative
time lengths of the codes(nframes). Therefore,
given a voxelv and its current texture value<
idx, valueidx, tprev, tnext > , when this texture
value is updated to the next code of the 2D texture
it is set to:< idx + 1, valueidx+1, tnext, tnext+
nframesidx+1 >. When it is set to the previous
codeidx−1 it is: < idx−1, valueidx−1, tprev−
nframesidx−1, tprev >.

Thus, the second step uses a fragment shader that
searches in the 2D texture the new current code of a
voxel and it updates the 3D texture accordingly, as
shown in Figure 6.

3.6 Reprojection

Thehitpoints texturecan be used to perform the re-
projection as described by Klein et al. [8]. We use
Pixel Buffer Object (PBO) extension to load thehit-
points texturevalues onto a Vertex Buffer Object
(VBO) in the GPU. Then, the vertices are resent to
the graphics pipeline having set the OpenGL matri-
ces to the new view parameters. This avoids us the
need to initilize thehitpoint textureat each camera
movement.

3.7 Trilinear interpolation

For simplicity, in the previous explanation, we have
assumed thatnearest neighborinterpolation was
applied in fetching values of the 3D texture. How-
ever, tri-linear interpolation of the property values
is necessary to provide the desired smoothness and
accuracy of the images. The problem is that the 3D
texture holds frame identifiers (next/previous frame
at which the pixel changes) as well as property val-
ues. The 3D interpolated frame identifier repre-
sents an average of the next (previous) instant of ray
change, whereas they should represent its minimum
(maximum). As a consequence, at the boundary
between regions of change and regions that remain
constant, some rays may not be recomputed. This is
illustrated in Figure 7. In order to prevent this error,

uniform sampler2D curr;
uniform sampler2DRect codes;
uniform float t;
void main(void)
{

vec4 v = texture2D(curr,glTexCoord[0].xy);
vec2 c;
float idx = index(v);
float tnext = next(v), tprev = prev(v);
while((t < tprev) || (t >= tnext))
{

if (t < tprev)
{

idx- -;
c = currCode(codes,idx);
tnext = tprev;
tprev = tprev - code(c);

} else{
idx++;
c = currCode(codes,idx);
tprev = tnext;
tnext = tnext + code(c);

}
}
gl FragColor = vec4(idx,value(c),tprev,tnext);

}

Figure 6: Fragment shader that updates the 3D tex-
ture for random access through time. In case the
access is sequentially, we can avoid to use the loop.

we propose two different strategies. First, during
run-length encoding time-varying data we compute
the time length in which the voxel’s neighbor val-
ues remain constant instead of considering only the
voxel value changes. This way, more codes are cre-
ated, but the interpolated frame identifier are more
conservative and will recompute all rays falling at
the boundary between changed and unchanged re-
gions. The second strategy keeps the run-length
codification as explained in the previous section, but
when computing the Z-buffer, it takes into account
not only the time step stored at the corresponding
pixel, but those within a neighborhood computed as
the rasterized voxel edge length.

3.8 Memory management

The capacity of the GPU memory determines the
size of the voxel model and the number of con-
secutive frames that can be handled in the GPU.
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Figure 7: Time interpolation artifacts. The interpo-
lated tnext value at p is 6.6. At frame 6, the ray
through p will not be updated although it should be
because v2 has changed and it affects the interpo-
lated color at p.

Specifically, the GPU memory must fit the 3Dcur-
rent values textureplus the 2Dtime codes texture.
The current values texturehas an occupancy of 4
floats (index, value,tnext, tprev, gradient), 4 bytes
each:n ∗ 5 ∗ 4 bytes, beingn the number of voxels.
Currently, the maximum size of an RGBA float 3D
texture is20483.

The size of the TRL is proportional to the num-
ber of codes of all the voxels:

∑
n

i
codes(i). How-

ever, for the voxels that are empty all time along,
we store a unique common ”empty code” with zero
value and infinite number of frames, this way, the
occupancy of the TRL is actually:

∑
m

i
codes(i),

beingm ≤ n the number of non-empty voxels of
the model. A code occupies 3 floats (value, gradi-
ent, number of time steps). The maximum size for a
2D texture is currently40962 RGBA, which is also
the upper limit for the total number of codes that we
can store at a time in one texture. Usually, the time-
varying datasets are not very large in space. For in-
stance, in our simulations, we have used datasets of
size about1283 × 100frames having a total num-
ber of codes that fits entirely into one 2D texture.
However, if the number of codes exceeds the 2D
texture limit, we need to split the TRL into various
2D textures. The maximum number of textures that
can be handled in the GPU is thus the GPU mem-
ory minus the occupancy of the 3D texture divided
by 40962. For our datasets sizes, we can have up to
2 of these textures. Above this limit, we will need
to read the texture from the CPU. In any case, this
is far much faster than loading the voxel values at
each frame.

4 Results

We have performed the simulations on a Pentium
Dual Core 3.2 GHz with 3 GB memory and a
NVidia GeForce 8800 GTX with 768 MB. We have
used two datasets:TJet and Vortex from the NSF
ITR repository (see Figure 8).

Table 1 shows the characteristics of the datasets:
size and number of frames, total number of vox-
els values through time (nv) in millions, number
of codes with an error ofε = 10−5 (nc1) and
ε = 10−3 (nc2). From the table we can observe
that the number of codes is very low in relation to
the total number of voxels values (less than 8% for
the Vortex dataset and 4% for the TJet dataset). This
is due to the fact that the datasets are very coherence
through time. We tried other error estimations, but
the results do not differ so much. Because of this
high coherency, the TRL provides an efficient com-
pression of the data. We are able to store all the
time steps in the GPU, whereas if we had stored the
whole 3D model on the GPU, we would have been
able to manage only few time steps. Specifically,
in our case, for the Vortex dataset, we need 190MB
to store the TRL for the 100 frames, whereas we
would need 3.3GB to store all the 3D voxel models.

Dataset Size nv nc1 nc2

Vortex 1283
x100 205 15(14) 14(13)

TJet 129
2
x104x150 260 10(8.5) 7.5(7)

Table 1: Datasets: size and number of frames, total
number of voxels values through time (nv) in mil-
lions, number of codes with an error ofε = 10−5

(nc1) andε = 10−3 (nc2). Numbers in parentheses
represent the number of codes when all the empty
codes are codified as a unique one.

Table 2 and 3 show the results of the simulations
for different image size animations. Times are ex-
pressed in frames per second (fps). In the second
column, we can see the times for the visualization
using each model separately. The third column con-
tains the times with our method. Frames per second
are computed as the average during a 300 frames
data exploration session in which data varied at each
frame, and the user moved freely the camera. For
the non-coherent mode, we have only taken into ac-
count the transfer time from the CPU to GPU and
the rendering, but not the transfer time from disk
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to CPU. The results are satisfactory: we achieve
factors of speed ups between 2 and 4 for all image
sizes. We have observed that the whole process is
very fast on the GPU. One of the none expected re-
sults is that the computation of thetnextand tprev
values during the rendering stage is fairly time con-
suming. This is due to the fact that we use a branch-
ing (max/min operation) inside the loop, which is
still slow on the current shader processors.

Figure 8: Two frames of Vortex(top) and
TJet(bottom).

Vortex Vortex
Image size n3D TRL

500x300 27.54fps 92.00fps
512x512 21.57fps 47.67fps
800x800 20.00fps 38.76fps
1250x900 19.45fps 26.50fps

Table 2: Times in frames per seconds of the simu-
lation of the Vortex dataset: the first column shows
the image size, the second column the times for the
non-coherent method, and the last column the times
for our method.

Figure 9 shows a set of two consecutive frames
of the Vortex dataset, rendered separately, with our
method and nearest neighbor interpolation and with
trilinear interpolation. On the right, we showinac-
tive, expiredandfreshpixels (white/red/green). We
can see that this dataset does not have muchinactive

Figure 9: Two consecutive frames of the Vortex
dataset: top nearest interpolation, bottom linear.
From left two right: first frame, next frame, pixel
status before the next frame rendering.Inactive
(white),expired(red) andfresh(green) pixels.

TJet TJet
Image size n3D TRL

500x300 30.67fps 132.74fps
512x512 21.67fps 89.82fps
800x800 12.54fps 44.38fps
1250x900 10.58fps 46.15fps

Table 3: Times in frames per seconds of the sim-
ulation of the TJet dataset: the first column shows
the image size, the second column the times for the
non-coherent method, and the last column the times
for our method.

pixels, because most of the voxels have a non-empty
value through time. On the contrary, there are many
fresh pixels. Comparing the linear and the nearest
interpolation, we see that some fresh pixels in the
nearest interpolation become expired in the linear
strategy.

5 Conclusions

We have presented a new frame-to-frame coher-
ent GPU-based ray-casting for the visualization of
time-varying structured grid volume. Our method
allows users to visualize the data through time steps
of different sizes, forward and backward, and mov-
ing the camera. It conveniently organizes the data
on the GPU and reduces the amount of information
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to be loaded by using run-length encoding through
time. Depending on the degree of temporal coher-
ence of the data, we achieve rendering times 2 to 4
times faster than with the basic non coherent ray-
casting.

In the future, we plan to use the TRL encoding in
other direct volume rendering approaches, specifi-
cally texture mapping, which would be very similar
to our current method, and splatting.
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Abstract

Energy minimization via graph cut is widely used
to solve several computer vision problems. In the
standard formulation, the optimization procedure is
applied to a very large graph, since a graph node
is created for each pixel of the image. This makes
it difficult to achieve interactive running times. We
propose modifying this set-up by introducing a pre-
processing step that groups similar pixels, aiming
to reduce the number of nodes and edges present in
the graph for which a minimum cut is to be found.
We use a quadtree structure to cluster similar pixels,
motivated by fact that it induces an easily retriev-
able neighborhood system between its leaves. The
resulting quadtree leaves replace the image pixels in
the construction of the graph, substantially reduc-
ing its size. We also take advantage of some of the
new GPGPU concepts and algorithms to efficiently
compute the energy function terms, its penalties and
the quadtree structure, allowing us to take a step to-
ward a real time solution for energy minimization
via graph cuts. We illustrate the proposed method in
an application that addresses the problem of image
segmentation of natural images by active illumina-
tion.

1 Introduction

Many important problems in image analysis can be
posed as optimization problems involving the mini-
mization of some kind of energy function. For some
of those problems, methods based on computing
the minimum cut on graphs offer the possibility of
finding global minimum for some classes of energy
functions [3].

These methods explore the fact that algorithms
for computing minimum cuts in polynomial time
have been known for some time [1].

Much research has been done in setting the math-
ematical requirements for the energy functions that
justify the use of Graph Cut minimization for both
exact and approximate cases [1],[2],[3]. The appli-
cability of the technique has also been shown by
several papers in themes like image segmentation
[7], foreground/background extraction [11], cluster-
ing [4], texture synthesis[10], photo composition[9]
and so on.

However, the use of graph-cut methods for real-
time applications has been limited by the size of the
graph in which optimization must take place. In
this paper we propose a pre-processing of the in-
put images, in order to produce a new set of nodes
and edges, instead of the image pixels and its neigh-
borhood commonly used for the graph construction.
The proposed sets are considerably smaller, induc-
ing a significant reduction on the running time of
the graph-cut procedure. We call Quad Cut the use

Figure 1: Quad Graph
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of graph cut minimization in this modified way, the
concept is illustrated in Figure 1.

The idea of the preprocessing is to group simi-
lar pixels, but in a way that creates a well known
neighborhood system. For that reason, we choose to
group them into Quadtree nodes. The metric used
for grouping should be a similarity criteria appro-
priate to the context being analyzed by the energy
function.

After constructing the quadtree, its leaves are
used, instead of image pixels, as the basis for the
construction of the graph. An appropriate energy
function and neighborhood relationships are created
to be used in this new procedure.

As we are interested in offering a fast approxi-
mation for the computer vision problems that rely
on computing the minimum cut on an appropri-
ately constructed graph, in addition to reducing the
graph size, we also explore graphics hardware to ef-
ficiently compute energy function terms, its penal-
ties and the Quadtree structure. Inspired by [15], we
can take advantage of the Graphics Processing Unit
(GPU) parallelism to compute all the preprocess-
ing steps, including an efficient construction of a
Quadtree with all the information needed for the op-
timization algorithm, leaving the CPU free to mini-
mize the Graph constructed with the quad leaves.

As an application, we address the problem of
foreground/background image segmentation aided
by active illumination, in which graph cuts are used
to compute an optimal binary classification, start-
ing with an initial background/foreground separa-
tion, provided by the difference in intensity levels
for two different illumination levels [11]. Figure 2
illustrates the application. Observe that the quality
of the binary segmentation produced can be used for
matting.

The paper is organized as follows: some applica-
tions that use energy minimization via graph cuts in
vision are reviewed in the next Section; Section 3
briefly describes the basic concepts for energy min-
imization via Graph Cuts; then, in Section 4 we ar-
gue that grouping pixels into the Quadtree structure
is useful to substantially reduce the nodes of the
final graph to be cut. An GPU implementation to
construct the quad tree structure is discussed in sec-
tion 5. In Section 6 we present an illustrative imple-
mentation to accelerate the active illumination seg-
mentation problem. Results are discussed in Sec-
tion 6.4 followed by conclusions and future work.

(a) (b) (c)

(d) (e)

Figure 2: Example of minimization via Graph Cuts
to the image segmentation of natural images aided
by active illumination. In (a) and (b) the input
images are shown. In (c) the initial segmentation
provided by active illumination is compared to the
final optimized segmentation shown in (d). The
composition result (using parameters σL = 0.25,
σC = 0.05) is shown in (e).

2 Related Work

In the Computer Vision and Graphics context, the
graph cut method, can be interpreted as a cluster-
ing algorithm that works in a image feature space to
produce spatially coherent clusters as result. Sev-
eral recent works creatively models different ap-
plications as a labeling problem, then uses graph
cuts to optimize the proposed labeling. This is the
case in [9], where a framework for composing dig-
ital photos into a single picture, called d̈igital pho-
tomontage,̈ is described. Having n source images
S1, ..., Sn to form a photo composition, the prob-
lem is posed as choosing a label for each pixel
p, where each label represents a source image Si.
The proposed method extends the applicability of
graph cuts to compute selective composites, photo
extended depth of field, relighting, stroboscopic vi-
sualization of movement, time-lapse photo mosaics
and panoramic stitching.

In [4], the spatial clustering problem is modeled
as a labeling problem. The spatial coherence is
guaranteed by the penalty imposed for neighbor-
ing pixels to have different labels, that are used as
weights for the edges between neighbor pixels in
the graph.
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In [10], texture synthesis is modeled as label-
ing. The method generates textures by copying in-
put texture patches into a new location, the graph-
cut technique is used to find the optimal region in-
side the patch to be transferred to the output image.
Such patch fitting step is a minimum cost graph cut
problem using a matching quality measure for pix-
els from the old and new patch.

The problem of monochrome image colorization
is modeled as a segmentation problem in [5]. The
input image is partitioned interactively while the
user specifies input colors, maintaining smoothness
almost everywhere except for the sharp discontinu-
ity at the boundaries in the image.

Image segmentation problem can also be solved
by minimization via graph cuts. The main work
lies in defining the energy function that mod-
els the specified application. In particular, back-
ground/foreground segmentation can be solved by
means of Graph Cuts. In [6], [7] and [8] the user has
to indicate coarsely the foreground and the back-
ground pixels, as initial restrictions for a minimiza-
tion process. Then, graph cuts are used to find auto-
matically the globally optimal segmentation for the
rest of the image.

Similarly to our algorithm, [8] proposed the use
of the image uniform regions as the nodes used in
the graph construction in stead of the image pix-
els. They group similar pixels into such regions
segmenting the original image using the watershed
method. We believe that such segmentation do not
provide a neighborhood system neither a boundary
perimeter and area as easy to compute as the one
presented in our proposal provided by the quadtree
structure.

In this paper we will concentrate on applying
graph cuts for image foreground-background seg-
mentation aided by active illumination, as in [11].
Active illumination consists of using an additional
light source in the scene that illuminates the fore-
ground objects more strongly than the background.
This gives a priori clues of the foreground. The
information derived from this difference in illumi-
nation replaces the indication of object and back-
ground pixels by the user. These initial clues are
then used as seeds for an optimization procedure in
order to obtain a high quality segmentation. Poten-
tially, the approach could be used for video capture,
since a projector can be controlled to produce alter-
nating illumination conditions at 60 Hz.

3 Basic concepts in Energy Minimiza-
tion via Graph Cuts

In Computer Vision and Graphics, energy func-
tions minimization is commonly computed using
the min-cut/max-flow algorithms. The general goal
for using the min-cut/max-flow algorithms is to find
a labeling L, that assign each variable p ∈ P (usu-
ally associated with the pixels of the input image)
to a labeling Lp ∈ L, which minimizes the corre-
sponding energy function.

The number of possible values assumed by the
variables of the energy function is assumed finite,
and modeled as a set of labels L, each label repre-
senting a possible output value.

The energy function to be optimized can be gen-
erally represented as [2]:

E(L) =
∑
p∈P

Dp(Lp) +
∑

p,q∈N

Vp,q(Lp, Lq), (1)

Traditionally, N ⊂ P × P is a neighborhood
system on pixels, Dp(Lp) is a function that mea-
sures the cost of assigning the label Lp to the pixel
p, while Vp,q measures the cost of assigning the la-
bels {Lp, Lq} to the adjacent pixels p and q and is
used to impose spatial smoothness.

The method of Graph Cuts to minimize (1) is ap-
plied by the creation of a graph normally contain-
ing nodes corresponding to each of the image pixels
and some additional special nodes, called terminals,
corresponding to each of the possible labels. There
are two types of edges in the graph: n-links and
t-links. N-links are the edges connecting pairs of
neighboring pixels, representing the neighborhood
system in the image, while t-links are edges con-
necting pixels with terminals nodes. All edges in
the graph are assigned some weight or cost related
to the energy function terms. The cost of a t-link
corresponds to a penalty for assigning the corre-
sponding label to the pixel, derived from the data
term Dp in (1). The cost of a n-links corresponds
to a penalty for discontinuity between the pixels.
These costs are usually derived from the pixel in-
teraction term Vp,q in (1).

The Graph Cut finds a minimum of the energy
function (1), providing an optimal labeling for the
graph nodes [2].
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4 Grouping Pixels into Quadtrees
Leaves

When modeling computer vision problems as a
energy-minimization problem, one can use different
kinds of image features (e.g., luminance, color, gra-
dient, frequency) and different metrics (e.g., statisti-
cal functions, differences between images, min/max
relations). However, whatever the image feature or
the metric used in the energy function, most natural
images have areas of pixels presenting similar val-
ues according to them. Those pixels are expected to
receive the same label in the energy minimization
output. Our approach takes advantage of this fact,
grouping pixels of such uniform areas, thus decreas-
ing the graph size on which the min-cut algorithm
is to be applied.

One more question arises here. If, on one hand,
grouping pixels reduces the size of the graph, on
the other hand, it may cause its adjacency topol-
ogy to be more complex than the usual 4- or 8-
connected pixel neighborhood systems. This may
lead to spending considerable time both to find suit-
able clusters of pixels and to compute their adja-
cency relationships, overcoming the benefits by the
smaller graph size.

Driven by these observations, we propose the use
of a quadtree structure for grouping pixels into re-
gions using a similarity criteria, while, at the same,
creating a manageable neighborhood system be-
tween the quadtree leaves, in which adjacency re-
lationships are easily retrievable.

In the next subsections we show how a graph
for energy minimization can be constructed using
quadtree leaves. The construction of the quadtree
itself is discussed in section 5.

4.1 Graph Cuts using Quadtree Leaves

Using the quadtree leaves as the input data for the
energy minimization via graph cuts, our goal is to
find a labeling L, that assigns a label Lt ∈ L to
each leaf t ∈ T of the quadtree, that minimizes the
energy function adopted. The same set of the labels
L may be used here. The modified energy function
can be generally represented as:

E(L) =
∑
t∈T

α∗Dt(Lt)+
∑

t,u∈N

β ∗Vt,u(Lt, Lu),

(2)

Where N ⊂ T × T is a neighborhood system on
the quadtree leaves, Dt(Lt) is a function that mea-
sures the cost of assigning label Lt to leaf t, and
Vt,u measures the cost of assigning labels {Lt, Lu}
to the adjacent leaves t and u. The α and β terms
are weights for balancing the energy function, ex-
plained below.

In such energy function model, the energy vari-
ables represent the quadtree leaves. Thus, graph cut
minimization is applied to a graph containing nodes
corresponding to each leaf of the quadtree and ter-
minal nodes corresponding to each of the possible
labels. Now, the n-links connect pairs of neighbor-
ing leaves, while t-links connect leaves with termi-
nals nodes.

4.1.1 Weighting the Quadtree Nodes

The α and β factors were added to equation (2)
in order to balance the energy metric according to
leaves topology. The number of pixels inside a leaf
t is (2level(t))2, while the number of pixels in the
border between two neighboring leaves t and u is
2min(level(t),level(u)). Therefore, we can rewrite (2)
by taking α, that represents the weight for the re-
gional term, as the leaf area, and β, that represents
the weight for the boundary term, as the number of
neighboring pixels between the two leaves.

With the suggested weights, we ensure that larger
leaves have greater impact than smaller ones, while
also enhancing the neighborhood influence of larger
borders.

E(L) =
∑
t∈T

(2level(t))2 ∗Dt(Lt)

+
∑

t,u∈N

2min(level(t),level(u)) ∗ Vt,u(Lt, Lu), (3)

5 Efficiently computing the Quadtrees

In this section we describe how the quadtree can be
constructed efficiently using graphics hardware.

5.1 Quadtrees in GPGPU

The increasing use of the Graphics Processing Unit
(GPU) for general-purpose computation (GPGPU)
is motivated by its newest capability of performing
more than the specific graphics computations which
they were designed for.
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In the context of our proposal, the GPU can
be used for efficiently computing the energy func-
tion terms and also for constructing the quadtree
whose leaves will be used as nodes in the graph
cut minimization. For saving the partial results,
we apply the useful concept of ”Playing Ping-Pong
with Render-To-Texture” [17], rendering to Frame
Buffer Objects (FBO) [19] when 32-bit floating-
point precision is necessary.

A solution for constructing a quadtree structure
for general purposes in GPU is presented in [15].
A reduction operator is described that creates an
image pyramid called QuadPyramid. The opera-
tor writes in each fragment of the pyramid texture
whether it represents a grouping of similar pixels or
if it should be threaded as a quadtree internal node,
in this case saving the number of leaves covered by
the region represented by the fragment.

In a second shader, they identify the quadtree
leaves reading the pyramid texture repeatedly, sim-
ulating tree traversals from root to leaves. Relative
counters, read from the pyramid texture, are used
to control such traversals. The origin and size of
the found leaves are saved in a output texture, or-
ganized as a point list. To construct such list for
a quadtree of m leaves over a square image of N
pixels, their algorithm may need (m∗ log(

√
(N)))

texture accesses in the worst case.
For our purposes, the resulting quadtree leaves

will be used in CPU for graph construction. In addi-
tion to the origin and size of the leaves, we will also
need leaf values that are used as the graph weights.
We propose a simpler image pyramid operator for
quadtree construction than the used in [15] and a
new algorithm for identifying leaves from the pyra-
mid texture. Next sections explain our methods for
quadtree construction and leaves identification.

5.2 Quadtree Construction

Once a similarity criteria has been selected, the in-
put image should be transformed to the adopted
metric space, previously to the quadtree construc-
tion. For example, when grouping pixels by lumi-
nance, the original image should be transformed to
the luminance space.

Here, as in [15], the quadtree construction starts
by a reduction operator, creating an image pyra-
mid. For each fragment in the pyramid level being
constructed, the operator reads four texture samples

from the previous pyramid level, representative of
its four children in the quadtree. If the samples rep-
resent similar nodes, then, the fragment is classified
as a leaf, grouping them into a single node that re-
ceives its children mean value. Otherwise, the frag-
ment is classified as a tree internal node. The re-
duction operator is performed until the pyramid top
level (1× 1 pixel dimension) is reached.

Our algorithm is simpler than the one presented
in [15]. While grouping leaves, [15] also computes
relative counters in fragments representing internal
nodes. Those counters indicate how many leaves
are covered by the internal node being processed. In
our case, we do not count the existing leaves inside
a internal node region because this information is
not needed in our leaves isolation solution.

For our purposes, the pyramid texture is used for
saving the grouping decision (alpha channel) and
the leaves values (RGB channels). Figure 3 shows
an image pyramid found using the example applica-
tion of section 6.

Figure 3: image pyramid found using the example
application

5.3 Identifying Final Leaves

In order to identify the quadtree leaves in the pyra-
mid texture, we propose a leaf isolation method that
does not require computing several texture transver-
sals, as used in [15], and, as a consequence, does not
impose the use of a GPU supporting several nested
branches.

Using the pyramid image as input, this process-
ing step produces a texture whose pixels contain the
data corresponding to a quadtree leaf (its size, po-
sition and representative value), or a color associ-
ated with empty data. This texture saves all the data
needed for building the graph a posteriori.

Our algorithm erases texels representing other
than leaf nodes in the pyramid texture. For that, we
use a new fragment shader that reads our pyramid
texture and discards all fragments that should not be
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leaf nodes in the final tree. This shader produces the
output texture in a single rendering pass that makes
at most two texture accesses per fragment.

The cleanup shader initially reads the fragment
classification (leaf/non-leaf) from the alpha channel
of the pyramid texture. If the sample is already clas-
sified as non-leaf, the fragment is immediately dis-
carded. Otherwise, the pyramid texture is queried
again, now on its corresponding parent texture co-
ordinate. When the parent was classified as a leaf,
this means that this fragment was grouped with its
neighbors into a higher level leaf, so it can also be
discarded. However, in the case of a non-leaf par-
ent, this means that the previous shader could not
group this node with its neighbors and that the frag-
ment represents a leaf in the final tree.

The fragments that pass through those tests are
considered as final quadtree leaves and are written
in the output texture, saving in its channels all the
data to be associated with the leaf that the fragment
represents (see figure 4). By doing this, we guaran-
tee that subsequent steps of the graph construction
do not have to query any other texture.

Figure 4: Quadtree Leaf Texture

All the information necessary for graph-cut com-
puting is contained in this texture. For illustration,
in figure 5 we reconstruct the entire quadtree using
only the leaf texture shown in figure 4). Each leaf is
painted according to its level.

6 Application to Active Segmentation

In this section we describe in detail an application of
the proposed method to the problem of image seg-
mentation by active illumination using graph cuts.

Segmentation using active illumination employs
a single, intensity-modulated light source that stays
in a fixed position between shots, as proposed in
[11]. The two shots, differently illuminated, are
used to obtain an initial segmentation used as a
seed, referred as segmentation seed, and to attribute

Figure 5: Found Quadtree (leaf color according
with its level).

weights to the pixels that are used in graph cut opti-
mization step to produce a improved final segmen-
tation.

6.1 Energy Function Definition

The objective function adopted is the same pro-
posed in [11]. The regional term considers the lu-
minance difference between the two input images
and the object color histogram as information that
characterize the segmentation. The luminance dif-
ference for background pixels is considered to have
Gaussian distribution, with density

pB(p) =
1√

2πσL

exp(
−|LI2(p)− LI1(p)|2

2σ2
L

),

(4)
where σL is the standard deviation of the luminance
differences, illustrated in figure 6 b.

The segmentation seed is defined as O =
{p | pB(p) < t}, where t is a small threshold.

The color histogram of these initial foreground
pixels are used to characterize the object as in [6].
In this work, only the components a and b of the Lab
color systems are considered to characterize the ob-
ject color distribution. For simplicity, the histogram
is defined over a uniform partition.

The object distribution function is modeled as

pO(p) =
nk

nO
(5)

where nk is the number of pixels assigned to the
bin k and nO is the number of pixels in the object
region O.

Observe that only one of the input images is used
to construct the histogram information, since mix-
ing different images may distort color information.
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In most cases, we use the image corresponding to
the lowest projected intensity.

The regional term of the energy function is:

R(xp) =

{
− log(pO(p)), if xp is 1
− log(pB(p)), if xp is 0 (6)

where 1 is foreground and 0 is background.
The likelihood function for neighboring bound-

ary pixels given by

B(p, q) = 1 − exp(
−(||Lab(p)− Lab(q)||)2

2σ2
C

),

(7)
where Lab(p) denotes the color at point p and σC is
the standard deviation of the L2-norm of the color
difference.

The boundary term for neighboring pixels p, q is
given by−|xp−xq| log B(p, q), where points q are
the neighbors of p.

The final objective function combines both the
regional and the boundary term and is given by:

E(X) =
∑

p ∈ I1

R(xp)−
∑

p,q ∈ I1

|xp−xq|·log B(p, q),

(8)
As shown in [11], the proposed energy function

is regular, which means that it can be minimized
by graph-cuts. This remains valid for the modified
energy function defined on quadtrees leaves. As
a consequence, Quad-Cuts can be applied to min-
imize the modified energy function.

6.2 Energy Function in GPU

The next sections describe how shaders can be used
to compute efficiently the regional and boundary
terms of the active illumination energy function ap-
plying GPGPU.

To pass the computed data efficiently across the
algorithm we create what we call a Stratified Tex-
ture, illustrated in Figure 6.

The Stratified Texture is generated by saving, in
its different channels, red, green, blue and alpha, all
the data needed for the following steps of our al-
gorithm. In this example application, the red and
green channels are used for storing the a and b
channels of the input image converted to Lab color
space, the blue channel for storing the initial seed
segmentation obtained by thresholding the lumi-
nance difference, and the alpha channel for storing
the background distribution.

(a) a and b channels
from Lab color space

(b) background proba-
bility

(c) RGBA are respectively a, b, segmentation
seed and background probability

Figure 6: Stratified Texture.

6.2.1 Color Space Conversion

The input images are converted from RGB to CIE
Lab color space, to exploit metrics in a perception-
based color space presenting orthogonality proper-
ties between luminance and chrominance informa-
tion.

Shaders for color space conversion have been
used intensively by GPGPU programs. However, in
order to efficiently compute the RGB to Lab conver-
sion with high precision we also take advantage of
the concept of rendering to texture with 32 bit float-
ing point internal format using frame buffer objects
(FBO) [19]. We save the Lab a and b computed
channels in the resulting texture r and g channels,
as illustrated in figure 6(a).

6.2.2 Background Probability

The background probability is computed in GPU
according to equation (4), measuring the distribu-
tion of the luminance difference of the lit and unlit
images. The result is illustrated in Figure 6(b).

For efficiently using the GPU parallelism, we
pre-compute the constants 1/

√
2πσL and 1/(2σ2

L)
of equation (4) for a fixed σL. Those values are
passed to the shader, avoiding repeatedly calculat-
ing it for every fragment.
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6.2.3 Computing the Color Distribution

In order to compute the object distribution function
using equation (5), we construct the histogram of
the a and b channels from Lab color space (saved
in stratified texture red and green channels), distin-
guishing object pixels using the object seed (from
the stratified texture blue channel).

Motivated by its performance in computing his-
tograms with a large set of bins, we choose to
adapt [12] to our application context. Originally,
that approach was proposed for monochromatic his-
tograms, computing the histogram bin selection in
a vertex shader, by loading the texture using ei-
ther vertex texture fetches or by rendering the input
image pixels into a vertex buffer, according to the
graphics hardware capability.

We propose to adapt [12] to a vertex shader that
computes bin selection in a 2D mapping, modifying
it to compute a histogram representing the frequen-
cies of occurrence in both input channels. Our ver-
tex shader computes the vertex position by reading
the a and b channels, multiplying their normalized
values by the number of bins in the corresponding
dimension, and then transforming the resulting val-
ues to frame coordinates.

Observe that a histogram of a trichromatic image
could also be computed in GPU using techniques
for representing 3D arrays such as those proposed
in [18].

6.3 Application pipeline

stratified
texture

luminance
difference
(Gaussian)

RGB to Lab
Conversion

object region seed

unlit image

lit image

image reconstruction image composition

construct Quad-Cut graph energy minimization

object distribution (histogram)construct quadtree

GPU

CPU

GPU

Figure 7: The proposed Quad-Cut method.

The main steps of the example application are il-
lustrated in Figure 7.

The lit and unlit input images are converted to
Lab color space. Then, another shader computes

the background distribution texture. The result of
those shaders are grouped in the stratified texture as
described in section 6.2 and illustrated in figure 6.

The object distribution function is obtained by
computing the object histogram of the a and b chan-
nels read from the stratified texture, using only pix-
els that failed the background threshold test (read
from its blue channel). This histogram is saved in a
texture to be used later in the energy function con-
struction.

Then, the quadtree is created using our reduction
operator through the stratified texture. Following
the method in section 5.3, the resulting pyramid
texture in cleaned, generating a texture that contains
only the leaf nodes. that contains all information
needed about each leaf: its level, from its relative
position in the texture; its a and b from LAB con-
version saved in the red and green channels; and the
luminance distribution, saved in the blue channel.

All the above steps are computed in GPU. After
them, the graph is constructed in CPU by reading
the data from the leaf texture (fig. 4) and from the
histogram textures.

In CPU we store the quadtree leaves in a pointer
less representation, as a linear quadtree. The leaves
are associated with location codes for fast neighbor
search as in [16].

The graph is constructed using the leaf data,
which stores the previously computed terms of the
objective function, according to the method ex-
plained in section 4, which is minimized by the
Graph-Cut minimization as in [1].

The solution of the minimization provides the
classification of the quadtree leaves as background
or foreground. So, using the position and size of
each leaf, we reconstruct the resulting image that
represents the alpha mask solution.

Back to the GPU, for the final composition, a
smooth shader is applied to the computed alpha
mask. Finally, a blending operator αF + (1−α)B
is applied to the segmented foreground and the new
background.

6.4 Results

Segmentation results using Quad-Cuts and the fi-
nal compositions are shown in figures 2 and 8. To
illustrate the considerable reduction in the number
of variables in the minimization problem, both fig-
ures 2 and 8 are originally 800×600 (480,000) pix-
els, while the computed quadtrees have 9,556 (2%)
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leaves and 30,036 (6%) leaves, respectively. No-
tice that the special characteristics of figure 8 (that
presents many holes and thin structures) are auto-
matically preserved through 15,992 leaves in the
lowest level (1×1 pixel) and 8,718 in the next level
(4× 4 pixels).

(a) Segmentation seed (b) Output α-channel

(c) Composite

Figure 8: Composition Result 2 (using σL = 0.25,
σC = 0.05).

We also measured the execution time of an back-
ground/foreground segmentation using graph-cut
and active illumination with a Quad-Cut imple-
mentation with its preprocessing steps computed in
GPU. A NVIDIA GeForce 7900 graphic card was
used for the timings shown in Table 1.

7 Conclusions

We propose to accelerate the computation of energy
minimization using graph cuts by applying a pre-
processing step for reducing the number of graph
nodes and edges. In this pre-processing, pixels are
grouped by a similarity criteria according to the
problem context.

We argue in favor of using a quadtree structure
for managing such clustering regions, motivated by
the easily retrievable neighborhood system between

Table 1: Processing time

step in seconds
Energy function on GPU:

RGB to Lab < 0.001
Background prob < 0.001
Histogram < 0.015

Quad on GPU:
Pyramid Construction 0.047
Quad Leaves Isolation < 0.001

Quad on CPU:
Reading Texture to CPU 0.015
Leaf List 0.016
Neighborhood 0.014
Graph-cut Minimization 0.001
Answer Reconstruction 0.016

its leaves. In order to support our claim, we present
a general formulation of the energy function using
the leaves as its variables, and we also presented
a general graph-cut construction over the quadtree
leaves.

We also show how the quadtree structure can be
constructed using graphics hardware. Initially, we
use a reduction operator for constructing an image
pyramid that writes in each texel whether a simi-
larity clustering was applied or not. Such shader is
simpler than the one proposed in [15]. Then we pro-
pose a leaf isolation method that discards from the
pyramid texture all the texels that do not represent a
quadtree leaf, efficiently removing unneeded infor-
mation of non-leaf nodes. The proposed method re-
quires fewer texture readings than the method pro-
posed by [15], due to fact that the algorithm that it
employs for finding leaves does not compute tree
traversals for discovering each leaf in the tree.

Our graph construction method does not compute
a point list on GPU of the quadtree leaves, as [15]
does. Instead, as explained before, we use the leaf
texture data to save the weights of the computed en-
ergy function, and the leaf texture coordinates are
used to set the leaf level, size and corner position.
Saving all the data needed for the posterior steps
into such leaf texture allows an efficient interplay
between the result generated in GPU and the energy
minimization on CPU.

We also presented an application of our method
to the foreground/background segmentation prob-
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lem. It can be observed from the presented re-
sults (figures 2 and 8) that the proposed method for
grouping pixels into quad leaves conserved image
fine grain details of the original image (by creating
leaves as small as 1×1) while also featuring a good
grouping rate, by creating large leaves in regions of
similar pixels .

We also show that the efficient implementation of
all preprocessing steps on GPU leads to reasonably
fast processing rates. As a consequence, we be-
lieve that our method constitutes an important step
towards real time segmentation and matting using
active segmentation.
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Abstract

Reproducing the environment as a virtual model in
a computer is a requirement of many vision, model-
ing and vizualisation applications. 3D video range
cameras are a promising approach since they pro-
vide direct 3D information of a recorded scene.
This paper focuses on improving the data quality of
such cameras by analysing and processing the raw
values. The first algorithm focuses on the quality of
the distance values. The optimal exposure times for
the camera are predicted and the resulting distance
values are combined to create an improved depth
image. The second algorithm focuses on the quality
of grayscale values. An illumination model is pre-
sented which is used to eliminate spotlight effects
in the picture. An evaluation on test scenes demon-
strates the effectiveness of the algorithms.

1 Introduction

3D-imaging is a technique for capturing and
displaying three dimensional information of the
environment. A common method is stereoscopic
imaging where two pictures are taken which have a
horizontal displacement similar to the view of the
human eyes. The length of the displacement allows
drawing conclusions about the depth information
of the scene. Complex and time consuming
algorithms are needed for finding correlating points
in the pictures and calculating the distance values.
A 3D video range camera is a new promising alter-
native for capturing three dimensional information.
The optical sensor is a Photonic Mixer Device
(PMD) which provides direct depth information
for each pixel of an image. High frame rates can
be achieved allowing capturing and processing the
data in real-time. Several companies provide range
cameras with different specifications [1] [2].

The cameras still have some limitations that must
be overcome to improve the quality of the 3D data.

The main limitations are:
• Low resolution (maximum: 160x120 pixels)
• Accuracy and noise of distance data
• Interference with background illumination

(sunlight, fluorescent lamps)
• Low range (maximum: 7.5 m)

The mentioned limitations are the subject of current
research activities [3] [4]. Since PMD is a new tech-
nology it can be assumed that there will be much
improvement over the next years.
Additional requirements must be fulfilled depend-
ing on the application the camera is used for. For
example, in the application of Autonomous Mobile
Systems (AMS) the PMD sensor is used for naviga-
tion purposes [5]. The reliability of data and mea-
surements for the accuracy is of high priority for
such applications. In this paper two algorithms are
presented that address the improvement of the data.

2 Background

The theoretical background on range cameras has
been described in many publications [6] [7] [9].
The following sections give a brief description and
a summary of the formulas needed to calculate the
final distance values.

2.1 Range Camera

Range cameras are based on the time of flight (TOF)
principle [6]. The simplest form of a TOF measure-
ment is the emission of a light pulse. The light is
reflected from the environment and a receiver close
to the sender captures the reflected light pulse and
measures the time the light needed to travel.
Since the speed of light is known it is possible to
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calculate the distance the light travelled. The light
travels to the target and back again. Therefore, the
distance to the object is half of the light travel dis-
tance.
Such direct light measurements require very precise
electronic components which are capable of mea-
suring time differences of nano seconds. An al-
ternative is to send a modulated wave with a long
wavelength and to measure the phase difference be-
tween the sent and received modulated wave. Since
the phase difference is only unique up to half of the
wavelength the possible maximum distance mea-
surementdmax is limited to this value as well.

dmax =
c

2 · fmod

(1)

where
c: speed of light (299792458 m/s)
fmod: modulated frequency of the wave

The camera system we used [1] contains a matrix
of infrared LEDs (Figure 15) to send a carrier wave
which is modulated by a 20 MHz signal (Figure 1).

Modulation 
signal

20 MHz

Infrared light with amplitude
modulated signal

Carrier
Frequency: 
353 THz

Sensor pixel

Wall

Lens

Demodulated signal

Correlation

Distance 
information

Figure 1: Principle of the PMD camera

This results indmax ≈ 7, 5m. A lens captures
the reflected light waves on the PMD sensor. The
incoming modulated carrier signal is demodulated

and cross-correlated with the original modulation
signal to retrieve the phase difference.

2.2 Retrieving Distance Data

The distance information is retrieved by determin-
ing the phase difference between the modulation
signal and the received demodulated signal [7]. For
the derivation of the formulas we can assume an
ideal sinusoidal modulation signalms(t) and a car-
rier signalcs(t) (Figure 2):

ms(t) = cos(ω · t) (2)

cs(t) = Ac · cos(Ω · t) (3)

with Ω >> ω

-Ac

-1

0

1

Ac

t

ms: modulation signal

cs: carrier signal

Figure 2: Modulation

An amplitude modulation ofms(t) on cs(t) re-
sults in (Figure 3):

mds(t) = (Ac + cos(ω · t)) · cos(Ω · t) (4)

0

Ac
Ac+1

t
mds: modulated signal

Figure 3: Modulated wave

The received signalrs(t) contains the phase shift
ϕ we want to determine. The energy loss of the re-
flected wave results in a descaling factor A forrs(t)
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which affects the amplitudes ofrs(t) and the offset
Ai of the amplitude modulation linearly (Figure 4):

rs(t) = (Ac + cos(ω · t− ϕ)) · cos(Ω · t) ·A (5)

ds(t) = (Ai + A · cos(ω · t− ϕ)) (6)

with 0 ≤ A ≤ 1 andAi = A ·Ac

0

Ai+A

Ai

A/2

t

rs: received signal

ds: demodulated signal

xs: correlated signal

A0
A1

A2
A3

Tp/4

Figure 4: Signal demodulation and cross-
correlation

The demodulated signalds(t) corresponds to the
modulation signal by a shift ofAi, an Amplitude
of A and a phase shift ofϕ. The resulting cross-
correlationxs(τ) is calculated by:

xs(τ) = ms(t)⊗ ds(t) =

lim
T→∞

1

T

∫

+ T

2

−
T

2

ms(t) · ds(t + τ) ∂t =

A

2
· cos(ω · τ + ϕ) (7)

While the offset informationAi is lost during the
cross-correlation, the Amplitude A and phaseϕ can
be determined fromxs(τ). Sincexs(τ) is a sinu-
soidal signal with known frequency the signal can
be reconstructed by using only four sampling points
A0 − A3 at an interval of one quarter of the modu-
lation periodTp [8]:

A =

√

(A1 −A3)2 + (A2 −A0)2

2
(8)

ϕ = arctan
(

A1 −A3

A2 −A0

)

(9)

The phaseϕ in the interval[−π, π] has a linear re-
lationship to the distance d:

d =
(

dmax ·
π + ϕ

2 · π
+ offset

)

moddmax (10)

The offset describes the time delay based on the
electronic components of the camera. The value
is calibrated for each camera by the manufacturer.
The offset addition is limited to the maximum dis-
tance by the modulo operator.
The camera we used [1] contains a sensor chip with
two output channels. The correlation of the signals
is done directly on each pixel. The incoming pho-
tons generate charge carriers which are transferred
to the output channels. The modulation signal
ms(t) controls to which channel the electrons will
be transferred [9]. The charge difference between
the channels is provided by an A/D-converter. The
values of the converter are the raw values which the
camera provides on request. The values correspond
to the sample valuesA0 − A3 plus a positive shift
due to the electronic measurement principle of the
converter. Since both A andϕ are invariant to a
shift the raw values can be used directly as sample
points.

3 Multiple Integration

The measurements of the PMD chip are based on
the absorption of photons and generation of charge
carriers. The integration time is the time the chip
is exposed to the incoming photons. It has a direct
impact on the accuracy of the measurement. The
aim is to retrieve as many measurements with ac-
ceptable accuracies as possible.
Figure 5 shows some measurements on a wall with
varying wall color and real distance. The measured
distance values only overlap with the real distance
in a specific section which differs in position and
length. While the measurement in Figure 5b seems
to be stable above 5000µs, Figure 5a returns wrong
measurements after 15000µs and Figure 5c after
30000µs.
Two effects are responsible for the erroneous val-
ues. The erroneous values on the left are due to
insufficient illumination for signal detection. The
erroneous values on the right are due to a limitation
of possible number of charge carriers on the inte-
gration capacity which leads to a saturation. Please
refer to [13] for a detailed explanation.
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Figure 5: Distance measurements

3.1 Optimal Integration

The accuracy of a measurement can be determined
directly by the following formula [10] [11]:

∆d =
dmax√

8
·
√

I

2 ·A
(11)

I is the intensity of the light which corresponds to
the mean amplituders(t) and to the offsetAi of
ds(t) as well. Since the value ofAi is lost during
the cross-correlation process and the camera does
not provide the charge values of the channels sep-
arately the intensity can not be calculated exactly.
SinceAi is proportional to the amplitude A ofds(t)
we can estimate I by a constant factor k:

I = k ·A (12)

This results in:

∆d = k · dmax√
8
· 1

2 ·
√

A
(13)

We calibrate k by using the noise range of a pixel.
The camera is pointed towards a wall at a fixed dis-
tance. We measure the amplitude of the pixel and
use the standard deviation of the measured distance
for ∆d. This process can be repeated for other dis-
tances if needed.

The accuracy of the measurement in Equation 13
only depends on the amplitude of the signal. Figure
6 shows the corresponding amplitudes to the dis-
tance measurements of Figure 5. The graphs show a
bump shape with a maximum value at 200. In prac-
tical experience the measurements already show
saturation effects when using integration times on
the right side of the maximum. Therefore, accept-
able integration times are values left from the maxi-
mum with an amplitude value above a defined mini-
mum. The optimal integration time is located at the
maximum amplitude position.
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Figure 6: Amplitude measurements

3.2 Number of Measurements

For a complex scene a single measurement may not
be enough. If the scene contains multiple walls and
objects with different material properties and dis-
tances the optimal integration times will be differ-
ent for each pixel.
Figure 7 illustrates the problem. The camera is
pointed towards a wall and a box with a hole in the
center is placed in front of it. The distance between
the camera and the wall is 1.2 m. The distance be-
tween the camera and the wall is 2.35 m. The fig-
ures show the detected 3D points of the scene from
a bird’s-eye view with the wall on the right, the box
on the left side and the camera (which is not shown)
on the left of the box. In Figure 7a an optimal in-
tegration time has been chosen for the box and the
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3D points of the box create a sharp shape. The wall
behind it appears very scattered due to insufficient
amplitude values. In Figure 7b an optimal integra-
tion time has been chosen for the wall. The wall
appears in a sharp shape while the shape of the box
can not be recognized any more. Only the combina-
tion of both measurements gives an adequate result
for the complete scene (Figure 7c). The wall and
box both appear sharp in the scene.

aa

bb

cc

Figure 7: 3D points for different integration times
(a,b) and after multiple integration (c)

Since each additional measurement requires time
the aim is to cover a long depth range with as few
measurements as possible. Also, for AMS appli-
cations a method is needed which determines the
optimal integration times automatically.

3.3 Algorithm

We propose the following algorithm, which is illus-
trated in Figure 8:
• Perform three measurementsm1 − m3 with

the first three integration timest1 − t3 and de-
termine the amplitude gradientsAl andAr for
each pixel.

Al =
m2 −m1

t2 − t1
(14)

Ar =
m3 −m2

t3 − t2
(15)

Since the integration times are very low the
overall time should be low as well.

• Classify the section of the bump (1 to 4) by
comparing the signs and values of the gradi-
ents and the absolute value of the amplitude.
Please note that the different locations of the
three measurements in Figure 8 are only for
illustration. In reality the measurements are
fixed on the left side and the graph is shifted.

• Case 1,3: Select the higher gradient to cal-
culate the integration time IAmax with max-
imum amplitudeAmax(200). The lower gra-
dient could include a part of the floor line and
lead to wrong results.

• Case 1,2,3: Approximate the left part of the
bump by a straight line from zero to the point
of maximum amplitude. Calculate the inte-
gration time IAmin with minimum acceptable
amplitudeAmin.
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Figure 8: Determination of the amplitude maximum
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After IAmin and IAmax values are determined
for each pixel we can plot the distribution of opti-
mal valuesAmax of the scene (Figure 9). We can
identify the box in front of the wall by the peak of
the second bar in the histogram. Most of the opti-
mal Amax values for the wall lie above our maxi-
mum allowed integration time and are therefore all
stacked atImax, the last bar in the figure.

The two highest peaks could be considered as
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Figure 9: Histogram of integration times for maxi-
mum amplitudes

the result for a double integration and would result
in 35% of the pixels having an optimal integration
time for this scene. But having as many pixels with
acceptable amplitudes as possible has a higher pri-
ority than having optimal amplitudes. The accept-
able amplitudes for a pixel lie between IAmin and
IAmax for each pixel. The corresponding histogram
is shown in Figure 10. The best coverage of accept-
able amplitudes is the highest bar in the figure (5th
from the left). The related integration time is the
first result of the algorithm.
For determining the next best integration time we

need to exclude all pixels that are already covered
by the first measurement. We create the histogram
of acceptable amplitudes again (Figure 11). The fig-
ure shows now a breach at the position of the first
result since all pixels having maximum amplitudes
close to this position most likely also cover it and
are therefore excluded. The 5th bar itself is empty
since all pixels with maximum amplitude at this po-
sition have an acceptable amplitude at this position
as well. The first bar in the figure (from the left) is
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Figure 10: Histogram of integration times for ac-
ceptable amplitudes

now the second best coverage of acceptable ampli-
tudes.

This process can be repeated until the maximum
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Figure 11: Remaining histogram for second inte-
gration

number of allowed multiple integrations is reached.
The resulting pixels that are not covered can be as-
signed to one of the defined integration times. Since
a very low amplitude on the left bump side is still
better than a oversaturated amplitude they are as-
signed to the result closest to their maximum am-
plitude from the left side.
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3.4 Evaluation

We evaluated the algorithm for the scene in Fig-
ure 7 for a double integration. We setAmin to a
value of 50 andAmax to 200. We chose a step size
of 4000µs. The first three integration times were
4000, 8000 and 12000µs. The minimum slope to
classify case 1,2 or 3 was2.4e−5.The possible in-
tegration times were limited byImin = 4000 µs

andImax = 50000 µs. The first optimal integra-
tion time found was 20000µs. It corresponds to the
background wall which has more pixel than the box
in front of it. The second optimal integration time
was 4000µs and corresponds to the box. Table 1
shows the results of the evaluation and Figure 7c
the resulting image.

Table 1: Number of pixels with acceptable accuracy
after multiple integration.

Number of final measurements 2
Estimated number of pixels
with acceptable amplitudes 94%
Measured number of pixels
with acceptable amplitudes 83%

When measuring the speed of the camera cap-
turing, data transfer and algorithm we noticed that
most of the time is spent at camera capturing.
Though the integration times for the first three mea-
surements are very low, the camera still requires
time values in the range of 100-200 ms for this pro-
cess. This is irrelevant for offline processing but
it is a bottleneck for real-time-capturing. We hope
that these time values will improve in cameras of the
next generation. The algorithm itself had no notica-
ble calculation time. It was below 1 ms on a 2 GHZ
PC.
We noticed an unsteadiness in straight walls when
merging values from different integration times.
When we investigated the wall from a fixed position
with increasing integration times we observed that
the position measurement of the wall changes con-
stantly towards the camera. When merging two dif-
ferent integration times, two slightly different wall
positions are merged as well. In future work we
want to eliminate this effect by calibrating the cam-
era for different integration times.

4 Illumination

The phase difference between the outgoing and
incoming modulated wave allows the determination
of the distance to the reflected points (refer to
Equation 10).
Additionally, a grayscale image of the scene can
be generated. The value I of Equation 12 (which
is equivalent toAi of the signalds(t) in Equation
6) describes the intensity of the modulated infrared
light reaching a sensor pixel.

The following factors influence the intensity
values:
• the radiant flux of the LEDs
• the radiation characteristics of the LEDs
• the orientation of the LEDs, target, and camera
• the target distance and reflectivity

An intensity image of a scene is shown in Figure
12a. The matrix of LEDs creates a spotlight in the
center. The spotlight intensity decreases to the outer
edges.
For AMS applications the texture of the walls can
be of great importance. This requires grayscale im-
ages that have a more homogenous illumination like
pictures from a digital camera taken by daylight. A
wall with a homogenous color should also appear
homogeneous in the grayscale image.
To eliminate the spotlight effect in the grayscale im-
ages we set up an illumination model which takes
into account the different influencing factors except
the target reflectivity. Then we divide the measured
intensity by this value to obtain a grayscale image
based on the target reflectivity.

4.1 Illumination model

Figure 13 shows the vector geometry used for the
model. The illumination model is based on the
following laws and functions:

1. The radiation characteristicra(α) of the LEDs
2. The inverse-square law for light intensity:

I ∝ 1

r2

3. Lambert’s emission lawI ∝ cos(θ) for lam-
bertian surfaces

4. The angle between light beam and sensors(β)

The resulting formula for the expected illumina-
tion for a target~p is:
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Figure 12: a) Grayscale image of intensity values;
b) Grayscale image without spotlight

radiance(~p) ∝
n
∑

i=0

(

ra(α) · ~dw ·
(

~li − ~p
)

∣

∣~p− ~li
∣

∣

2

)

· s(β) (16)

with α = acos

(

(

~p− ~li
)

· ~dl
∣

∣~p− ~li
∣

∣

)

(17)

where
~dl: normalized directional vector of LED
~dc: normalized directional vector of camera
~dw: normalized directional vector of wall
~li: position of LED with index i
n: number of LEDs
s(β): dependency on angle between light beam
and sensor

The radiation function is determined from the
datasheet [12] of the LEDs (Figure 14). The
function values are linearly interpolated using a
lookup table. The LEDs are arranged in a matrix
structure on both sides of the camera (Figure 15).

ld

wd

il

cd

p

Sensor

LED

Wall

r

Figure 13: Vector geometry for illumination model

Figure 16 shows the intensity distribution of an
imaginary horizontal plane going through the cam-
era. The distribution is based on the first two emis-
sion laws/functions and the position of the LEDs.

The camera is located at x=0 and z=0 and points
into the z direction. Red color represents high in-
tensity and blue color low intensity. The spotlight
appearance can be recognized in the figure.
The orientation of the wall must be known in order
to apply Lambert’s emission law. It can be deter-
mined by analysing the neighbour pixels. Eliminat-
ing Lambert’s emission law from the grayscale val-
ues eliminates shading effects in the environment
as well. This is very useful for extracting texture
information but should not be done for grayscale
images of the scene. Otherwise a scene containing
only white walls would result in a completely white
image.
The functions(β) has been determined empirically.
A white wall has been recorded which should result
in a white image with equal values. The measured
intensity values have been divided by the calculated
intensity of Figure 16. The result is plotted in Fig-
ure 17.
It seems that there is a linear correlation with the
angle between light beam and sensor. Only for very
low distances the correlation seems not to be valid.
A linear regression results in a line with a zero point
at β0=22◦. Since law number 3 has not been taken
into account the slope of the regression line is dif-
ferent for different scenes but the zero point seems
to be stable. Therefore we can take the slopes of the
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Figure 14: Radiation characteristics for LEDs

Figure 15: Camera with matrix of LEDs

regression line as the result for the multiplication
factors(β):

s(β) =
1

β − β0

(18)

4.2 Evaluation

We use the simple scene with the white wall again
for evaluating the illumination model. If the camera
points perpendicular to the wall the resulting pixel
values should be of equal value. For this scene the
standard deviation is a measurement of the effec-
tiveness of the illumination model. Ideally it should
be zero.
Table 2 compares the standard deviation of the
scene without and with the illumination model. It
could be decreased by 39%. A resulting grayscale
image for a complex scene is shown in Figure 12b.

The fact that the camera has its own light source
appears to be a disadvantage at the beginning for

z (mm)

x 
(m

m
)

1000 2000
-700

700

Camera

z (mm)

x 
(m

m
)

1000 2000
-700

700

Camera

Figure 16: Distribution of horizontal radiation val-
ues (red: high, blue: low)

Table 2: Standard deviation of the measurements on
a homogeneous white wall

Standard deviation of the
normalized intensity values 0.2132
Standard deviation of the
normed radiance values 0.1293

Reduction of the standard
deviation by 39%

grayscale values. But after applying the illumina-
tion model it turns out to be a great advantage for
retrieving the original texture data. Since the light
source is located close to the camera no shadowing
effects appear in the picture.

5 Conclusion

In this paper two algorithms have been proposed to
improve the data quality of 3D video range cam-
eras. The first algorithm used a method of multiple
integration to overcome the low accuracy range of
the camera. The second algorithm considered an il-
lumination model to create grayscale images with
homogenous illumination. The evaluation of the al-
gorithms proved that they enhance the quality of the
data. Future work on improvement will focus on the
calibration of the camera system and distance data.
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Abstract

We introduce a novel numerical method for a re-
cently developed perspective Shape-from-Shading
model. In order to discretise the corresponding par-
tial differential equation (PDE), Prados et al. em-
ployed the dynamical programming principle yield-
ing a Hamilton-Jacobi-Bellman equation. We re-
duce that model to its essential, namely to the un-
derlying Hamilton-Jacobi equation. For this PDE,
we propose an efficient semi-implicit implementa-
tion. Numerical experiments show the usefulness
of our approach: Besides reasonable computational
times, the method is robust with respect to noise as
well as to the choice of the numerical initial condi-
tion which is a delicate point for many SFS algo-
rithms.

1 Introduction

The Shape-from-Shading (SFS) problem amounts
to compute the 3-D shape of a surface from the
brightness of exactly one given grey value image
of that surface. It is a classical problem in com-
puter vision, see e.g. [5, 6, 9, 21] and the references
therein for an overview.

The modeling of the SFS problem via the use of
a PDE was introduced by Horn [7, 8, 9], who also
coined the name ‘shape-from-shading’. The model
of Horn is the basis of all later works in that field.
As it is of importance in the context of our work, let
us mention some relevant features of the model of
Horn. On the modeling side, a distinguished ingre-
dient is the use of an orthographic camera, i.e., the
camera performs an orthographic projection of the
scene of interest. Together with a point light source
at infinity, the PDE

|∇u| −
r

1

I2
− 1 = 0 (1)

can be derived [1], where
• u ≡ u(x) is the sought depth map,
• |.| denotes the Euclidean vector norm,
• I ≡ I(x) = E(x)

σ
is a normalised version of

the image brightness, σ depends on the albedo
of the surface and the intensity of the light
source,

• E ≡ E(x) is the brightness of the given grey-
value image.

The Eikonal equation (1) constitutes the SFS-model
widely studied in the literature. It is well-known
that the corresponding problem is ill-posed, often
shown via the so-called convex-concave ambiguity,
see e.g. [4, 9] for related discussions.

In [2, 12, 13, 14, 15, 17, 18, 19, 20] a new PDE
model for SFS is proposed. The setting of this new
model is given by using a pinhole camera and a
point light source at the optical center, thus incor-
porating a perspective projection instead of an or-
thographic one as in the classical case into the mod-
eling process.

This perspective approach yields the Hamilton-
Jacobi equation

If
2

u

s

f2 |∇u|2 + (∇u · x)2

Q2
+ u2 =

1

u2
, (2)

where x ∈ R
2 is in the image domain Ω as before,

and
• f is the focal length relating the optical center

of the camera and its retinal plane,

• Q ≡ Q(x) :=
f

q

|x|2 + f2

.

In order to obtain a viable numerical solver, Pra-
dos et al. use the dynamic programming principle.
The resulting numerical solver incorporates the so-
lution of an optimal control problem which can be
quite intricate; for some details see [12]. In con-
trast, Tankus et al. rely on the level set method; see
especially [20].
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In a recent paper, Cristiani et al. [4] employed a
semi-Lagrangian formulation of the above model to
construct a fast SFS solver, however, as also shown
in their paper, in contrast to our procedure their
method is very sensitive to the choice of initial data.

Our contribution. We consider directly the PDE
given in (2), and we show that it is possible to con-
struct a robust and efficent numerical solver without
the need to rely on dynamic programming, or to turn
to the level set method. Another objective of us is
that it is easy to code in comparison to other ap-
proaches in the field. As experiments show, the nu-
merical routine we develop is also to a high degree
insensitive to perturbations of initial data which can
be a delicate point for SFS algorithms.

Organisation of this paper. In Section 2, we
briefly review the modeling ingredients as well as
some fundamental properties of the resulting PDE
(2). In Section 3, we give a detailed description of
our numerical scheme, focusing on its construction
and the choice of the time step size. This discussion
is followed by numerical experiments in Section 4.
The paper is finished by concluding remarks.

2 Description of the model

In this paragraph, we briefly review the modeling
process of (2), thereby illuminating the roles of its
ingredients. For a more detailed description, see
e.g. [15]. Figure 1 is adopted from there.

Figure 1: Perspective projection with a point light
source located at the optical center.

Let Ω represent the rectangular image domain in
R

2. Consider then the surface S, representing the
object or scene of interest, parametrised by using

the function S : Ω̄ → R3 with

S(x) =
fu(x)

q

|x|2 + f2

(x,−f)T
. (3)

As the two columns of the Jacobian J [S(x)] are
tangent vectors to S at the point S(x), their cross-
product is a normal vector to S. Thus, a normal
vector n(x) at the point S(x) is given by

n(x) =

„

f∇u(x)− fu(x)

|x|2 + f2
x ,

∇u(x) · x +
fu(x)

|x|2 + f2
f

«T

. (4)

Assuming that the surface is Lambertian, the bright-
ness equation is

I(x) =
cos θ

r2
. (5)

Thereby, θ is the angle between the surface normal
vector and the (unit) light source direction L,

L (S(x)) =
1

q

|x|2 + f2

(−x, f)T
, (6)

and r is the distance of the corresponding surface
point to the light source. Employing the standard
formula for cos in (5),

cos θ = L (S(x)) · n(x)

|n(x)| , (7)

and evaluating the scalar product in (7), one obtains
the sought formula (2).

For convenience, we assume for our numerical
implementation, that the surface S is visible, i.e.,
it is in the front of the optical center, so that u is
strictly positive. Then we use the change of vari-
ables v = ln(u), yielding the PDE

If
2

Q

q

f2 |∇v|2 + (∇v · x)2 + Q2 = e
−2v

. (8)

This equation is the basis of our numerical scheme.
Remarks. (i) As discussed in [12], the corre-

sponding model was already considered in non-
PDE-form in [10, 11]. (ii) The benefit of the above
formulation is that the model is well-posed; for de-
tails see [12]. (iii) With different parametrizations
of the surface S, one arrives at different, yet to (8)
equivalent PDEs.
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The PDE (8) needs to be supported by boundary
conditions, i.e., v(x) := ϕ(x) for x ∈ ∂Ω. In this
setting, one can prove uniqueness of viscosity sub-
and supersolutions, see especially [12].

We will be interested in computing a viscos-
ity supersolution: this approach avoids the con-
vex/concave ambiguity often encountered in SFS
models. The corresponding theoretical setting can
be described via ϕ ≡ +∞; see the discussion
in [12]. The consequence is, that the boundary
condition becomes virtually unimportant, and we
could implement it like Dirichlet boundary condi-
tions given by a ‘large’ constant. In practice, we use
Neumann boundary conditions in order to avoid the
problem to set the latter, which works well. How-
ever, let us stress, that this particular consequence
arises by an Eulerian formulation of the problem as
given by (8). It does not hold, e.g., in the case of
the recent semi-Lagrangian approach of Cristiani et
al. [4]. We test the use of both types of boundary
conditions in the section on numerical experiments.

3 Our numerical method

There are two main approaches in dealing with the
PDE of interest (8):

1. Treat it like a usual boundary value problem
and solve it directly.

2. Employ an additional ‘time’ variable and iter-
ate until a steady state is reached.

We will follow the second path: This guarantees
that we obtain an approximation of the viscosity su-
persolution. The logic is to choose an initial state
above the supersolution and converge to this closest
solution of (8) by iterating in ‘time’. Thus, the PDE
to discretise is

vt = (9)

− If
2

Q

q

f2 |∇xv|2 + (∇xv · x)2 + Q2

| {z }

=:A

+e
−2v

where v ≡ v(x, t) now, and where A is a useful
abbreviation for later use.

3.1 Scheme construction

We employ the standard notation vn
i,j :=

v (ih1, jh2, nτ), where h1 and h2 are the mesh
widths and i and j the coordinates of the pixel (i, j)
in x1- and x2-direction, respectively, and where τ

is a time step size yet to be determined. The dis-
cretisation of vt(x, t) we use is given by the Euler
forward formula

vt(x, t)|(x,t)=(ih1,jh2,nτ) ≈
vn+1

i,j − vn
i,j

τ
. (10)

A stable discretisation of the spatial derivatives in
∇xv is given by the upwinding concept: As it is
well-known for the kind of PDEs like (9), the use of
central differences leads to artificial oscillations re-
sulting in a blow-up of the numerical solution [16].

The upwinding concept boils down to use one-
sided finite differences in the appropriate direction.
These are determined by following the characteris-
tics of the solution, thus realising wave-propagation
in the physically correct direction. Following the
derivation of Rouy and Tourin [16], one obtains

vx1
(x, t)|(x,t)=(ih1,jh2,t) (11)

≈ max

„

0,
vi+1,j − vi,j

h1
,

vi−1,j − vi,j

h1

«

,

vx2
(x, t)|(x,t)=(ih1,jh2,t) (12)

≈ max

„

0,
vi,j+1 − vi,j

h2
,

vi,j−1 − vi,j

h2

«

.

Note, that in (11)-(12), we have not specified the
time level yet.

The reason for the latter is due to computational
efficiency we would like to achieve. For this, we
employ a Gauß-Seidel-type idea which works as
follows. Let us introduce a linear numeration of
pixels, i.e., we store the unknowns in a vector whose
length is the total number of pixels. We then set the
computational nodes in such a way, that we proceed
according to the ordering in Figure 2.

1 2 3 . . .

nx + 1 nx + 2 nx + 3 . . .

2nx + 1 2nx + 2 2nx + 3 . . .

3nx + 1 3nx + 2 3nx + 3 . . .

. . . . . . . . . . . .

Figure 2: Pixel ordering for the Gauß-Seidel-type
method.

Having a close look at formulae (11)-(12), we no-
tice that the stencil of the method incorporates the
data

vi,j+1

vi−1,j vi,j vi+1,j

vi,j−1

. (13)
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This means, at a pixel (i, j) and iterating through
the pixel list as in Figure 2, we have already com-
puted vn+1

i,j+1 and vn+1
i−1,j . Thus, for the computation

of vn+1
i,j , we can use these already updated values to

achieve an accelerated convergence of our scheme.
To summarise, approximating spatial derivatives

at time t = nτ , the time levels within formulae
(11)-(12) are set by us as

max

 

0,
vn

i+1,j − vn
i,j

h1
,

vn+1
i−1,j − vn

i,j

h1

!

,

max

 

0,
vn+1

i,j+1 − vn
i,j

h2
,

vn
i,j−1 − vn

i,j

h2

!

,

(14)
respectively. For clarity, let us stress once more,
that the values from time level (n + 1)τ in (14) are
already fixed for the computation of vn+1

i,j .
Turning to the discretisation of I(x), Q(x) and

x in (9), we see that this issue amounts pixelwise to
simple explicit term evaluations, so that there is no
problem to deal with these terms.

We now turn, finally, to the source term e−2v

in (9). Source terms like this typically result in a
very small time step size when evaluated explicitly,
i.e., if at time level t = nτ we approximate it via
exp

`
vn

i,j

´
. Especially, this results in iterates chang-

ing very slowly, leading to excessive computational
times in reaching steady state solutions. Thus, we
consider an implicit discretisation of it, writing

e
−2v(x,t)|(x,t)=(i,j,nτ) ≈ e

−2v
n+1

i,j . (15)

This component of our algorithm makes it neces-
sary to employ in each point an iterative solver of
the arising nonlinear equation: denoting by Â the
discretised version of term A from (9), we obtain
by the Euler forward formula (10) pixelwise the up-
date formula

v
n+1
i,j = v

n
i,j − τÂ + τe

−2v
n+1

i,j (16)

which has to be solved for vn+1
i,j . We do this by

employing the classical Newton-method, letting it
iterate until convergence (which requires in practice
three or four iterations). In this context, let us stress
explicitly, that by (16) it does not become necessary
to solve a nonlinear system of equations: the task
amounts to solve pixelwise a quite harmless one-
dimensional nonlinear equation, done efficently by
the one-dimensional Newton-method.

To summarise, we propose a relatively simple-to-
implement, semi-implicit method, where the source
term is evaluated implicitly, and where already
computed values are taken into account wherever
possible accelerating convergence.

3.2 Choosing the time step size

We now discuss the most critical number that needs
to be specified, i.e., the time step size τ . It is well-
known, that implicitly discretised terms do not in-
corporate a restriction on the time step size. In fact,
for a completely implicit scheme, where all data in
(14) and (15) were from time level (n + 1)τ there
would theoretically not be a restriction on the al-
lowed time step size at all. However, a completely
implicit formulation results in a quite complicated
nonlinear system of equations to solve numerically,
which is contrary to the philosophy followed here
to propose an efficient easy-to-code scheme. In our
method, we discretise only the source term implic-
itly. Thus, the term in (15) does not impose a stabil-
ity restriction, whereas the contribution due to Â in
(16) should imply a stability bound.

In practice, estimates for an upper bound on the
time step size are often too restrictive for direct
use if the underlying problem involves many non-
linearities. An automatic choice based on such an
upper bound may thus result in unnecessarily long
computational times. Nevertheless, it yields a good
starting point for a user’s choice. We now proceed
in the line of these considerations, computing a rea-
sonable candidate for an initial choice of the time
step size. As indicated, we neglect for this the im-
plicitly discretised source term.

A meaningful stability criterion for numerical
methods for PDEs of the considered type is a dis-
crete maximum-minimum-principle, i.e., ideally, the
numerical solution of each time step shall not pro-
duce oscillations by over- or undershooting neigh-
bouring data. This discrete stability criterion is
closely related to the notion of viscosity solutions
discussed in paragraph 2, as such viscosity solutions
enforce the corresponding property on the level of
the PDE-formulation [3].

Let us stress here, that it makes sense to establish
a discrete minimum-maximum-principle neglecting
in the corresponding computations the source term:
This has the character of establishing a necessary
condition for stability.
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Let us have a close look at the terms of impor-
tance in the corresponding ‘reduced form’ of (16):

v
n+1
i,j = v

n
i,j − τÂ . (17)

Then the task arises to estimate
˛
˛
˛τÂ

˛
˛
˛

!

≤ max

 ˛
˛vn

i+1,j − vn
i,j

˛
˛

h1
,

˛
˛vn+1

i−1,j − vn
i,j

˛
˛

h1
,

˛
˛vn+1

i,j+1 − vn
i,j

˛
˛

h2
,

˛
˛vn

i,j−1 − vn
i,j

˛
˛

h2

!

. (18)

Let us note that, in (18), the values vn+1
i−1,j , vn+1

i,j+1

are already fixed so that it makes sense to incorpo-
rate these data from time level (n + 1)τ into the
computation.

For clarity, let us point out explicitly, that a dis-
crete maximum-minimum-principle holds if (18) is
satisfied: the right hand side amounts to the maxi-
mal absolute difference between vn

i,j and the other
given data within the computational stencil. Thus,
if (18) is met, the largest possible change due to an
update yields the maximum or minimum of this set,
respectively.

For abbreviation, let us now denote the quantity
on the right hand side of (18) by δv. Employing the
notation ∇v̂ for the discretisation of ∇v introduced
in (11)-(12) and (14), we can compute the following
estimates:

|∇v̂|2 ≤
“√

2δv2
”2

= 2δv
2
, (19)

(∇v̂ · x)2 ≤ (2x̂δv)2 = 4x̂2
δv

2
, (20)

where in (20) we have used

x̂ := max
i,j

(|i|h1, |j|h2) . (21)

Note, that x̂ is a finite number but it can be quite
large.

Plugging (19)-(20) into Â yields

Â ≤ If
2

Q

p

f22δv2 + 4δv2x̂2 + Q2

≤ If

p

f2 + x̂2
p

2f2δv2 + 4x̂2δv2 + Q2 .

(22)

Up to (22), all steps involve rigorous estimates. As
we only seek an estimate for choosing τ here, we
may now employ the following simplification. As

Q is a number in (0, 1) generally small in compari-
son with the other arising terms – which also com-
prise a ‘pessimistic’ estimation – we may neglect
Q2, arriving at

max Â ≈ δvIf

p

f2 + x̂2
p

2f2 + 4x̂2 . (23)

From (18) and (23), as
˛
˛
˛τÂ

˛
˛
˛ ≤ δv shall hold, we

obtain after a few trivial manipulations the inequal-
ity

τ <
1

2If (f2 + x̂2)
. (24)

In SFS computations, the number on the right hand
side of (24) is often very small, in a typical setting
of our experiments around 10−5 to 10−7. As in-
dicated, this number can be relaxed by some factor
as the estimation is pessimistic. Let us also note,
while the discrete maximum-minimum-principle is
enforced, on the other hand the theoretical maxi-
mum of local updates is allowed. This means, the
absolute size of the number does not matter as much
as it seems.

4 Numerical Experiments

In this paragraph, we show several numerical ex-
periments on synthetic images in order to assess the
performance of our algorithm.

The pyramid experiment. This experiment is
very useful for investigating and visualising the in-
fluence of initial and boundary conditions. The task
is to reconstruct the pyramid-shaped surface shown
in Figure 3. Figure 4 shows a photograph of this
surface with σ = 1000, f = 251.6, h1 = h2 = 1,
256× 256 pixels, where σ denotes the factor deter-
mined by light source intensity and surface albedo,
and h1, h2 are as before the pixel widths in x1- and
x2-direction, respectively. The rendering was done
by ray-tracing the surface.

Note, as the surface consists of four triangles,
only these triangles can be hit in the ray-tracing pro-
cess. Consequently, the surface normal at the top of
the pyramid does not point towards the camera, re-
sulting in a maximum grey value of 228 instead of
255. Hence, we cannot expect the sharp top of the
pyramid to be reconstructed perfectly.

As noted in the introduction, at the image bound-
ary we employ Neumann boundary conditions. The
algorithm was initialised with the constant v ≡
log 0.2, which is larger than the actual solution.
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Figure 3: A pyramid shaped surface.

Let us point out here explicitly, that a constant v

is equivalent to a spherical surface in the untrans-
formed variable u. Figure 5 shows the surface cor-
responding to this constant initialisation.

Figure 6 shows a reconstruction of the surface us-
ing our method. As expected, the top of the pyra-
mid is flat instead of sharp. Due to the boundary
conditions, the reconstruction at the image bound-
ary is a bit too round compared to the ground truth.
However, overall the reconstruction of the pyramid
is good, even the edges of the pyramid are recon-
structed well.

As indicated before, our method does not rely on
a specific initialisation. In the previous experiment,
we initialised the algorithm with a constant v larger
than the actual solution. We can choose any such
constant, the reconstruction is always the same.

In fact, the method does not even need con-
stant initialisation. Figure 7 shows an alternative
initialisation for u with random data in the range
(0.18, 0.22). The result of the reconstruction is the
same as shown in Figure 6.

Note that the speed of the reconstruction depends

Figure 4: Input image for the pyramid surface.

Figure 5: Surface with constant v.

on how far the initialisation is away from the actual
solution and on the time step size. For ensuring sta-
bility, we need to use rather small time step sizes,
see Section 3.2, so we should try to find an initial-
isation larger than, but as close as possible to the
solution. In [12], it is shown that

v(x) = −0.5 log If
2 (25)

fulfils this. This initial image, however, is only de-
fined if I is strictly positive everywhere, i.e., if there
are no black pixels in the input image. With this
initialisation, a good reconstruction of the pyramid
image can be obtained in about one minute (C-code,
Pentium 4, 3.2 GHz). Figure 8 shows the surface
corresponding to this initialisation for the pyramid
input image.

The discussed experiments were all done without
any knowledge of the actual surface used within the
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Figure 6: Reconstruction of the pyramid with Neu-
mann boundary conditions.

Figure 7: Surface with random v.

algorithm. If we use exact Dirichlet boundary con-
ditions, i.e., if we set the values at the image bound-
ary to those of the ground truth, we obtain a nearly
perfect reconstruction, which is shown in Figure 9.

Prados et al. [12] suggest to use state constraints
boundary conditions, i.e., Dirichlet boundary con-
ditions with a very large constant at the boundary.
Since this means that very large gradients are gen-
erated at the boundary, it can easily be seen by tak-
ing into account (14), that state constraints bound-
ary conditions are practically the same as Neumann
boundary conditions (this is also true for the algo-
rithm of Prados et al.).

We implemented the algorithm from [12]. Figure
10 shows a reconstruction obtained by using this al-
gorithm. The result seems to be about as good as
the one computed by our method.

Figure 8: Initialisation with v = −0.5 log If 2 for
the pyramid image.

Figure 9: Reconstruction of the pyramid with exact
Dirichlet boundary conditions.

Our algorithm is also robust with respect to noisy
input data. In order to verify this claim, we have
added Gaussian noise with standard deviation 10 to
the input image. Figure 11 shows the correspond-
ing reconstruction using our method. The result is
nearly as good as without noise. The same holds
true for the scheme of Prados et al.. Using the latter
method, it is, however, necessary to reduce the time
step size a bit to ensure stability of the method. The
estimate given in [12] works very well for ”contin-
uous” input data, but for ”discontinous” input data
this estimate tends to be a bit too large, especially
near very dark pixels, which may affect the stability
of the scheme. Our method is perfectly stable using
the estimate from equation (24).

Quantitative comparison with the scheme of Pra-
dos et al.. We compare our results to those of the
algorithm of Prados et al. [12]. We compare both
reconstruction quality and run time. For a quanti-
tative comparison of both algorithms, we compare
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Figure 10: Reconstruction of the pyramid with the
algorithm of Prados et al.

Figure 11: Reconstruction of the pyramid with
Gaussian noise added.

the average L1-error

1

nxny

nxX

i=1

nyX

j=1

|u(i, j)− û(i, j)| , (26)

where nx×ny is the image size, u the reconstructed
depth and û the ground truth.

Table 1: L1 errors of u for the pyramid experiment.

Noise Our method Prados et al.
Without 0.0069 0.0070

Gaussian, σ = 5 0.0071 0.0072
Gaussian, σ = 10 0.0076 0.0074

Table 1 shows the errors of both algorithms for
the pyramid image with and without noise. Both
algorithms are quite robust under noise, the results
only get slightly worse. The quality of the result is
about equal. As a stopping criterion we employed

here a maximum change of a pixel value (in v) of
less than 10−6, which is fairly low, good results
may as well be achieved with a larger value in less
computation time.

Table 2: Run times for the pyramid experiment.

Method Time
Prados et al. 322s

Our method, global τ 102s
Our method, local τ 41s

In Table 2, we compare the run times of both
algorithms for the pyramid input image. Using a
constant time step size according to the estimate in
equation (24), we achieve a significantly better per-
formance than Prados et al.. However, note that our
implementation of the scheme in [12] is not optimal
in the sense that it makes use of several (expensive)
functions like atan, sin, cos, log, and exp in every
iteration (while our algorithm only uses exp in the
Newton step). One might speed it up, e.g. by using
lookup tables for those functions. Still, our algo-
rithm will be faster, and can be accellerated even
more by evaluating the estimate from equation 24
in every pixel instead of using a constant time step
size globally. For the pyramid image, we notice a
speedup of roughly a factor 2.5 this way. Prados et
al. make also use of a local choice of the time step
size. All the run times in Table 2 are measured using
a C-implementation of both methods on a Pentium
4, 3.2 GHz, 2 GB RAM running Linux, and both al-
gorithms have been initialised like in equation (25).

Summary of the pyramid experiment. We have
shown that our method works independently of the
particular choice of initial and boundary values. In
the simple setting of the pyramid experiment, the
scheme yields good results. The new algorithm has
proven robust to Gaussian noise added to the input
image. Compared to the method of Prados et al.,
we observe a significant speedup with a comparable
reconstruction quality.

The Mozart experiment. The Mozart experi-
ment is a well-known benchmark in the SFS area.
The ground truth is depicted in Figure 12.

As input image, we use the input image used in
[12, 15], which is shown in Figure 13. Parameters
for the reconstruction are f = 250, h1 = h2 = 1,
256× 256 pixels. Unfortunately, [12] does not give
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the value for σ, we just assume σ = 4 · 104, which
should be in a realistic range.

As a particular difficulty, the input data involve
a slight ‘break of the rules’, as it does not satisfy
the underlying modeling assumption that the face is
completely visible, which is obvious by the shad-
ows on its left and right hand side. These shadows
are indeed black pixels in the image, hence I(x)
vanishes at these pixels. However, I = 0 also
means our method will not move towards the so-
lution, but remain at the initialisation values. To
overcome this, we change all pixels in the input im-
age with grey value smaller than 5 to a grey value
equal to 5, this way, those pixels will also have the
ability to move away from the initialisation. Nev-
ertheless, the reconstruction of the Mozart image at
these pixels is very difficult.

Figure 14 shows a reconstruction of the Mozart
image using our method (with constant initialisa-
tion) and Neumann boundary conditions. The face
and the shoulders of Mozart are reconstructed very
well. The reconstruction is somewhat flat, but this
is the case for nearly every reconstruction of the
Mozart face. The (too high) reconstruction of the
background makes the reconstruction appear even
more flat.

Figure 12: Ground truth for the Mozart image.

At the boundary of the face, the reconstruction
proves to be very difficult, as we expected: Some
(dark) pixels are far off the ground truth. The back-
ground is not recovered very well, this is caused by
the boundary conditions (a sphere-like shape is as-

Figure 13: Mozart input image.

sumed at the image boundary) and by the difficulties
with the reconstruction of the face boundary.

The reconstruction using the method of Prados et
al. is again comparable to the one using our scheme,
so we do not give an additional corresponding figure
here. Since there are dark pixels in the input image,
we need to use a smaller time step size once again
to ensure convergence of the method of Prados et
al..

Concluding the Mozart experiment. Comparing
our result with those in [12] which can be consid-
ered as the state-of-the-art, the reconstruction qual-
ity of the face is similar. At the face boundary our
method performs a bit better while we have a much
smaller amount of outliers, yet the reconstruction
of the background is comparable. Altogether, our
method seems to do very well here, considering we
had to guess σ.

5 Concluding remarks

To conclude, we have shown that the constructed
numerical methods satisfies the intended goals:
• robustness of the scheme with respect to the

choice of initial data,
• moreover, robustness with respect to the im-

plementation of boundary conditions,
• robustness with respect to noisy data,
• numerical results are of the accuracy of state-

of-the-art methods in the field, yet the numeri-
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Figure 14: Reconstruction of the Mozart surface.

cal solver is much simpler,
• the implementation of the numerical scheme is

of modest programming effort,
• computational times are reasonable.

Taking these aspects altogether, we have devised a
highly competitive method in the field, as well as a
good basis for further developments.

The work of us in the near future will be in two
areas: (i) Further improvement and analysis of the
numerical scheme, especially with respect to the
choice of the time stepping method, and (ii) the in-
vestigation of real-world applications of the model
in conjunction with the numerical scheme.
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Abstract

The core of most registration algorithms aligns scan
data by pairs, minimizing their relative distance.
This local optimization must generally pass through
a validation procedure to ensure the global coher-
ence of the resulting alignments. This work intro-
duces an iterative framework to guarantee the global
coherence of the registration process. The iteration
alternates registration and reconstruction steps, in-
cluding alignments with the proper reconstructed
surface, until the alignment of all the scans con-
verges. The framework adapts to different contexts
by choosing which scans are aligned and which are
used for the reconstruction. This choice is based
on the alignment and reconstruction errors. Deriva-
tions of this framework are presented with a rough
automatic registration, increasing its robustness.

1 Introduction

Three-dimensional scanning builds virtual models
from several views of the same real object. Each
view or scan generates a range image, i.e. a set of
points in 3D with its own coordinate system. The
registration process defines an optimal common co-
ordinate system for all the scans, which is a nec-
essary pre-processing of shape reconstruction algo-
rithms. This optimal alignment is usually deter-
mined by minimizing over all the rigid transforma-
tions a distance between the overlapping parts of the
scans. The basic optimization algorithm is the Iter-
ative Closest Point (ICP) [1, 2], which aligns each
pair of scans separately. Since the scans are views
of a unique rigid object, a global optimal alignment
must exist. However, the scanning process is prone
to noise [15], and the local minima must then be
checked for global consistency.

In this work, we propose to use and schedule in-
termediate reconstructed models to improve the reg-

Figure 1: Correcting alignment with the reconstruc-
tion: The rough, pair-wise positioning accumulates
errors (top left), which leads to false features at scan
boundaries in the reconstruction (top right). Re-
aligning with this reconstruction ensures the global
coherence (bottom left), significantly improving the
final reconstruction (bottom right).

istration process, extending the early work of Jinet
al. [24]. This reconstruction step provides a feed-
back on the current alignment quality and on how
to correct it for the final reconstruction: We align a
selected subset of the scans with the reconstruction,
generating a new alignment that is used for a subse-
quent reconstruction. The reconstruction generates
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(a) A pair of scans. (b) Spin-Images of correspond-
ing points on the two scans.

(c) Fine alignment with ICP. (d) Reconstructed model.

Figure 2: The basic elements of a reconstruction pipeline: from the several scan data in their own coordinate
systems (a), a local geometry descriptor is used to derive a rough position (b). This alignment is refined by
distance minimization (c). The registered scans are finally merged into a single surface (d). The color in (c)
codes the maximal distance between two scans in the view direction.

an updated model to align with, repeating the pro-
cess until this virtuous loop converges (Figure 1).
The alternation of alignment and reconstruction on
different selection of scans adapts the general reg-
istration process to different contexts, such as dy-
namic or multi-resolution registration. In particu-
lar, it can improve the registration precision (ba-
sic framework), achieve delicate registration (over-
lapping maximization), improve the registration ro-
bustness (divergence correction), decrease the to-
tal execution time (multi-resolution) or further in-
tegrate the whole scanning/reconstruction process
(dynamic registration).

Related works. Usual automatic registration in-
volves two steps: initial positioning and refinements
of this alignment with global coherence validation.

The registration process searches for rigid trans-
formations, which are low-dimensional solutions (6
dimensions per scan), from high dimensional data
(3 dimensions per scan point). Using global opti-
mization [17, 21] or statistical analysis [19, 18], one
can directly align all the scans simultaneously. The
problem can also be considered partially by aligning
the scans pair-wise. To avoid working with all the
points of a scan at once, several techniques use local
descriptors that are invariant under rigid motions.
In this work, we use spin images [11] as a shape
descriptor, similarly to previous works [22, 4]. Ro-
bust descriptors can also be combined with the point
selection [5]. Further references on this initial posi-
tioning can be found in [3].

This positioning is generally refined by local
minimization algorithms, such as the classical Iter-
ated Closest Point (ICP) algorithm [1, 2]. This al-
gorithm has been improved in speed [23], accuracy

and robustness [12, 9, 6]. Further references on the
ICP variations can be found in [14].

In order to avoid local minima of the ICP, the
current alignment is checked for consistency. This
consistency usually comes either from a global op-
timization [21] or from a dependency graph of the
pair-wise alignments [17, 25, 22]. In this work, we
propose to use and schedule reconstructions steps
in the registration pipeline to guarantee this global
consistency.

The introduction of reconstruction in the registra-
tion process was first described in [24], which used
the pioneering reconstruction method of [8]. They
reconstruct the surface from all the aligned scans
during the registration, and align all the scans with
the reconstructed surface. Further constraints can
be added by aligning the scans with a pre-defined
model [10]. We propose here a generalization of
these ideas by scheduling which scan is aligned or
reconstructed at each step. Among the many surface
reconstruction methods, we test our framework with
two of them: the Multiple Partition of Unity implic-
its of [20], and the Poisson inversion of [13].

Contributions. This work introduces a general
framework for the use of reconstruction inside the
registration pipeline. This reconstruction provides
a global feedback on the quality of the alignment.
Since the reconstructed surface is generally a mesh
which approximates the scan, the original scans can
be aligned with it using robust algorithms such as
ICP derivatives. This leads to a globally coherent
registration without global optimization or consis-
tency graph. Moreover, the final registration is au-
tomatically optimized for the reconstruction, avoid-
ing false feature at misaligned regions [15].
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Figure 3: Improvement of the global alignment us-
ing the reconstructed surface: misaligned scan data
(left) is realigned with the reconstruction to improve
the final alignment (right).

We incorporate this reconstruction step to a
framework built on three basic steps: 1) initial po-
sitioning, 2) local refinement of an alignment and
3) reconstruction (Section 2). By scheduling these
steps and choosing on which scans they are ap-
plied, we open this registration framework to dif-
ferent contexts such as dynamic or multi-resolution
registration (Section 3). We implement this frame-
work with simple algorithms for each step (Sec-
tion 4), significantly improving the global robust-
ness of the registration (Section 5).

2 Framework Elementary Steps

In this section, we recall basic examples of scan
descriptors for the initial positioning, alignment
refinement and surface reconstruction (Figure 2).
These elements are representative of the three el-
ementary steps of our registration framework.

Spin Image Descriptor. Spin-Images [11] de-
scribe the surface shape in a short range around a
reference point (Figure 2(b)). Given a reference
point on the surface, the near-by surface points are
projected on its tangent plane, and encoded in a bi-
dimensional radial coordinate system that is invari-
ant to rigid transformations. The spin image at the
given point is the gray-scale image representing the
density of points in this coordinate system. From
the invariance of the system, corresponding points
in different meshes generate similar spin-images
even with clutter and occlusions.

Iterative Closest Point. The Iterative Closest
Point (ICP) algorithm [1, 2] iteratively refines an
initial alignment of two meshes (Figure 2(c)). It
converges to a local minimum that can be the ex-
pected rigid transformation, depending on the ini-
tial condition. According to [14], the original algo-
rithm and its many variations are composed of six
stages: scan points’ selection, matching, correspon-
dences generation and filtering, error metric defini-
tion and minimization over the rigid transformation.
The rigid transformation that minimizes the error is
then applied to the scan points and the process is re-
peated until the rigid transformation is close enough
to the identity.

Surface Reconstruction. Surface reconstruction
consists in defining a continuous surface represen-
tation from a set of isolated points in space [8] (Fig-
ure 2(d)). Registration techniques are often used
as a pre-processing step for reconstruction [16]. In
this work, surface reconstruction serves as a global
check for the registration. We illustrate this con-
cept with one global-from-local and one global re-
construction algorithms: the Multiple Partition of
Unity (MPU) [20] and the Poisson surface recon-
struction [13]. The first one fits a tri-variate polyno-
mial on the scan points contained in each leaf of an
adapted octree, and blends these implicit represen-
tations by means of radial functions centered at the
near-by leaves. The second one builds the charac-
teristic function of the volume inside the surface. To
do so, it solves a global linear system whose equa-
tions match the pseudo-derivatives of this charac-
teristic function to the normal at each scan point,
generating one linear equation for each derivative
kernel at the center of an adapted octree.

Error Measures. In order to schedule in our
framework which scans are aligned and which are
reconstructed, some error measures are derived
from each step of the pipeline. The initial position-
ing error is measured by the geometric consistency
of spin image correspondences, i.e. the difference
of the distances between the correspondences on
each scan. The ICP error, i.e. average of distances
between correspondences measures, is used to esti-
mate the alignments accuracy. The reconstruction
error is estimated directly from the reconstruction
algorithm: the fitting error in each leaf for the MPU
case, or the linear solver error in the Poisson case.
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Figure 4: Derivation of our framework for overlapping maximization ona complex model, whose upper
and lower parts are acquired in two separate sessions. Registering the models reconstructed separately from
the upper and lower parts increases the overlapping parts, improving thestability of the alignment.

3 Registration with Reconstruction
Framework

The usual registration pipeline starts with a rough
positioning of the scans, which are then aligned by
minimizing a distance between them. The aligned
scan is then piped into a reconstruction algorithm to
produce the final surface. We propose here a gen-
eral framework to improve the alignment using the
reconstructed surface, introducing a feedback in the
registration process (Figure 3). This reconstructed
surface serves a triple purpose. First, it allows mea-
suring the quality of the registration of each single
scan by computing its distance to the reconstructed
surface. Second, aligning a scan with the recon-
struction improves the registration and optimizes it
for reconstruction. Third, this re-alignment guaran-
tees a global coherence of the registration without
global optimization, avoiding fake features due to
misalignment.

Basic framework. Our framework is built on top
of three basic steps:

1. Rough positioning of two distant meshes.
2. Fine alignment of two almost aligned meshes.
3. Reconstruction from several aligned meshes.

The reconstruction step serves to check and im-
prove the alignments in different manners, depend-
ing when and how it is scheduled within the frame-
work. For example, the iterative refinement of [24]
consists in alternating the two last steps with all the
scans at once, aligning them with the last recon-
structed mesh.

Note that in steps 1 and 2, one of the meshes to
be aligned can be the (partially) reconstructed sur-
face itself. This is the key to transform the local
problem into a global one. Furthermore, depending
on the scheduling, i.e., which meshes are aligned
and reconstructed at each stage, this framework
adapts registration to different usages. We com-
ment hereafter derivations of our framework in four
different registration contexts: overlapping maxi-
mization, dynamic registration, divergence correc-
tion and multi-resolution.

Overlapping maximization. Complex objects
are generally scanned in several sessions, typically
obtained by rotating the objects in front of the scan-
ner (Figure 4). While the overlapping between two
consecutive scans of the same session is likely to be
high, the overlapping between the scans of two dif-
ferent sessions may be too small to find a stable op-
timal alignment. Moreover, the rotation angle used
inside a session provides a good relative initial po-
sitioning of the scans, while the alignment between
sessions is not givena priori. For example on Fig-
ure 4, the upper and lower parts of the object over-
lap on a very small horizontal band. However, the
overlapping of all the scans of one session with all
the scans of another session is necessarily more ex-
tended. By reconstructing the aligned scan of each
session and aligning only the reconstructed meshes,
we benefit from this bigger overlapping.

More generally, we can choose at each step to re-
construct with all or only part of the scans, and align
pairs of scans, mixed pairs of scan/reconstructed
mesh, or only reconstructed meshes. This choice
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Figure 5: Derivation of our framework for dynamic
registration. Partial reconstructions help the align-
ment, producing a complete reconstruction from
only 5 of the 7 scans. (Left) Reconstruction from
2 scans with the Poisson method already generates
the two rear legs. (Right) The 6th scan aligned with
the reconstruction from 5 scans.

may depend on the available processing time and
on the error of each pair-wise ICP, such as the one
described at Section 2.

Dynamic registration. When registering on-the-
fly during the scanning process, or when computing
the initial alignment incrementally, the scan added
last must be aligned with all the previous ones (Fig-
ure 5). This process can be costly and unstable,
in particular if this last scan overlaps with only a
few of the previous ones. Since the reconstructed
mesh should contain the details of each scan, align-
ing the new scan with it maximizes the overlapping
area, reducing the number of incorrect correspon-
dences. We can thus derive our framework to align
the scan added last with the reconstruction of the
previous one. The reconstruction can be performed
after each scan addition, or when the error between
the scans added last and the current reconstruction
is bigger than a threshold, which means the aligned
scans and the reconstruction are geometrically in-
consistent. To improve the stability, the initial scans
can be periodically re-aligned with the reconstruc-
tion.

Moreover, the registration of the previous scans
can be improved by regularly scheduled steps of
pair-wise alignments. This strategy is best used in
real-time data acquisition for 3D reconstruction.

Divergence correction. Our general framework
is an iterative process that converges depending on
the initial alignment. When starting from a bad po-
sitioning, the process may oscillate between wrong
alignments. This can be easily checked by track-
ing the transformations applied to a specific scan at

each stage and the final error after a fixed number of
ICP iterations (Figure 8). If these transformations
remain far from the identity or if the error does not
diminish, the scan can be re-aligned from scratch,
using the rough positioning with the mesh recon-
structed from all but this scan.

The convergence of our general framework can
be improved by alternating global and local align-
ments: aligning all the scans with the reconstructed
mesh (global) and aligning pairs of scans in se-
quence (local). Each alignment procedure returns
an error (cf Section 2), which can be used to correct
eventual divergent behaviors.

Multi-resolution. The resolution of the recon-
structed mesh can be adjusted, either directly in
the reconstruction algorithm tuning or explicitly
by mesh simplification and refinement operations.
Aligning a low-resolution reconstructed mesh with
decimated scans produces a quick and coarse reg-
istration. Increasing the resolutions then incre-
mentally improves the alignments. (Figure 6).
This coarse-to-fine registration fills the gap between
the rough positioning of distant meshes and the
ICP alignment, reducing considerably the execution
time. Moreover, this strategy improves the robust-
ness of the registration on very noisy objects, avoid-
ing local noise to be considered as features. This
way, we obtain good results with only2 or 3 differ-
ent resolutions. For example, using two resolutions
of 900 and 7000 points for each of the 6 scans, the
total execution time for registration of the low res-
olution, reconstruction of the high one and align-
ing with the reconstructed surface is 47 seconds,
while the conventional registration procedure lasts
256 seconds.

4 Implementation

The overall implementation of our framework is
simple provided the basic elements described in
Section 2, since meshes are the natural represen-
tation of both the original scans and the recon-
structed surfaces. We implement the basic steps
of the framework by using an automatic pair-wise
alignment method for the first step, point-to-point
ICP for the second step. For the third step, we use
the available implementations of the MPU and Pois-
son reconstructionsas is.
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Model # # Frame- Posit- Recons- ICP # Error
views points -work -ioning -truction iter.

×10
3 secs. secs. secs ×10

−4

bunny 12 13 corrective 14 MPU 1.6 8.1 9 2.0
head 5 16 basic 41 MPU 1.8 7.2 9 1.8
hand 6 21 mutlires 7.0 MPU 3.5 3.1 2 9.2
horse 7 22 dynamic 4.6 Poi 3.3 4.8 2 3.2
lady bot 8 54 overlap 322 Poi 125 0 0 2.0
lady top 12 174 overlap 660 Poi 1340 75 2 1.5
lady 2 228 overlap 72.5 Poi 2486 0 0 2.0
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Figure 7: Some experiments on real objects (head, lady) and virtual models (horse, bunny, hand). The
graph maps the maximal error from the number of iterations. The timings are averages per iteration, where
one iteration corresponds to an alignment and a reconstruction step in the different frameworks. The error
corresponds to the maximal ICP error of the last step.

The initial alignment of the first step can be ei-
ther manual, deduced from the calibrated scanner
position, or automatic. For this last case, we use
an automatic alignment strategy similar to [22, 9].
Using the terminology of [3], it consists in select-
ing feature points based on their curvature in each
scan, representing them by spin images and rank-
ing matching images by the difference of their pix-
els. Groups of matching are valid if the distance be-
tween them inside each scan is similar. Valid groups
can be discarded if they induce a too small overlap.
In our experiments, the bin size of the spin-images
took values between 2 and 4, and the spin-image
width between 10 and 15.

The ICP variant used can be described in the ter-
minology of [14] by: all points selection, match-
ing based on Euclidean closest point using kd-trees,
filtering sets of correspondences according to a dis-
tance threshold, squared error metric and minimiza-
tion using quaternions following [7]. Finally, to
emphasize the generality of our framework, we
use two different reconstruction techniques, respec-
tively [20, 13].

5 Experiments

We consider two sets of examples: artificially gen-
erated scans such as thehorse model (Figure 5),
where the correct alignment is the identity, and
scanned objects such as thehead and thelady (Fig-
ures 1, 2 and 4) to test the robustness to real scanner
noise. We forced extreme cases with wrong initial
alignments on an artificial scan of thebunny (Fig-
ure 8), or with flat overlapping area on the low res-
olution hand model (Figure 6).

Precision. In the different frameworks proposed,
we obtain a significant improvement compared to
a single alignment/reconstruction step involving all
the scans. Detailed results on the illustrations of
this work are reported on Figure 7. Observe that,
for small or decimated models, the several recon-
struction steps count only for a fraction of the to-
tal time, while it gets a higher proportion on big-
ger models. Even with initial alignment far from
the correct position (Figure 8) the registration con-
verges in a few iterations. Except for the extreme
case in Figure 5, results obtained using MPU and
Poisson reconstructions are similar.
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Figure 8: Derivation of our framework for divergence correction.This method improves the robustness of
the global registration, and minimizes the impact of bad initial alignments: Theerror induced by artificially
rotating one scan by 60 degrees is progressively corrected in 3 reconstruction/alignment iterations (left).
Without the divergence correction, the ICP fits the scan to another positiondue to its symmetry (right).

Limitations. The proposed framework is very ef-
ficient in term of precision and adaptation to diverse
contexts. However, since we did not optimize the
reconstruction and alignment steps for consecutive
calls, the overhead in execution time is still sig-
nificant on big models without the multiresolution
strategy. The resolution settings of the reconstruc-
tion have an impact on this execution time, and also
on the quality of the alignment, in particular since
we use point-to-point ICP. Except for the multires-
olution of Figure 6, we let the resolution of all the
reconstructions to their default parameters.

6 Conclusions

In this work, we propose a novel framework for reg-
istration, inserting and scheduling a reconstruction
step to improve the final alignment of the scans.
Variations of this scheduling adapt this framework
to different contexts. These reconstruction steps
provide a feedback to intermediate alignments and
guarantees the global coherence of the alignment.
They further optimize the alignment for the final re-
construction, avoiding fake features at the frontier
of misaligned scans. This framework extends the
work of Jinet al. [24], adapting global registration
to different contexts. Moreover, it gives a simple
way for registration to benefit from the recent ad-
vances in surface reconstruction.
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Abstract

This paper presents a method for reconstructing the
3D distribution of dust densities in reflection nebu-
lae based on a single input image using an analysis-
by-synthesis approach. In a reflection nebula, light
is typically emitted from a central star and then scat-
tered and partially absorbed by the nebula’s dust
particles. We model the light transport in this kind
of nebulae by considering absorption and single
scattering only. While the core problem of recon-
structing an arbitrary 3D volume of dust particles
from a 2D image would be ill-posed we demon-
strate how the special configuration of light trans-
port paths in reflection nebulae allows us to produce
non-exact but plausible 3D volumes. Our recon-
struction is driven by an iterative non-linear opti-
mization method, which renders an image in each
step with the current estimate of dust densities and
then updates the density values to minimize the er-
ror to the input image. The recovered volumetric
datasets can be used in astrophysical research as
well as planetarium visualizations.

1 Introduction

3D models and visualizations of astronomical ob-
jects are becoming more and more important nowa-
days. They are widely used as a tool to prove exist-
ing astrophysical theories and to determine various
properties of a given astronomical object [6, 15].
They are further used in todays modern planetari-
ums, in which the number of digital video projec-
tors available increased significantly. Realistic 3D
flybys of astronomical objects in planetarium shows
are becoming rather the rule than the exception.
However, most of these animations are created by
talented visual artists; in many cases the structure
and morphology of the original objects is widely
unknown, and therefore the created volume has lit-
tle in common with astrophysical certainties.

In this paper we address the problem of recon-

Figure 1: The NGC 2023 reflection nebula in Orion
which (from [4], courtesy Robert Gendler). The
cloud of dust is illuminated by the central star.

structing a plausible 3D volume of a reflection neb-
ula (see Figure 1) using only a single image as in-
put, which can be captured by any telescope. We
assume that all light reflected by the nebula orig-
inates from a single central star, and that the re-
flected intensity is due to single scattering and the
absorption along the path. Scattering and absorp-
tion is correlated to the dust volume density which
we aim to reconstruct. Besides the simplified light
transport model we do not pose any further restric-
tions on the nebula, most importantly we do not as-
sume any kind of symmetry as has been formulated
in previous reconstruction approaches from single
images [12, 10].

Of course, the reconstruction of 3D volumes
from 2D images is an under-determined problem.
We generate plausible reconstructions by making
use of two insights: the intensity of each observed
pixel is actually the combined effect of the volume
densities along all light paths from the central star
towards the viewer. Each voxel of the volume we
are reconstructing therefore has a non-local effect
on the final image. This implicitly regularizes the
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possible solution to some extent. A second result of
the specific light transport is that the estimated den-
sity for voxels close to the central star have a sig-
nificant impact on the appearance of a large num-
ber of pixels while the area of influence decreases
drastically with distance. We account for this ef-
fect by optimizing the volume densities in concen-
tric shells, starting with the innermost sphere.

The optimization is driven by an analysis-by-
synthesis approach. We make use of a hardware-
accelerated volume renderer to determine the ap-
pearance given the current estimate of the dust den-
sities. The error to the input image is then mini-
mized based on Powell’s algorithm [14]. While we
do not claim to correctly reconstruct the original
nebula’s 3D volume we at least reconstruct a plau-
sible dust distribution that matches the input image.
Compared to an initial naive traversal of the volume
during optimization, we obtain a better match to the
given image and a more plausible 3D volume by fol-
lowing an improved traversal during optimization.
Plausible reconstructions can be used for visualiza-
tion purposes or as starting point for further, more
complex physical simulations that incorporate addi-
tional measurements.

The structure of the remainder of the paper is as
follows: we present related work in the next sec-
tion. The physics of reflection nebulae and interstel-
lar dust are shortly described in Section 3 and the
used lighting model in Section 4. Section 5 presents
our reconstruction approach as well as several opti-
mization steps for this specific task. The results of
the described reconstruction method are presented
in Section 6 and we conclude the paper and present
future work in Section 7.

2 Related Work

Recently, there have been large efforts to produce
3D simulations of astronomical nebulae, particu-
larly the Orion nebula [13], where a highly detailed
model of the nebula was created, based on data
from astrophysical research papers. Time consum-
ing renderings on supercomputers were generated
for the final fly-through animation.

There are tomographic reconstruction algorithms
that consider scattering in the reconstructed vol-
umes [3] or even diffuse propagation [1]. How-
ever, they always build on observations from dif-
ferent projection directions. In our case, due to the

large distance to the reflection nebulae only a single
projection direction is typically available.

A method for reconstructing the 3D structure
of another type of astronomical objects, planetary
nebulae, from a single image has been proposed
in [12]. The appearance of planetary nebulae is
mostly influenced by the self-emission of ionized
gas, slightly simplifying the reconstruction prob-
lem. Furthermore, the authors apply axial symme-
try as a constraint to reduce the complexity of the
reconstruction process from 3D to reconstructing a
2D density map, which is rotated around the axis
of symmetry to obtain a volumetric dataset. Build-
ing on the same idea of axial symmetry the work
has been extended to incorporate both emission as
well as scattering and absorption found in planetary
nebulae with non-negligible dust distributions [10].

In contrast to these methods, our approach is
not considering any symmetry in the nebulae to be
reconstructed. Instead, we make use of the im-
plicit coupling of volume densities induced by the
light transport in reflection nebulae and present an
optimization strategy that produces unconstrained,
plausible 3D volumes.

For physically-based, realistic volume rendering
of synthetic reflection nebula datasets a hardware-
accelerated approach has been presented in [11].
The authors of this paper give special attention to
the physical correctness of their rendering model.
Lacking the availability of real-world 3D volume
data sets, the examples presented in the paper are
synthetic nebulae which however strongly resemble
the possible appearance of real reflection nebulae.
We apply and adapt this rendering approach in Sec-
tion 5.1 to our optimization procedure.

The main contribution of this paper is that we re-
cover a physically plausible 3D volume of an as-
tronomical nebula from a single input image. The
obtained datasets can be used as starting approxi-
mations by astrophysicists working with 3D mod-
els of reflection nebulae as well as for educational
purposes in modern day planetarium shows.

3 Reflection Nebula Physics

Reflection nebulae are clouds of dust surrounding
one or more young, recently formed stars [2]. The
stars in these nebulae are not hot enough to ionize
the gas around them but their light is strong enough,
so that the reflected light can be observed (see Fig-
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ure 1). Their wonderful colors are due to the light
of the central star which is scattered and attenuated
by the dust surrounding it.

The blue colors seen in these nebulae are mostly
due to scattering. This is due to the fact that light
at blue wavelengths scatters much more than light
at the red end of the visible electromagnetic spec-
trum. The best example which demonstrates this is
the color of the sky; it is blue because it consists
of sunlight scattered by the particles in the atmo-
sphere. All reddish colors visible in reflection neb-
ulae account for absorption, the light from the cen-
tral star gets attenuated and reddened on its way to
an observer on earth.

3.1 Interstellar Dust

The physics behind reflection nebulae is actually the
physics of the interaction of light with interstellar
dust particles. We create a physically-based model
of light scattering in interstellar dust using a set of
scalar parameters. One is the albedo α, which in-
dicates how much light the particles reflect: 0 for
total absorption, i.e. black dust, and 1 for the case
where all incident light is scattered. In our calcula-
tions, we set α = 0.6 [5]. In addition, the presence
of dust also attenuates any light shining through the
dust region, which can be described by an extinction
parameter τ .

The scattering is further dependent on the angle
θ between the incident and the reflected light direc-
tion. It is described by the single particle scattering
probability modeled using the Henyey-Greenstein
phase function [7]:

φ(θ) =
1− g2

2 · (1 + g2 − 2 · g · cosθ)3/2
, (1)

where g is an anisotropy factor for forward and
backward scattering. Observations and measure-
ments show [5], that equation 1 describes the scat-
tering properties of interstellar dust with a value for
g ≈ 0.6. The effect of varying the anisotropy factor
g is described in more detail in [11].

4 Lighting Model

Our volume renderer is based on the following
lighting model: the observed radiance L(x, y) at a
camera at position c is a function of the aggregated
extinction τ(v), and the albedo α(v) that depend

Figure 2: The intensity of the light reflected due to
single scattering caused by the red voxel depends on
the absorption along the path from the central star to
the voxel, the voxel’s albedo, the phase function, as
wells as on the accumulated absorption along the
remaining path towards the viewer.

on the dust density of every voxel v along the ray
towards the camera pixel (x, y):

L(x, y) =

∫ ∞

c

e
−

∫ v

c
τ(w)dw ·α(v)·S(v)dv, (2)

where S(v) is the total inscattering to the voxel v
towards the camera due to the emission Lstar

e of
the nebula’s central star(s) at position pstar . Con-
sidering single scattering only, S(v) is computed as

S(v) = φ(c, v, pstar)Lstar
e ·e

−
∫ v

pstar
τ(w)dw

(3)

incorporating the extinction on the way from the
star to the voxel as well as the scattering phase func-
tion φ from the star to the voxel into the direction of
the camera c. We assume the same phase function
for all voxels. φ, Lstar

e , and pstar are assumed to
be known. We consider the star to be positioned in
the center of the volume. Lstar

e can be looked up in
astrophysical data bases for a specific nebula.

Due to the multiple scattering within a single
voxel, the extinction τ(v) and the albedo α(v) de-
pend non-linearly on the dust density ddust(v). The
dust density is the quantity we actually attempt to
reconstruct. We precomputed the effective extinc-
tion and albedo for a the selected size of a voxel and
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all possible dust densities using Monte Carlo simu-
lation, even considering multiple scattering within
one voxel. We perform the precomputation for a
discrete set of densities spaced ∆% apart and lin-
early interpolate for intermediate densities. Our
goal is to determine ddust(v) up to a scale factor.

5 3D Reconstruction

Our analysis-by-synthesis approach is driven by
the non-linear Powell optimization algorithm [14].
During optimization, we render the current dust
density distribution using the equations described
in Section 4 and the rendering framework in Sec-
tion 5.1, and, at every step, we compare the render-
ing with the given input reflection nebula image.

Before starting the reconstruction process, the in-
put images are cropped to a square and converted to
grayscale. One has to make sure that the central
star is placed in the center of the image. Since we
do not consider self-emission foreground stars are
masked out in order to avoid interference with the
reconstruction.

The reconstruction process is based on minimiz-
ing the following error functional

Err =

n∑
x,y=1

||L(x, y)− Linp(x, y)| |2 (4)

which is computed using the currently rendered
L(x, y) (Equation 2) and the input image Linp.

As can be seen in Figure 2, each voxel has a non-
local effect on the rendered image, resulting in some
implicit regularization of the optimization. How-
ever, this is not constraining the under-determined
problem entirely. In the Powell algorithm each
voxel is optimized independently. During optimiza-
tion, the order in which the voxels are processed is
very important for the speed and quality of the re-
construction. A naive traversal in a loop over the
x, y and z coordinates yields poor reconstruction
results, as demonstrated in Figure 3.

The reconstruction artifacts are due to the fact
that the radiance reflected by voxels at the outer rim
of the volume depends on the dust density values of
the inner voxels. During optimization, changes to
the inner voxels require updates of the outer voxels
which can only be performed after the entire vol-
ume has been optimized in one iteration step.

We obtain much better results (Figure 5) when
the traversal is done starting from the center to the

Figure 3: Inadequate optimization results of NGC
1999 by processing all voxels in scan-line order.
Note the decreasing reconstruction quality with in-
creasing distance to the central star. In the side-view
(right), an unnatural distribution along the z-axis is
visible: the dust is concentrated in the region fur-
thest away from the observer.

Figure 4: During optimization the volume is tra-
versed starting from the center, in concentric shells.

outside. Voxels closest to the central star are tra-
versed first, resulting in a set of concentric spheres
with center at the point of the central star (see Fig-
ure 4).

Another observation is that it is better not to start
the reconstruction process with an empty volume.
It is filled homogeneously with dust densities as
small as the smallest ∆% with which we increment
or decrement the voxel dust densities during opti-
mization.

5.1 Rendering and Runtime Optimization

As the lighting calculations are the most computa-
tionally expensive, we can obtain a great speedup
by accelerating them. We have developed two dif-
ferent options:
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To render full frames, and to visualize the results
of the reconstruction, we use an OpenGL-based ren-
derer similar to that used for reflection nebulae visu-
alization by Magnor et al. [11]. It is a volume ren-
dering application based on a real time ray-caster
implemented on graphics hardware. The imple-
mented algorithm uses the idea described by Krüger
et al. [9] to color code the direction of the viewing
rays using a bounding box. The algorithm exploits
the capabilities of modern graphics hardware to step
along the lines of sight querying 3D textures, us-
ing a fragment shader to accumulate the inscattering
along each ray while considering absorption.

While the hardware-based renderer is signifi-
cantly faster than a software renderer for comput-
ing a full frame, we observe that during the opti-
mization of individual voxels only fractions of the
images are actually affected. During optimization,
while constantly changing the density of one voxel
at a time, only those pixels in the rendered image
have to be recomputed which are affected by the
new voxel value. The footprint of each voxel is pre-
computed since it only depends on the ray geometry
and is independent on the actual volume density.

A further speed-up as well as an additional means
to avoid local minima during the optimization pro-
cess is achieved by an iterative multi-resolution ap-
proach. The reconstruction starts with a lower res-
olution volume which is scaled up after the end of
every iteration. This is done by subdividing each
voxel into eight sub-voxels with the same dust den-
sity value and applying a 3D Gaussian filter on the
dataset for smoothing the resulting high frequen-
cies. We measure a speed-up of factor 2 in the final
reconstruction compared to optimizing performed
directly at the highest resolution.

6 Results

We present the results of our proposed reconstruc-
tion approach for several reflection nebulae: NGC
1999 (Figure 5), the Iris Nebula (Figure 6, top row)
and the Cocoon Nebula (Figure 6, bottom row). As
already mentioned in section 5, the reconstruction
is performed for a grayscale flux image only, speed-
ing up the computation. The here presented results
were rendered using spectrally dependent absorp-
tion and scattering coefficients. Since our lighting
model does not include self-emission we manually
removed all stars in the input images since they can-

not be recovered. To produce slightly more realis-
tic final renderings we sometimes added artificial
star fields approximating the original image. Re-
construction times for the presented results are be-
tween 1-2 days on a 2.4GHz PC with 4GB memory.

For all nebulae we presented the original image,
the reconstructed volume rendered from the same
view, as well as a rendering of the volume rotated
by 90 degrees around the vertical axis. In the frontal
views, one can see that the large-scale features are
very well reproduced. Some detail has been lost
though because the reconstruction has been per-
formed at a maximum resolution of 643 voxels.
In the bottom right corner of Figure 5, we further
present an image of the relative differences between
the captured and the reconstructed image, which
are overall relatively small. The values are normal-
ized, with 1 corresponding to a difference of 255 in
grayscale values.

In the frontal view, the largest error is observed
close to the central star. This is because of the lack
of self-emission in our framework and can be ex-
plained by the algorithm trying to compensate for
the high intensity values in the center of the input
image (where the central star is situated) by incor-
rectly adjusting the dust density.

Looking at the side views, one sees a reconstruc-
tion that radiometrically agrees with the provided
input data, and thus is physically plausible. How-
ever, the reconstructed distribution along the z-axis
might not necessarily match the expected statisti-
cal distribution. It looks slightly too smooth com-
pared to the frontal view. However, it still resem-
bles a reasonable nebula. A good reconstruction is
achieved for the Cocoon Nebula (Figure 6, bottom
row). We attribute this effect to the slightly less in-
homogeneous distribution in the input image. We
also have to mention that this nebula has also an
emission part, thus not being best suited for recon-
struction as a pure reflection nebula.

The most prominent artifacts of our reconstruc-
tion are possibly the diagonal features visible in all
three side views. While we are not exactly sure, this
might be caused by the way how the aggregated ex-
tinction τ(v) and albedo α(v) are precomputed for
a single voxel and for every density. During evalu-
ation the voxel is assumed to be perfectly isotropic
which of course contradicts the anisotropic shape of
a cube, with the largest deviation exactly along the
diagonal.
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Figure 5: Results for the NGC 1999 nebula. The top row shows the input image (left) and the rendering of
the reconstruction from the same viewpoint (right). The bottom row shows a side view of the recovered dust
density (left). A color coded difference image between the input image and the rendering of the recovered
dust density is presented in the bottom right corner, indicating the good quality of the reconstruction.

In Figure 7, we demonstrate the dependence of
the reconstruction results on the intensity of the cen-
tral stars. We reconstructed the same input image
of the nebula NGC 1999 with three different val-
ues for Lstar

e . In order to reproduce the same input
pixel intensity, a fainter central star leads to higher
dust density values. Conversely, a brighter central
star leads to smaller dust density values. With the
increasing dust density the different reconstructions
also show an increased reddening as explained in
Section 3. This effect could actually be used to op-
timize for the intensity of the central star as well, if
wavelength dependent effects are considered during
the optimization.

7 Conclusion and Future Work

We presented a reconstruction method for physi-
cally plausible volumetric models of reflection neb-
ulae given only single input images. We do not
pose any geometric constraints on the shape of the
nebulae, such as symmetry which has been ap-
plied in previous reconstruction methods. Using an
analysis-by-synthesis approach we perform a non-
linear optimization to recover the dust density val-
ues. The recovered datasets can later be visual-
ized using a custom renderer and can also be used
as starting point for planetarium shows or further
physical simulations. While we so far concentrated
on the reconstruction of reflection nebulae, it would
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Figure 6: From left to right: input image, reconstructed frontal and rendered side view. The top row shows
the reconstruction for the Iris Nebula and in the bottom row we present renderings of the Cocoon Nebula.
Note, how the structures of the input image are well reproduced in the frontal view. The side views indicated
that plausible volumes have been reconstructed.

Figure 7: Reconstruction results for different inten-
sity values of the central star, decreasing from left
to right. A smaller luminance level leads to higher
dust density values and to reddening of the nebula.

be interesting to apply our reconstruction algorithm
to other volumetric phenomena that feature single
scattering and absorption.

One meaningful extension of our method would
be to incorporate multi-wavelength input images;
the renderings of the recovered dust density would
have to match multiple input images taken with dif-
ferent band filters. Besides the ability of estimating
the exact brightness of the central star, as indicated

in the previous section, one might be able to obtain
a more precise volumetric reconstruction since ad-
ditional independent constraints are given.

Another promising future research direction
would be to add further constraints to the optimiza-
tion in order to force the statistical distribution of
densities along the z-axis to match the statistics of
the input image. One could apply for example his-
togram matching or similar techniques which re-
cently has been successfully applied in the context
of solid texture synthesis [8]. Adding such an addi-
tional constraint should be rather easy in our current
optimization framework.
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[10] Andrei Linţu, Hendrik P. A. Lensch, Mar-
cus Magnor, Sascha El-Abed, and Hans-Peter

Seidel. 3D Reconstruction of Emission and
Absorption in Planetary Nebulae. In Hans-
Christian Hege and Raghu Machiraju, editors,
IEEE/EG International Symposium on Volume
Graphics, September 2007. to appear.

[11] Marcus Magnor, Kristian Hildebrand, Andrei
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Images, Images, Billions of Images . . .
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Abstract

Today, there are literally billions of images available online, indexed by search engines according to image
content, geographical location, and other features. Graphics and vision researchers recently started to in-
corporate these images into their algorithms as a valuable source of real-world imagery. In this talk, I will
first give an overview over some recent work in this area. I will then introduce our work on dense geometry
reconstruction from Internet images using multi-view stereo techniques. I will close with an outlook on
some open questions in the field.
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Email: {eisemann,sellent,magnor}@cg.tu-bs.de

Abstract

Whenever approximate 3D geometry is projectively
texture-mapped from different directions simultane-
ously, annoyingly visible aliasing artifacts are the
result. To prevent such ghosting in projective tex-
turing and image-based rendering, we propose a
new GPU-based rendering strategy and a new, view-
dependent definition of ghosting. The algorithm
is applicable to any kind of image-based rendering
method, or general projective texture mapping, and
adapts to arbitrary camera setups. It is able to cope
with imprecise 3D geometry. Ghosting artifacts are
efficiently eliminated at real-time rendering frame
rates on standard graphics hardware. With the pro-
posed rendering technique, better-quality rendering
results are obtained from fewer images and coarser
3D geometry.

1 Introduction

Approximate geometry, camera calibration inaccu-
racies, and subcritical sampling are the reason for
ghosting artifacts in light field rendering [15], lu-
migraph rendering [11], and view-dependent pro-
jective texture mapping [8]. In fact, ghost-
ing/aliasing/double images1 are a problem common
to all image-based modeling and rendering appli-
cations whenever recorded image footage is to be
merged with available geometry into one consistent
representation. For highly accurate, laser-scanned
geometry, a number of strategies have been devised
for how to register photographs to 3D geometry in
the presence of calibration inaccuracies [27, 3, 14],
as well as how to generate a globally consistent
texture map from multi-view footage [22, 2, 28].
While impressive digital models of real-world ob-

1Throughout the paper, we use the terms “ghosting”, “double
images” and “aliasing” synonymously if not stated otherwise.

jects have been created this way, they come at
the price of considerable user interaction, and not
all approaches are suitable for reproducing view-
dependent reflectance effects as the created texture
map is usually not view-dependent.

In this paper, we present a new algorithm to
achieve aliasing-free rendering results directly from
a set of photographs in conjunction with some arbi-
trarily coarse geometry proxy. The contributions of
this paper are
• a new view-dependent, anisotropic reconstruc-

tion filter that is able to take camera distribu-
tion, sampling density, the new virtual view-
point and geometry inaccuracy into account
and that is applicable to any kind of projective
texturing;

• a real-time implementation of the proposed fil-
ter on standard graphics hardware;

• a new, conservative, yet more general defini-
tion for the causes of ghosting in projective
texturing which takes the current viewpoint
into account and provides a new upper bound
on the highest representable frequency with-
out ghosting, which results in more details in
the output image.

Our main goal is to improve the visual quality of ex-
isting image-based modeling and rendering meth-
ods as well as to simplify the use of image-based
approaches for representing real-world objects.

Our paper is organized as follows. After review-
ing relevant previous work in Section 2 we exam-
ine the underlying problem of ghosting artifacts in
multi-image projective texture mapping, Section 3.
In Section 4 we describe filtered blending as a way
to eliminate ghosting. Implementation details are
given in Section 5, and experimental evaluation re-
sults are presented in Section 6 before we conclude
with Section 7.

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, J. Weickert (Editors)



Figure 1: Images from our test data sets: for the synthetic Bunny and the real-world captured Garfield,
approximated 3D geometry models are available. For the synthetic light fields Buddha and Dragon, a
planar surface must suffice as geometry proxy, see Table 1 for more information on our test data sets.

Bunny Garfield Buddha Dragon
# geometry primitives 948 1280 1 1
Total images 49 24 256 256
Pixels per image 512

2
768× 576 256

2
256

2

Uncertainty offset 0.63% 1.18% 7.07% 8.13%
Band-limit filter support 12 pixels 10 pixels 12 pixels 10 pixels
Viewport 360

◦
× 360

◦
360

◦
× 180

◦
90

◦
× 90

◦
90

◦
× 90

◦

Output resolution (pixels) 512
2

512
2

512
2

512
2

Type synthetic real-world synthetic synthetic

Table 1: Information concerning our test data sets shown in Figure 1. The uncertainty offset along the
viewing ray in positive and negative direction, in comparison to the diagonal of the geometries bounding
box.

2 Related Work
Image-based rendering (IBR) methods are able
to achieve highly realistic rendering results of real-
world objects or scenes from a collection of cal-
ibrated photographs. While some IBR methods
rely solely on a large number of input images to
minimize aliasing artifacts [15, 18], most IBR ap-
proaches make additional use of scene depth [11,
13, 4, 29], or full 3D geometry [8, 5, 26, 23, 24].
Potential sources for aliasing artifacts during ren-
dering are (1) image calibration inaccuracies, (2)
subcritical sampling in conjunction with insuffi-
cient pre-filtering [6, 16], and possibly (3) impre-
cise depth maps or inexact geometry.

Image-based modeling (IBM) extends the no-
tion of IBR in that high-quality 3D geometry scans
of an object are augmented with a collection of pho-
tos to capture the visual appearance [22, 27, 2, 14,
28]. Finite scanner resolution and tolerances, reg-
istration inaccuracies, and camera calibration errors
all degrade overall image-to-texture mapping accu-
racy.

Different reconstruction filters for IBR have
been investigated in the literature. Based on an anal-
ysis of the sampling problem in frequency and ge-

ometry space by Chai et al. [6] and Lin et al. [16],
respectively, one can apply a low-pass filtering to
the input/output images for ghosting-free “band-
limited reconstruction” [25]. Isaksen et al. [13] pro-
pose a “wide-aperture reconstruction filter” which
increases the spatial support or aperture size of the
reconstruction filter. A combination of the two ap-
proaches is proposed by Stewart et al. [25]. Al-
ternatively, Liu et al. [17] estimate scene geome-
try dynamically using a color similarity-based plane
sweeping algorithm.

These approaches effectively reduce ghosting,
but several issues remain unsolved. Not all of
these approaches can be applied to general pro-
jective texturing. Many details are lost because
the filtering operations are usually performed as
a pre-processing step based on the maximum dis-
parity, not taking the current viewing position into
account. Not all approaches are able to preserve
view-dependent reflectance characteristics. And a
lot of user-interaction may be needed. In some ap-
proaches new artifacts may be introduced due to
random color similarities. With wider camera base-
lines, these mismatch artifacts increase dispropor-
tionately.
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Warping Techniques which establish dense cor-
respondences between pixels in different images
can produce most accurate results [7, 19]. However,
specular and occluding surfaces pose a great chal-
lenge for the necessarily precise automatic cam-
era calibration and depth acquisition. On the other
hand, using only a sparse feature set, is usually
problematic as feature detectors may select signif-
icantly different features in different images of the
same scene. In addition many feature detectors are
specialized to certain environments [1], and may not
work as well for other settings.

3 Problem Description

In this section, we take a closer look at the causes
of ghosting in projective texture mapping and light
field rendering. We show that ghosting is solely de-
pendent on the maximum disparity of a projected
scene point to its real position in texture space.
Therefore, ghosting can be detected even if only a
single input camera and the virtual camera is taken
into account.

Every pixel of the input images can be seen as
the weighted integral of the light arriving at the im-
age plane of the camera. Every scene point L of
sufficiently small size, compared to the camera res-
olution, therefore contributes exactly to one pixel
in the recorded images (for more details see [16]).
During rendering, these are then reprojected onto
an approximated surface. Lin et al. [16] state that
the intensity contributions of each scene point L
must at least touch each other in the output image
to avoid ghosting. This is true for light field ap-
proaches if virtual and capturing cameras have the
same resolution and the user is restricted to stay out-
side the convex hull defined by camera and focal
plane. However, other rendering approaches, like
projective texturing and geometry-assisted IBR, de-
mand a more general definition of ghosting. Thus
we propose that every scene point L must provide
a single, resolution independent intensity maximum
in the output image, Figure 2.

As one example, let’s consider the viewing ray
CvL , Figure 2. By projecting the input image
of camera C1 onto the approximate surface S, the
contribution of L will not appear at point F0, but
rather at point F1, revealing a disparity of d. If
d, projected into the input image, is larger than
half a pixel, ghosting artifacts may appear, as the

PSfrag replacements
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Figure 2: Ghosting in projective texture mapping,
view-dependent texture mapping and light field ren-
dering: The actual scene point L, as recorded from
cameras C1 and Cv , is projected to two different
points F1 and F0 on the approximate object surface
S. If the projected distance d = F0 − F1 is larger
than half a pixel in the input images, ghosting oc-
curs.

main contribution of L might not appear at F0 after
blending different input image values together.

This definition of ghosting is applicable to IBR in
general because it gives room for view-dependent
filtering of the input images, based on the current
viewpoint, as we will show in Section 4. Note that
our definition reduces to the one proposed by Lin et
al. if their preconditions are fulfilled.

4 Filtered Blending

To motivate our approach, consider the diagram in
Figure 3. The scene point L lies on the line of sight
of the viewing ray CvLp0

, somewhere within the
interval of maximum depth uncertainty dmax from
the approximate geometry, which for this analysis
we assume to be known. The line segment Lp1

Lp2

projected into the texture space of camera C1 re-
veals another line segment TLp1

TLp2
, which we

call the line of disparity. Any value on this line
could be the correct texture value. This is in fact
similar to an epipolar geometry constraint [12].

We solve this uncertainty problem in a resam-
pling process. Recall that ghosting is prevented if
the projected disparity d in the texture images is
less than 1/2 texel (see Section 3). In frequency
domain, let ωt be the highest representable fre-
quency in the texture function t, which is given by
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Figure 3: Scene point estimation. The scene point L
observed from viewpoint Cv can only be estimated
to lie somewhere between Lp1

and Lp2
, which are

defined by the maximum depth uncertainty dmax.
Its correct color value observed by camera C1 lies
somewhere between the projected texture coordi-
nates TLp1

and TLp2
.

its resolution and defined by the Nyquist Theorem.
Then it follows that if we want to remove ghost-
ing, frequencies higher than 1

2d
ωt have to be re-

moved. But as we are dealing with discrete val-
ues, simply removing these frequencies is insuffi-
cient. One also has to consider appropriate sam-
pling positions. Choosing 1

2
TLp1

TLp2
as the sam-

pling position and |TLp1
TLp2

| − ε as the sampling
distance, with ε → +0, we anisotropically resam-
ple the texture function along the line of disparity
at the highest possible frequency which assures that
no ghosting will appear. This way we effectively
avoided ghosting, since the correct texture values
always contribute to the corresponding output pix-
els. As we take the current viewpoint into account,
the closer the virtual camera is to one of the input
cameras, the fewer frequencies are cut off from that
input image and the output image will contain much
more details than in a band-limiting approach. If the
input camera and virtual camera coincide, all detail
is preserved. This way, we implicitly take the in-
put camera distribution into account, as the size of
our filter is based on the geometric uncertainty and
position of the input cameras.

The depth uncertainty itself can be established
in different ways. In two-plane parameterized light
field rendering, it is usually the difference along the
z-axis from the focal plane, which is orthogonal
to this axis by definition. For synthetic scenes the
value of uncertainty is usually known in advance,
it is to be estimated for real world scenes. Then

Lp1
and Lp2

can be calculated by intersecting ev-
ery viewing ray with the plane at Zmin and Zmax,
which are the minimum and maximum z-values in
the scene, respectively. In a more general setup,
one could decide to either create an offset along the
normal of the approximate surface with which the
viewing ray is intersected, or the offset is created
along the viewing ray. In the first case the calculated
disparity becomes very large at objects silhouettes,
as the normal is almost perpendicular to the viewing
ray’s direction. This leads to strong and distracting
blurring artifacts. We therefore chose to calculate
the offset along the viewing ray. This results in a
small blur for images close to the current viewpoint
and larger blur for those farther away. This is sim-
ilar to an angular metric, and no sudden jumps at
triangle borders appear.

Since the support of the applied low-pass filter
can theoretically become arbitrarily large, we take
two simple steps to alleviate the needed effort. First,
we make strong use of GPU processing power. The
whole filtering algorithm is implemented as a pair
of vertex and fragment shaders. Second, we trade
off detail for speed by applying a multi-resolution
technique. We set a threshold ν for the filtersize
µ in texture space. If this threshold is exceeded
we use the n-th level of the input image-pyramid
computed in a preprocess instead of the image it-
self, with n = log

2
(µ

ν
). Note that this approach

has almost no effect on the visual quality of the
output, since a large filter size implicates a small
weighting factor for an input camera and therefore
only a small contribution to the output image, but
speeds up the whole rendering process by a factor
of roughly three.

Interestingly, depending on the movement, the
varying change in blur in the output image can
evoke the impression of repeatedly changing speed,
even if a movement is in fact constant. We can
solve this perceptual problem by applying a sim-
ple motion blur technique. If the viewpoint does
not change, the image quickly converges to the op-
timally filtered solution.

Note that our algorithm is independent of the
weighting scheme used for the image synthesis step,
where the acquired texture values are combined to
reveal the final pixel value, and can be used in con-
junction with quadralinear interpolation [15], the
unstructured lumigraph weighting scheme [4] or an-
gular distance measures [9, 21].
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5 Implementation

We implemented our algorithm on a NVidia
GeForce 8800GTX graphics card using
OpenGL/GLSL. For the filtered blending ap-
proach we add/subtract the estimated or apriori
known depth uncertainty offset along the viewing
ray from the vertex position. Reprojecting the new
positions into the different input images yields the
texture coordinates.

For the resampling process during filtered blend-
ing, we implemented the Mitchell-Netravali cubic
B-spline filter as a fragment shader program [20].
We compared different filters, e.g., also truncated
Gaussian and box filter, and found that the Mitchell-
Netravali filter yields the visually most convincing
rendering results.

6 Results, Discussion

Our test data sets include one real-world ob-
ject, Garfield, one synthetically created 3D object,
Bunny, and the two well-known Stanford light fields
Buddha and Dragon. Figure 1 shows examples of
the test data sets. Additional data, like the used
depth uncertainty or size of the band-limiting fil-
ter, is listed in Table 1. To evaluate rendering
quality, we compare our rendering strategies to di-
rect (quadra-)linear interpolation as well as to pre-
processed band-limited filtering. For band-limited
filtering, the filter support is set to the smallest pos-
sible value to prevent ghosting. In projective texture
mapping, we always select the three nearest cam-
eras for interpolation as described in [21].

Our first test scene Bunny consists of 49 im-
ages rendered from randomly selected viewing di-
rections. The upper two rows in Figure 4 depict
the results obtained by the different rendering ap-
proaches. For better rendering quality assessment,
some of the details are enlarged. In the first row,
the virtual camera is close to one of the input cam-
eras, in the second it is placed right between them.
When comparing the two leftmost images, which
correspond to standard linear blending (Figure 4a)
and band-limited filtering (b) to our result on the
right(c), note how the ghosting is smoothed away
by the filtered blending, while discontinuities of the
checkerboard texture are much better preserved. We
achieve 342 fps when using our filtered blending ap-
proach.

To acquire the calibrated images for the Garfield
scene a computer-controlled turntable and a digital
camera with a lever arm was used to record 24 im-
ages in hemispherical configuration. The geome-
try is estimated using the voxel-based approach by
Eisert et al. [10]. Rendering results are shown in
Figure 4 third row. Again, the noticeable ghosting
artifacts along the pupil in the image on the left are
eliminated in our approach, while some of the de-
tails at the nose could be preserved. The Garfield
model is rendered at approximately 334 fps.

We also tested our “ghost-busting” approach for
light field rendering using the Buddha and Dragon
data sets (Figure 1). Rendering results are shown
in Figure 5. Notice how ghosting is prevented in
our approach, Figure 5(c), while ghosting artifacts
are obvious in standard quadralinear interpolation
(a). At the same time, much finer detail is preserved
than if pre-processed band-limited filtering is used
(b). In conjunction with light field rendering, we
achieve around 105 fps with our approach.

7 Conclusions

We have presented an approach to achieve ghosting-
free rendering results with viewpoint optimized,
minimal, low-pass filtering for subcritically sam-
pled light fields, as well as for general projec-
tive texture mapping with approximated geome-
try. In contrast to conventional methods based on
prefiltering/band-limiting, our algorithm efficiently
eliminates ghosting and preserves texture details
considerably better, because our filtered blending
takes the current viewpoint into account. Our defi-
nition of ghosting is able to conservatively establish
the bounds for ghosting. Real-time rendering per-
formance is achieved on a standard GPU. And the
approach can be easily adapted to various different
image-based rendering scenarios.

However there are certain limitations. If the in-
put samples are too sparse, the image will still look
blurry. Warping techniques might help to visually
increase the resulting image even more. We are cur-
rently working on this.

Filtered blending greatly eases the constraints of
image-based rendering: coarser 3D geometry, and
fewer input images are sufficient to still achieve
convincing rendering results. With this useful gen-
eralization, image-based rendering will hopefully
find many new practical applications.
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(a) Linear interpolation (b) Band-limited (c) Filtered Blending

Figure 4: Projective texture mapping of the Stanford Bunny (rows 1 and 2) and of the real-world data set
Garfield (row 3). In row 1 the virtual camera is close to one of the input cameras, in row 2 and 3 it is set
in-between two of them: (a) Linear interpolation reveals strong ghosting around high frequency details (row
2 and 3). (b) Band-limited reconstruction removes ghosting, but the result is excessively blurred. (c) Our
filtered blending approach preserves discontinuities considerably better and completely removes aliasing.
Notice the much sharper edges on the bunny in row 1 and 2 and the preserved brown stripe on the Garfield’s
nose.
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(a) Quadra-linear interpolation (b) Band-limited (c) Filtered Blending

Figure 5: Comparison for the two sub-critically sampled light fields Buddha (top rows) and Dragon (bottom
rows): (a) Quadralinear interpolation cannot suppress ghosting artifacts. (b) Band-limiting the entire light
field leads to excessively blurry results. (c) Our filtered blending approach preserves most of the details
while ghosting is completely avoided.

126



Freehand HDR photography with motion compensation

Nicolas Menzel, Michael Guthe

Philipps-Universität Marburg
FB12, Graphics and Multimedia Programming

Email: {menzel,guthe}@informatik-uni-marburg.de

Abstract

In theory HDR photography generated from expo-
sure sequences is limited to pictures of still scenes
preferably taken with the camera mounted on a tri-
pod. Current state-of-the-art HDR imaging soft-
ware relaxes this limitation by aligning the pictures
with affine transformations. However, two pictures
cannot be aligned with a single affine transforma-
tion if objects in the scene move or the position of
the camera changes which causes parallax effects in
the image.

In this paper, a method for the non-linear align-
ment of a picture sequence for HDR imaging is pre-
sented. By using techniques for motion detection
and compensation, the approach is not only capa-
ble to correctly align pictures containing parallax
effects, but also able to compensate for the move-
ment of objects in the scene. This way, taking free-
hand HDR pictures from non-static scenes becomes
possible with off-the-shelf digital cameras.

1 Introduction

The dynamic range of an image is the perceived ra-
tio between the darkest and the brightest details of
the depicted scene. This ratio easily exceeds the
capabilities of a common photograph taken with a
single exposure. From shadows to fully lit regions
the radiance of objects in a single image can easily
span several orders of magnitude. In sunlit scenes,
dynamic ranges of 1 : 100, 000 or more are not
unusual. It is obvious that this range cannot be cap-
tured by an ordinary digital camera with 256 quan-
tization levels and a dynamic range of about 1 : 100
for compact cameras and 1 : 300 to 1 : 1, 000 for
SLR cameras. Either dark, bright, or medium lit ar-
eas can be stored in full detail, all other radiance
values are lost after the acquisition process.

The full dynamic range of a scene can be ob-
tained by taking multiple photographs, each one
with a different exposure time. This way it is guar-
anteed that shadowed areas as well as very bright
areas are captured in full detail. The next step prior
to combining the images is the reconstruction of the
camera response function that relates color values to
light intensities. The discrete response function is a
non-linear curve that can differ for each color chan-
nel and is stored as a lookup table containing 256
values. After this step, the radiance map is com-
puted as a weighted sum of pixel intensities from
the images with different exposure times.

For the recovery of the dynamic range it is crucial
for all pixel locations to be exactly aligned. This
constraint originates in the assumption that the ir-
radiance of each pixel remains constant throughout
the whole exposure sequence. For this purpose it
is advisable to create exposure sequences using a
tripod and in addition, a remote controlled release.
Besides avoiding undesirable vibrations, the scene
has to be static as well, which makes capturing of
naturally moving objects, such as clouds, leaves or
waves, difficult to impossible. Up to now, these
constraints limit high dynamic range (HDR) pho-
tography to professionals or very dedicated hobby
photographers. This restriction can only be lifted
by a tool that is able to align the images of an expo-
sure sequence by removing any motion origination
from camera or object movement.

To construct a robust freehand motion compensa-
tion algorithm, it is important to understand which
effects may occur besides translation of the image:
• When photographs are taken by hand, rotation

is inevitable, though very small angles of typi-
cally less than 20 degree can be expected.

• Even the slightest translation may cause severe
parallax effects, e.g. when looking through a
window or straight down a wall.
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• In addition to the parallax, occlusion can
also occur whenever the camera or an object
moves.

• In contrast to traditional image matching, it
cannot be assumed that finding matching pat-
terns between different exposures is always
possible. Detailed areas in one image are pos-
sibly saturated or at noise level in the next or
previous image of the sequence, making it im-
possible to find a direct matching. This can be
interpreted as missing data problem.

Considering these problems, we propose a two
step algorithm. In the first step, the images are
aligned as faithfully as possible and in the second
step, the occlusion and missing data problems are
handled by a robust HDR reconstruction method in-
cluding a ghost removal step. The contributions of
this paper are the following:
• A hierarchical non-linear alignment algorithm

that is robust with respect to missing data due
to black level noise and saturation.

• A robust HDR reconstruction algorithm that
removes the remaining artifacts originating
from occlusion while preserving information
that is not contained in the other images of the
sequence.

2 Related Work

Initially, Debevec and Malik proposed using multi-
ple exposures to recover the full dynamic range [4]
of a scene. Their proposal arises from the observa-
tion that if one pixel has twice the value of another,
it cannot be concluded that it received twice the ir-
radiance. Instead, the irradiance of a pixel is de-
termined by an unknown, nonlinear function called
the response function or response curve. Once the
response curve is reconstructed, it can be re-used
for the same camera type. However, as the response
curve is badly conditioned at extreme intensities,
Debevec and Malik introduced a linear weighting
function to assure that values near saturation have
a lower contribution to the final image. The HDR
image is then computed as a weighted average of
each pixel, thus containing information captured by
each of the images. Later, Robertson et al. intro-
duced a smoother gaussian weighting function [10]
that better fits the accuracy range of a CCD sensor.

The generation of HDR images from exposure
sequences requires perfectly aligned pictures since

the intensity is calculated on a per pixel basis. If this
is not the case, the pictures need to be aligned before
HDR reconstruction. A fast and robust method for
image alignment developed by Ward [12] is based
on a median cut in combination with an XOR fit-
ness function and is able to resolve translations be-
tween images in the sequence. Grosch extended
this method to rotations [6] using a downhill sim-
plex solver and exploiting graphics hardware to im-
prove performance. The drawback of this method is
that, despite its robustness to moving objects, only
an alignment of static parts of the scene is possi-
ble. The remaining artifacts, originating from ob-
ject movement or parallax, are removed in a second,
semi automatic phase at the cost of a reduced dy-
namic range. The ghost removal proposed by Khan
et al. [8] improves this step by not only considering
the probability that a pixel is correctly exposed, but
also the background probability of the pixel using
an estimation scheme based on a d-variate Gaussian
density function. For each pixel in every input im-
age a small neighbourhood is considered to deter-
mine the contribution to the final image. Although
the results are convincing, mere ghost removal can-
not replace image alignment, since it reduces the
dynamic range in areas where only a single image
contributes to the final result.

If not only the static background, but also mov-
ing foreground objects are to be aligned, a single
linear transformation is not sufficient. A similar
non-linear matching problem needs to be solved for
state-of-the-art video codecs like MPEG-4 [13]. In
this case, so called macroblocks from one image
need to be found in a corresponding image. This
matching problem is typically solved using optical
flow techniques [1, 2].

In the context of temporal image processing,
Kang [7] presented a method to create a sequence
of HDR images from a stream of LDR input im-
ages. For this purpose, the input images are cap-
tured with alternating exposure times using a pro-
grammable capture device. To generate an output
HDR image for each input LDR image, neighbour-
ing images have to be aligned, combined and tone
mapped. Subsequent images are registered by esti-
mating an affine transform that maps one onto the
other. A gradient-based optical flow is used to com-
pute a dense motion field to form a local correlation.
Our approach is related to this in the sense that al-
ways three neighboured images are registered. In-
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stead of an affine transform we use macroblocks for
the alignment. For motion estimation, a very accu-
rate and – with respect to different luminance – ro-
bust methods is the cross-correlation [9]. Another
possibility to solve the non-linear alignment based
on optical flow would be the use of dense gradi-
ent matching [3, 11]. However, this technique only
works well if the luminance in both images is ap-
proximately identical. While this could be achieved
by mapping an image to the dynamic range of the
reference image, the method is not robust with re-
spect to noise and thus will fail at dark and bright
regions of the reference image which are however
the most important parts of the other images as they
contain most of the additional information.

3 Overview

The first step of the algorithm is the non-linear im-
age alignment using macroblocks and maximizing
the cross-correlation. The alignment is performed
hierarchically to assure that matching blocks as well
as non-matchable blocks are moved into a consis-
tent direction. An in depth description of this pro-
cess is given in section 4. After the alignment, most
pixel locations match exactly but occlusion and par-
allax effects inside a single leaf level macroblock
cannot be resolved, leading to ghosting artifacts.
This is solved in the HDR reconstruction phase de-
scribed in section 5 by calculating a per-pixel confi-
dence value and marking non-plausible pixels such
that they do not contribute to the final image.

4 Hierarchical Matching

For the non-linear matching, first an anchor im-
age r is chosen by simply selecting the one con-
taining the highest entropy and then all other im-
ages are aligned to this one. One way to capture
the input images freehand is to use the automatic
exposure bracketing (AEB) function of the camera.
The AEB function induces the camera to capture
a sequence of optimal exposed, underexposed and
overexposed images. We expect the optimal ex-
posed image to contain the highest entropy and set
this image as anchor for every macroblock. Since
capturing more than three images seems impracti-
cal for ad hoc purposes, our current implementation
is limited to three input images, though the full dy-
namic range of outdoor scenes might not be cov-

ered with three input images only. In addition, if
more than three images are used, finding an optimal
anchor image might be a difficult task, since opti-
mal correlation can expected only for neighbour-
ing images. The basic idea for our motion estima-
tion is that for a given macroblock M in the anchor
image, the displaced matching macroblock in im-
age i will have the locally maximal cross correla-
tion Ci(M, δ). Note that in contrast to the original
formulation, we do not normalize the vectors before
calculating the cross correlation. While this leaves
the location of the maximum unchanged, it addi-
tionally delivers a confidence for the match.

Ci(M, δ) =

∑

p∈M
c̃i(p + δ) · c̃r(p)

N(M)
√

∑

p∈M
‖c̃i(p + δ)‖2

with

c̃i(p+δ) = ci(p+δ)−

(

1
1
1

)

∑

p∈M
‖ci(p+δ)‖1

3N(M)

c̃r(p) = cr(p)−

(

1
1
1

)

∑

p∈M
‖cr(p)‖1

3N(M)
,

where ck(p) is the RGB color vector of image k

at pixel p, and N(M) is the number of pixels con-
tained in the macroblock. To emphasize local con-
trast, the edges in all input images are enhanced us-
ing the following filter kernel F :

F =

(

0 − 1
4

0
− 1

4
2 − 1

4

0 − 1
4

0

)

,

where pixels at the boundaries are duplicated for
consistent filtering.

Unfortunately, choosing a good macroblock size
that works for every input sequence is not possible.
If the size is too large, local movements cannot be
compensated for, while too small macroblocks can-
not always be matched reliably in the absence of
local detail. Therefore, the image i is aligned in a
hierarchical manner starting with a single centered
square macroblock of size 2n that is large enough
to contain the whole image. After the best match
for this root block is found, it is divided into four
sub blocks and for each of them the best match is
searched recursively while re-using the alignment
of the previous level as initial guess. Hierarchical
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guessing is prone to be less robust towards large
motion of small objects. The problem is that while
the confidence value of a large macroblock might
by high, the motion of smaller objects cannot be
estimated until a finer subdivision level is reached.
In order to find the object, the algorithm then has
to increase the search radius instead of actually re-
ducing it in order to converge. Here, a trade-off
between robustness of motion estimation and com-
puting speed has to be found. To prevent random
displacement when the macroblock contains noise
only, a block is not displaced if its cross correlation
less than 10% of its parent block’s cross correlation.
If this value is lower for the current block, it gradu-
ally decreases from level to level. During recursive
search, the maximum search radius is reduced by a
factor of two at each subdivision until it reaches two
at a block size of 16×16 pixel which allows to also
compensate for rotations of up to 14 degree.

At each recursion step, the displacement is bilin-
early interpolated between the four adjacent parent
nodes. Then an iterative search is performed for
each macroblock starting with its interpolated dis-
placement and that of its up to eight neighbors. For
each initial displacement, the next local maximum
is found using a gradient descent method with a
fixed step size of one pixel, while for the root block,
a step size of four pixels is used in order to find the
global maximum. The search from the current start
displacement is stopped when either the local max-
imum is found, or the number of iterations reaches
the search radius of the current level. When the lo-
cal maxima are found for each of the nine starting
displacements, the final displacement for the cur-
rent block is chosen to be that one with the highest
cross correlation. If the maximum is reached for
more than one different displacement, the closest
one of them to the initial interpolated displacement
is chosen to prevent displacement of macroblocks
that do not contain local detail. Figure 1 shows the
hierarchical alignment process for an input image
where the clouds had moved with respect to the ref-
erence image.

After calculating the displacement vectors for the
finest level macroblocks, the transformed image is
assembled. For each macroblock, the correspond-
ing pixels – without edge enhancement – are copied
from the displaced position to their original posi-
tion in the reference image. This way, the fea-
tures of the current image become aligned with

Figure 1: Hierarchical alignment of an image where
the clouds had moved upwards and right during the
exposure sequence. The magenta squares depict the
matching macroblocks.

their corresponding features in the reference im-
age. To prevent the well known blocking artifact
of macroblock based motion compensation, the dis-
placement is bilinearly interpolated per pixel for the
transformation of the image. While this might in-
troduce some distortions in badly aligned region,
the overall image quality is greatly improved. Fig-
ure 2 shows the difference of the example image
after alignment to the reference image mapped into
the same exposure. Notice that most of the differ-
ence is due to highlights that are over saturated in
the aligned image. The movement of the clouds and
the slight foreground parallax have been corrected.

Figure 2: Difference of aligned image and reference
image converted into same exposure. The darker the
color, the higher is the difference

5 HDR Image Synthesis

The HDR reconstruction is based on a per-pixel
weighted average of the measured logarithmic irra-
diance. Thus, the irradiance has to be reconstructed
from each image as first step by calculating the
camera response function f using the least squares
solver proposed by Debevec and Malik [4]. The ac-
cumulated irradiance E(p) at the current pixel p is
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then calculated from the color values ci and the ex-
posure times ti of each image i for each color chan-
nel in the following way:

log E(p) =

∑

i
wi(p) log f(ci(p))− log ti

∑

i
wi(p)

The key to both, faithful reconstruction and arti-
fact removal now lies in an appropriate weighting
function. The first weighting function proposed by
Debevec and Malik [4] was a simple piecewise lin-
ear function:

wi(p) =

{

ci(p) : ci(p) ≤ 127.5
255− ci(p) : ci(p) > 127.5

The drawbacks of this function are the non-zero
derivatives at both ends and the relatively high
weighting of extreme values. These introduce dis-
continuities and can reduce the dynamic range of
the final image. While the first problem was solved
with the gaussian weighting function of Robertson
et al. [10] the range reduction is even more appar-
ent. To solve both problems, we propose a quadratic
spline weighting function that has zero values and
derivatives at both ends:

wi(p) =
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(
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Due to the low weight for extreme values, the re-
sult might however become noisy if the pixel is al-
most black or white in all images of the exposure
sequence. Therefore, the weight is set to one in
the longest exposure image if the color value is be-
low 127.5 and in the shortest exposure image if the
value is above 127.5 since these contain the most

Figure 3: Weight functions for a sequence of five
images with an exposure stepping of two f-stops and
a gamma-2.2 camera response curve.

accurate information. Figure 3 shows the resulting
weight functions for a sequence of five images with
two f-stops between each successive pair.

5.1 Ghost Removal

While these intensity based weighting functions
only account for the accuracy of the CCD sensor,
Grosch [6] additionally proposed to test the lumi-
nance and color value of a pixel against the corre-
sponding one in an anchor image for plausibility.
If the difference between expected value and sam-
pled value exceeds some error threshold, the pixel
is treated as ghost and its weight is set to zero. This
plausibility test however is prone to inaccuracies of
the camera response function and thus the confi-
dence map often needs to be edited by the user.

Instead, we propose the following ghost removal
technique: For each pixel in the all images, ex-
cept the anchor image r, a confidence value, de-
rived from the cross-correlation, is calculated. A
small neighborhood Np around the pixel p is ex-
tracted from each image i and the confidence Ki(p)
is calculated based on these:

Ki(p) =

∑

j∈Np
ci(j) · cr(j)

√

∑

j∈Np
‖ci(j)‖2

√

∑

j∈Np
‖cr(j)‖2

By considering the neighboring pixels instead of
the camera response curve, the result is much more
robust and less sensitive to noise. Note, that in con-
trast to the cross-correlation used for matching, the
mean is not subtracted from the blocks since this
would prevent detecting differences of the average
luminance. If the confidence of a pixel falls below
a threshold tK , its weight is set to zero. The only
exception is made for the shortest and longest expo-
sure images: if the only information about a pixel
is contained in one of these images – i.e. the color
values are below the black noise level tb or above
saturation ts in all other images – the confidence
test is skipped and thus the weight is not altered.
Altogether, this leads to the final weight:

w
∗

i (p) =

{

0 : Ki(p) < tK , tb < ci(p) < ts

wi(p) : else

In the actual implementation, we used a neighbor-
hood of 11 × 11 pixel centered at the current pixel
and tK = 0.95, tb = 0.05, and ts = 0.95 as thresh-
old values.
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Figure 4 shows the regions identified as non-
plausible in the aligned example image from sec-
tion 4. The non-matchable lens reflection, as well as
some less accurately aligned features are removed.

Figure 4: Ghost pixels in an aligned image.

6 Results

Figure 5 shows the three exposure sequences used
as test data to compare our approach with linear
alignment. The first sequence is included to demon-
strate that our method delivers as least as good re-
sults as linear alignment. Figure 6 shows a com-
parison of tone-mapped images generated with the
two techniques. As tone mapping operator, gradient
domain HDR compression [5] is used. The differ-
ence between the two images is almost invisible and
ghost removal is required for neither of them.

The second example demonstrates the superiority
of our approach in the presence of moving objects.
Figure 7 shows a tone-mapped version of the HDR

Figure 5: Image sequences used for evaluation: The
top row shows a sequence that can be aligned using
linear transformations, while the middle sequence
contains moving objects (the clouds) and the bottom
one significant parallax effects and occlusions.

Figure 6: Tone-mapped results generated from the
first sequence using linear alignment (left) and our
non-linear alignment (right). Both are generated
without ghost removal.

image generated with our approach in comparison
with linear alignment. While the ghost removal is
capable to remove most of the artifacts of the linear
alignment, except for the still slightly blurry clouds
(see magnifications), the dynamic range of the im-
age is degraded. The improved alignment of our
method does not only reduce the misalignment ar-
tifacts, but also exhibits a higher dynamic range of
the final image after ghost removal, e.g. in the high-
lights of the roof tiles.

Figure 7: Tone-mapped results generated from the
second sequence using linear alignment (left) and
our non-linear alignment (right). The top row is
without and the bottom with ghost removal.

The final example is chosen to exploit the limita-
tions of our technique. Due to the significant par-
allax and large occluded areas, an alignment is not
possible for all parts of the image sequence. Thus
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the final HDR image (a tone-mapped one is shown
in figure 8) contains many artifacts in these areas.
While the ghost removal is capable of removing al-
most all artifacts – except for a region in the upper
right part of the image that was completely white in
two of the images and occluded in the third one –
it degrades the dynamic range of the image. Never-
theless, the result with our technique is significantly
better than with linear alignment, where even the
ghost removal is not able to resolve all ambiguities.

Figure 8: Tone-mapped results generated from the
third sequence using linear alignment (left) and our
non-linear alignment (right). The top row is without
and the bottom row with ghost removal.

7 Conclusion and Future Work

We have presented a method to generate HDR im-
ages from picture sequences that are taken without a
tripod or automatic exposure sequence and can even
contain moving objects (e.g. clouds, foliage, and
people). Motion is identified using a hierarchical
macroblock matching based on cross-correlation.
This does not only compensate for moving objects,
but also for movements of the camera that lead to
parallax effects. While the current implementation
has a runtime of less than 15 seconds for a sequence
of three pictures and a resolution of about one mega
pixel on a 2.4 GHz CPU, an implementation on cur-
rent graphics hardware will be able to align high
resolution pictures within a few seconds.

A limitation of the method is that it cannot com-
pensate for large occluded areas that were visible
in the reference image and thus solely relies on the
ghost removal technique during the second step in

such cases. If no data is available in the other im-
ages (i.e. the region is completely black or white)
the irradiance cannot be reconstructed. Another
limitation is that the technique can only compensate
small rotations about the z-axis of the camera. Thus
a possible extension would be to allow rotation the
the macroblocks during the alignment phase.
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Abstract

We present an image editing tool that allows to de-
form and composite image regions using an intu-
itive sketch-based interface. Users simply draw the
outline of the source image region and sketch a new
boundary shape onto the location where this region
is to be pasted. The deformation optimizes a shape
distortion energy, and we use Poisson cloning for
subsequent compositing. Since the correspondence
between the source and target boundary curves is
not known a priori, we propose an alternating op-
timization process that interleaves minimization of
the deformation energy w.r.t. the image region inte-
rior and the mapping between the boundary curves,
thus automatically determining the boundary cor-
respondence and deforming the image at the same
time. Thanks to the particular design of the defor-
mation energy, its gradient can be efficiently com-
puted, making the entire image editing framework
interactive and convenient for practical use.

1 Introduction

Gradient domain approaches have been success-
fully used for image manipulation. Preserving the
gradients of the image domain leads to image de-
formation techniques [2, 5, 6, 10], which allow ro-
tating and possibly scaling the image, but minimize
deformation. Preserving the gradients of the image
function (i.e., the colors) can be used to seamlessly
paste a region of an image into another image, a
technique called Poisson image editing [9]. Choos-
ing the right region to be copied and pasted is not
always easy, and several ways of using optimiza-
tion to identify the region in the source and target
images have been proposed [1, 7, 8].

Our idea is to allow deformation of the image re-
gion in this process. This would be an important im-
provement for several of the automatic approaches,
as the source and target boundary curves could be

Figure 1: The fish is deformed by applying a sin-
gle sketch and seamlessly placed in an underwater
scene.

different in shape. The shape can also be controlled
by the user, who would simply sketch the boundary
curves of the image part to be copied in the source
image and the corresponding region in the target im-
age. This simple and intuitive user interface is what
we advocate in this work.

Starting with the two boundary curves, we try to
minimize the deformation of the corresponding im-
age domain. For this purpose, we define a rotation-
invariant deformation energy (Section 3), essen-
tially following the ideas of the gradient domain im-
age deformation techniques mentioned above. Note
that we are not assuming that the mapping between
the two boundary curves is known. Instead, mini-
mizing the deformation energy determines both, the
mapping of the boundary curves onto each other,
and the mapping of the region enclosed by the
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boundary curves. We solve this minimization prob-
lem by interleaving the optimization of the inte-
rior region and optimization of the boundary curve
mapping. In Section 4 we explain how this can be
done by computing the gradient of the energy func-
tion with respect to the boundary vertices and then
projecting these gradients onto the tangents of the
boundary curve.

Using a least squares approach for enforcing the
mapping of the boundary curves allows varying the
degree of precision with which the deformation fol-
lows the boundary conditions, to enable gesturing
of quick and crude sketches, as well as carefully
drawn, precise curves. In the results section we
show how this leads to a very easy to control im-
age editing tool.

2 Framework

The user selects a region of the source image by
drawing a simple closed curve. We represent this
image region by a quad mesh S = {V, E} of a cer-
tain user-defined resolution, typically coarser than
the original pixel grid in order to save computation
time, similarly to [5, 10]. We will denote the origi-
nal vertex positions of S by v ∈ R2n, a 2n-vector
containing the coordinates of the n vertices (the n
x-coordinates followed by the n y-coordinates). We
refer to the position of the i-th vertex as vi ∈ R2

and the set of neighbors of vertex i is N (i).
The user then draws another simple closed curve

into the target image to indicate placement and de-
formation of the selected image region. Depending
on the input device, the sampling rate, and the ex-
pertise of the user, it might be necessary to filter
out some noise in the sketched curve. After con-
necting the pixel midpoints with line segments, we
apply the Douglas-Peucker polyline simplification
algorithm [4] using a small ε. The result of this pro-
cedure is a piecewise linear target boundary curve,
which we denote as γ.

The goal is to find displaced vertex positions
v′ ∈ R2n of the quad mesh that

1. minimize the distance of boundary vertices to
γ and

2. minimize a deformation energy, which is in-
variant to rotation and isotropic scale.

In the following section we will briefly explain how
we define the energy based on the results of gradient
domain mesh deformation techniques [11].

Figure 2: The user deforms an image region simply
by drawing the desired new boundary curve γ, here
shown as blue dots. The image region is represented
by a quad mesh S, in this case using a very coarse
resolution (each quad is 20× 20 pixels).

3 Deformation energy

It is common to measure deformation as a function
of first and second derivatives of the mapping [3,
12]. The Laplacian of a mesh can be represented
per vertex as

δi = L(vi) = vi − (1/|N (i)|)
X

j∈N (i)

vj . (1)

The mapping v → v′ is a pure translation if all δi

remain unchanged. It is an isotropic scaling if the δi

are all scaled by the same factor. And it is a rotation
if all δi are rotated by the same angle. To measure
deformation, we estimate isotropic scale and rota-
tion locally (i.e., a similarity transformation), and
compare the original δi to the deformed ones.

A similarity transformation in 2D has the form

Ti = Ti(s, w) =

„
s w
−w s

«
.

It can be estimated locally by considering each ver-
tex and its neighbors, and then fitting the best simi-
larity transformation in the least squares sense

Ti(v
′) = arg min

s,w

X
j∈{i}∪N (i)

‖Tivj − v′
j‖2.

Note that Ti is a linear function in the v′.
We use these local similarity transformations to

transform the original Laplacians δi and then com-
pare them to the ones of the deformed mesh. The
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ω = 1.0 ω = 0.5 ω = 0.1

Figure 3: Comparison of deformation results using different handle weights ω (from left to right: ω = 1.0,
ω = 0.5, ω = 0.1). The top row shows results of the initial deformation while the bottom row shows
the same results after applying our deformation minimization algorithm. The undeformed image region is
shown in Figure 2.

squared difference of these vectors will be the de-
formation energy:

Ed(v′) =

nX
i=1

‖Ti(v
′)δi − L(v′i)‖2 (2)

This is a quadratic expression in v′. So it can be
written as

Ed(v′) = ‖Adv
′‖2

= 〈Adv
′,Adv

′〉

= v′TAT
dAdv

′.

(3)

It could be minimized by setting its partial deriva-
tives to zero, leading to the equation Adv

′ = 0.
This means v′ = 0 is among the minimum energy
states of Ed(v′). The additional constraint that the
boundary vertices of the mesh have to be close to
the curve γ will yield non-zero solutions to the en-
ergy minimization.

4 Constrained energy minimization

We wish to find a deformation that minimizes
the deformation energy so that all boundary ver-
tices of the image region are close to the sketched
curve γ. Assume we knew the target positions

h ∈ R2c for the boundary vertices (again, h con-
sists of the c concatenated x-coordinates and then
the y-coordinates, and we denote the positions as
hi, i ∈ C). Then we could define an additional
quadratic energy term

Eb(v
′,h) =

X
i∈C

‖v′i − hi‖2 = ‖Ahv
′ − h‖2

= v′TAT
hAhv

′ − 2v′TAT
hh + hTh,

where Ah ∈ R2c×2n is a matrix that extracts the
vector of constrained vertices out of v′. Assume
w.l.o.g. that C = {1, . . . , c}, then Ah has the sim-
ple form

Ah =

„
Ic×c 0c×(n−c) 0c×n

0c×n Ic×c 0c×(n−c)

«
. (4)

Any weighted combination of the two energy terms

Ec(v
′,h) = Ed(v′) + ω2Eb(v

′,h) (5)

is again a quadratic energy in v′, i.e.

Ec(v
′,h) = v′T

“
AT

dAd + ω2AT
hAh

”
v′−

− 2v′Tω2AT
hh + ω2hTh.

(6)

Now the resulting linear system defining the mini-
mum energy state is nonhomogeneous, resulting in
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Figure 4: Comparison of an unoptimized (left) with
an optimized mesh (right). The unoptimized mesh
shows strong shearing artifacts which results in dis-
tortions of the image. After applying our energy
minimization algorithm the resulting mesh is much
more regular and thus visual distortions in the im-
age are minimized. See Figure 6 for a higher reso-
lution image.

a unique solution when more than two vertices are
constrained and ω > 0.

Of course, we don’t have target positions h for
the handle vertices a priori. All we know is that they
are supposed to be on γ. So our approach to mini-
mizing the energy is to compute target positions on
the curve γ that minimize Ed(v′), i.e., the positions
are defined as

arg min
h∈γ

Ed(v′). (7)

The minimization is done iteratively, using a gra-
dient descent approach. We first compute a rough
initial mapping of the boundary vertices onto the
user-sketch, i.e., matching the source boundary and
the target sketch based on arc-lengths. We then take
a small step into the negative direction of the gra-
dients of the deformation energy with respect to the
boundary vertices in order to find new handle po-
sitions resulting in smaller deformation energy and
thus less distortion of the mesh. Since the handle
positions are constrained to lie on the user-sketched
boundary, we reproject the new handle positions
onto the sketch and iterate the algorithm until a min-
imum is reached.

The deformation resulting from the rough arc-
lengths based mapping is what we call “initial
deformation” and compare our optimized results
against.

4.1 Gradient on the boundary

Knowing the positions of the boundary vertices h,
we can compute v′ as the minimum energy state of

Ec(v
′,h) by taking the gradient of the energy w.r.t.

v′. From Eqn. (6) follows:

∂Ec

∂v′ = 2(AT
dAd + ω2AT

hAh)v′ − 2ω2AT
hh.

Setting the gradient to zero, we obtain

v′(h) = ω2(AT
c Ac)

−1AT
hh, (8)

where Ac ∈ R(2n+2c)×(2n) is the combined rect-
angular matrix

Ac =

„
Ad

ωAh

«
,

such that AT
dAd + ω2AT

hAh = AT
c Ac.

We proceed to compute the gradient g of the de-
formation energy functional with respect to the han-
dles h: g = ∇Ed(v′(h)). According to the chain
rule,

g = ∇Ed(v′(h)) =

„
∂v′

∂h

«T

∇Ed(v′).

Recall that the Jacobian matrix
“

∂v′

∂h

”
is the matrix

of partial derivatives:

„
∂v′

∂h

«
=

0BB@
∂v′

1
∂h1

· · · ∂v′
1

∂h2c

...
. . .

...
∂v′

2n
∂h1

· · · ∂v′
2n

∂h2c

1CCA .

Direct computation of the Jacobian is inefficient:
from Eqn. (8) one can see that it requires explicitly
having the inverse matrix (AT

c Ac)
−1, which is ex-

pensive and would necessitate prohibitive storage,
because the inverse matrix is generally not sparse.
We describe how we circumvent this problem in
Section 4.3.

4.2 Efficient gradient computation

Since the gradient descent algorithm requires sev-
eral iterations until a minimum is reached, we are
interested in computing g as efficiently as possible.
The first part needed for the computation of g is
∇Ed(v′):

∇Ed(v′) = 2
“
AT

dAd

”
v′. (9)

We can use the fact that v′ is the solution of Lapla-
cian mesh editing, which can be accelerated by
computing the Cholesky factorization of the system
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matrix AT
c Ac . Since this matrix does not change

during our iterations, we can reuse this factoriza-
tion; computing v′ for a different right hand side
then only requires a (fast) backsubstitution step.

4.3 Efficient Jacobian computation

From Eqn. (8) we can directly obtain the Jacobian
of v′, since v′ is a linear function of h:

∂v′

∂h
= ω2(AT

c Ac)
−1AT

h.

According to the structure of Ah (Eqn. (4)), it
is easy to see that the Jacobian simply consists
of the relevant columns of (AT

c Ac)
−1. Let us

denote the individual columns of (AT
c Ac)

−1 by
m1,m2, . . . ,m2n. Then„

∂v′

∂h

«
= ω2(m1, · · · ,mc,mn+1, · · · ,mn+c).

To avoid explicitly computing the inverse matrix
and then taking some of its columns, we observe
what happens if we actually use all the columns.
By “pretending” that the Jacobian actually equals
ω2(AT

c Ac)
−1, we obtain the following “overcom-

plete gradient”:

g̃ = (ω2(AT
c Ac)

−1)T(2(AT
dAd)v′) (10)

= 2ω2(AT
c Ac)

−1AT
dAdv

′. (11)

(Here we used the fact that since AT
c Ac is symmet-

ric, its inverse is also symmetric.) We can easily
obtain g̃ as the solution of the following linear sys-
tem:

(AT
c Ac)g̃ = 2ω2(AT

dAd)v′.

This system is quite efficient to solve: it only re-
quires one more back-substitution, since the pre-
factorization of the system matrix AT

c Ac is already
given.

Finally, we observe that since the real gradient
g only has 2c rows, and in order to compute it we
need the 2c columns of the inverse matrix, we can
actually obtain g from g̃ simply by erasing the un-
necessary rows and only keeping the rows 1, . . ., c,
n + 1, . . ., n + c.

4.4 Reprojecting gradients

To minimize deformation energy we apply the gra-
dient descent algorithm. Given the gradient g of

the deformation energy with respect to the handle
vertices h, we compute new handle positions h′ by
taking a small step into the opposite direction of the
gradient of h:

h′ = h− λg.

Recall that we require the boundary vertices h to
lie on the user-sketched curve γ in order for the de-
formed shape S ′ to follow the user-sketch. The new
handle positions h′ that result from an optimization
iteration generally do not lie on γ anymore. To fix
this, we reproject the handles h′ onto γ.

We have implemented the reprojection of h′ onto
γ as a simple orthogonal projection; i.e., for each
handle vertex v′c, c ∈ C, we find the nearest point
on γ. We denote the vector of reprojected handle
vertices by h′

proj. The reprojected handle h′
proj

is then used to compute the new energy gradient,
and the algorithm is iterated until convergence. We
found that approximately 50 iterations combined
with a stepsize of λ = 0.5 yielded good visual re-
sults in all cases and thus used those values in all
our examples .

5 Deforming and cloning

To finally compute the deformed image from the de-
formed quad mesh we apply texture mapping with
bilinear interpolation, which can be quickly per-
formed by graphics hardware. Lastly, the resulting
image is composited onto the target background im-
age with Poisson cloning as illustrated in Figure 1.
For completeness, in the following we briefly de-
scribe the compositing algorithm.

The final image is a result of an optimization pro-
cess that minimizes the squared difference between
the gradients of the unknown region in the target
image and the given gradients of the pasted image
for target boundary conditions. This results in a so-
lution that has gradients similar to the original im-
age while the boundary constraints ensure that the
resulting colors match the given boundary colors.

The optimization amounts to solving the Poisson
equation on the pasted image domain, to reconstruct
the three color channels. Using sparse linear solver
libraries, e.g. TAUCS [13], we can do this very ef-
ficiently by factoring the Laplace matrix once and
solving by backsubstitution. This even allows inter-
actively moving the pasted region around the target
image, since only the right-hand side of the system
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changes, and thus the cloning can be recomputed
very quickly.

6 Results

We have successfully applied the proposed method
to various images and show comparison results be-
tween original, initially deformed and optimized
images in Figure 6 and Figure 7. As can be seen
in the resulting optimized images, visual distortions
in the deformed image are minimized by our ap-
proach, while still following the user’s sketch.

In Figure 8 we show the deformation energy gra-
dients with respect to the handle vertices. The
length of the gradient vectors is exaggerated by a
factor of 10 for illustration purposes. Note that
in the initially deformed mesh, the gradient vec-
tors have large components tangential to the bound-
ary curve, indicating that mesh deformation could
be reduced by moving vertices along the bound-
ary. As the minimization procedure progresses, tan-
gential components become smaller and the proce-
dure converges in all gradients being orthogonal to
the sketch. Figure 4 shows another example of an
optimized mesh. Applying our energy minimiza-
tion algorithm removes the strong shearing artifacts
clearly noticeable in the initially deformed mesh.
The result is a mesh with a structure very close to
the original mesh, leading to smaller visual distor-
tion in the deformed image.

The performance of our approach depends on the
size of the involved linear system, i.e. on the size
of the underlying mesh that is to be deformed. See
Table 1 for a comparison of execution time against
various mesh sizes, taken from the example in Fig-
ure 5. While using coarse meshes provides interac-
tive feedback within fractions of a second, higher
resolutions take significantly longer to compute but
result in less distortions in the final deformed im-
age. Note that only the minimization operation (last
column in Table 1) has to be executed when redraw-
ing a sketch, all other parts are precomputed.

We show a comparison of the influence of
varying handle weights on the deformation re-
sults in Figure 3. Note that exactly following the
user-sketch using higher handle weights results in
stronger deformations in the initial deformation re-
sult. Our proposed deformation minimization re-
moves those distortions while still following the
user-drawn outline.

vertices init fact. ∇Ed min.
300 0.047 0.234 0.172 0.344
916 0.141 0.765 1.141 1.078
3491 0.438 2.562 4.204 4.39

Table 1: Performance data measured in seconds on
an Intel Core 2 Duo 2.4 Ghz with 2 GBytes RAM.
From left to right: Number of vertices in the un-
derlying quad mesh, time to create the system ma-
trix Ac, time needed to compute a sparse factor-
ization of AT

c Ac, time needed for computing the
AT

dAd part of the gradient of the deformation en-
ergy and time needed to execute 50 iterations of our
minimization algorithm in order to compute the op-
timized image.

7 Discussion

We have presented a fast and robust optimization
technique that implements sketch based image de-
formation resulting in high quality deformation re-
sults without visible distortions.

Our technique is interactive up to medium mesh
resolutions and provides quick feedback when re-
drawing a boundary since the most expensive com-
putations (factoring the system matrix and comput-
ing ATA) only have to be done once. It is also easy
to implement since computing the gradient with re-
spect to the handle vertices, as shown in Eqn. (11),
reduces to simply solving two linear systems.

The constrained energy minimum is usually not
unique – depending on the initial boundary match-
ing the gradient descent procedure converges to the
closest local minimum. Also, as the deformation
energy is invariant under rotations, near circular
boundaries could lead to ambivalent minimum en-
ergy states. In practice, we have not observed this
problem. In any case, the user could add informa-
tion on corresponding points on the boundary to re-
solve ambiguities.

Our current implementation requires the user to
resketch the whole boundary for each modification,
which can be cumbersome. Future work may thus
include boundary manipulation techniques, allow-
ing the user to edit small parts of the boundary
instead of doing a complete resketch. This may
be achieved by using intuitive curve editing inter-
faces [6].
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Figure 5: Deformation results using various mesh resolutions. From left to right: Using quad sizes of
20× 20, 10× 10 and 5× 5 pixels, with constant handle weights ω = 1.0.

(a) Original (b) Initial Deformation (c) Energy Minimized

Figure 6: Bending a pineapple. The result of the initial deformation (b) shows strong distortions. After
minimizing the deformation energy, visible distortions are eliminated (c).

(a) Original (b) Initial Deformation (c) Energy Minimized

Figure 7: Bending the top of a cactus to the right. Again, the original, undeformed image is shown in (a),
the initially deformed image in (b) and the optimized image after applying 50 iterations of our deformation
minimization algorithm is shown in (c).
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0 iterations 1 iteration 5 iterations 50 iterations

Figure 8: Development of a deformed mesh and its associated gradients of the handle vertices (blue lines)
during the optimization process. The image on the top left corresponds to the leftmost, unoptimized mesh
while the image on the top right corresponds to the optimized mesh on the right after applying 50 iterations
of our optimization algorithm. Gradient vectors are scaled by a factor of 10 for illustration purposes.
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Abstract

This article presents a method to improve camera
calibration by separating determination of the non-
linear calibration parameters from that of the lin-
ear ones. We measure correspondences between the
distorted image on a camera target and a flexible
undistorted calibration pattern displayed on a TFT
monitor. Using these correspondences the image
of the camera may be projected onto the plane of
the calibration pattern to remove the distortion. We
prove that this projection follows the principles of
a pinhole camera and call it virtual camera. Using
the undistorted images of the virtual camera for tra-
ditional camera calibration methods, linear camera
parameters can be calculated with a 7.5% to 39.5%
higher precision compared to Zhang/Heikkilä. The
described procedure allows a camera calibration
process in a non-iterative way.

1 Introduction

Every time a camera is used for geometric measure-
ment, which is determination of the position or size
of an object or its distance to another object, it is
necessary to know the properties of the optical sys-
tem of the camera.

Determining these properties is a classic research
topic in computer vision [5][10][12] so the reader
is refered to established literature (e.g. [4], chap-
ter 6) for description of the parameters and how to
work with them. The main parameters needed for
measurement are the linear extrinsic and intrinsic
camera parameters. Extrinsic parameters describe
the position C̄c (translation to the origin of the co-
ordinate system1) and the orientation R̄c (rotation)
of the camera. Linear intrinsic camera parameters

1Cartesian coordinates are marked here with a crossbar over
the letter whereas there is no additional tag for homogeneous co-
ordinates.

describe the linear properties of the optical system
within the camera – i.e. the focal length f , aspect ra-
tio of the pixels sx/sy , shear r, and displacement of
the principal point (hx, hy). The linear parameters
may be conveniently combined into the so called
camera matrix Mc:

Mc = KcRc (1)

with

Rc =

»
R̄c

0
0
1

– »
1
0
−C̄c

1

–
=

»
R̄c

0
−R̄cC̄c

1

–
(2)

Kc =

24 fsx r hx 0
0 fsy hy 0
0 0 1 0

35 (3)

Non-linear parameters describing radial, tangen-
tial, or prism distortion are also considered as in-
trinsic parameters (see [13] for their description).

Most calibration methods for single cameras
(Tsai [10], direct linear transformation [4], Zhang
[12], Heikkilä [5]) derive the parameters of the cam-
era model on the basis of corresponding points in
the world coordinate system and on the camera tar-
get. For this procedure, they need one or more cam-
era images of a planar calibration pattern or calibra-
tion object with marks on the surface with known
size or distance to each other. For each visible mark
the position on the camera target is determined giv-
ing a list of correspondences between points Pi in
world coordinates and points pi in camera target
coordinates, i.e. pixel. By using Equation (4) of
the mapping of a pinhole camera, these correspon-
dences are also modeled by algebraic means. The
projective linear factor λ is calculated such that the
third component of p equals 1.

p = λMcP (4)
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Traditional calibration methods determine the
coefficients of the camera matrix Mc minimizing
the sum of the errors d done by mapping the known
world points to the measured camera points:

M̂c = argmin
Mc

X
i

d(λMcPi, pi) (5)

Prerequisite for this approach is that the corre-
spondences between points in the world and the tar-
get can be described by the pinhole camera model.
The image of a scene taken by a pinhole camera is
undistorted. A real camera uses a system of dif-
ferent lenses and an aperture within the course of
the light rays to bundle the light projecting a scene
onto the camera target, so the image of the scene
becomes distorted. The distortion by the optical
system is represented here shortly with the function
l : (pc → p), pc, p ∈ (R,R, 1)T . With this func-
tion, mapping a point onto the camera target may be
written in contrast to Equation (4) as:

p = l(λMcP ) (6)

To be able to determine the camera parame-
ters although the mapping is distorted, many au-
thors typically describe the distortion l using a non-
linear mathematical model. The radial distortion
describes the major part of the distortion. It is esti-
mated by most of the established calibration meth-
ods like [12]. Some approaches additionally model
tangential distortion [5] and prism distortion [13].
By naming the distortion model lθ with the re-
spective parameter set θ, the camera parameters are
again determined by minimizing the sum of errors:

(M̂c, θ̂) = argmin
Mc,θ

X
i

d(lθ(λMcPi), pi) (7)

Multi camera calibration methods work quite
similar but they use corresponding points on camera
images from different views. Silhouettes [8] or cor-
responding feature points [9], on the recorded scene
may be used.

An analytical solution of Equation (7) cannot be
calculated in general. For this reason, an initial set
of distortion parameters is presumed to be able to
estimate the camera matrix Mc. Then the distortion
parameters are adjusted to minimize the projection
error. Afterwards, the camera matrix is estimated
again. This is done iteratively until the projection

error is small enough or there are no improvements
by adjusting the distortion parameters.

The basic premise for this approach is that the
distortion of a real lens system can be completely
described using algebraic formulas and that their
degrees of freedom can be calculated. Both assump-
tions are usually not valid: The lenses are different
to each other and normally have unknown charac-
teristics. There are manufacturing tolerances in the
fabrication process of both the lenses and the lens
system; the lenses are not perfectly symmetrical,
they are not exactly concentric and orthogonal to the
optical axis, etc. In addition, the global optimum of
Equation (7) cannot be calculated.

In this article we compensate the non-linear dis-
tortion l of the optical system prior to the camera
calibration. The distortion is measured by associ-
ating every point of the camera target with a cor-
responding point on a known image plane. If it is
known for every point of the camera target which
point of the image plane it is the mapping of, then
every camera image can be undistorted by repro-
jecting it onto that image plane.

A similar approach was presented in [7] where
correspondences between camera target and image
plane were measured using structured light shown
on a plasma display panel and then used to undis-
tort camera images. In contrast to that paper, we
quantify exactly the projection error at each point
of the camera target, whereas the other paper justs
fits in a line for visual control of its results. Also,
we proceed using the undistorted images for camera
calibration.

In photogrammetry, distortions are sometimes
calculated in a comparable manner using a réseau
technique [2]. A small list of correspondences is
build by measuring the position of grid points pro-
jected onto a film at exposure. The undistorted po-
sitions for the points of the image are then inter-
polated using these measured control points. Due
to the control points being too sparsely distributed,
this approach lacks accuracy.

We prove algebraically that by undistorting cam-
era images with the presented method the real cam-
era target is substituted by a virtual target with
known measurements and without distortions. The
usual iterative two-step camera calibration proce-
dure is substituted by a three-step non-iterative pro-
cedure. The first step of the procedure results in an
undistorted image of the scene. A second step ad-
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justs the virtual target to an upright position. This
step can be skipped if the undistorted images are
used for photogrammetry only. After both steps,
there is a complete mapping from the real camera
to a virtual camera which is without distortions and
which has an optical axis identical to that of the real
camera.

In a third step, the images undistorted with this
mapping are used for traditional camera calibration,
skipping the estimation of the non-linear parame-
ters, to obtain the linear camera parameters of the
virtual camera. The big advantage is that the undis-
torted image of a calibration pattern follows the lin-
ear pinhole camera model, so the calibration proce-
dure is much more stable and precise since estima-
tion of the non-linear parameters can be skipped.

The following Section 2 describes the compen-
sation method in detail. Subsection 2.1 explains the
first step, the measurement and compensation of the
distortions, and Subsection 2.2 explains the second
step, the adjustment to an upright position. The last
Subsection 2.3 discusses practical considerations of
the proposed method. In the following Section 3,
measurements of the accuracy of the method and
their results are shown. The last Section 4 summa-
rizes the paper.

2 Measurement and compensation of
non-linear distortion

We assume that it is practically impossible to com-
pletely describe the properties of the distortion of an
optical system with a parametrized algebraic model.
Therefore, we determine for every point p on the
camera target the exact coordinates of the corre-
sponding point PV on a real image plane V whose
image is p. Having corresponding points for all
points on the camera target we are able to reproject
the camera image onto the plane V .

Figure 1 clarifies this approach. The object space
is projected onto the camera target through the fo-
cus. Due to the camera lens system, the pro-
jected image is distorted which is indicated by the
non-rectangular camera target. The light ray that
projects the world point PW onto the point p on the
camera target also goes through point PV of the vir-
tual target. As the image plane is undistorted by
definition, the camera image becomes undistorted

by reprojecting it onto V , the virtual target2.

WP

p
PV

focus

image plane V
(virtual target)

projectioncamera target

reprojection

object space

Figure 1: Mapping onto the virtual target

A set of points on the image plane is arranged
on a rectangular grid. Within the coordinate sys-
tem of the image plane, the position in homoge-
neous coordinates is pv = (u, v, 1)T . The image
plane is at position C̄I in world coordinates and is
rotated in space with the rotation matrix R̄I . Both
matrices may be combined to RI = R̄I

ˆ
I| − C̄I

˜
.

Naming the horizontal distance and the vertical dis-
tance between the points on the grid on the image
plane with dx and dy , respectively, one can calcu-
late the world coordinates PV of the point pv with
SI(u, v, 1)T = (dxu, dyv, 0, 1)T ):

PV = RISIpv (8)

with RI =

»
R̄I −R̄IC̄I

0 1

–

and SI =

2664
dx 0 0
0 dy 0
0 0 0
0 0 1

3775
The function f maps all points (u, v, 1)T of the

image plane onto the camera target:

p = l(λIMcPV ) (9)

= l(λIMcRISI(u, v, 1)T )

= f((u, v, 1)T ) (10)

By determining the correspondences Φ between
points (u, v)T on the image plane and points
(x, y)T on the camera target f : (u, v, 1) →
(x, y, 1) can be ascertained. Thus, by building the
inverse f−1 : (x, y, 1) → (u, v, 1) one gets the
mapping (provided that l is bijective):

f−1(p) = S−1
I R−1

I M−1
c λ−1

I l−1(p) (11)
2In the following text, the term image plane is used when talk-

ing about the source of the calibration points. The term virtual
target is used when the target of the reprojection is meant. How-
ever, these two planes are the same.
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By reprojecting the point PW onto the virtual target
one receives

f−1(l(λW McPW ))

= S−1
I R−1

I M−1
c λ−1

I l−1(l(λW McPW ))

=
λW

λI
S−1

I R−1
I PW (12)

Since SI is not a square matrix, S−1
I can be cal-

culated using the pseudo inverse. Please note that
the term S−1

I R−1
I has size 3 × 4 like a homoge-

neous camera matrix; therefore it maps the point
PW onto the virtual target with the camera matrix
MV = S−1

I R−1
I with λV = λW /λI . Hence,

pv = λV MV PW (13)

This is the reason why we call the reprojection onto
the image plane a virtual camera. In contrast to
Equation 6, this mapping is calculated without the
distortion by function l.

If the image plane is orientated exactly orthogo-
nal to the optical axis of the camera and the hori-
zontal and vertical axes of the image plane and the
camera target are parallel to each other, then the re-
projected image is free of any distortion, no mat-
ter what physical origin it has. If the image plane
was not adjusted exactly, then the reprojected im-
age shows a certain slanted position. Subsection 2.2
describes how to compensate this slant.

2.1 Undistorted Virtual Camera

The first step of the compensation method is to
determine the correspondences Φ between points
(ui, vi, 1)T on the image plane V and points
(xi, yi, 1)T on the camera target. The exact posi-
tion and orientation of the plane in the world is rel-
atively irrelevant for this step given that only points
within the image plane are mapped onto the camera
target and the camera image is sharp enough to de-
termine the position of projected points on the cam-
era target.

In order to determine the correspondences, points
are displayed on the visible part of the image plane.
The method used for that does not matter in general
as far as the position is exact and well-known. A
conventional TFT-monitor is used here (Subsection
2.3) because a single white pixel on a black back-
ground has the effect of a point light source. For
every point (ui, vi, 1)T , ui, vi ∈ N displayed on

the image plane, which lies in the field of view of
the camera, the position of its image on the cam-
era target is determined with sub-pixel accuracy by
calculating its centroid.

The list of correspondences Φ : (ui, vi, 1)T →
(xi, yi, 1)T of all observable points of the image
plane describes the mapping function f with very
fine granularity. We use f for two purposes:
• Determine the inverse function f−1 in order to

convert camera target coordinates (2.1.1)
• Resample camera images onto the virtual tar-

get using a scanline-algorithm (2.1.2)

2.1.1 Building the Inverse Mapping Function

The points (ui, vi, 1)T on the image plane V build
a dense grid at discrete equidistant coordinates, i.e.
ui, vi ⊂ N. The corresponding points (xi, yi, 1)T

on the camera target are distributed densely, too, but
not necessarily at equidistant locations, i.e. xi, yi ⊂
Q. Inverting these correspondences directly would
result in an inverse function f−1 : Q2 → N2 of the
optical mapping function f .

To be able to easily reproject coordinates mea-
sured on the camera target onto the virtual target,
the inverse function f−1 should have a domain in
N2 and its codomain in Q2. This means, for every
point (xj , yj , 1)T , xj , yj ∈ N, on the camera tar-
get a point (uj , vj , 1)T , uj , vj ∈ Q on the image
plane has to be determined by interpolation.

This is done here with an image warping algo-
rithm [11]. When calculating the inverse function it
is assumed, that the mapping function is locally lin-
ear, which is reasonable as the points are very close
to each other.

The resulting inverse function f−1 can then
be used to convert camera target coordinates into
undistorted coordinates of the virtual target.

2.1.2 Undistortion Using a Scanline Algorithm

The list of correspondences may also be used di-
rectly, i.e. without inverting, to undistort camera im-
ages.

It was determined for every point Pi of the visible
image plane onto what coordinates pi on the camera
target it maps. Therefore, it is possible to reproject
the camera image onto the image plane by taking
the pixel value at position pi for the point Pi on the
image plane. As the coordinates of the points pi are
not discrete in general, the color/grey values have
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to be interpolated, e.g. using a Sinc-function with
a Blackman-Harris window[3]. The filters for the
horizontal and vertical direction are separable, and
their coefficients have to be calculated only once for
a correspondence list. Therefore the calculation ex-
pense for the undistortion is within bounds for this
method. However, a bilinear interpolation would be
less expensive, but would result in images of lower
quality.

2.2 Deskewed Undistorted Virtual Cam-
era

If the image plane is not orthogonal to the optical
axis of the real camera, the reprojection adds a slant
to the image. To completely undistort reprojected
images, this slant has to be compensated. As it can
be seen in Figure 1, the real camera target and the
virtual target have the same focus. This fact does
not change if the virtual target is tilted. Two map-
pings that have the same focus are connected by a
homography, i.e. one mapping can be transferred
into the other. The mapping tilting the virtual tar-
get into the correct orientation is given by

p′v = M ′
V M−1

V pv (14)

Each point pv is reprojected into space using the in-
verse of the camera matrix MV of the virtual cam-
era to be projected onto the upright virtual camera
using the camera matrix M ′

V . The term M ′
V M−1

V

is denoted as homography.
The camera matrix M ′

V is a short form for
K′

V R′
V and is unknown from the beginning. By us-

ing a traditional camera calibration method, the ma-
trices KV and RV of the virtual camera are deter-
mined using undistorted camera images (see 2.1.2).
The intrinsic camera matrix K′

V should have the
same focal length and the same image resolution as
the virtual target, but the principal point of the up-
right virtual target is moved to P ′, the center of the
image.

To move the principal point to the image center,
the optical axis of the virtual target has to be rotated.
Figure 2 demonstrates this: On the left side, there
is the real camera target with the optical axis Ac

defined by Rc orthogonal on its center. The tilted
virtual target is shown on the right side of the dia-
gram. It is clear, that tilting the image plane may
move the principal point outside of the actual im-
age region. Now the principal point P is moved to

AV

P

P’
A

f

c=A’Vα

deskewed
virtual target

virtual target
Focus

camera target

Figure 2: The virtual target is tilted into an upright
position such that its principal point P moves to the
center P ′ of the image.

the center P ′ of the image, rotating the optical axis
of the virtual target to that of the real target. The
angles α and β needed for that rotation can be cal-
culated directly from the difference of P and P ′.
The optical axis AV defined by RV has to be ro-
tated around these angles to obtain A′

V defined by
R′

V , i.e. R′
V = Ry(β)Rx(α)RV with Rx(α) and

Ry(β) being the rotation matrices around the x- and
y- axis.

Finally, the homography M ′
V M−1

V required to
tilt the virtual target into an upright position accord-
ing to Equation (14), is given by:

M ′
V M−1

V = K′
V R′

V (KV RV )−1

= K′
V Ry(β)Rx(α)RV R−1

V K−1
V

= K′
V Ry(β)Rx(α)K−1

V (15)

By applying this homography onto the camera
matrix MV of the virtual camera, the virtual cam-
era gets an optical axis that is exactly orthogonal to
the virtual target and which intersects it in its cen-
ter. The deskewed virtual camera is completely de-
scribed.

2.3 Practical Considerations

This subsection describes the technique to deter-
mine the correspondences required for the undistor-
tion.

Firsts tests were done using a conventional TFT
monitor. It is reasonable to assume that its pixels
are equidistant in both directions, their distance can
be measured and the horizontal and vertical axes are
orthogonal to each other. The prerequisites for us-
ing it as a image plane are therefore given.

147



To measure the correspondences the camera is
orientated towards the TFT-monitor such that the
camera image only shows pixels of the monitor. To
prevent reverberations from the border of the mon-
itor, a certain distance to it has to be kept. A white
pixel on the monitor illuminates some sensor ele-
ments (ẋj , ẏj) of the camera target with the inten-
sities I(ẋj , ẏj). The center of gravity of the inten-
sities is given by the sum of the positions of the
elements each weighted with its intensity [1, Eq.
3.291]. For this method to work, the images of
the points on the monitor must be relatively sharp.

To normalize the intensity values, a black and a
white screen is shown and captured by the camera
at the beginning. The brightness is adjusted to the
best intensity range while preventing over- and un-
derexposure. Next, the center, the direction of the
axes, and the horizontal and vertical distances of the
points on the camera target are determined by dis-
playing three points in the center of the screen.

Now the actual measurement of correspondences
is started. A pattern consisting of single points ar-
ranged uniformly with horizontal and vertical dis-
tances rx and ry , respectively, is shown full screen.
The shorter the distance between the points, the
more points are displayed at the same time and
therefore, the less images have to be captured. On
the other hand, the distance between the points has
to be large enough such that the unsharp images of
two pixels do not overlap. The tests for this arti-
cle were done with a raster distance of (rx, ry) =
(32, 32).

Each point pattern is captured four times to re-
duce the effect of camera noise. Then the point
pattern is displayed at a new position. After all
32 ∗ 32 = 1024 point patterns, the correspondence
for every visible pixel on the monitor is measured;
the correspondence list Φ is completely determined.

3 Experimental Results

In this section, results of our camera calibration
method are presented and compared with a tradi-
tional calibration method. We used an IEEE1394
Prosilica EC 1380C single-CCD chip camera with a
mounted Schneider-Kreuznach Cinegon 1.4/8-0512
industrial lens. The full-color RGB images used
for the experiments were calculated using the high-
quality AHD demosaicing algorithm [6]. The non-
linear distortions were determined using a NEC

Figure 3: Upper left quarter of the difference be-
tween screen-shot and undistorted camera image of
about 600×450 pixel size. White means no differ-
ence, blue medium difference and red means big
difference. To be able to assess the colors an ad-
ditional color wedge is added. On the left side, a
zoom on the image shows that the line is perfectly
undistorted and has constant width.

MultiSync LCD1860NX TFT monitor.
In the first step, the correspondence list was de-

termined. Then, a checkerboard was displayed on
the monitor without touching camera and monitor.
The image captured by the camera was then undis-
torted using the scanline algorithm of Subsection
2.1.2. Now the difference between the undistorted
camera image and the screen-shot was calculated
and converted to a colored gradient to be able to
assess the difference values. No difference is dis-
played as white, medium difference as blue and big
difference as red. The upper left quarter of the re-
sulting image is shown in Figure 3.

There are three main observations: First of all,
one can recognize the checkerboard pattern. The
reason for this is that the black of the screen-shot
is really black (grey value 0) whereas the black as
seen by the camera is only dark grey (grey value
10). The difference between black and dark grey
can be observed. Secondly, the difference increases
near the upper left corner. This can be traced to the
fact that the pixel’s luminosity on the TFT monitor
lowers with a greater viewing angle. Both errors are
due to an insufficient normalization of the intensity
signal but have only a minor impact on the undis-
tortion method.

The third observation is that one can clearly see
the edges between the chessboards, due to a slightly
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unsharp camera image. It is important that the edges
are absolutely straight and have constant width.
This means that the image was undistorted accu-
rately. Otherwise, the width of the edges would dif-
fer.

A second test examines the accuracy of the undis-
tortion more precisely. Camera images of the cap-
tured point patterns used for determining the cor-
respondence list Φ are undistorted using the scan-
line algorithm from Subsection 2.1.2. These undis-
torted images are again used as input for determin-
ing a correspondence list. If the determination of
the position of the points as well as the compensa-
tion of the optical mapping errors based on the first
correspondence list was perfect, every point in the
second correspondence list would be mapped to its
original location.

Measuring the distributions of the reprojection
errors in horizontal and vertical direction indicate
that both are approximately Gaussian distributed.
The standard deviation of the error in horizontal
direction is 0.0344 pixel and in vertical direction
0.0305 pixel. More than 99% of the errors are
lower than 0.09 pixel and 0.078 pixel, respectively.

The last experiment shows that by preprocess-
ing camera images with the presented undistortion
method, the accuracy of traditional camera calibra-
tion methods is substantially improved.

To estimate the intrinsic camera parameters of a
traditional calibration method, we use the camera
calibration tool of Jean-Yves Bouguet3 which im-
plements Zhang/Heikkilä [12][5]. Optionally, some
non-linear distortion parameters, i.e. radial distor-
tion of first to third order (κ1-κ3) and tangential
distortion of first and second order (t1, t2) can be
estimated. Pictures of a flat calibration pattern in 10
different positions and orientations are captured for
this purpose.

The standard deviations of the parameters in Ta-
ble 1 are given in pixel. In the first column the
method used to undistort the camera images is
listed. The second to fifth column give the stan-
dard deviations of the intrinsic camera parameters4.
Finally, the reprojection error for the calibration
points is given in the last two columns.

3Freely available under http://www.vision.caltech.
edu/bouguetj/calib_doc.

4The used calibration toolbox outputs three times the parame-
ters’ standard deviation instead because it aims to show the uncer-
tainties.

The first row shows the standard deviation of the
linear intrinsic camera parameters without prior es-
timation of the non-linear distortion parameters. In
the following five rows, the stabilities of the intrin-
sic parameters are listed if the non-linear distortion
parameters are estimated using the toolbox. The
second to last row shows the results of the estimated
parameters if the camera images are first undistorted
using our method and then are used for estimating
the linear camera parameters. The last row lists the
results when applying both the traditional and our
method for camera calibration.

As can be seen from the standard deviations in
the table, the accuracy of the estimation of the in-
trinsic linear camera parameters is substantially im-
proved if the images are undistorted before with the
presented method, while decreasing the reprojec-
tion error. Since different camera parameters have
different stability in the reference method, only the
most stable results are used here for comparison:
It can be calculated, that the accuracy of the focal
lengths fsx and fsy is improved by 20% and 7.5%,
respectively5, whereas the stability of the estimation
of the principal point (hx, hy) is yet improved by
37.5% and 40%, respectively. When trying to es-
timate any distortion parameters on the undistorted
images, the reprojection error is slightly improved
but the accuracy of the camera parameters drops.

It has to be pointed out that these are results for
a normal lens, i.e. no wide-angled or fisheye lens.
This is especially remarkable because the lens is
of high industrial quality, which normally means it
was manufactured with high precision.

4 Conclusions

This article introduces a non-iterative camera cali-
bration procedure. The method uses a flexible cal-
ibration pattern displayed by a TFT monitor. By
capturing a high number of different calibration pat-
terns from the monitor, a correspondence list be-
tween pixels on the camera target and points on the
calibration patterns is calculated. Using this cor-
respondence list, subsequent images may be undis-
torted precisely by projecting them onto a virtual
target. The intrinsic linear camera parameters of
this virtual target are then determined using a tra-
ditional calibration method. These can be adjusted

5Since the pixel width and height need not be equal the focal
lengths may be different.
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Intrinsic parameters Reprojection error
Undistortion method σ[fsx] σ[fsy] σ[hx] σ[hy] σ[ex] σ[ey]

no undistortion 1.6964 1.7701 0.9062 1.1979 0.9673 0.7906

re
fe

re
nc

e undistortion using κ1 0.5728 0.5877 0.4156 0.4982 0.2534 0.3144
undistortion using κ1, κ2 0.4846 0.4980 0.3547 0.4228 0.1905 0.2812
undistortion using κ1, κ2, t1 0.4700 0.4836 0.3430 0.6514 0.1899 0.2684
undistortion using κ1, κ2, t1, t2 0.4697 0.4833 0.8893 0.6513 0.1898 0.2681
undistortion using κ1-κ3, t1, t2 0.4833 0.4976 0.8898 0.6509 0.1896 0.2681

ne
w

undistortion using virtual camera 0.3749 0.4479 0.2144 0.2555 0.1599 0.2316
undistortion using virtual camera
and additionally κ1-κ3, t1, t2 0.3785 0.4335 0.7552 0.5151 0.1433 0.2236

Table 1: Impact of the virtual camera on camera calibration. The standard deviations of the parameters are
given in pixel.

to rotate the optical axis of the virtual camera onto
that of the real one.

Examination of the accuracy of the undistortion
method shows a very low reprojection error. Undis-
torting camera images with our method greatly im-
proves the accuracy of traditional calibration meth-
ods by 7.5% to 39.5%. Since the undistortion pro-
cess is independent from the actual camera calibra-
tion process, it is very suitable to be used as a pre-
processing method.

In particular, multi camera calibration methods,
which are very complicated for distorted camera
images, should greatly benefit by using this method.
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Abstract

We present an algorithm for the efficient and accu-

rate computation of geodesic distance fields on tri-

angle meshes. We generalize the algorithm orig-

inally proposed by Surazhsky et al. [1]. While

the original algorithm is able to compute geodesic

distances to isolated points on the mesh only, our

generalization can handle arbitrary, possibly open,

polygons on the mesh to define the zero set of the

distance field. Our extensions integrate naturally

into the base algorithm and consequently maintain

all its nice properties.

For most geometry processing algorithms, the

exact geodesic distance information is sampled at

the mesh vertices and the resulting piecewise lin-

ear interpolant is used as an approximation to the

true distance field. The quality of this approxima-

tion strongly depends on the structure of the mesh

and the location of the medial axis of the distance

field. Hence our second contribution is a simple

adaptive refinement scheme, which inserts new ver-

tices at critical locations on the mesh such that the

final piecewise linear interpolant is guaranteed to be

a faithful approximation to the true geodesic dis-

tance field.

1 Introduction

The computation of geodesic distances on a triangle

mesh has many applications in geometry process-

ing, ranging from segmentation and low distortion

parametrization to motion planning and tool path

optimization. In most cases the true geodesic dis-

tance field is approximated by some fast marching

method which leads to acceptable results on nicely

structured meshes and away from singularities of

the distance function. However, such simple propa-

Figure 1: The isolines of the geodesic distance field

with respect to the boundaries of the car model are

visualized.

gation schemes tend to become numerically unsta-

ble on not-so-nice meshes as they often occur in

practical applications. Moreover, since they use the

same mesh as a representation for the input geom-

etry as well as the distance field, the precision is

limited by the mesh resolution. Surazhsky et al. [1]

present a practical implementation of the geodesic

distance algorithm of Mitchell et al. [2]. This was

the first time that an exact geodesic distance com-

putation has become applicable to arbitrary input

meshes of practically relevant complexities. How-

ever, in this algorithm, the distance computation is

initialized by one or more isolated points on the

mesh and the distance is propagated from them (in

Section 3 we present a summary of this algorithm).

Unfortunately, for many practical applications this

is too restricted. In general one would like to be

able to compute the geodesic distance with respect

to a curve on the surface, i.e., a polygon on the mesh

since this allows us to take arbitrary boundary con-

ditions into account. See Fig.1 for an example.
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2 Previous work

In this paper we address two elementary mesh oper-

ations, geodesic distance computation and adaptive

refinement.

Dijkstra’s algorithm for computing shortest paths

along edges can be used as an approximation for

the geodesic field. Lanthier et al. [3] improved the

initial poor results by adding many extra edges to

the mesh.

Kimmel and Sethian [4] adapted the fast marching

method to compute closer approximations of

geodesic distances. On well-shaped input meshes

this method performs very good, but in the case of

obtuse angles or needle triangles even improved

update rules and special handling as proposed be-

fore [5, 6, 7] can lead to large errors. Fast marching

algorithms are able to approximate the geodesic

distance field induced by polygonal sources, but

the quality strongly depends on the mesh structure

near the medial axis, which is typically not suited

to represent the geodesic field, as we show in this

paper.

The most famous exact algorithm was developed

by Mitchell et al. [2] in 1987 and the first practical

implementation was proposed eighteen years later

by Surazhsky et al. [1]. They showed that the worst

case complexity of O(n2 log n) is quite pessimistic

and in practice the average is close to O(n1.5)
which makes the algorithm practical for common

model complexities. Details of this algorithm are

presented in the next section. They also introduce

a merging operation to design an approximation

algorithm with guaranteed error bounds. Liu et

al. [8] studied a robust implementation strategy

which handles all degenerate cases that occur in

real world data. In this paper we will generalize

this exact and approximate algorithm from point

sources to arbitrary source polygons.

In the context of adaptive mesh refinement

two common techniques, namely red-green-

triangulations [10] [11] and
√

3-subdivision, lead

to regular structures and preserve the triangle qual-

ity.
√

3-subdivision is composed of one-to-three

triangle splits and edge flips which changes not

only the tessellation but also the geometry (and

hence the geodesic distance field) of a triangle

mesh and is thus not suited for our application.

s

x

y

b1b0

d0 d1

p1p0

s

w

(a) (b)

Figure 2: (a) Starting on the point source s a

(shaded) pencil of rays is propagated through three

unfolded triangles along of straight lines. Each win-

dow is highlighted by an arc which is always on

the edge side pointing to the source. (b) An edge

aligned two dimensional coordinate system is used

to compute new windows which are induced from

window w.

At the core of red-green-triangulations is the one-

to-four triangle split. Red and green tags are used to

preserve consistency. The refinement conserves the

original geometry and could be integrated into our

framework. However for our application a simpler

and more local refinement is possible which we

propose in section 6.

3 The exact geodesic algorithm

Since our algorithm is an extension of [1] we

briefly explain the basic principles and the resulting

base algorithm.

In the plane, the geodesic distance coincides

with the Euclidean distance. Hence, with respect to

an isolated point, it is the square root of a quadratic

function. On a triangle mesh, i.e. on a piecewise

planar surface, the geodesic distance with respect

to a point turns out to be a piecewise function

where in each segment the distance is given by the

square root of a quadratic function plus an optional

constant offset. This offset has to be introduced to

properly handle saddle points on the surface.

The central idea of the algorithm [1] is to prop-

agate exact distance information from one triangle

to its neighbors with a Dijkstra-type algorithm. The

key observation is that it is sufficient to store the

piecewise distance function on the edges of the tri-
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Figure 3: (a) The geodesic distance field w.r.t point p is computed on a cap consisting of triangles A,B,

and C. (b) Cutting along the edge pq unfolds the cap isometrically and enables the distance propagation

in the plane through windows w1 and w2. (c) The temporarily propagated windows v′1 and v′2 overlap in

the middle region. (d) The final windows v1 and v2 are properly cut to represent the piecewise geodesic

distance along the edge.

angle mesh since this is sufficient for the propaga-

tion and also for the exact evaluation of distances

everywhere on the surface.

For each edge of the mesh the algorithm main-

tains a list of segments, so-called windows. Each

window defines the geodesic distance field within a

pencil of rays covering both neighboring triangles

(see Figure 2). When distance information is prop-

agated across a triangle, the (incoming) windows

have to be mapped to the opposite side. The propa-

gation includes the proper intersection of windows,

because unlike the planar case on a surface prop-

agated windows can overlap. Since the distance

function is continuous, the intersection requires to

find the point where the distance function values in

both windows are identical.

We illustrate the procedure with a simple exam-

ple. The cap of Figure 3 (a) consists of three isosce-

les triangles A,B and C. Now we want to compute

the geodesic distance field w.r.t the point p. Since

p is coplanar with the triangles A and B they are

covered with a pencil of rays emanating from p

through single windows w1 and w2. To propagate

the distance information through w1 and w2 we cut

the cap along the edge connecting p and q and un-

fold the triangles isometrically into the plane, i.e.

all edge lengths and angles of the triangles are pre-

served (see 3 (b)). In this setting p is doubled into

pl and pr . Now we are ready to propagate the pen-

cil of rays defined by w1 and w2 across triangle

C and create new temporarily overlapping windows

v′1 and v′2 depicted in Figure 3 (c). Evaluating the

distances induced by both pencils of rays the win-

dows can be intersected and properly cut to final

windows v1 and v2 (see Figure 3 (d)) which cor-

rectly represent the continuous piecewise geodesic

distance function along the edge.

A nice feature of this window formulation is that

all computations can be formulated in local two di-

mensional coordinates, i.e. only the mesh topology

and scalar edge lengths are required. The neces-

sary condition for this edge based algorithm is that

geodesic paths can only pass through vertices with

a total angle greater or equal than 2π, i.e. saddles

and flat points. This result was proven by Mitchell

et al. in [2]. Saddle points and concave boundary

points act as pseudo sources which generate addi-

tional new windows covering the geometric shadow

of the locally expanded surface.

3.1 Base algorithm

At first all source windows in the immediate vicin-

ity of source points are created and pushed into a

priority queue preferring shorter distances, because

we want to compute the minimal geodesic distance.

Notice that in general the result is independent of

the propagation order but the priority queue en-

sures that windows are propagated as a wavefront

which gives a strong speedup and makes the al-

gorithm practical. Working off the queue the cur-

rent window is always propagated into the next un-

folded triangle, where new windows are created (

see Figure 2). When the front reaches saddle or

boundary vertices new source windows are added.

All new windows can overlap with already exist-

ing windows and must be intersected accordingly.

The algorithm terminates when all edges are parti-
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tioned by the minimal geodesic distance windows,

i.e. when the queue is empty. The pseudocode al-

gorithm is presented below and all necessary com-

putations are explained in more detail in the next

sections.

Algorithm 1 Exact Geodesic Field

sourceWs = createSourceWindows()

PQueue.add( sourceWs )

repeat

curW = PQueue.popFront()

newWs = propagate( curW )

newWs += saddleAndBoundaryWs( curW )

newWs = intersect( newWs, oldWs )

PQueue.add( newWs )

until queue.empty()

3.2 Circular window propagation

In the next section we will define a second type

of windows, so from now on windows originating

from point sources are called circular windows. The

starting point for a propagation is depicted in Figure

2 (b). Given a window w the corresponding edge

p0p1 is aligned to the x-axis of the local coordinate

system with the origin in p0. Each window is de-

scribed by a six tuple (b0, b1, d0, d1, σ, τ) with σ

representing the optional constant offset between a

pseudo source and a real source. The binary flag

τ determines on which side of the x-axis the un-

folded pseudo source s lies (symbolized in pictures

by the arc). The window extents are encoded in b0

and b1 which are in the range [0..|p0p1|]. Due to

the fact that the distances d0 and d1 of the window

endpoints from the pseudo source are known the un-

folded position s can be reconstructed via circle in-

tersection.

sx =
1

2
(b0 + b1 +

d2

0 − d2

1

b1 − b0

)

sy = −1τ
√

d2

0
− (cx − b0)2

Using the local coordinates of p3 which are com-

puted analogously to s the new windows are found

by 2D ray intersection. There are different constel-

lations which can lead to one, two or three (on sad-

dle points) new windows.

3.3 Circular window intersection

If two windows overlap and one provides a smaller

distance everywhere the other is simply clipped

against it. If both are minimal in part of the over-

lapping interval, both ranges are clipped to the point

where both distance functions are equal. Notice

that clipped windows have to be reinserted into the

queue because their priority can change. Using the

unfolded pseudo source s from the previous section

the distance function dc of an arbitrary point (px, 0)
in the interval of a window can easily be formulated.

Due to the fact that s is not necessarily a real source

(e.g. saddles induce pseudo sources) the distance σ

from all traversed pseudo sources to the real source

must be added.

dc(px) =
√

(px − sx)2 + s2
y + σ (1)

Trying to find the intersection of two such dis-

tance functions, namely dc1(px) = dc2(px) the

computation ends up as the solution of a quadratic

equation Ap2

x + Bpx + C = 0. In this case there is

exactly one solution in the overlapping interval and

the coefficients of the polynomial are

A = α
2 − β

2

B = γα + 2s1xβ
2

C =
1

4
γ

2 − |s1|2β2

α = s1x − s0x

β = σ1 − σ0

γ = |s0|2 − |s1|2 − β
2

4 Generalization to arbitrary sources

Our goal is to generalize the original geodesic dis-

tance computation algorithm from isolated points to

polygonal curves on the surface. In a planar config-

uration the Euclidean distance function to a polyg-

onal curve falls into several segments. In some seg-

ments the distance function is, again, the square root

of a quadratic function. Those segments correspond

to the vertices of the polygon. In other segments,

the distance function is just linear. These segments

correspond to the edges of the polygon. See Figure

1 for an example.

Going from the plane to a piecewise planar trian-

gle mesh, we can still propagate the distance func-

tion from one triangle to its neighbors by storing
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Figure 4: (a) An arbitrary point source p on the

surface induces three windows in the correspond-

ing triangle. (b) The six windows of a point source

on an edge.

windows of the piecewise distance function on each

edge. The only difference regarding the last section

is that now we need to handle two different types

of windows: the ones where the distance function

is of the form (1) and the ones where the distance

function is linear. The Dijkstra-type propagation

algorithm then has to handle all kinds of window

intersections: circular-circular, circular-linear, and

linear-linear. In the following we will give the ex-

plicit formulae for the corresponding intersection

points where the two distance functions coincide.

Additionally we need the ability to create circular

source windows induced by arbitrary points on the

surface which will be discussed first.

4.1 Arbitrary points

The original algorithm [1] was proposed to allow

point sources only at vertex positions. However it is

straightforward to overcome this limitation. Given

an arbitrary point p on the surface the three edges

of its containing triangle are initialized with win-

dows emanating from this point as depicted in Fig-

ure 4. The new created windows are intersected

with all other windows on an edge to handle multi-

ple sources. Special care is needed for points lying

exactly on an edge. In this case the edges of both

triangles must be initialized.

4.2 Polygons on the mesh

As seen in Figure 5 straight line segments induce

linear and circular waves from its endpoints. Con-

sequently we create linear and circular windows for

each segment of a piecewise linear polygon. Ex-

ploiting the window intersection algorithms already

Figure 5: The geodesic distance field w.r.t the black

polygon. Linear waves emanate orthogonal to line

segments and circular waves emanate from each

endpoint of a line segment.

necessary for the window propagation the overall

initialization becomes very simple, because over-

laps are handled consistently.

As a preprocess we subdivide the piecewise lin-

ear input polygon such that every segment lies en-

tirely in one triangle. This can easily be done by

inserting vertices on all intersections between trian-

gle and polygon edges. Using this decomposition

it is possible to handle each polygon segment in-

dependently. We illustrate the procedure with one

line segment in a single triangle as depicted in Fig-

ure 6 (a). At first we add linear windows (green)

whose extents are computed by intersecting orthog-

onal rays starting from the endpoints of the line

segment with all triangle edges. Additionally, both

endpoints induce circular windows (yellow) which

are computed as described in Section 4.1. All new

windows are again intersected with windows al-

ready registered to an edge. Notice that due to the

exact equal distance intersection the result is again

independent of the order in which the windows are

added.

To complete the algorithm we next describe the

propagation and intersection of linear windows.

Now each window is expressed as a seven tuple

(id, b0, b1, d0, d1, σ, τ) in which the added type id

is either circular or linear. In the case of a circular

window we proceed exactly as described in Section

3. For linear windows the tuple components have

analogous meanings. The key difference is that the

emanating boundary rays of a window starting at

(bi, 0) in local coordinates are computed in a dif-

ferent way. They do not intersect at a pseudosource

center but are always parallel (see Figure 6 (b)). The

distance function over a linear window is a simple

linear function fully determined by bi and di.
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Figure 6: (a) A line source within a triangle induces

a set of linear (green) and circular (yellow) win-

dows. (b) Computation of the propagation direction

in local coordinates.

4.2.1 Linear window propagation

The starting point is depicted in Figure 6 (b). Sim-

ilar to section 3 the window w covers the segment

between b0 and b1 on the edge e. The x-axis is

aligned to e and the y-axis lies in the plane of the

triangle where the window should be propagated

through. Using elementary geometric calculations

the propagation direction n = (nx, ny) can be

computed in terms of the local coordinate system.

The differences |d1 − d0| and b1 − b0 define the

angle between the linear front and the mesh edge:

sin α =
−nx

|d0 − d1|
=
|d0 − d1|
b1 − b0

Solving the previous equation for nx, ny can be

computed by the theorem of Pythagoras:

nx = − (d0 − d1)
2

b1 − b0

ny = −
√

(d0 − d1)2 − n2
x

Using these ray direction instead of the ray di-

rections induced by the unfolded pseudo source the

remaining part of the window propagation is iden-

tical to Section 3. Here overlaps of propagated

windows can happen as well. For this reason the

next paragraph describes all possible cases, namely

linear-linear and circular-linear window intersec-

tions. Both reduce to the solution of a quadratic

equation.

4.2.2 Linear window intersection

Again there are two different cases for window in-

tersections. The trivial one occurs when the dis-

tance function of one window is larger in the whole

overlapping interval. In this case it is easily clipped

against the other window.

The more interesting case happens when the mini-

mal distance function in the overlapping interval is

composed of both windows. In this case there must

be a point (px, 0) where both distance functions are

equal.

The distance function of a linear window along

an edge is a simple linear function (cp. Figure 6

(b)) which can be formulated in terms of n or di-

rectly using the window components. It fulfills the

interpolation condition dl(bi) = di.

dl(px) = px

d1 − d0

b1 − b0
︸ ︷︷ ︸

m

+
b1d0 − b0d1

b1 − b0

+ σ

︸ ︷︷ ︸

n

Now we are ready to compute intersections of

linear windows with linear and circular windows to

find the separation point px on the corresponding

edge:

1. linear-linear intersection

dp1(px) = dp2(px)
⇔ pxm1 + n1 = pxm2 + n2

⇔ px = n2−n1

m1−m2

2. circular-linear intersection

dc(px) = dl(px)

⇔
√

(px − sx)2 + s2
y + σ = pxm + n

Squaring the previous equation leads to a

quadratic equation Ap2

x +Bpx +C = 0 with coef-

ficients

A = 1−m
2

B = −2(sx + m(n− σ))

C = s
2

x + s
2

y − (n− σ)2

Notice that unlike the previous intersections here

exist possibly two valid solutions which can lead to

a trisection of the overlapping interval. In this case

the cut circular window lies in the middle of two

disconnected parts of the linear window.
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5 Approximation algorithm

The propagation of distance information across

many triangles leads to an increasing number of

windows per edge because windows split up at

vertices. A large number of windows increases

the time as well as the space complexity of the

algorithm. So the idea for the ε-Approximation-

Algorithm in [1] is to merge neighboring windows

on an edge whenever the induced relative error is

acceptable. Allowing for example a relative error of

ε = 0.1% leads to visually indistinguishable results

but enables the processing of huge models with

several millions of faces which are far too complex

for the exact algorithm. Again the proposed linear

windows fit naturally in the original framework and

share all properties necessary for window merging.

Before we describe the merging of linear windows

we shortly review the basic principles and the case

of circular windows. For details see [1].

To guarantee consistency of the geodesic field

some conditions must be checked before merging

two neighboring windows.

1. Directionality: Both windows propagate into

the same direction.

2. Visibility: The pencil of rays of the merged

window must at least cover all rays of the orig-

inal windows so that no gaps arise.

3. Continuity: The distance at the endpoints

bounding the merged window must be pre-

served to conserve distance field continuity.

4. Type: Both windows must be of the same

type, e.g. planar or circular.

Additionally the user can prescribe a relative er-

ror bound εU so that only those merges are per-

fomed where the relative difference between the

distance function of the new window d′(px) and

the original piecewise distance function dlr(px) =
dl(px) ∪ dr(px) is smaller than εU , i.e.

|dlr(px)− d′(px)|
dlr(px)

≤ εU

5.1 Merging of circular windows

Taking two neighboring circular windows

wl = (id, b0l, b1l, d0l, d1l, σl, τl)

wr = (id, b0r, b1r, d0r, d1r, σr, τr)

which meet at the common point (b1l, 0) = (b0r, 0)
the merged window w′ is already determined up to

σ′ due to the necessary conditions:

id
′ = id

b
′

0 = b0l

b
′

1 = b1r

d
′

0 = d0l + σl − σ
′

d
′

1 = d1r + σr − σ
′

τ
′ = τl = τr

The continuity constrain restricts w′’s pseu-

dosource s′ = (s′x, s′y) to lie on a conic curve

s2

y(sx). Because of the positivity of the d′i and the

visibility constraint the valid domain of this conic

curve is further restricted. If it is the empty set, the

merge is disallowed and in all other cases the small-

est possible σ′ is chosen (see [1] for details and how

to evaluate the approximation error).

5.2 Merging of linear windows

The distance values di of a linear window can

always be transformed so that the corresponding

pseudosource distance σ vanishes. So w.l.o.g. two

neighboring linear windows

wl = (id, b0l, b1l, d0l, d1l, 0, τl)

wr = (id, b0r, b1r, d0r, d1r, 0, τr)

which join at the common point (b1l, 0) = (b0r, 0)
can be merged into a linear window

w
′ = (id, b0l, b1r, d0l, d1r, 0, τl = τr)

which satisfies all necessary constraints and is fully

determined by the original windows. Notice that

the visibility constraint is always fulfilled because

diverging linear windows can only occur in combi-

nation with an additional point source or a saddle.

The maximum approximation error is obtained at

the joining point and can be computed as

ε = |1− d1r(b1l − b0l) + d0l(b1r − b1l))

d1l(b1r − b0l)
|

6 Adaptive refinement

The algorithm presented in the last section is able

to compute the exact geodesic distance field on a

triangle mesh with respect to an arbitrary polygon
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embedded on the mesh. However, the distance in-

formation is not given explicitly but rather through

a set of windows defined on the edges of the mesh.

For most geometry processing algorithms this im-

plicit information has to be made explicit. The stan-

dard approach to do this is to simply sample the

distance function at the mesh vertices and then use

a linear interpolant on each face as an approxima-

tion of the original distance field. In order to have

some guarantee about the approximation tolerance,

we have to refine the mesh in regions where this tol-

erance is violated. Usually this happens in the vicin-

ity of the geodesic medial axis. To decide where to

refine we compare the exact geodesic distance on

edges with the linear interpolant and check if a user-

defined threshold is exceeded. In this case we split

the edge and insert a new sample point.

The geodesic distance field is smooth with con-

stant gradient magnitude everywhere except for the

geodesic medial axis. By properly placing the

newly inserted vertices on the medial axis (i.e. at the

maximum distance value) we can avoid excessive

local refinement. This feature sensitive placement

leads to optimal convergence and is in the spirit of

[9].

Since edge splits in arbitrary order lead to poor

triangles we employ a strategy similar to adaptive

red-green triangulations. An important feature is

that our refinement does not change the underly-

ing geometry and can be seen as a pure upsampling

of the original geodesic distance field. Due to this

fact no recomputation of the geodesic field is neces-

sary. The geodesic distance has to be updated only

for those edges that are newly inserted. The edge-

based refinement and the evaluation procedure are

described in more detail in the next sections.

6.1 Edge-based refinement

In each refinement step we evaluate for each edge

the maximal deviation between the exact distance

function given as a pieceweise function along the

edge and the linear function interpolating the exact

distance only at the edge endpoints. If this maxi-

mal deviation exceeds a user-defined threshold the

edge is tagged for refinement and the corresponding

point pmax is cached as the optimal splitting posi-

tion. Simply splitting all tagged edges would result

in poor triangle quality. We aim at applying a one-

to-four split (see Figure 7) of triangles lying entirely

in the refined region. The one-to-four split operator

(a) (b)

Figure 7: Implementation of a one-to-four split of

a triangle using only edge split and edge flip opera-

tors. (a) Each edge of the black triangle is first split

in arbitrary order. (b) The green edge, character-

ized by two adjacent triangles with only one origi-

nal edge segment, is flipped to complete the one-to-

four refinement.

can be composed of edge split and edge flip oper-

ations. For one triangle this requires the splitting

of all edges (in arbitrary order) and the flipping of

one specific edge (see Figure 7 ). To increase the

number of regular one-to-four splits we iteratively

tag all edges which are adjacent to triangles with al-

ready two tagged edges. This edges will be splitted

on their midpoint. Subsequently all tagged edges

are split at their cached split positions and all neces-

sary flips are done. Identifying which edges should

be flipped is easy if we mark all new created edges

as red during the splitting process. If both triangles

of a red edge are bounded by exactly two (the edge

itself plus one additional) red edges the edge must

be flipped.

6.2 Evaluation of interpolation error

The Geodesic Distance Function along a mesh edge

e is defined piecewisely and consists of linear and

circular segments corresponding to linear and cir-

cular windows. To compute the maximum devia-

tion between this exact function and the linear in-

terpolant defined by the exact distances on the edge

vertices it is possible to first evaluate the maximal

deviation for each segment individually and then

take the overall maximum.

In the case of a linear segment the evaluation is sim-

ple. The difference between two linear functions is

again a linear function and so the maximum is al-

ways on the boundary of the corresponding linear

window.

In the case of a circular window the maximum can

be computed analytically. The difference of both

distance functions along the edge

E(px) =
√

(px − sx)2 + s2
y + σ − (ax + b)
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has a single extremum at

qx = sx − a

√

s2
y

a2 − 1

If qx is not in the valid interval [b0..b1] of the win-

dow the maximal deviation is on the boundary of

the window as in the linear case.

The optimal position for a new sample point is ex-

actly the position pmax where the deviation is max-

imal. However allowing split points to lie arbitrar-

ily close to the edge endpoints leads to degenerate

triangles. In practice we clamp the splitting posi-

tion to be in the range of 25 − 75% of the edge

length. Additionally if the optimal position lies be-

tween 12.5 − 25% or 75 − 87.5% we adjust the

new vertex so that the optimal position lies exactly

on the midpoint of the new created edge because

this leads to better triangulations. Given the optimal

sample position t ∈ [0..1] the update is as follows:

t 7→







0.25 0 ≤ t < 0.125
2t 0.125 ≤ t < 0.25
t 0.25 ≤ t ≤ 0.75
2t− 1 0.75 < t < 0.875
0.75 0.875 ≤ t ≤ 1

7 Results

We demonstrate the results of our algorithm on

models of different complexity. Table 1 shows the

corresponding timings for the computation of the

exact and approximated geodesic fields which were

generated on an AMD 64 3500+ system with 2GB

of RAM. Additionally the average number of win-

dows per edge (WPE) is listed. On the David and

the Fandisk model we computed the geodesic field

w.r.t. the red polygonal curves on the surface (see

figure 9). The visualization uses a 1D texture to

transfer the linear interpolant of the geodesic field

into a color. For the car model depicted in Figure

1 we computed the geodesic field for the boundary

and applied the adaptive refinement to get an satis-

factory visualization. The refined mesh is showed

in Figure 9. Obviously most of the mesh refine-

ment occurs in a thin local neighborhood near the

medial axis of the geodesic field. The plane model

in Figure 8 illustrates the quality gain of our adap-

tive refinement in more detail. The upper row shows

the original mesh with the corresponding linear in-

terpolant of the geodesic field. Even though the

Table 1: Timings

Model #Faces Time WPE Time WPE

exact exact 0.1% 0.1%

Plane 422 4ms 2.40 2ms 1.2

Fandisk 12k 1.90 s 9.06 0.12s 1.6

Car 34k 3.03 s 7.06 0.91s 3.4

David 8M - - 165s 1.3

Figure 8: plane (422 faces)

mesh structure looks nice the result is very noisy

near the medial axis and shows large errors. Ap-

plying the presented adaptive refinement we gain a

high quality explicit representation of the geodesic

field showed in the lower row together with the gen-

erated mesh structure. The approximation error re-

duced by a factor of 100 while the number of faces

increased by a factor of 4.

8 Conclusion and future work

We have presented a generalization of the exact and

approximate geodesic algorithm of [1] which al-

lows to use arbitrary polygons as the boundary con-

dition for the geodesic field. Our extensions inte-

grate very naturally into the original algorithm and

can easily be added to existing implementations. To

increase the quality of the vertex based piecewise

linear representation required for many applications

using geodesics we included a well suited adaptive

refinement technique which increases the quality of

the piecewise linear representation to a user pre-

scribed quality. The adaptive refinement strategy is

very local and yields satisfactory mesh quality.
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Figure 9: Car (34k faces), Fandisk ( 12k faces) and

David (8M faces)
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Abstract

This article focuses on algorithms for fast compu-
tation of the Euclidean distance between a query
point and a subdivision surface. The analyzed al-
gorithms include uniform tessellation approaches,
an adaptive evalution technique, and an algorithm
using B́ezier conversions. These methods are com-
bined with a grid hashing structure for space parti-
tioning to speed up their runtime.

The results show that a pretessellated surface is
sufficient for small models. Considering the run-
time, accuracy and memory usage an adaptive on-
the-fly evaluation of the surface turns out to be the
best choice.

1 Introduction

The problem to determine the Euclidean distance
between an arbitrary point in 3D and a free-form
subdivision surface is fundamental in many differ-
ent communities including computer-aided geomet-
ric design, robotics, computer graphics, and compu-
tational geometry.

A lot of algorithms in the context of physical sim-
ulation, path planning, etc. have to determine this
distance: an exemplary algorithm is the shape fit-
ting approach by TORSTENULLRICH. It evaluates
distances between a point cloud and some subdivi-
sion surfaces in order to fit a procedural model [1].
As query time is always an issue, the goal is to
choose the best combination for the application at
hand.

Subdivision surfaces are based on polygonal
meshes, and they can be subdivided into triangle
meshes. So, is it suitable to preprocess the ob-
ject into a triangle mesh and compute distances to

the object just by searching the closest triangle?
Should the search be performed on the subdivision
surface patches? This article discusses accuracy,
runtime and memory usage of various approaches
for searching strategy, surface primitives used, and
calculation of the primitive’s minimum distance.

Figure 1: The test objects are chess figures mod-
eled with subdivision surfaces. Each initial mesh
has between 70 (“pawn”) and 1 454 (“rook”) poly-
gons. The Figure shows all test pieces in their initial
chess position.

2 Related Work

Subdivision surfaces are part and parcel of this arti-
cle. They define an object through recursive subdi-
vision starting from an initial control mesh. A vari-
ety of schemes with different subdivision rules ex-
ist for geometric design and graphics applications.
An overview on subdivision surface modeling in
the context of computer-aided design has been pre-
sented, e.g., by WEIYIN MA [2].
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2.1 Subdivision Surfaces

A subdivision surface is defined by an infinite sub-
division process. In contrast to parametric surfaces
which provide a finite evaluation algorithm, a sub-
division surface does not come with a direct eval-
uation method at arbitrary parameter values. Cur-
rently, it can be evaluated via
• Uniform subdivision: If the subdivision rules

are applied sufficiently often, the resulting
mesh will be a tight approximation of the limit
surface [3]. For non-interpolating subdivi-
sion schemes, e.g., Catmull-Clark, the result-
ing mesh points will not lie on the limit surface
in general. In order to decrease the deviation,
limit point rules can calculate the point on the
limit surface for a subdivision mesh point [4].

• Adaptive subdivision: Due to the exponential
need of memory it is a good strategy to sub-
divide the mesh adaptively. This results in a
subdivision process with varying subdivision
depth but constant overall accuracy [5]. The
use of limit point rules is essential for the con-
nection of mesh parts with different subdivi-
sion depths.

• Exact evaluation & conversion: Stationary
subdivision schemes, e.g., Catmull-Clark, al-
low an exact evaluation at arbitrary parameter
values [6]. JOS STAM makes use of the prop-
erty that regular patches (control mesh faces
with all vertices of valence 4) can be evalu-
ated as uniform, bicubic b-spline patches. The
region around irregular points (non-valence
4) shrinks successively when subdividing the
irregular patches, and the eigen-structure of
the subdivision matrix is used to determine
the limit there. Two alternative parameteri-
zations for irregular patches were proposed in
[7], which ensure non-degenerate derivatives
of the parameterization. For Catmull-Clark
subdivision, a regular quad patch can even be
represented as a single bicubic Bézier patch.

2.2 Distance Calculations

Distance fields are a representation, where at each
point within the field, the distance from that point
to the closest point on a fixed object within the do-
main is known. In addition to distance, other prop-
erties (direction to the surface, etc.) may be de-
rived from the distance field. A survey of methods

for the precomputation and representation of dis-
tance fields can be found in “3D Distance Fields:
A Survey of Techniques and Applications” [8]. To
speed up the search in a domain, space-partitioning
data structures allow to access object parts by spa-
tial proximity and other properties. Data structures
used for this, like tree structures (e.g., kd-tree), grid
structures (e.g., 3D regular grid) and cell structures
(e.g., Voronoi diagram) are described in “Geometric
Data Structures for Computer Graphics” [9].

For applications where many distance queries are
performed and the object is fixed within the domain,
the distance field can be precomputed and repre-
sented in a scalar data structure for the domain, like
a regular grid or a compressed regular grid. With
this distance field data structure, the distance from
a domain point to the closest object point can be re-
trieved from the data structure. In the case, where
the object is deforming, it is necessary to update this
derived, scalar field. In any case, where object in-
formation is stored about the location within the do-
main, this has to be updated. So for deforming and
changing objects it is beneficial to keep this amount
as small as possible, at best without any domain
data structure. This setting without preprocessing
is calledonline distance evaluation.

For the problem of distance computation to sub-
division surfaces, we propose the following classi-
fication of approaches:
• Approaches based on the distance field:A

separate scalar data structure reconstructs the
(signed) distance to the closest point on the
object [8]. We also consider in this group
GPU approaches like [10], which compute and
evolve the distance field in a small narrow
band around the object.

• Searching of surface primitives of the orig-
inal object representation: The curved sur-
face patches, which correspond to a face of the
control mesh, are organized in a spatial data
structure for the domain based on their bound-
ing volume. Only this data structure has to be
updated after model deformations. The spa-
tial data structure is then traversed in increas-
ing minimum distance to the query point, and
the primitive’s minimum distance is computed
as a subproblem. A termination condition is
necessary to stop the search with the correct
distance value.
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• Searching of surface primitives derived
from the original object representation:
Instead of using the surface primitives of
the original object representation immediately,
one derives a small set of simpler primitives
from the original surface primitives. The rea-
son could be that they offer a simpler mini-
mum distance algorithm. In the case of sub-
division surfaces, the surface’s triangulation is
often available also from other tasks.

3 Exposition of Methods

In this work, we chose three kinds of algorithms to
determine the distance between a query point and
a subdivision surface. The first group consists of
three algorithms which use the triangulation of a
subdivision surface. The next approach evaluates
the subdivision surface on-the-fly. And the last al-
gorithm converts it into B́ezier patches. In this case
distance queries are answered by a numerical mini-
mization routine.

3.1 Uniform Triangulation

The most simple approach uses an uniform tessel-
lation of the subdivision surface at a fixed depth
to create a triangle mesh. For a tight approxima-
tion of the limit surface, the limit points of the con-
trol vertices have been used. For each query point
the distance to each triangle is calculated [11], and
the minimum is selected. This approach does naive
search without any spatial data structure.
pros The calculation is robust and its correctness

can be verified easily.
cons As runtime and memory footprint of a sin-

gle distance query are linear in the number
of triangles and exponential in the subdivi-
sion depth, this algorithm is not useful for real
world applications. The implementation has
been used to verify the results of the follow-
ing algorithms, but it is not considered to be a
practical solution.

3.2 Hashed Triangulation

A significant speed-up can be achieved if the trian-
gulation is stored in a space-partitioning data struc-
ture. The hashed triangulation approach is a space-
efficient implementation of a 3D regular grid by us-

ing spatial hashing [12]. In this way, the storage re-
quirements can be restricted arbitrarily, e.g., linear
in the number of model triangles.

For a given query point, the hashed triangula-
tion approach determines which grid cells may po-
tentially contain the nearest triangle. Within the
grid cells in question, the registered triangles are
checked. According to our classification, it is based
on searching of surface primitives derived from the
original object representation.
pros The technique is easy to implement, and a

well chosen grid cell size gives good query
times.

cons The memory footprint is exponential in the
subdivision depth which disqualifies it for
many applications. Another problem is the
algorithm’s dependency on the choice of the
grid cell size. A reasonable size takes into ac-
count the model’s bounding volume as well as
its face distribution within the domain. This
problem is discussed in detail in Section 4.2.

3.3 Hashed Triangulation – First Hit

A further speed-up is possible, if only the distance
value (not the corresponding perpendicular point)
is needed, and if a small error is acceptable. In this
case, only the nearest non-empty cell is checked.
If no other cell is checked, the returned value may
have an error up to the length of the cell’s diagonal.
pros Same as 3.2 Hashed Triangulation.
cons Same as 3.2 Hashed Triangulation. The re-

turned distance value is only a rough approxi-
mation.

3.4 Adaptive Subdivision

The triangulation-based distance calculations de-
scribed before have large memory requirements in
common. If the subdivision control mesh has to re-
main in memory, for any reason, the triangulation-
based methods are not suitable due to their large
memory requirements. An approach which does
the refinement of the subdivision mesh on-the-fly
has always smaller memory requirements. Our im-
plementation of the adaptive subdivision algorithm
uses a hashed 3D regular grid structure to iden-
tify relevant subdivision patches. These patches are
subdivided using slates [13] as needed. Accord-
ing to our classification, it usessearching of surface
primitives of the original object representation.
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pros The memory footprint is only linear in the
size of the subdivision mesh due to the 3D
hash table. The additional overhead during a
patch evaluation is of small, fixed size and can
be neglected.
Only a small preprocessing is needed. In con-
trast to triangulation-based approaches, this
allows to modify the maximum subdivision
depth and therefore adapt the accuracy of the
distance calculation as needed.

cons The algorithm requires a substantial imple-
mentation.

3.5 Bézier Representation & Numerical
Optimization

Some subdivision schemes, e.g. Catmull-Clark sub-
division [6], allow direct evaluation at arbitrary pa-
rameter values. This property can be used to formu-
late a distance calculation algorithm. Having identi-
fied relevant subdivision patches, the algorithm con-
verts them into B́ezier patches. For regular patches
this can be done exactly. Irregular patches have
to be approximated. Using a parameterization as a
Bézier patch, the distance calculation can be formu-
lated as a minimization problem in parameter space
[14–16]. For the resulting nonlinear minimization
problem, Newton-type techniques [17], [18] can be
used with suitable start values in parameter space.
pros The memory requirements are comparable to

the adaptive subdivision algorithm. As the
distance calculation is reduced to a standard
problem of numerical optimization, highly-
optimized numerical libraries can be used.

cons The B́ezier approximation has some addi-
tional runtime overhead, but can be cached
with the subdivision mesh. The following dis-
tance minimization requires considerable tun-
ing of the step sizes. The choice of the start pa-
rameter of the Newton-like iteration has more
influence on the runtime than the size of the
model.
Furthermore the conversion of Catmull-Clark
subdivision to bicubic B́ezier patches is
patent-registered (“Approximation of Catmull-
Clark subdivision surfaces by Bézier patches”,
United States Patent No. 6950099).

4 Implementation

In order to allow a thorough comparison of the cho-
sen algorithms some implementation issues are dis-
cussed in detail.

4.1 Evaluation Errors

The triangulation-based methods use a fixed, uni-
form subdivision depth of three subdivisions. Note
that the use of limit points improves the approxima-
tion error, which can be bounded by a factor times
the maximum of the triangle’s side lengths, where
the factor depends on the model. The limit points lie
in the convex hull of the B́ezier control mesh instead
of the convex hull of the corresponding face’s 1-ring
in the Catmull-Clark mesh. This error has been used
to set the termination condition of the adaptive sub-
division algorithm. Therefore, the adaptive version
has a maximum subdivision depth of three, but it is
allowed to terminate earlier, if the resulting maxi-
mum error is of same size.

The B́ezier surface patches resulting from the
conversion have a deviation from the Catmull-Clark
surface patches only in irregular patches. But the
subsequent parameter search, which works with the
Bézier representation, produces an error by itself.
With the termination condition in parameter space it
is difficult to control the distance error because the
threshold in parameter space depends on the cur-
vature near a minimum point’s parameter. In our
experiments we used only a fixed threshold.

The accuracy of the First-Hit algorithm is deter-
mined by the triangulation error plus

√
3 times the

grid cell size.

4.2 Grid Size Problems

The grid cell size is not only responsible for the
algorithm’s accuracy. The choice of a reasonable
value affects the algorithm’s performance signifi-
cantly. Unfortunately, the value depends on the dis-
tribution of the cached geometric primitives (trian-
gles, B́ezier patches, etc.) within space. Without
additional knowledge only some heuristics are at
hand. Letd be the bounding volume’s diagonal
length, andp be the number of geometric primi-
tives to hash. If all objects are distributed uniformly
in their bounding volume, a grid cell size ofd/ 3

√
p

is a reasonable choice. If the surface of a geomet-
ric object is not distributed uniformly in space, the
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Figure 2: This Figure demonstrates the correlation between grid cell size and runtimes of hashing-based
algorithms. The used test object “pawn” has been triangulated (8 862 triangles). All triangles reside inside
the axis-aligned bounding box whose diagonal has a length of 3.94. According to the heuristics in Equation
1 the cell size should be between3.94/ 3

√
8862 ≈ 0.19 and3.94/ 5

√
8862 ≈ 0.65. The needed time in

milliseconds to calculate the distance of 10 000 arbitrary points to the triangle mesh using the First-Hit
algorithm is plotted against the used grid cell size.

grid should be coarsened. In our implementation
the grid cell size had been chosen to

s :=
d

n

√
p

(1)

with 3 ≤ n ≤ 5, which has led to feasible runtimes.
An illustrative example in Figure 2 shows the corre-
lation of cell grid size and evaluation time for a test
object.

4.3 Hashing

All presented algorithms use grid-based hash-
ing. We used the hashing function presented by
MATTHIAS TESCHNER [12]. It takes the indices
(x, y, z) of a grid cell and returns the hash value

hash(x, y, z) = (x p1 xor y p2 xor z p3) modn
(2)

using the prime numbersp1 = 73 856 093, p2 =
19 349 669, p3 = 83 492 791. The function can

be evaluated very efficiently and produces a com-
paratively small number of hash collisions for small
hash tables of sizen. The traversal within the grid
structure is illustrated in Figure 3.

4.4 Slates for Subdivision Surfaces

The adaptive subdivision algorithm does not modify
the base mesh. Instead a separate data structure is
used consisting of two so-calledslates.

A slate is composed of a two-dimensional array
table of size

(2sd + 3)2

and four one-dimensional corner arrays of size

(val − 4) · 2,

wheresd is the maximum subdivision depth and
val the maximum valence. For performance rea-
sons, the slates are allocated statically as they can
be reused for each face to be tessellated.
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Figure 3: The storage of a model in a reg-
ular grid allows a fast preselection of relevant
patches/triangles, which are near the query point
(red). In combination with a good hash function the
memory footprint is proportional to the number of
model primitives.

The subdivision process firstly collects the 1-
neighborhood of the considered facef and stores
it in the first slate. The vertices off and the vertices
of its edge neighbor faces are stored in the table.
If one of the vertices off has valence greater than
four, the remaining vertices are stored in the dedi-
cated corner arrays. Figure 4 illustrates this storage
scheme for a quad. Other configurations and further
details on slates can be found in “Adaptive Tessel-
lation of Subdivision Surfaces” [13].

The subdivision algorithm processes the vertices
row by row and stores the result of one subdivision
step in the second slate.
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Figure 4: The adaptive subdivision algorithm stores
the collected 1-neighborhood of a facef from the
base mesh (left) in a data structure called slate
(right).

For the next step, source and destination slates
are swapped. After two subdivision steps, the al-
gorithm starts calculating distances from the corre-
sponding limit points of the 25 (5 × 5) vertices to
the query point. For the following subdivision steps,
only a subpart of 9 (3×3) vertices of the table array
is used, see Figure 5. The subpart is chosen depend-
ing on the results of the distance calculations. The
process is repeated until the difference of the mini-
mal distance for the current and the last iteration is
below a user defined threshold.

2

7

5

64

0 3

1

8

Figure 5: After the second subdivision step each
face of the control mesh consists of5 × 5 vertices.
During the distance calculation only relevant sub-
parts out of nine possibilities are processed further
on. Five possible sectors are illustrated on the left,
four on the right.

5 Benchmarks

The test scenario is made of six subdivision surface
models.

1. Pawn This object consists of 70 patches. Its
triangulation at subdivision level 3 has 8 862
triangles.

2. Rook Within the test scenario this object is
the most complex one. It is composed of
1 454 subdivision surface patches, respectively
185 328 triangles.

3. Knight The control mesh of this model has 78
faces. Triangulated after three successive sub-
divisions it consists of 9 356 triangles.

4. Bishop The bishop is modeled using 130
patches. In this case the triangulation-based
algorithm have to handle 16 542 triangles.

5. QueenThis model has 387 subdivision surface
patches which results in a triangulation with
49 508 elements.

6. King The king consists of a subdivision mesh
with 175 faces. Its tessellation with 19 560
triangles ranges in the midfield of the test sce-
nario.
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Figure 6: The test objects are Catmull-Clark surfaces. The smallest object – the Pawn – has a subdivision
control mesh which consists of 70 faces. The most complex model is theRook with 1 454 patches. Its
triangulation at subdivision level 3 has 185 328 triangles. The triangulation-based algorithms as well as the
adaptive subdivision one correlates with the model’s complexity in contrast to the approach using B́ezier
conversion and numerical optimization. This algorithm is rather determinedby internal parameters (initial
parameter values, step size, etc.) than by model complexity.

During each test an algorithm has to calculate the
distance between the test object and 10 000 arbi-
trary query points. The query points are uniformly
distributed within a box whose volume is twice as
large as the test object’s axis-aligned bounding box
(AABB) volume. Each test model has a closed 2-
manifold boundary and the query points may be lo-
cated inside and outside of it; whereas the returned
distance has no sign and does not distinguish be-
tween interior and exterior.

The runtimes of these tests are shown in Figure
6. The results indicate some interesting facts. Both
the adaptive subdivision technique and the Bézier
conversion approach use the same 3D hashed grid
structure to identify relevant patches with a grid cell
size ofd/ 3

√
p, whereasd denotes the AABB diag-

onal andp the number of patches in the base mesh.
The adaptive subdivision depends on the number of
relevant patches which correlates with the model’s
complexity. But the B́ezier conversion is rather de-

termined by internal parameters (start values for nu-
merical iterations, etc.) than by model complex-
ity. This calculation overhead is almost independent
from the input data and surmounts the time needed
by the adaptive subdivision approach several times.

Another interesting point which can be seen in
the diagram is the speed-up factor of the first-hit al-
gorithm. Compared with the variant which checks
additional grid cells in order to return the exact dis-
tance instead of an approximation the first-hit ver-
sion is three times faster (o/ ≈ 3.09). Of course,
both algorithms use the same grid size. The number
of grid cells is proportional to the number of trian-
gles in the tessellation.

While it is normally not recommended to triangu-
late a subdivision surface ahead of time, the first hit
version has similar timings as the adaptive evalua-
tion technique, at least for small- and medium-sized
models.
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6 Conclusion

According to the benchmarks presented above, the
distance between an arbitrary point and a subdivi-
sion surface should be determined using an efficient
space partitioning technique such as hashed, regular
3D grid and an on-the-fly subdivision surface evalu-
ation algorithm. The result is a distance calculation
which
• needs considerably less memory than triangu-

lation based approaches, and
• is the fastest method in most cases.

The only negative point of the adaptive subdivision
method is its complex implementation. The conver-
sion method may use numerical libraries and the tri-
angulation methods can use wide-spread, standard
techniques, whereas an efficient, on-the-fly evalua-
tion of subdivision surfaces must be implemented
efficiently for the mesh structure used.

Therefore, the triangulation-based approach with
the first-hit termination might be considered for
small model sizes, if the perpendicular point is not
needed and if an approximation of the distance is
enough. In all other cases the adaptive subdivision
technique is the best choice.
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Abstract

Physical simulation on surfaces and various appli-
cations in geometry processing are based on par-
tial differential equations on surfaces. The implicit
representation of these eventually evolving surfaces
in terms of level set methods leads to effective and
flexible numerical tools. This paper addresses the
computational problem of how to solve partial dif-
ferential equations on level sets with an underly-
ing very high-resolution discrete grid. These high-
resolution grids are represented in a very efficient
format, which stores only grid points in a thin nar-
row band. Reaction diffusion equations on a fixed
surface and the evolution of a surface under cur-
vature motion are considered as model problems.
The proposed methods are based on a semi implicit
finite element discretization directly on these thin
narrow bands and allow for large time steps. To en-
sure this, suitable transparent boundary conditions
are introduced on the boundary of the narrow band
and the time discretization is based on a nested it-
eration scheme. Methods are provided to assemble
finite element matrices and to apply matrix vector
operators in a manner that do not incur additional
overhead and give fast, cache-coherent access to
very large data sets.

1 Introduction

This paper addresses the computational problem of
how to solve partial differential equations (PDEs)
on the level sets of smooth scalar functions that
are approximated by very high-resolution discrete
grids. The context for this work is the growing in-
terest in computing PDEs on surfaces that are rep-
resented implicitly as the level sets of a smooth
scalar function φ. Starting with the pioneering pa-
per by Osher and Sethian [31] this way has become
increasing important in a variety of fields such as

computational physics [3,4,6,7,20], scientific visu-
alization [23], image analysis [5, 8], and computer
graphics [27, 30]. Most of these applications rely
on the efficient computation of partial differential
equations on curves or surfaces implicitly repre-
sented by a level set function φ resolved on a dis-
crete, usually structured, grid. The attraction of
solving problems with discretely sampled implicit
surfaces is the relatively large number of degrees of
freedom provided by the grid and the freedom of
not having to choose an explicit surface parameter-
ization, which often limits shape and topology.

There are in particular two scenarios in which
such surface-based PDEs are interesting. The first
is when the implicit surface serves as the domain
and one would like to solve a PDE for a function u
intrinsic on the surface. Projections of the deriva-
tives in the ambient space onto the surface pro-
vide a mechanism for computing differential oper-
ators that live on the surface [5]. The other sce-
nario is when the surface itself evolves according to
a geometric PDE that depends on the shape. The
most prominent example is motion by mean cur-
vature [16]. For the discretization in space either
finite difference [31, 33] or finite element schemes
[10] are considered. Semi-implicit time discretiza-
tions are suitable due to their stability properties
also for large time steps, compared to explicit time
discretization for diffusion type problems which re-
quire time steps of the grid size squared. This is par-
ticularly important when one is considering higher
order PDEs [14, 20].

Perhaps the greatest promise of level-set meth-
ods, for both moving interfaces and PDEs defined
on static surfaces (codimension one), is their ability
to deal with a wide variety of complicated shapes
in an elegant manner within a single computational
framework. However, the computation and memory
requirements on the discrete grid that represents φ
become prohibitive as the grid resolution increases.
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The complexity of the surface increases (roughly)
as the grid resolution squared, but the overall grid
size increases with the cube of the resolution.

Several technical advances have addressed dif-
ferent aspects of the problem associated with stor-
ing and computing level-set equations at high res-
olutions. The introduction of methods that solve
PDEs on a small subset of grid points, that consti-
tute a narrow band around the surface [2,32,37] pro-
vided significant advantages in computation time.
As grid sizes become progressively larger the num-
ber of computations in the narrow band is not the
limiting factor on performance. Rather, the perfor-
mance of computations is limited by the very small
fraction of the grid values that can fit into cache
or random-access memory. To address this several
authors have proposed memory-efficient data struc-
tures for storing the narrow bands associated with
level sets that are represented with large grids.

The use of such narrow bands, which can en-
code many millions of degrees of freedom, gives the
level-set approach to surface representation a dis-
tinct computational advantage relative to paramet-
ric representations, such as triangle meshes. The
reason is that with careful attention to how grid
points are stored and accessed, the grid-based, im-
plicit method for processing surfaces provides reg-
ular, predictable access to memory in a way that al-
lows for cache coherency (on conventional proces-
sors) and data streaming on more advanced archi-
tectures.

This very narrow computational domain presents
a challenge for numerical schemes, however, be-
cause one must introduce a solution for the PDE
along the boundary domain, whose shape can be
quite irregular. As the resolution increases the
boundaries of the computational domain become
progressively closer to the level set of interest, and
the so called natural boundary conditions allow ar-
tifacts from the grid (whose faces are aligned with
the cardinal directions) to propagate into the PDE
on the surface. Furthermore, when solving free
boundary problems with finite differences, the time
steps must be limited so that at each iteration the
moving interface (level set of interest) is neither im-
peded by the boundary conditions nor allowed to
pass outside of the computational domain (at which
point its shape is lost).

This paper addresses these issues by introduc-
ing numerical schemes for finite element solutions

to PDEs on implicit surfaces that are appropriate
for the Dynamic Tubular Grid (DT-grid) data struc-
ture [28] which is storage efficient and fast in prac-
tice. In contrast to the finite difference schemes al-
ready implemented in this context we consider here
finite element methods with semi-implicit schemes
in time and introduce the required suitable DT-grid
based linear algebra operations on finite element
matrices. These numerical schemes introduce trans-
parent boundary conditions together with nested it-
erations in the time discretization that do not allow
the irregularity of the narrow band to impact the so-
lution. In the case of moving interfaces, this allows
semi-implicit updates with larger times steps that
do not restrict the updated solution to the compu-
tational domain from the previous time step. As ap-
plications we consider texture synthesis by systems
of reaction diffusion equations and the evolution of
surfaces by mean curvature motion on very large
data sets that are appropriate for state-of-the-art ap-
plications in surface processing.

2 Related Work

There are several bodies of related work with re-
spect to narrow band methods and corresponding
sparse storage schemes. Narrow band methods for
moving interface simulation were first proposed in
[2] and proved their efficiency in various applica-
tions [18, 27, 38]. Narrow band techniques have
been combined with boundary element methods
[17] and with multiscale resolution techniques [39].
In [19] the reinitialization of the level set function
on a narrow band is discussed and instabilities at
the narrow band boundary are avoided by smooth-
ing kernels applied to the level set function. Surface
evolution based on the evolution of distance func-
tions on narrow band domains is investigated theo-
retically in [11]. A heap sorted queue is applied for
the adminstration of narrow band data in an active
contour method [29]. Already in [12] Marc Droske
proposed a finite element method for Willmore flow
based on a iterative update scheme on narrow bands.
We pick up and refine this type of iterative update
scheme here on very thin narrow bands and high
resolution background grids.

The work presented also builds on the research
in computer science on efficient data structures for
storing sparse computational domains associated
with level sets. In recent years quadtrees (2D)
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Figure 1: A sketch of a narrow band domain Ωn corre-
sponding to a level set (plotted in red) is shown. In the
zoom in on the right interior nodes are indicated by green
dots, whereas the boundary ∂Ωn is represented by the blue
lines.

and octrees (3D) [9] have been applied to level
sets in numerous papers [13, 15, 25, 26, 34]. The
quadtree and octree data structures reduce the stor-
age requirements of level sets to O((d + 1)n), but
also introduce an O(d) access time, where d is the
depth of the quadtree or octree and n is the num-
ber of grid points in the narrow band. The Dynamic
Tubular Grid [28] employs a hierarchical encoding
of the topology of the narrow band, inspired by
the storage-format of sparse matrices. Subsequent
works employ a run-length encoding, and focus ei-
ther on flexibility [21] or are tailored for a specific
application in fluid simulation [22]. All of these
data structures require O(n) storage and have O(1)
access time to grid points in a local stencil during
the sequential access typically required by level set
methods. Also they perform faster in practice than
recent narrow band and octree approaches due both
to the lower memory footprint and the more cache
coherent memory layout and access patterns [21].
In this work we utilize the DT-Grid since it has been
shown to perform slightly faster than the run-length
encoding alternatives.

3 Finite Elements on Narrow Bands

3.1 Review of Level Set Finite Elements

Let us consider the finite-element formulation for
reaction-diffusion equations on a fixed surface and a
discretization of curvature motion, respectively. We
deal with both as model problems for the cases of
static and moving surfaces, respectively.

A reaction-diffusion model on level sets. We
consider the following scalar initial value problem:
The solution is a function u : IR+ × M → IR,
such that ∂tu−∆Mu = f(u) with initial condition
u(0) = u0, where u0 is some initial value function
on the surface M and ∆M is the Laplace-Beltrami

operator on M. We represent the surface M as the
zero set of a smooth scalar function φ : Ω → IR,
so that M = {x|φ(x) = 0}, where Ω is a box do-
main enclosing M. The Laplace Beltrami operator
of u is expressed in terms of derivatives of φ, which
gives ∆Mu = |∇φ|−1div(|∇φ|P [φ]∇u) , where
P [φ] = 1I − ∇φ

|∇φ| ⊗
∇φ
|∇φ| is the projection onto

the tangent space TxM of the surfaceM. Now, we
first discretize in time and introduce a time deriva-
tive uk+1−uk

τ
for time step functions uk. Testing

the equation with a smooth function θ and applying
integration by parts we derive the following time
discrete weak formulation:Z

Ω

|∇φ|u
k+1 − uk

τ
θ + |∇φ|P [φ]∇uk+1 · ∇θ dx

=

Z
Ω

|∇φ|f(uk)θ dx (1)

for all test functions θ ∈ C1. Here the nonlinear
right hand side f is evaluated on the old time step
(forward differences). The operator P [φ] ensures a
decoupling of the reaction-diffusion process on dif-
ferent level sets [φ = c], which reflects the geomet-
ric nature of the problem. Thus, to identify the so-
lution on M it suffices to consider the weak formu-
lation restricted to a small band arround M. Next,
we discretize in space based on a finite element ap-
proximation. We denote discrete quantities with up-
per case letters to distinguish them from continuous
quantities in lower case letters. The domain Ω is
supposed to be covered by a regular hexahedral grid
and we denote the corresponding space of continu-
ous, piecewise tri-linear functions by Vh, where h
indicates the grid size. Let {Φi}i∈I be the canonical
nodal basis of this finite element space for an index
set I corresponding to all grid nodes. A discrete
function U is represented as a nodal vector Ū cor-
responding to nodes of the spatial grid. We achieve
the vector Ū = (Ui)i∈I, where U =

P
i∈I UiΦi

is the corresponding function. Given an approxima-
tion Φ ∈ Vh of the level set function φ, we obtain an
approximation Mh := [Φ = 0] of the continuous
surfaceM as one particular discrete level set repre-
sented by the function Φ. Concerning the reaction-
diffusion model, we replace all continuous quanti-
ties in (1) by their discrete counterparts and intro-
duce mass lumping. Thus, we define the weighted
lumped mass and stiffness matrix

M[Φ] =

„Z
Ω

I0
h(|∇Φ|)I1

h(ΦiΦj) dx

«
i,j∈I

,
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L[Φ] =

„Z
Ω

|∇Φ|P [Φ]∇Φi · ∇Φj dx

«
i,j∈I

,

where I0
h, I1

h denote the piecewise constant and
the piecewise multilinear Lagrangian projection, re-
spectively. Furthermore, we introduce the right
hand side vector F̄ [U ] = (f(Ui))i∈I and end up
with the system of linear equations

(M[Φ] + τL[Φ]) Ūk+1= M[Φ]
“
τF̄ [Uk] + Ūk

”
.

Solving these systems we iteratively compute
(Uk)k≥1 for a given approximation U0 of u0.

Curvature Motion of Level Sets. The second
application considered in this paper is the evolution
of surfaces under mean curvature motion. Given
an initial surface M0 we ask for a family of sur-
faces M(t) generated from the motion of points
x(t) under the evolution ẋ(t) = −h(t)n(t) with
initial condition x(0) = x0 with x0 ∈ M0. Here
n(t) is the normal and h(t) the mean curvature on
M(t). The corresponding level set equation is

given by ∂tφ − |∇φ|div
“
∇φ
|∇φ|

”
= 0 on IR+ × Ω

with initial data φ0. Again discretizing in time and
applying integration by parts we obtain the weak
formulationZ

Ω

φk+1 − φk

τ |∇φk|ε
θ +

∇φk+1

|∇φk|ε
· ∇θ dx = 0 (2)

for test functions θ ∈ C1. Here, we take
into account the old time step solution for the
weight |∇φ|−1 and the usual regularization |x|ε =p

ε2 + |x|2. Now, as in the case of the reaction-
diffusion equation on a fixed surface we discretize
in space and again end up with a sequence of linear
systems of equations“

M[Φk] + τL[Φk]
”

Φ̄k+1 = M[Φk]Φ̄k

for the nodal vector Φ̄k+1 of the discrete level set
function at time tk+1 = τ(k + 1). Here, the
involved lumped mass and stiffness matrices are
given by

M[Φ] =

„Z
Ω

I0
h(|∇Φ|−1

ε )I1
h(ΦiΦj) dx

«
i,j∈I

,

L[Φ] =

„Z
Ω

|∇Φ|−1
ε ∇Φi · ∇Φj dx

«
i,j∈I

.

Solving these systems we iteratively compute
(Φk)k≥1 for a given approximation Φ0 of
φ0 and obtain a sequence of discrete surfaces
Mk

h = [Φk = 0].

3.2 Transparent Neumann Boundary

The continuous formulation operates on the solu-
tion of each level-set separately, and thus, solutions
from different level sets do not interact and we can
truncate the computational domain to a narrow band
around the zero set without affecting the solution.
However, the discrete formulation introduces a cou-
pling of nearby level sets through the finite extent
of the test/basis functions and the natural boundary
conditions induced by the weak formulation inter-
fere strongly with the solution on Mh in case of a
thin narrow band. This interaction undermines the
numerical convergence of the scheme on finer grids.
In this section we will describe boundary conditions
which avoid this interference.

Given a level set surface Mh for a level set
function Φ ∈ Vh we define a discrete nar-
row band as a union of supports of discrete ba-
sis functions. Hence, we consider a correspond-
ing index set Iint := {i ∈ I | supp Φi ∩Mh 6= ∅}
and the resulting narrow band domain Ωn =S

i∈Iint
supp Φi. This is the smallest possible band

to resolve the discrete surface Mh. Let us denote
by Vh

int = span{Φi | i ∈ Iint} the space of discrete
functions on Ωn which vanish on ∂Ω and by Vbd =
span{Φi | i ∈ I \ Iint , supp Φi ∩ Ωn 6= ∅} the dis-
crete function space corresponding to boundary val-
ues on ∂Ωn. Hence, the direct sum Vh

n = Vh
int ⊕ Vh

bd

represents the discrete finite element space corre-
sponding to the narrow band domain Ωn. Now, we
replace the domain of integration in the weak for-
mulations by the narrow band domain.

For the reaction diffusion model integra-
tion by parts leads to the boundary integralR

∂Ωn
|∇φ|P [φ]∇uk+1 · νθ da on ∂Ωn, which

gives rise to the Neumann boundary condition
P [φ]∇uk+1 · ν = 0. This condition is meaningless
and for P [φ]ν 6= 0 artificially couples the gradient
of the solution uk+1 with the faceted, grid-aligned
(jaggy) boundary of the narrow band domain. Let
us suppose that a good estimate uk+1

approx of the solu-
tion uk+1 is given. Then, we could compensate for
this defect adding the above boundary with the un-
known uk+1 replaced by the known approximation
uk+1

approx on the right hand side of the weak formula-

174



tion (cf. [12]). For the finite element discretization
we obtain the corresponding correction vector

Γ̄[Uapprox] =

„Z
∂Ωn

|∇Φ|P [Φ]∇Uk+1
approx · νΦj da

«
j∈I

for a given approximation Uk+1
approx of Uk+1 on the

right hand side of the modified system of linear
equations

(M[Φ] + τL[Φ]) Ūk+1=M[Φ]
“
τF̄ [Uk] + Ūk

”
+ τ Γ̄[Uk+1

approx ] .

Here F̄ is the nodal vector in IRIext corresponding
to the right hand side f . A first possible choice for
the approximation is given by the last time step, i. e.
we may set Uk+1

approx = Uk.
For the discrete mean curvature motion we

can proceed similarly. The natural boundary
condition implied by the weak formulation is
|∇Φk|−1

ε ∇φk+1 · νθ = 0. Hence, given an ap-
proximation φk+1

approx of the unknown φk+1, we again
compensate for this defect adding the boundary in-
tegral

R
∂Ωn

|∇φk|−1
ε φk+1

approx · νθ da on the right hand
side of the weak equation. For the finite element
discretization we correspondingly consider the cor-
rection vector

Γ̄[Φk+1
approx, Ωn]=

„Z
∂Ωn

|∇Φk|−1
ε ∇Φk+1

approx · νΦj da

«
j∈I

and obtain the modified system to be solved:

(M[Φ] + τL[Φ]) Φ̄k+1= M[Φ]Ūk+τ Γ̄[Φk+1
approx, Ωn]

(3)
Again the old time step solution may serve as a first
approximation of the unknown Φk+1.

3.3 Transparent Dirichlet Boundary

So far, we have focused on Neumann type bound-
ary conditions. In particular in case of mean curva-
ture motion one might alternatively consider Dirich-
let conditions. We propose boundary data which is
coherent with a suitable, smooth extension of the
unknown level set function φk+1 in time step k+1.
Here a signed distance function from the current
discrete surface is a good approximation. To present
the discrete scheme in matrix vector notation, we
exploit the introduced splitting of the finite element
space Vh

n = Vh
int ⊕ Vh

bd. Thus, reordering degrees
of freedom we obtain a splitting Ūn = (Ūint, Ūbd),

where Uint ∈ Vh
int and Ubd ∈ Vh

bd. Correspondingly,
we obtain a splitting of the stiffness with respect

to Vint and Vbd by L =

„
Lint,int Lbd,int

Lint,bd Lbd,bd

«
. Here

Lint,int is the actual stiffness matrix on Vint. Fur-
thermore, let us introduce a trivial extension op-
erator E : IRIint → IRIn ; Ūn 7→ (Ūint, 0) and
the corresponding restriction operator R : IRI →
IRIn ; Ū 7→ Ūint. Based on this notation we can
rewrite Lint,int = RLE and hence the linear sys-
tem to be solved in case of Dirichlet data Φk+1

approx

is R(M [Φk] + τL[Φk])EΦ̄k+1
int = R(MΦ̄k −

τL[Φk]Φ̄k+1
approx). The practical consequence is that

we always work with the full matrix L and do not
explicitly extract Lnn from it. Boundary data and
solution vector are stored in one vector in IRIn .

3.4 Solver Based on Nested Iterations

Here, we discuss the scheme for mean curvature
motion, which requires special care because of the
iterative update of the computational domain. The
corresponding scheme for the reaction diffusion
model on a fixed narrow band is a special case.

The inner iterations must modify the boundary
conditions and the computational domain, as the so-
lution moves toward the edge of the narrow band.
Thus, the inner iterations compute the new Φk+1

relative to the old Φk using Eq. 3. After each in-
ner iteration we compute a new distance map to
the zero set of the new Φk+1. This redistancing
rebuilds the DT-grid (to a specified width, as de-
scribed in [28]). If the narrow band changes, we i)
extend the old solution onto the new band using the
signed distance transform (Eikonal equation) from
the previous domain and ii) repeat the inner iteration
with Dirichlet conditions using the distance field to
Φk+1 on the boundary. That is, the domain exten-
sion E [Ωn, Ω̃n]Φ̄ from a narrow band Ωn onto a new
band Ω̃n is the discrete solution of the Eikonal equa-
tion |∇φ| = 1 with boundary data Φ̄ on the inner
nodes of the band Ωn. If the computational domain
does not change, we simply redistance, update the
boundary conditions, and solve. These inner itera-
tions repeat until the change from one iteration to
the next falls below a threshold.

This scheme allows for large time steps and dis-
crete surfaces propagating significantly outside the
initial narrow band in this time step. In each time
step we compute intermediate solutions Φk+1,j and
intermediate narrow band domains Ωk+1,j

n . The ex-
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tension operator E [Ωk+1,j
n , Ωk+1,j+1

n ] ensures that
the previous time step solution Φk as well as the
successively updated solution Φk+1,j itself is ex-
tended onto the new band. In pseudo code notation
the scheme looks as follows:

MeanCurvatureMotion(Φ̄0) {
initialize Ω0

n ;
for (k = 1; k ≤ K; k + +) {

Φ̄k+1,0 = Φk; j = 0; Ωk+1,0
n = Ωk

n ;
do {

compute Φ̄k+1,j+1 on Ωk+1,j
n solving

R(M [Φk] + τL[Φk])EΦ̄k+1,j+1
int

= R(M [Φk]− τL[Φk]Φ̄k+1,j);
Define new band Ωk+1,j+1

n for Φ̄k+1,j+1;
Apply E[Ωk+1,j

n , Ωk+1,j+1
n ] to Φ̄k+1,j+1, Φk;

j = j + 1;
} while(|Φ̄k+1,j − Φ̄k+1,j−1| ≥ δ

or Ωk+1,j
n 6= Ωk+1,j−1

n )

Φ̄k+1 = Φk+1,j ; Ωk+1
n = Ωk+1,j

n ;
} }

The procedure in the case of Neumann condi-
tions imposed on the boundary of the narrow band is
completely analogues. We just exchange the linear
system to be solved. The Dirichlet boundary condi-
tions ensure that the new interface [Φk+1,j+1 = 0]
is a subset of the current narrow band Ωk+1,j

n . This
is no longer true in case of Neumann boundary con-
ditions. Indeed, the discrete interface may cross
∂Ωk+1,j

n . Hence, before we are able to define the
new band, we have to extend Φk+1,j+1 until we re-
solve the zero level set.

4 Narrow Band on the DT-Grid

In this section we describe how the proposed narrow
band algorithms can be implemented on the Dy-
namic Tubular Grid (DT-Grid) data structure [28]
in order to obtain a framework that is efficient both
with regard to memory and time utilization. The
DT-Grid is a data structure and set of algorithms
designed for storing data of a subset of nodes or
elements defined on a regular grid. Constant time
access and cache performance for neighborhood op-
erations are achieved through the careful use of it-
erators, which are used to build, store, and mani-
pulate the solution and all of the associated matri-
ces/vectors. We begin with a brief overview of the
DT-Grid terminology required to comprehend the
exposition of the implementation issues, and next
we describe how to implement the proposed narrow
band algorithms in the DT-Grid framework.

Figure 2: a) The 1D, 2D and 3D components of the DT-
Grid encoding of a sphere. b) A slice of the narrow band
of a DT-Grid encoding of a sphere.

4.1 Dynamic Tubular Grid Terminology

The nodes in the narrow band are stored in the DT-
Grid in (x, y, z) lexicographic order which allows
for a number of specific algorithmic constructs. In
order to represent the topology of the narrow band,
a 3D DT-Grid consists of 1D, 2D and 3D grid com-
ponents as shown in Figure 2a. The 3D grid com-
ponent consists of the nodes in the narrow band, the
2D grid component is the projection of the narrow
band onto the XY-plane, and the 1D grid compo-
nent is the projection of the 2D grid component onto
the X-axis. For a full explanation of the DT-Grid
we refer the reader to [28]. Here it is sufficient to
say that each grid component has two constituents:
data and coord. The coord constituent in the nD
grid component stores the nth coordinate of the first
and last node in each topologically connected com-
ponent of grid points in a column of the nD grid
component. These are colored red in Figure 2. As
also depicted in Figure 2b, the data1D and data2D

constituents link the 1D, 2D and 3D grid compo-
nents together by storing indices that point to the
first coordinate in a column in the coord constituent
of the 2D and 3D grid components respectively.

We denote the coord1D , coord2D , coord3D ,
data1D and data2D constituents of the topology
since they specify the topology of the narrow band.
The data3D constituent contains the actual data
values, e.g., a level set function, and is stored se-
parately from the topology in a flat data vector of
length equal to the number of nodes in the narrow
band. Since a total (lexicographic) ordering, start-
ing from zero, is imposed on the nodes in the nar-
row band, entry i in the data vector corresponds
uniquely to node i in the narrow band. In fact,
traversing the entries in the data vector sequentially
from start to end corresponds to accessing the data
of all nodes in the narrow band in lexicographic or-
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der. This also means that storing multiple data items
at each node in the narrow band can be done by
allocating multiple separate data vectors. Entry i
in each of these data vectors then identify the data
stored at node i in the narrow band.

The DT-Grid utilizes the concept of stencil iter-
ators to sequentially access each individual node of
the narrow band and provide constant time access to
the node’s neighbors as defined by a stencil suited
for some computational task. In particular a spe-
cific stencil iterator consists of M individual itera-
tors, where M is the number of nodes in the stencil,
and an iterator is simply a construct that sequen-
tially visits all grid points of the narrow band in lex-
icographic order. Each iterator provides constant
time access to the appropriate data items. Details
are given in [28].

4.2 DT-Grid Implementation

The applications of the narrow band framework pro-
posed in this paper require the definition of a nar-
row band level set function as well as a number
of vectors and matrices defined over this narrow
band. The vectors contain an entry for each node in
the narrow band, and the matrices are defined over
the cardinal product of the narrow band with itself.
However, the matrices are sparse and banded due
to the limited support of the nodal basis functions
employed in the finite element method.

The narrow band, vectors and sparse matrices are
represented as a single instance of a DT-Grid topol-
ogy and a number of flat data vectors. We cre-
ate a number of customized stencil iterators that
compute boundary face integration on the narrow
band, matrix-vector multiplication, and mass and
stiffness matrix assembly with the stencil iterator
framework.

The narrow band mesh used in our proposed
framework is defined in terms of finite elements.
Assembling the mass and stiffness matrices require
an iteration over these elements, whereas the stencil
iterators of the DT-Grid visit all the nodes. How-
ever, an iterator that sequentially visits all elements
of the narrow band can be phrased as a stencil it-
erator with a stencil of eight nodes that form a fi-
nite element cell. The iterator of the lexicograph-
ically smallest node in the stencil (corner) dictates
the movement of the stencil, and the stencil itera-
tor skips a node whenever at least one of the seven
remaining nodes in the stencil are outside the nar-

row band. Similarly an iterator that sequentially
visits all boundary faces of the narrow band can be
phrased as a stencil iterator.

5 Applications

We begin with the generation of a texture. There-
fore we solve the initial value problem for two func-
tions a, b : IR+ × M → IR where M is the
0-isosurface of a level set function φ. Reaction-
diffusion equations describe a variety of biologi-
cal and chemical phenomenon, but have been used
in 3D graphics for the generation of interesting,
natural-looking textures on surface [35, 36]. The
form we use in this paper, as way of demonstrating
the proposed numerical scheme, are the equations
proposed by Turing:

∂ta = cs(α− ab) + ca∆Ma

∂tb = cs(ab− b− β) + cb∆Mb

Generally, cs, ca, cb, and α are parameters that de-
termine the shapes, frequencies, sizes, etc. of the
resulting texture (steady state) and β : M → IR
is a stochastic function (e.g. generated through a
pseudo-random number generator), that creates a
degree of randomness in the texture.

We use the weak formulation combined with a
forward difference scheme for the reaction terms
and an implicit scheme for the diffusion.

Figure 3 (top) shows the solution of a reaction-
diffusion equation on a 3D model of a dragon [1],
which has been scan-converted to a DT-Grid, us-
ing the method in [21], with a volumetric represen-
tation of 982 × 695 × 442 grid points. With the
reaction-diffusion quantities a and b and the mass
and stiffness matrices, the full volumetric problem
would not be solvable at this resolution on a con-
ventional computer. The parameters, given in the
caption, have been choosen to produce spots. The
renderings at different levels of resolution demon-
strate the difference in scale between the full model
and the underlying grid.

Several authors have proposed anisotropic
reaction-diffusion methods for anisotropic textures.
For that purpose we replace the isotropic diffusion
operator ∆Mu by an anisotropic version, defined
by ∆̃Mu = |∇φ|−1div(|∇φ|DP [φ]∇u) =
|∇φ|−1div(|∇φ|

`
α̃2P [v] + β̃2P [v⊥]

´
P [φ]∇u).

Figure 3 (bottom) shows solutions to the anisotropic
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Figure 3: Results of the reaction-diffusion. (Top) Isotropic reaction-diffusion that generates a pattern with round spots
after 150 iterations. (Left) A picture of the whole dragon of resolution 982 × 695 × 442. Parameters are cs = 0.05,
ca = 2.5e − 07, cb = 6.3e − 08, α = 16, and β = 12 ± 0.4, with grid spacing h = 0.00102. (Middle) A zoom
to the feet region is shown, and (right) an even closer zoom to the foot overlaid with the mesh shows the fineness of the
resolution. Bottom row: The same dragon surface with two zooms as result of an anisotropic reaction diffusion after 400
iterations with v = (0, 0, 1)T , and diffusion in the orthogonal direction at one-fourth the main direction. (and otherwise
the same parameters as the isotropic case).

reaction-diffusion equation with dominant diffusion
in the z direction.

Another demonstration of the framework is the
use of mean curvature motion on surfaces, which
has been proposed for denoising (fairing) models
that are derived from measured surface data. Vari-
ous extensions of the approach, for both paramet-
ric and implicit surfaces, have been proposed to
preserve high-curvature features. Figure 4 shows
results for mean curvature motion for a scan con-
verted model (DT-grid of size 2471× 1439× 827)
of the Lucy Statue [1]. The full 3D grid of level-
set data, stored as floats, would require almost 11
gigabytes of data, whereas the DT-Grid representa-
tion of the model requires roughly 159MB. These
results demonstrate different levels of blurring ren-
dered from different distances, in order to demon-
strate the smoothing of small-scale features on very
large models.

Because of the very large sizes of these mod-
els, the run times in the current version are still
significant. The reaction-diffusion results required
approximately 10 minutes (11.5 minutes in the
anisotropic version) per timestep on an Intel Pen-

tium 3.6 GHz processor. The mean-curvature re-
sults required roughly 8 minutes per timestep for the
Lucy Statue [1] in Figure 4 and about 5.5 minutes
per timestep for the Asian Dragon [1] in Figure 5.
However, these are very large models, which are not
solvable without the very narrow band offered by
the DT-grid and associated numerical schemes.
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Figure 4: Results of the mean curvature motion on the lucy statue (scan converted to a DT-grid of size 2471× 1439×
827). Initial surface (Top) and after 19 timesteps with τ = h (Bottom). The first image shows the whole statue, the
second a first zoom into the head region, the third depicts an even closer zoom to the neck and the last image shows the
belonging mesh generated using the marching cubes algorithm [24].

Figure 5: Evolution of the mean curvature motion on the asian dragon surface ( 1986×1323×1104). Here a closeup to
the head with timesteps 0,6,30,44 (τ = h2) is shown. The last two images show the mesh, generated using the marching
cubes algorithm [24], of an even closer zoom to the tongue at timesteps 0 and 44.
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Abstract

In the last couple of years, very detailed high-
resolution terrain data sets have become available
thanks to new acquisition techniques, e.g., the air-
borne laser scanning. Such data sets contain, typi-
cally, several millions of points and, therefore, sev-
eral gigabytes are required just to store them, which
disallows their loading into the memory of a com-
mon computer. In this paper, we propose a novel
out-of-core technique for construction of the Delau-
nay triangulation of such large data sets. It is based
on the method of incremental insertion with flipping
that is simple, robust and can be easily extended
for weights of points, constraints, etc. The pro-
posed technique was tested on various data sets with
sizes up to 128M points on a commodity hardware
(P4 3.2GHz, 2GB RAM, 250GB SATA disk). The
largest data set was processed in about 2.5 hours.

1 Introduction

Given a point set S, the Delaunay triangulation [16]
in E2 is a triangulation which satisfies the Delau-
nay criterion for each triangle: the circum-circle of
the triangle does not contain any input point p ∈ S
in its interior. One of the most important proper-
ties of the Delaunay triangulation is that it maxi-
mizes the minimal angle and, therefore, it contains
the most equiangular triangles of all triangulations
(i.e., it limits the number of too narrow triangles that
may cause problems in further processing). Due
to its properties [21], the Delaunay triangulation is
used in many research areas, e.g., in terrain model-
ing (GIS) [22], scientific data visualization and in-
terpolation [17], [5], [36], pattern recognition [38],
meshing for finite element methods (FEM) [15],
[8], [34], natural sciences [33], [2], computer graph-
ics and multimedia [17], [35], etc.

In the past, many researchers focused on the
problem how to compute the Delaunay triangula-

tion in a reasonable time. The pressure was put on
the exploitation of sophisticated data structures to
speed up the computation, e.g., Directed Acyclic
Graph [9], hierarchical tree [19], multi level uni-
form grid [40], skip lists [39], etc. Many parallel
solutions have been also developed; most of them,
e.g., [13], [30] were designed for specialized paral-
lel architectures, often with hundreds of processors.
Parallel algorithms suitable for low-cost clusters of
workstations also exist, e.g., [14], [29], [25].

Modern computer architectures allow us to com-
pute the Delaunay triangulation of data sets with
thousands of points by any of existing sequential al-
gorithms in a reasonable time. The problem is that
current data sets are, due to the progress in acquisi-
tion techniques, much larger, e.g., typical data sets
produced by airborne laser scanning contain sev-
eral millions of uniformly distributed points, and
they cannot be, therefore, loaded into the physical
memory of a common computer - either because
the computer is a 32-bits architecture that is able to
address up to 4GB of memory only, or simply be-
cause it is not equipped by the requested amount of
memory. Majority of popular sequential or parallel
algorithms thus fail to process these data sets.

Hardwick [25] describes a parallel algorithm
based on the divide-and-conquer strategy. The input
points are subdivided recursively into two groups
according to the median of their x or y-coordinate.
Points are projected onto the perpendicular plane
going through the median, the lower convex hull of
projected points is found using quickhull algorithm
and the back projection of the convex hull gives a
set of Delaunay edges that separates the input re-
gion with the input points into two non-convex sub-
regions. Both sub-regions are simultaneously tri-
angulated by Dwyer’s algorithm [20] and the De-
launay triangulation is obtained by a union of both
local triangulations. Similar approach was also pro-
posed by Lee et al. [30]. As both approaches need
to keep all points in the memory for the computation

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, J. Weickert (Editors)



of Delaunay separators, they are not suitable for the
processing of large data sets. This drawback, how-
ever, can be easily removed.

Another parallel approach was proposed by
Chrisochoides et al. [14]. It starts by a construc-
tion of a coarse triangulation of a subset of points.
The created triangles are partitioned into k continu-
ous regions and distributed over k processors. Af-
ter that, the processors insert points lying in their
regions using the Watson’s approach [37]. The tri-
angles constructed on boundaries are redistributed
heuristically in order to balance the load of the pro-
cessors. The algorithm is again not suitable for
large data sets because every processor needs all
points but its extension seems to be possible.

Recently, Blandford et al. [10] proposed, in our
opinion, a very complex parallel algorithm based
also on the Watson’s approach. It exploits a spe-
cial data structure that maintains the triangulation
in a compressed format in the memory and dynam-
ically decompresses a small region of this triangu-
lation whenever a point has to be inserted into this
region. The authors were able to process a data set
with billions of points on parallel architecture with
64 processors (each processor had 4GB RAM).

Chen et al. [13] proposed a parallel algorithm
that distributes points according to their coordinates
over k processors and let processors to triangulate
their points. After that, each processor computes
an ”interface” using an incremental construction ap-
proach, i.e., a set of triangles that crosses the area
boundaries. For this operation, the processor must
have available all points lying in the areas adjacent
to the area assigned to this processor. In the final
step, interfaces are merged together in order to ob-
tain the resulting triangulation. As the processor
does not need the whole input set, the algorithm is
able to triangulate huge data sets.

Kohout at al. [28] proposed an application inde-
pendent software layer that supports processing of
large data sets by the simulation of the shared mem-
ory on a cluster of workstations. The layer provides
universal routines for the manipulation with data,
no matter whether the data is stored locally or re-
motely. It was used for the construction of Delau-
nay triangulation by a parallel approach described
in [27]. Due to an intensive network communica-
tion required to fetch the remote simplices, this so-
lution is not, however, effective.

Parallel processing is not the only way how to

handle large data sets. Recent research has been
also focused on external memory algorithms (ac-
knowledged also as out-of-core algorithms) that use
disks for temporary storage of data structures that
are too large to fit in the memory and load them
into the memory when necessary. Many theoreti-
cal papers discussing the optimal strategy to mini-
mize data movement have been published, e.g., [1],
[4], etc. A good survey of these approaches can be
found in [6]. Surprisingly only a few practical pa-
pers dealing with the construction of Delaunay tri-
angulation of large data sets exist.

Agarwal et al. [3] designed an out-of-core algo-
rithm for the construction of Constrained Delaunay
triangulation based on the divide-and-conquer ap-
proach. It sorts all points in such a way that they lie
on a space-filling Hilbert curve and splits them into
subsets that are successively triangulated. When-
ever the triangulation of a subset is completed, the
algorithm checks each of the remaining points if it
does not violate the Delaunay criterion and if the
outcome is positive, the triangulation is altered by
an appropriate way. Although the authors claim that
their algorithm is practical, we think that it is quite
difficult to be understood and implemented. Nev-
ertheless, the proposed algorithm is quite efficient.
According to the results, it was able to compute the
Delaunay triangulation of a data set with several
millions of points in a couple of minutes.

A data streaming approach described by Isenburg
et al. [26] constructs the Delaunay triangulation in
two steps. In the first step, the input stream with
points is read (several times) and points are parti-
tioned into buckets written into an output stream. In
the second pass, this output stream is read and the
Delaunay triangulation is successively constructed
using the Watson’s approach. When all points from
one bucket are processed, the constructed triangles
that will not change in the future are removed from
the memory (and their points as well) and written
into the output stream. The algorithm is easy to be
understood but its implementation may be more dif-
ficult as many singular cases must be handled. Nev-
ertheless, it is very efficient: a data set with billion
points can be processed in several hours on a com-
mon computer.

In this paper, we propose an out-of-core algo-
rithm called ACUT (Area CUTting) that is suitable
for the construction of Delaunay triangulation of
large E2 data sets. It is very simple to be understood
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as well as implemented. It is based on the method
of incremental insertion with local transformations
(i.e., edge flipping) [23], thus it offers better robust-
ness than algorithms based on other approaches. As
far as we know, it is the first algorithm based on
this approach. It does not need to sort points in pre-
processing (but it performs a spatial reorganization
of points), is insensitive on distribution of points
and can be generalized to incorporate constraints
given in the form of prescribed edges, to use non-
Euclidian metrics or weights of points, etc.

The paper is structured as follow. An overview of
our approach (called ACUT) is given in Section 2;
Sections 3 and 4 describe its steps in detail. Section
5 brings results of the performed experiments and
a comparison with existing approaches. Section 6
concludes the paper.

2 Overview of ACUT

The proposed approach for the construction of De-
launay triangulation of large data sets is based on
the obvious idea to split the input data into several
smaller sets, compute local triangulation for these
sets and merge these triangulations together.

As many existing solutions, our approach has two
main steps. In the first one, the points from the input
file are reorganized into cells of a uniform grid and
stored into a temporary grid file. In the second step,
these cells (and their points, indeed) are partitioned
into the requested number of regions and an appro-
priate star shaped domain with Delaunay edges on
its boundary is computed for every region - see Fig-
ure 1. Domains are processed successively: their
points, i.e., points lying inside the domain (or on
the boundary) are triangulated and the triangulation
is stored into the output file. As domain boundaries
are formed by Delaunay edges, no complex merge
phase is required, all that is needed is to update the
connectivity between triangles of adjacent domains,
if necessary. The schematic view of the proposed
approach is shown in Figure 2.

The most complex part is the construction of do-
mains. Let us describe it in more detail. It starts
with a construction of the convex hull of input
points. The computed convex hull is the domain
appropriate to the initial region that represents the
whole grid of points. This region (and its domain)
is recursively subdivided by horizontal and vertical
cuts using an approach by Mueller [32]. More in-

Figure 1: The region (cyan) and its corresponding
star-shaped domain (thick red poly-line).

formation about it is given in the following section.
Whenever a cut for the region is found, the tech-
nique proposed by Blelloch et al. [11] is used to
construct a poly-line of Delaunay edges along the
cutting edge (details are described in the Section 3).
This poly-line is combined together with separators
forming the boundary of the appropriate domain to
create two new domains. The recursion stops when
the requested number of domains is reached.

Figure 2: The schema of the proposed approach.

3 Details of ACUT

In this section, we describe both steps of our ap-
proach (see the previous section) in detail.

3.1 Grid Construction

In this first step of our approach, the input points are
subdivided into cells of a uniform grid that covers

the min-max box of points and has
√

c· √N· H
W ×√

c· √N· W
H , cells, where N is the number of in-

put points, H and W are height and width of the
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min-max box of the input points and c is a con-
stant (we use 0.5). For each cell of the grid, a
small point buffer is created in the memory. Its
capacity depends on the number of points to be
processed, number of cells in the grid and on the
amount of memory available for this first step. The
input points are successively read and inserted into
the corresponding buffer according to their coordi-
nates. If the buffer is full, its points are written at the
end of a temporary grid file and the position of the
written block in the file is enlisted in a list of frag-
ments stored in the cell structure. When the entire
input is read, all buffers are flushed. At the end, the
grid structure, i.e., the matrix of lists of fragments
is also written into the grid file.

The problem is that very often we do not know
the min-max box of points in advance and some-
times even the precise number of points is also un-
known. To avoid multiple reading of input file, we
propose a data-streaming algorithm that works as
follows. At the beginning, a chunk of M (M <N)
points is loaded into the memory, the overall num-
ber of points in the file is estimated from the size
of input file and the size of currently loaded num-
ber of points, the min-max box of the loaded points
is computed, an initial uniform grid is created us-
ing the formula written above and points are sub-
divided into the grid. After that another chunk of
points is loaded, their min-max box is computed,
the current grid is enlarged by adding some rows
and/or columns, if necessary, and points are again
subdivided into cells. If the grid dimension is larger
than some given threshold, pairs of cells are merged
together. Let us point out that this merge stage only
concatenates lists of fragments, no point is moved.
So it goes until all points are processed.

An advantage of this partitioning is that it sub-
divides input points into cells in one pass. On the
other hand, points lying in one cell are very often
fragmented into blocks (especially, if cell buffers
are too small), which slows down the processing
due to an inefficient use of spatial coherence.

3.2 Cells Partition

The points have to be subdivided into k subsets in
such a manner that not only the almost equal num-
ber of points in each subset is ensured but also the
bounding boxes of these subsets have minimal in-
tersection and the total length of boundaries is min-
imal. To achieve this, we use the strategy proposed

by Mueller [32] that is based on a recursive sub-
division of the summed-area table using horizontal
and vertical cuts. The summed-area table is con-
structed from a matrix of values corresponding to
numbers of points lying in appropriate cells of a uni-
form grid covering the bounding box of all points -
see Figure 3. Let us note that we already created
this grid in the first step of our approach. An advan-
tage of the Mueller approach is that the summed-
area table can be efficiently found in O(R), where R
is the total number of cells and split into k regions
in O(k·log(R)) using a binary search algorithm. De-
tailed description is out of the scope of this paper.

Figure 3: The subdivision of cells into three regions.

3.3 Construction of Delaunay Separators

When, in the Mueller algorithm (see the previous
section), a cut for the current region is computed,
we construct the convex hull of points transformed
by the following formulas: P (Px, Py) → P ′(Py −
Cy, ‖P − C‖2), if the cut is the vertical one and
P (Px, Py) → P ′(Px −Cx, ‖P −C‖2) otherwise,
where C is the centre of the cut. Unlike Hard-
wick et al., not all points are processed but only
points lying in cells covered by the domain appro-
priate to the region to be cut. The lower part of the
constructed convex hull is taken and its edges give
the Delaunay separators between corresponding un-
transformed points - see Figure 4.

All that remains is to combine the constructed
poly-line of Delaunay separators with the domain
separators and to create two new domains. Starting
from the first point from the poly-line, we search in
the chain of vertices of the domain polygon to find
this point. If the corresponding point is not found,
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Figure 4: The lower convex hull of transformed
points and the Delaunay triangulation with Delau-
nay separators along the cutting line (gray line). Im-
ages were adopted from [25].

the next point is taken and the search restarts. So it
goes until the match is found. The other end of the
poly-line is also processed, the domain polygon is
split into two poly-lines at the positions of matches
and they are connected to the appropriate part of
the constructed poly-line to form two new domains.
The complexity of this brute-force combination is
O(
√

N) in the worst-case. The performance could
be improved by using a hash table - in our current
implementation, we do not use it. Figure 5 shows
the domains constructed for a real data set.

Figure 5: The constructed domains.

3.4 Construction of Convex Hull

As there is not enough memory to load every point
into the memory, we use an incremental construc-
tion algorithm that works as follows. Starting with
an initial convex hull, points are successively tested
whether they lie outside the current convex hull. If
the result of the test is positive, the convex hull has

to be updated in such a manner that the point lying
outside belongs now to the new convex hull.

In our implementation, the location is speeded up
by red-black trees [7]; one is used for the lower part
of the convex hull, another one for the upper part.
An internal node stores a pair of key x and an as-
sociated value p, where p is a point on the convex
hull and x is its x-coordinate. An external node rep-
resents an edge or an empty half-space. For each
given point q, we search its x-coordinate in both
trees to find either vertex v or an edge e and we
test whether the given point lies above or below the
found primitive - see Figure 6a. If the point lies out-
side the current convex hull, it is inserted into the
appropriate red-black tree and points that no longer
belong to the convex hull are removed from this tree
- see Figure 6b. Let us note that the convex hull can
be computed by this algorithm in O(N·log(M)) ex-
pected time, where M is the number of points on the
convex hull (it is usually much less than N).

Figure 6: The location of mutual position of the
point q and the convex hull (a) and the update of
convex hull (b).

As the orientation test used to determine whether
a point lies below or above some edge and to deter-
mine whether a point should be removed from the
convex hull is exactly the same test that is used in
the computation of the Delaunay triangulation itself
and red-black trees are nowadays a common part of
libraries, the implementation of this part of our ap-
proach is pretty simple.

3.5 Domain Triangulation

Domain points are triangulated using the method of
incremental insertion with flipping. We decided to
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use this method because of its simplicity and ro-
bustness: in the case of an incorrect or inconsistent
Delaunay criterion evaluation caused by numerical
inaccuracy, a triangulation with two or more non-
Delaunay triangles is obtained, but it is still a valid
triangulation. The method can be also simply mod-
ified to incorporate constraints given in the form of
prescribed edges, to use non-Euclidian metrics or
weights of points, etc.

Starting with an auxiliary triangle containing all
domain points in its interior, points are inserted suc-
cessively into the triangulation as follows. The tri-
angle containing the point to be inserted is located
(we use the remembering stochastic walking [18])
and subdivided. Afterwards, the empty circum-
sphere criterion is tested recursively on all trian-
gles adjacent to the new ones, and if necessary, their
edges are flipped, i.e., local transformation are ap-
plied. Figure 7 shows an example of the insertion.

Figure 7: The insertion of point into the DT.

In our approach, points on the boundary of the
domain are inserted first and the remaining domain
points (they must lie in some cell of the correspond-
ing rectangular region [11]) are afterwards inserted
in a pseudorandom order as follows. While the
insertion order of points from one cell is random-
ized, cells are ordered according to the space-filling
Hilbert curve [12] and all points from one cell must
be processed before the algorithm may advance to
another cell - see Figure 8. This pseudorandom or-
der of insertion has two important features. First,
it exploits the spatial coherence in data and, there-
fore, the walking needs O(1) in the expected case to
locate the triangle to be subdivided. Next, the ran-
domness lowers the sensitivity of the approach to
numerical errors.

In our implementation, an array is used as a com-
pact and efficient data structure to hold the triangu-
lation. Let us note that as planar triangulations of N
points have at most 2·N triangles, the array can be
allocated at the beginning to hold this amount.

When all points are processed, every outer trian-
gle, i.e., the triangle that lies outside the domain,

Figure 8: The insertion order of cells (black path).

has to be removed and the remaining triangles must
be stored into the output file. The removal starts
with searching for any triangle that has a vertex of
the auxiliary initial triangle. Usually, only a few tri-
angles have to be checked (the worst-case we have
experienced was 1% of triangles). The reference on
this triangle is pushed into a stack and the following
steps are repeated until the stack is empty. The tri-
angle is popped from the stack and every adjacent
triangle not sharing edge that belongs to the Delau-
nay separators is pushed into the stack. A hash table
is used to speed-up this test. The triangle is marked
then as processed and disconnected from the mesh.

4 Singular Cases

The proposed approach, as it was described in pre-
vious sections, may not work perfectly for all data
sets. In this section, we discuss singular cases that
must be handled in order to have a robust solution.

First problem roots in the ambiguity of Delaunay
triangulation for data sets containing four points ly-
ing on a common circle - see Figure 9. As this
quadrilateral, say pa, pb, pc, pd, may be triangu-
lated by two different ways, it may happen that
while the diagonal pb, pd is chosen during the con-
struction of Delaunay separators, the triangulator
creates the other diagonal, i.e., the edge pa, pc. Due
to this inconsistency, we can walk from an outer tri-
angle to an inner triangle without crossing any De-
launay separator, which leads to that no triangle is
stored in the extraction stage.

Fortunatelly, this problem can be easily solved by
adding an additional test to the extraction algorithm.
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Figure 9: The ambiguity in the DT.

When the triangle is popped, we check whether all
of its vertices belong to a set of vertices forming
the Delaunay separators (this can be done quickly
using another hash table). If the outcome of this
test is negative, i.e., the triangle contains some in-
ner domain point, the appropriate adjacent triangle
forming the quadrilateral is found and their com-
mon edge is swapped.

The second problem is caused by a numerical
inaccuracy during the construction of convex hull.
It may happen that a point that should be on the
convex hull is due to round-off errors located in-
side the convex hull, which leads to the construc-
tion of incorrect Delaunay separators. The result is
that this point lies outside the domain into which it
is assigned - see Figure 10. Therefore, its incident
triangles are removed during the extraction, which
means that this point will not be triangulated in the
final Delaunay triangulation.

Figure 10: The problem of a numerical inaccuracy:
the highlighted point lies outside its domain.

This problem is automatically detected when the
algorithm handles the problem of ambiguity and is
unable to find an appropriate adjacent triangle to
perform the swap edge. Unfortunately, its solving
is extremely difficult (if not impossible). Indeed,
we could redistribute these points assigned to in-

correct domain, but their detection would harm the
performance significantly. As we detected, in our
experiments, up to 5 such cases per one domain (35
in total for a data set with 64M points) when sin-
gle float precision was used, we cease to correct
this problem, thus allowing a small amount of un-
connected points in the resulting mesh. Let us note
that we have not experienced this problem when we
switched to double precision.

5 Experiments & Results

The proposed approach was implemented in C++
using Microsoft Visual Studio.NET 2005. Load-
ing/storing is written generally (e.g., it can load data
into various structures from various file formats),
which has a significant negative impact on the per-
formance. Also some profiling is included in the
code, e.g., counting time spent in important rou-
tines. It, indeed, slow downs the computation. Sin-
gle precision arithmetics was used in the code.

We tested the implemented solution on various
data sets (generated and real) in a binary format on
Dell Optiplex GX620: Intel Pentium Processor 3.2
GHz with Hyper-Threading Technology and EM64,
2GB Dual Channel DDR2 RAM (but we used only
1GB), 250GB SATA Disk, MS Windows XP. For
each data size several different data sets were tested
and the presented times were calculated as average
of measured total times. Let us note that in the total
time everything is included, i.e., the time needed for
loading of points, for the grid construction, convex
hull computation, triangulation and for the storing
of the output mesh.

Figure 11 shows dependency of the total time on
the number of points for generated data sets with
various point distributions: uniform, gauss, clusters
and for real data sets (mostly GTOPO30 [24]). As
it can be seen, the proposed approach is insensitive
to point distributions. Moreover, it can process data
sets in almost linear time.

A runtime profiling for tested uniform data sets
is given in Figure 12. If we consider larger data sets
only, i.e., 16M+, more than 50% of the overall time
is consumed by I/O operations (grid construction -
10–20%, points loading - up to 10%, domains con-
struction 30%). The time required for the domains
construction, i.e., for the cells partition and the con-
struction of Delaunay separators, grows proportion-
ally to the number of points. For a 128M data
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Figure 11: The runtime for data sets with various
point distributions.

set, when 32 domains were used, ACUT needed as
much time for this operation as for the triangulation
itself. Let us note that the domains construction also
performs some I/O operations.

Figure 12: The profiling for uniform data sets.

We compared our results with the results
achieved by Agarwal et al. [3]. According to pub-
lished graphs, their approach is about three times
faster. However, this comparison is skewed because
Agarwal et al. do not include the time consumed
by the required sorting of input points into the pub-
lished total time needed for the Delaunay triangula-
tion. They also used a more powerful computer for
their experiments: Intel Pentium XEON 2.4 GHz
with Hyper-Threading Technology, 1GB RAM (but
only 128 MB was used), 4x72 GB SCSI (10000
rpm) disks in RAID-0 configuration running Linux
with kernel 2.4.5-smp. Therefore, we daresay that
both approaches are more or less competitive in the
performance, however, our approach is, in our opin-
ion, much easier to be implemented.

We also compared the results with the results
by Isenburg et al. [26]. Although authors claim
that their approach is 12 times faster than the ap-

proach by Agarwal et al, the experiments that we
performed with their software on our data sets show
that for large uniform data sets our approach out-
paces theirs - see Figure 13. For real data sets, how-
ever, Isenburg et al. achieved much better perfor-
mance (about 4 times for 20M) - see Figure 14. The
reason for this behavior is that points in tested real
data sets are already ordered according to their co-
ordinates, while points for uniform data sets are un-
ordered. Let us note that this comparison is, how-
ever, imprecise because of two following reasons.
First, unlike our approach, Isenburg et al. do not
store the connectivity between triangles, which is,
indeed, unacceptable for many applications. Ac-
cording to our additional experiments, the triangu-
lation extraction (in ACUT) runs much faster if we
do not store the connectivity (about 12 times for a
16M uniform data set, which speed ups the over-
all process 2 times). On the other hand, for experi-
ments with the software by Isenburg et al., the input
was given in text format, which is, indeed, quite in-
efficient format (our approach requires about 70%
more time to process text files than to process bi-
nary files, e.g., 74.2% for a 16M uniform data set).
Let us, therefore, conclude the comparison by the
claiming that both approaches are more or less com-
petitive, each has its pros and cons.

Figure 13: The runtime comparison of our and Isen-
burg’s approach [26] for uniform data sets.

6 Conclusion

In this paper, we have proposed an out-of-core ap-
proach for the construction of Delaunay triangula-
tion in E2 based on the incremental insertion with
local transformations, which, as far as we know, has
not been used for the processing of large data sets
yet. The approach is easy to implement and robust.
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Figure 14: The runtime comparison of our and Isen-
burg’s approach [26] for real data sets.

It can be also generalized to incorporate constraints
given by a set of prescribed edges into the triangula-
tion or to use weights of points. All that is needed is
to modify the transformation of points (see Section
3.4) using the idea proposed by Maur et al. [31].
It transforms constrained edges (or non Delaunay
edges introduced by given weights of points) onto a
lower convex hull and to modify the Delaunay cri-
terion test in such a way that constrained edges are
always considered valid, i.e., they are never flipped.

The proposed approach was implemented in C++
and tested on various data sets with up to 128 mil-
lions of points. According to the our experiments,
our solution processes data sets in an almost linear
time (a 128M uniform data set was processed in 2.5
hours on a common hardware) and, due to its sim-
plicity, insensivity to point distribution and general-
ization possibilities,it is, in our opinion, an interest-
ing alternative to existing more efficient approaches
by Agarwal et al. [3] and Isenburg et al. [26].
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face reconstruction from large point clouds
using virtual shared memory manager. In
Computational Science and Its Applications -
ICCSA 2006, 71–80, 2006.
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Abstract

Computational photography combines plentiful computing, digital sensors, modern optics, actuators, and
smart lights to escape the limitations of traditional cameras, enables novel imaging applications and sim-
plifies many computer vision tasks. Unbounded dynamic range, variable focus, resolution, and depth of
field, hints about shape, reflectance, and lighting, and new interactive forms of photos that are partly snap-
shots and partly videos are just some of the new applications found in Computational Photography. I will
discuss Coded Photography which involves encoding of the photographic signal and post-capture decoding
for improved scene analysis.With film-like photography, the captured image is a 2D projection of the scene.
Due to limited capabilities of the camera, the recorded image is a partial representation of the view. Nev-
ertheless, the captured image is ready for human consumption: what you see is what you almost get in the
photo. In Coded Photography, the goal is to achieve a potentially richer representation of the scene during
the encoding process. In some cases, Computational Photography reduces to ’Epsilon Photography’, where
the scene is recorded via multiple images, each captured by epsilon variation of the camera parameters. For
example, successive images (or neighboring pixels) may have a different exposure, focus, aperture, view,
illumination, or instant of capture. Each setting allows recording of partial information about the scene and
the final image is reconstructed from these multiple observations. In Coded Computational Photography,
the recorded image may appear distorted or random to a human observer. But the corresponding decoding
recovers valuable information about the scene.

’Less is more’ in Coded Photography. By blocking light over time or space, we can preserve more
details about the scene in the recorded single photograph.

1. Coded Exposure: By blocking light in time, by fluttering the shutter open and closed in a carefully
chosen binary sequence, we can preserve high spatial frequencies of fast moving objects to support
high quality motion deblurring.

2. Coded Aperture Optical Heterodyning: By blocking light near the sensor with a sinusoidal grating
mask, we can record 4D light field on a 2D sensor. And by blocking light with a mask at the aperture,
we can extend the depth of field and achieve full resolution digital refocussing.

3. Coded Illumination: By observing blocked light at silhouettes, a multi-flash camera can locate depth
discontinuities in challenging scenes without depth recovery.

4. Coded Sensing: By sensing intensities with lateral inhibition, a gradient sensing camera can record
large as well as subtle changes in intensity to recover a high-dynamic range image.

I will show several applications of coding exposure, aperture, illumination and sensing and describe emerg-
ing techniques to recover scene parameters from coded photographs.
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A Method to Detect and Mark False Branches of a Vessel Graph
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Abstract

Volume representations of blood vessels acquired
by 3D rotational angiography are very suitable for
diagnosing a stenosis or an aneurysm. For optimal
treatment, physicians need to know the shape of the
diseased vessel parts. Therefore, we previously de-
veloped a method for fully-automatic extraction of
this shape from such a volume representation. In
some cases, neighbor vessels are erroneously con-
nected via false branches. In this paper, we describe
a method to detect and mark false branches of a ves-
sel graph.

CR Descriptors:
3D Rotational Angiography, volume visualiza-

tion, Computer Assisted Diagnosis, Shape Extrac-
tion.

1 Introduction

Volume representations of blood vessels acquired
by 3D rotational angiography after injection with a
contrast agent [14] have a clear distinction in gray
values between tissue and vessel voxels. Therefore,
these volume representations are very suitable for
diagnosing a stenosis, a local narrowing of a vessel
caused for example by cholesterol (see Figure 11),
or an aneurysm, a local widening of a vessel caused
by a weak vessel wall (see Figure 14).

For optimal treatment of a stenosis or an
aneurysm, physicians need to know the cross-
sectional shape parameters in the neighborhood of
the diseased vessel parts. We developed a method
for semi-automatic extraction of these parameters
from a surface model of the vessel boundaries [4].
However, if two vessel branches are close together,
it is possible that vertices of the neighbor vessel
branch are included in the set of selected vertices
which are used to estimate the local shape param-

eters of the vessel branch investigated. To ex-
clude surface vertices of neighbor vessel branches,
we developed a method for fully-automatic branch
labelling [5] to give the vessel voxels (and from
these the surface vertices) a unique label per ves-
sel branch. This method results also in a set of di-
rected graphs with nodes and edges (called “skele-
ton branches”) which facilitates fully-automatic
vessel tracing of a minimum path along the skele-
ton branches of the same graph.

Because of the finite resolution, it is possible
that neighbor vessels are erroneously connected at
a number of places. Examples of erroneous ves-
sel junctions are shown in Figure 13 (the erroneous
vessel junctions are more clearly visible when the
surface model is rendered from a varying view-
point). These erroneous vessel junctions result ei-
ther in false branches or in merged branches. A
false branch is an erroneous skeleton branch be-
tween two in reality separated vessel branches (see
left picture of Figure 1). A merged branch is a sin-
gle common skeleton branch for two in reality sepa-
rated vessel branches (see right picture of Figure 1).
A false branch is generated if the erroneous vessel
junction is relatively short. A merged branch is gen-
erated if the erroneous vessel junction is relatively
long.

In case of false branches, it is possible that
some of the cross-sectional shape parameters are
extracted from neighbor vessel branches. There-
fore, we developed a method to detect and mark
such false branches so that the minimum path gen-
eration can avoid these false branches.

Remark:

Merged branches are not yet detected and re-
paired!

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, J. Weickert (Editors)



vessel wall
skeleton branches

inside inside inside inside

False Merged Branch

Branch

Figure 1: False versus merged branches

2 Related Work on Branch Labelling

The graph structure which represents the topology
of the vessels, can be generated by various skele-
tonization algorithms. Skeletonization algorithms
based on topological thinning are presented in [1,
7, 13]. Skeletonization algorithms based on mor-
phological thinning are presented in [8, 12]. Skele-
tonization algorithms based on distance transforma-
tions are described in [6, 2]. Skeletonization algo-
rithms based on thinning and distance maps are pre-
sented in [17, 3]. Skeletonization algorithms based
on propagation are described in [10, 16, 18, 19]. A
skeletonization algorithm based on path tracking is
presented in [9]. A skeletonization algorithm based
on ridge extraction is described in [11].

Algorithms for correction of the generated graph
structure are presented in [18, 17, 3].

3 Method

3.1 Preamble

The input of our method is the set of directed
graphs (one for each component of the voxel ves-
sel structures) with nodes (one for each vessel junc-
tion and one for each vessel extremity) and skele-
ton branches (one for each vessel branch). A skele-
ton branch consists of a set of face connected ves-
sel voxels, called “skeleton voxels”. The skeleton
voxels, located close to the center line of the vessel
branch, have a unique label per vessel branch. An

example is shown in Figure 12. The skeleton voxels
are displayed in a color according to their label but
skeleton voxels with different labels can have the
same color because of the limited number of col-
ors used for display. The nodes are equipped with
geometry (see Figure 15). A center sphere together
with the center planes give the position, the size and
the delineation of the center region (i.e. the junc-
tion). The branch spheres together with the branch
planes give the size and the direction of the branch
regions adjacent to the center region.

We use a number of thresholds (length factors,
radius factors, angles etcetera). These thresholds
are empirically determined: a much smaller and/or
a much larger threshold (factor) gives wrong out-
comes at least for our clinical volume datasets.

3.2 Typification of a False Branch

A skeleton branch is marked as a false branch if it
fulfills the following qualitative conditions which
express that the configuration of a false branch
with two continuing main branches is topologically
equivalent to the H-shape shown in the left picture
of Figure 1:

1. The branch is relatively short.
2. The branch is not connected to another branch

so that these two form a continuing branch (ex-
plained in Section 3.4).

3. The branch is located between two continuing
main branches (explained in Section 3.5).

Skeleton branch Normal branch

Short branch Unsuitable branch

Candidate branch Continuing branch

Check quadrangles

Solo branch Solo branch

False branch Fake false branch

Real false branch

Figure 2: Flowchart of branch classification.
”Check quadrangles” is explained in Section 3.7
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3.3 Detection of a False Brach

The false branches are detected by generating sub-
sets of the set of all skeleton branches (see Fig-
ure 2). First, the set of skeleton branches is sub-
divided in the set of normal branches and the set
of short branches (first qualitative condition) by ap-
plying the following tests in the given order:

1. A skeleton branch is classified as a normal
branch if the number of skeleton voxels of the
branch (i.e. the length of the branch) is greater
than 2 times the Manhattan distance between
the two nodes of the branch.
The Manhattan distance is used because the
length of a branch (a set of face connected ves-
sel voxels) is a kind of cumulative Manhattan
distance.
This test is needed to prevent that a skeleton
branch with two very close nodes (as tested in
the following two conditions) but with a long
detour is classified as a short branch.

2. A skeleton branch is classified as a short
branch if the two center spheres overlap.

3. A skeleton branch is classified as a short
branch if the centers of both branch spheres are
located inside one of the two center spheres.
An example is shown in Figure 3.

inside inside

inside inside

Figure 3: A short branch which is also a candi-
date branch. The thick lines are the detected ves-
sel boundaries. The two big central circles are the
center spheres. The four big flank circles and the
two small circles are the branch spheres. For clar-
ity the candidate branch is extended. Normally, the
branch spheres of the candidate branch will almost
completely overlap. The two horizontal arrow line
segments indicate the points used to compute the lo-
cal plane normals (explained in Section 3.4) for the
normal branches. The two vertical arrow line seg-
ments indicate the points used to compute the local
plane normals for the candidate branch.

4. A skeleton branch is classified as a normal
branch when the previous two tests fail.

Next, the set of short branches is subdivided in
the set of unsuitable branches and the set of can-
didate branches. Only candidate branches may be
marked as a false branch. An unsuitable branch is a
short branch for which it is either immediately clear
that it will never be marked as a false branch, or for
which it is too difficult to decide whether it can be
correctly marked as a false branch:

1. A short branch is classified as an unsuitable
branch if one or both nodes of the short branch
has less than three skeleton branches.
The third qualitative condition can be fulfilled
only if at both nodes of the short branch at least
two additional skeleton branches exist to form
the required continuing main branches.

2. A short branch is classified as an unsuitable
branch if there is yet another skeleton branch
between the two nodes of the short branch.
More than one skeleton branch between the
two nodes makes checking not only more com-
plex because this configuration is not topolog-
ically equivalent to the H-shape shown in the
left picture of Figure 1 but also more unreli-
able because the other branch may disturb the
fitting branch pair relation (this relation will
be given further detail in Section 3.4) for the
branch tested.

3. A short branch is classified as a candidate
branch when the previous tests fail.

The topological configuration of a candidate
branch with two additional skeleton branches is
shown in Figure 4.

0 1

A C

B D

Figure 4: A candidate branch. The digits “0” and
“1” indicate the nodes at the two ends of the candi-
date branch. The characters “A”, “B”, “C” and “D”
indicate the nodes at the other end of the additional
branches.
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A candidate branch will never be marked as a
false branch if the candidate branch is connected
to another branch so that these two form a contin-
uing branch (second qualitative condition). So, we
have to check whether one of the additional skeleton
branches forms a continuing branch pair with the
candidate branch. This check is given further detail
in Section 3.4. The outcome of this check is used to
subdivide the set of candidate branches in the set of
continuing branches and the set of solo branches.
This check is also applied to the set of unsuitable
branches to split off the unsuitable branches which
are continuing branches because this difference in
branch type is used in the detection of a continuing
main branch (see Section 3.5).

Finally, the set of false branches is split off from
the set of solo branches. A solo branch is marked as
a false branch if at both nodes, two of the additional
skeleton branches form a continuing main branch.
This check is given further detail in Section 3.5.

Our algorithm may result in unwanted false
branches. How these unwanted false branches are
detected and repaired is described in Section 3.6.

In some cases, four candidate branches form a
quadrangle. Such a quadrangle requires a special
approach. This approach is given further detail in
Section 3.7.

3.4 Detection of a Continuing Candidate
Branch

Local Geometry:
We use the local geometry around both nodes of

a candidate branch to detect whether a candidate
branch forms a continuing branch pair with another
branch. The local geometry of a node consists of a
set of local planes, one for each branch of the node.
The position of each local plane is equal to the posi-
tion of the node. The normal of each local plane is
the normalized direction from the position of this
plane to a position depending on the type of the
branch. If the branch is a normal branch, the po-
sition of the branch plane is used, else, the position
of the node at the other end of the branch is used.
The normal of each local plane gives the local di-
rection of the corresponding branch away from the
node. An example of a local geometry without the
local planes is shown in Figure 3.
Fitting Brach Pairs:

Given the local geometry of a node (i.e. the inner

products between the normals of the local planes)
we could check whether a candidate branch b forms
a continuing branch pair with another branch c at
that node using an absolute threshold for the angle
between the normals of the local planes. To avoid
the choice for such an absolute threshold, we use
a relative relation between the branches at a node.
This relative relation is used to check whether the
other branch c is aligned with the candidate branch
b as good as the other branches at that node. There-
fore, the local geometry of a node is used to define
a number of fitting relations for a branch b at that
node:

1. The best fitting branch of a branch b, indicated
by bfb(b), is the branch for which the inner
product ip(b, bfb(b)) between the normals of
their local planes is minimal (normals of local
planes point away from the center position of
the node!).

2. A fitting branch of a branch b, indicated by
fb(b), is a branch for which the inner product
ip(b, fb(b)) between the normals of their local
planes is equal (given the numerical errors) to
the inner product of the best fitting branch:
ip(b, fb(b)) ≤ ip(b, bfb(b)) + 10−10

So, a best fitting branch is also a fitting branch.
3. A branch b forms a fitting branch pair with a

fitting branch fb(b) if and only if branch b is a
fitting branch of the fitting branch fb(b).

The fitting branch pair relation is not symmetric:
branch b forms a fitting branch pair with branch c

does not imply that branch c forms a fitting branch
pair with branch b.
Two examples of fitting branch pairs:

If in the example of Figure 5 the angle between
branch BA and branch BC is almost equal to the
angle between branch BA and branch BD, there
are four fitting branch pairs:

A B

C

D

Figure 5: Four fitting branch pairs between the
nodes A, B, C and D.

Branch BC forms a fitting branch pair with
branch BA, branch BD forms a fitting branch pair
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with branch BA, and branch BA forms a fitting
branch pair with branch BC and with branch BD.

In the example of Figure 6 the angle between
branch BA and branch BC is much smaller than
the angle between branch BA and branch BD. So,
there are two fitting branch pairs:

A B
C

D

Figure 6: Two fitting branch pairs between the
nodes A, B, C and D.

Branch BC forms a fitting branch pair with
branch BA and branch BA forms a fitting branch
pair with branch BC.
Continuing Branch Pairs:

Now we can check whether a candidate branch b

forms a continuing branch pair with a branch c at
the node bc between these two branches by applying
the following tests in the given order:

1. A branch pair is not classified as a continuing
branch pair if the candidate branch b does not
form a fitting branch pair with the other branch
c of the branch pair.

2. A branch pair is not classified as a continuing
branch pair if the ratio of the average branch
radii is less than 0.5 or greater than 2.0.
The diameter of a continuing branch pair
changes only slightly.

3. A branch pair is classified as a continuing
branch pair if there exists a valid run-up path
to the node bc.
A run-up path to the node bc is a minimum
path along the skeleton voxels of the skeleton
branches of the generated graph between an ar-
bitrary node as start node and the node bc as
finish node. A run-up path to the node bc is
a valid run-up path if the following conditions
are fulfilled:
(a) The radius along the run-up path is

greater than 0.75 times the radius of the
candidate branch b.
This condition excludes run-up paths
along vessels which are relatively thin
compared to the candidate branch b.

(b) The last part of the run-up path consist of
the skeleton voxels of the other branch c.

So, the length of the run-up path should
be at least equal to the length of branch c.

(c) The last part of the run-up path is inside
a special local truncated cylinder. The
normal of the local plane of the candi-
date branch b gives the central axis of
this cylinder. The radius of this cylin-
der is given by the radius of the candidate
branch b. The length of this cylinder is
equal to two times the center radius of the
node bc plus the number of skeleton vox-
els of the candidate branch b.
Since the cross-section of a “normal” ves-
sel branch is approximately a circle, this
cylinder is a faithful extrapolation of the
candidate branch b in the direction of the
other branch c.
An example of the last part of a valid run-
up path is shown in Figure 7

local normal of candidate branch

last part of a valid run-up path
truncated cylinder

Figure 7: A valid run-up path

(d) The Manhattan distance between the be-
gin and the end of the run-up path is
greater than or equal to the length of the
local truncated cylinder.
The Manhattan distance is used because
the length of the run-up path (a set of face
connected vessel voxels) is a kind of cu-
mulative Manhattan distance.
This condition excludes hairpin paths.

Since the last part of the run-up path consists
of the skeleton voxels of the other branch c,
these conditions indicate that the other branch
c and the candidate branch b form a continuing
vessel part.

If a candidate branch forms a continuing branch
pair with at least one of the other branches at that
node, the candidate branch is classified as a contin-
uing branch.

As already mentioned in Section 3, if a candidate
branch does not form a continuing branch pair with
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at least one of the other branches at that node, the
candidate branch is classified as a solo branch.

3.5 Detection of a Continuing Main
Branch

As already mentioned in Section 3, a solo branch is
a false branch if at both nodes two of the additional
skeleton branches form a continuing main branch.
We check whether two of the additional branches
form a continuing main branch by applying the fol-
lowing tests in the given order:

1. The two additional branches are not classi-
fied as a continuing main branch if their radii
are less than 0.5 times the radius of the solo
branch.
A continuing main branch should not be a rela-
tively thin vessel compared to the solo branch.
As stated in the introduction, a false branch
is generated if the erroneous vessel junction
is relatively short. A merged branch is gen-
erated if the erroneous vessel junction is rela-
tively long. If the radius of the solo branch is
much greater than the radii of the continuing
main branch, the vessel junction is relatively
long. In that case, a false branch is unlikely.

2. The two additional branches are not classified
as a continuing main branch if the angle be-
tween the two additional branches is less than
90 degrees (the two branches kink).

3. The two additional branches are not classified
as a continuing main branch if these branches
do not form a fitting branch pair.
The same test with the same local geometry as
described in Section 3.4 is applied.

4. The two additional branches are classified as a
continuing main branch if these branches are
either a normal branch or a continuing branch.

5. The two additional branches are classified as a
continuing main branch if there exist a valid
run-up path along the additional branches
which are neither a normal branch nor a con-
tinuing branch.
The valid run-up path for an additional branch
is similar to a valid run-up path for a candidate
branch (see Section 3.4).

3.6 Repair of Unwanted False Branches

The algorithm, described in the previous sections,
may result in unwanted false branches. These un-

wanted false branches are detected and repaired as
follows. First, false end nodes are detected and re-
paired: a false end node is a node with more than
two skeleton branches from which all branches ex-
cept one are marked as false branches. Since a path
for vessel tracing should not continue along a false
branch, such a path would end at such node (hence
its name). A possible configuration of a false end
node is shown in Figure 8. If the branches B3 and
B4 are both candidate branches, and if branch B2
is a normal branch and part of a continuing main
branch, and if the branch pairs (B1,B3) and (B1,B4)
are both continuing main branches, the branches B3
and B4 are both marked as false branches. In this
case N1 is a false end node.

B1
B2

B3

B4

N1

Figure 8: The local graph structure of the false end
node N1. B1 and B2 are normal branches. B3 and
B4 are marked as false branches.

A false end node is detected easily by counting
the number of false branches. A false end node is
repaired by marking the false branch which is the
best fitting branch (see Section 3.4) of the only non-
false branch, as a fake false branch. False branches
which have almost the same inner product with this
non-false branch as this best fitting branch, are also
marked as fake false branches. In the example of
Figure 8 the false branches B3 and B4 will be both
marked as fake false branches.

After that, erroneous false branches are detected
and repaired. A false branch is an erroneous false
branch if this branch is the only connection between
two completely separated subparts of the graph
structure. Since a path for vessel tracing should not
continue along a false branch, an erroneous false
branch would prevent vessel tracing along a path
from one subpart to the other subpart. Erroneous
false branches are detected by generating the min-

198



imum paths from the first node of the graph to all
other nodes. Since we assign to the false branches
a very high branch distance, a minimum path along
a false branch results in a very high path distance.
So, an erroneous false branch is a false branch with
a very high path distance for one node of this branch
and a normal path distance for the other node of this
branch. A very simple schematic example is shown
in Figure 9. The node labelled S is the first node of
the graph. The nodes labelled L are connected to the
first node of the graph via non-false branches. So,
these nodes have a low path distance. The nodes la-
belled H are connected to the first node of the graph
via a false branch. So, these nodes have a high path
distance. Since the false branch connects a node
with a low path distance with a node with a high
path distance, this false branch is an erroneous false
branch. Erroneous false branches are repaired by
marking them as fake false branches.

S L

L

L

H

H

H

False Branch

Figure 9: An erroneous false branch with first node
S, three low path distance nodes, labelled L, and
three high path distance nodes, labelled H.

3.7 Detect and Repair False Short Quad-
rangles

In some cases, four candidate branches form a
quadrangle without diagonals. The general topo-
logical configuration is shown in Figure 10. Such a
quadrangle needs a special approach, if one of the
following three path configurations is true:

1. There are two horizontal real continuing ves-
sel paths (with regard to Figure 10, not with
regard to the patient), namely ABCD and
EFGH . In this case the two branches BF

and CG are false branches.
2. There are two vertical real continuing vessel

B C

F G

A D

E H

Run-up branches

Run-up branches

Figure 10: A quadrangle of candidate branches be-
tween the nodes B, C, F and G. A, D, E, and H are
the nodes connected to the quadrangle nodes via the
run-up branches.

paths, namely ABFE and DCGH . In this
case the two branches BC and FG are false
branches.

3. There are two diagonal real continuing vessel
paths, namely ABGH and DCFE. In this
case the four branches BF , CG, BC and FG

are false branches. Besides, we need two new
skeleton branches, namely BG and CF . Note
that these diagonal continuing vessel paths are
not connected!

The procedure to detect and repair false short
quadrangles is started after the set of short branches
is subdivided in the set of candidate branches and
the set of unsuitable branches.

A quadrangle without diagonals is classified as
a short quadrangle if the following conditions are
fulfilled:

1. Each pair of nodes of the quadrangle is con-
nected by at most one skeleton branch.
More than one skeleton branch between the
two nodes makes checking the possible paths
not only more complex but also more unreli-
able.

2. Each of the four nodes of the quadrangle has
exactly three skeleton branches.
If one of the nodes has less than three skeleton
branches, that node has no run-up branch.
If one of the nodes has more than three skele-
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ton branches, that node has more than one
run-up branch. More than one run-up branch
makes checking the possible paths not only
more complex but also more unreliable be-
cause one run-up branch may disturb the fit-
ting branch pair relation for the other run-
up branch. However, in practice, most nodes
(quadrangle or not) have no more than three
skeleton branches.

3. The skeleton branch between two nodes is ei-
ther a candidate branch or a real false branch.
A real false branch may occur if two short
quadrangles are connected.

For each node of a short quadrangle the local ge-
ometry is computed (see Section 3.4). The local ge-
ometry is used to compute the inner products be-
tween the directions of the run-up branches. The
branch radii of these branches are used to compute
the ratio’s between the minimum and maximum ra-
dius of two run-up branches.

After that, we check the three path configurations
in the given order. There are two horizontal real
continuing vessel paths if the following conditions
are fulfilled:

1. 0.5 ≤ ratio(AB, CD) ≤ 2.0
2. 0.5 ≤ ratio(EF, GH) ≤ 2.0
3. ip(AB, CD) ≤ cos(120◦)
4. ip(EF, GH) ≤ cos(120◦)
5. ip(AB, CD) ≤ ip(AB, EF )
6. ip(AB, CD) ≤ ip(CD, GH)
7. ip(EF, GH) ≤ ip(AB, EF )
8. ip(EF, GH) ≤ ip(CD, GH)

The last four conditions express that the run-up
branches of the horizontal paths are aligned as least
as good as the run-up branches of the vertical paths.

If the previous tests fail, there are two vertical
real continuing vessel paths if similar conditions for
the two vertical vessel paths are fulfilled.

If the previous tests fail, there are two diagonal
real continuing vessel paths if the following condi-
tions are fulfilled:

1. 0.5 ≤ ratio(AB, GH) ≤ 2.0
2. 0.5 ≤ ratio(CD, EF ) ≤ 2.0
3. ip(AB, GH) ≤ cos(120◦)
4. ip(CD, EF ) ≤ cos(120◦)
5. ip(AB, GH) ≤ ip(AB, CD)
6. ip(AB, GH) ≤ ip(EF, GH)
7. ip(AB, GH) ≤ ip(AB, EF )
8. ip(AB, GH) ≤ ip(CD, GH)
9. ip(CD, EF ) ≤ ip(AB, CD)

10. ip(CD, EF ) ≤ ip(EF, GH)
11. ip(CD, EF ) ≤ ip(AB, EF )
12. ip(CD, EF ) ≤ ip(CD, GH)

The last eight conditions express that the run-up
branches of the diagonal paths are aligned as least
as good as the run-up branches of the horizontal and
vertical paths.

The branch radius of the false branches of a short
quadrangle are set to zero, to prevent that these
branches are reset to fake false branches (see Sec-
tion 3.6).

4 Results and Conclusions

We have applied the method to detect and mark
false branches of a vessel graph to 53 clinical
volume datasets (14 of them with a resolution of
256x256x256 voxels, the rest 128x128x128 vox-
els), acquired with the 3D Integris system [15]. The
voxel size varies between 0.2 and 1.2 millimeter.

An example of the surface model of a vessel
structure with false branches is shown in Figure 13.
The corresponding graph structure is shown in Fig-
ure 16.

The total number of small quadrangles found in
all the test sets is 93, the total number of small quad-
rangles repaired is 43, the total number of real false
branches of small quadrangles is 98. The total num-
ber of branches is 7798, the total number of can-
didate branches is 1780 (22.8% of total number of
branches), the total number of solo branches is 977
(12.5% of total number of branches) and the total
number of real false branches is 276 (3.5% of total
number of branches).

The time to detect and mark false branches is
a small fraction (≤ 1 %) of the time for fully-
automatic branch labelling. The average elapsed
time for fully-automatic branch labelling of an
128x128x128 volume is 1.2 seconds on a Linux PC
(2.8GHz Pentium 4). The average elapsed time for
an 256x256x256 volume is 15.7 seconds.

Visual inspection of each real false branch on top
of the surface visualization revealed that not a sin-
gle real false branch was an erroneous false branch
(i.e. a branch which should not be marked as a real
false branch). Visual inspection revealed also that
not all false branches are detected and marked as a
real false branch.

Therefore, our method to detect and mark false
branches makes fully-automatic extraction of the
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cross-sectional shape parameters in the neighbor-
hood of the diseased vessel parts more reliable. A
clinical validation still has to be done.
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A Pictures

Figure 11: A stenosis inside the white rectangle

Figure 12: The skeleton voxels of the graphs

Figure 13: A surface with erroneous junctions in the
black rectangles

Figure 14: An aneurysm inside the white rectangle

vessel boundary
direction lines
center sphere

branch sphere

center planes

branch planes

Figure 15: Node geometry

Figure 16: A graph with erroneous junctions. The
normal branches are gray, the continuing branches
are blue, the solo branches are yellow and the false
branches are red.
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Abstract

In this paper we describe an interactive labeling
algorithm, which allows to integrate internal 3D
labels into medical visualizations generated from
volumetric data sets. The proposed algorithm is
motivated by internal labeling techniques found in
anatomical atlases, and in contrast to existing algo-
rithms it provides additional shape cues by fitting
internal labels to the depth structure of their associ-
ated objects. In this paper we discuss guidelines
for the layout of internal 3D labels and describe
our labeling algorithm, which extends 2D shape fit-
ting and introduces 3D shape fitting. Furthermore
we propose related interaction concepts and provide
application examples.

1 Introduction

Illustration is an important technique widely used
in medical text books to communicate anatomical
structures. In recent years computer-assisted inter-
active generation of medical illustrations from vol-
ume data sets acquired by medical scanners has ad-
vanced significantly [3, 4, 11]. Textual annotations
are essential in order to assign descriptive labels to
the objects of interest and thus ease identification of
different parts of an illustration. Further on annotat-
ing medical data sets is an everyday task performed
by radiologists during medical diagnosis. Since for
intervention planing and other application scenarios
it is important that visualizations can be enriched
by labels in a meaningful way, several algorithms
have been proposed. Most of these algorithms are
inspired by existing illustrations and mimic the lay-
out of the labels found for instance in medical text
books like Gray’s anatomy atlas [6]. They can be
classified into three groups: internal, external and
hybrid label layout algorithms. The latter incorpo-

rate both internal and external labels. While internal
labels are spatially bound to the object of interest,
external labels are displayed besides the object and
associated with the object of interest using a con-
nection line. Internal labels have the advantage that
they allow an easy visual association with the ob-
ject of interest, since they are placed on top of it
and no connection lines are required. In contrast to
external labels they occlude parts of the object of
interest. Especially for objects with a varying depth
structure, placing an internal label on top of it can
make the spatial comprehension cognitively more
challenging. In medical text books 3D labels are
used to deal with this problem. These 3D labels do
not only match the shape of the projection of the ob-
ject of interest, but also match its 3D shape, i.e., the
depth structure. As it can be seen in Figure 1, the
shape of the objects of interest is emphasized by the
distortion of the textual annotation associated with
them. For instance is the font of the label Thoracic
aorta at the ,lower middle of the image, distorted in
a way that propagates that the vessel has a cylindri-
cal shape. In this paper we propose an interactive
algorithm, which allows to incorporate such 3D la-
bels into medical illustrations generated from vol-
umetric data sets. Compared to the usage of flat
2D labels, applying our technique allows to provide
additional shape cues introduced by these internal
3D labels. Based on the proposed labeling algo-
rithm we will also introduce interaction metaphors
supporting an easy manual integration of labels into
medical visualizations.

The remainder of this paper is structured as fol-
lows. The next section discusses related work about
labeling, especially in the context of medical illus-
tration. In Section 3 we will present some guide-
lines for the layout of internal 3D labels, which
we have derived from illustrations found in medical
text books. The proposed algorithm for generating
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Figure 1: Usage of internal 3D labels as found in
the Gray’s anatomy atlas [6]. The shape of the
structures is emphasized through the text distortion.
For instance, the distortion of Thoracic Aorta shows
that the vessel has a cylindrical shape.

internal 3D labels is described in Section 4, while
the label rendering is described in Section 5. Sec-
tion 6 briefly describes some interaction concepts
that can be used to manually integrate labels and
edit an existing label layout. Application examples
of our technique are discussed in Section 7 before
the paper concludes in Section 8.

2 Related Work

Bell et al. [2] were the first who investigated how
meaningful annotations can be integrated into vir-
tual environments. They have already identified the
main problems of interactive labeling algorithms,
which are caused due to changing viewing param-
eters and possibly occluding objects. Hartmann et
al. [7] were the first to address the occlusion prob-
lem. While Bell et al. exclusively use internal la-
bels drawn centered on top of the objects of interest,
Hartmann et al. introduce floating labels. Floating
labels are external labels which change the position
when the object of interest is moved or the viewing
parameters have been changed.

In the following years Hartmann et al. have fur-
ther improved their label placing algorithms and
have combined internal and external labels [1, 13].

This combination has revealed the need for aes-
thetic label layout algorithms which produce a vi-
sually pleasing placement as found in manually cre-
ated illustrations [8, 14].

In 2006 Götzelmann et al. [12] have presented an
agent-based approach used to deform the text path
of internal labels in a manner that the 2D shape of a
label fits the 2D shape of the object of interest. This
approach has been incorporated into our extension
for 2D shape fitting, which is described in Subsec-
tion 4.1.

Based on the basic work done for investigating
how to achieve interactive annotations, labels have
been integrated into various applications, e.g., for
medical illustration [4] or in general to combine text
and images [5]. To our knowledge the only work to-
wards providing 3D shape cues by means of labels
is the application of labels to 3D city models done
by Maass and Döllner [10]. They project viewpoint-
depending labels onto the bounding boxes of build-
ing objects. When the viewpoint changes, the labels
are repositioned, and the authors state that this la-
bel movement provides shape cues, i.e., the label
floating over the invisible bounding box confines
the borders of a building.

3 Guidelines for Internal 3D Label
Layout

As mentioned above different hybrid label layouts
have been described by Götzelmann et al. as well
as Hartmann et al. [8, 14]. In this paper we intro-
duce design rules for the layout of internal labels,
whereas we do not exclusively focus on the posi-
tioning of internal labels but also on their 3D orien-
tation. The presented guidelines are motivated by
the layout of internal labels as found in medical il-
lustrations.

As already proposed in [12] for internal 2D la-
bels, internal 3D labels should also fit the 2D shape
of the object of interest. A possible way to achieve
this goal is to orient a label along the medial axis of
its object of interest as it is defined in image space.
This criterion ensures a 2D association between an
object and its label solely by this 2D path. However,
when extending the labels to 3D, additional layout
guidelines should be taken into account in order to
achieve a satisfying label placement.

First of all, when labels are distorted based on
the underlying surface, it has to be ensured that the
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(a)

(b)

Figure 2: Internal 3D labels crossing contours may
lead to unwanted distortion and have a disturbing
effect (a). By avoiding contour crossing this distor-
tion can be prevented (b).

labels still remain readable. Therefore a tradeoff
between label distortion and 3D shape fitting, i.e.,
alignment along the associated surface, has to be
taken into account. In order to ensure readability a
very bumpy surface should not be labeled by sim-
ply projecting a label onto it. Moreover the charac-
teristic surface structures should be considered by
omitting the bumpy arbitrary surface shifts. A pos-
sible realization would be using Bezier surfaces to
approximate the surface of the object of interest. By
using Bezier patches having a high polynomial de-
gree, the surface is approximated very closely and
surface details will be reflected. In contrast, when
minimizing the polynomial degree of the approxi-
mating Bezier surface, it acts as a smoothing filter
only reflecting the larger scale surface structure. In
Subsection 4.2 we will describe how we will take
this approximation into account.

Besides bumpy surfaces, an internal 3D label
may also be distorted when crossing a contour (see
Figure 2). Therefore internal 3D labels should be
positioned in a way that they do not cross contours
of the objects of interest.

Furthermore the perspective distortion of an in-
ternal label should be minimized. Therefore the
layout should try to maximize the number of labels
which are aligned almost perpendicular to the view-
ing direction in order to improve readability.

In the following section we will explain how to
follow these guidelines, by among others exploiting
object normals as well as contour detection.

4 Generating 3D Labels

By considering the guidelines proposed in the pre-
vious section, we have developed a labeling algo-
rithm for automatically enriching a medical volume
visualization with internal 3D labels. The proposed
algorithm combines a 2D and a 3D shape fitting ap-
proach. With the 2D shape fitting we ensure that the
path of the label matches the shape of the projec-
tion of the current object of interest given in image
space. After this path has been determined we ana-
lyze the depth structure at the appropriate positions
and generate Bezier patches to fit the 3D shape. Af-
terwards the label itself is rendered by texturing the
generated patches. In the next two subsections we
describe the necessary steps for performing the 2D
and the 3D shape fitting. The workflow of the algo-
rithm is illustrated in Figure 3.

4.1 2D Shape Fitting

To perform the 2D shape fitting, we use a modi-
fied version of the agent-based approach proposed
in [12]. After the rendering parameters (RP), e.g.,
the transfer function, have been specified, we ren-
der a segmented volumetric data set into an ID map
as well as a depth map. In the ID map each pixel
has a unique color which has been associated with
the segment it belongs to. Thus the region covered
by each segment in image space can be determined,
and its medial axis can be calculated. To comply
with the guidelines of the previous section and to
ensure that the internal labels do not cross any con-
tour edges, we apply an image-based contour de-
tection before calculating the medial axis. This con-
tour detection is performed by applying a 3×3 filter
kernel to the depth map in order to identify discon-
tinuities of the depth values. Pixels having a high
depth discontinuity belong to contour edges and are
drawn as black pixels onto the ID map, resulting in
the edged ID map. Based on the edged ID map we
can perform the medial axis calculation, which is
done similar to the technique described in [1]. Since
we have initially super-imposed the contour edges,
the resulting distance map contains no medial axis
crossing any contour edges. However, using our
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Figure 3: Workflow of our algorithm, with all steps used to render internal 3D labels. After the rendering
parameters (RP) have been set, a 2D shape fitting is performed to find a label path matching the shape of
the object of interest, before 3D shape fitting is used to match its depth structure.

distance map we can apply the algorithm as pro-
posed in [12] to determine the 2D label paths. The
goal of this technique is to find an approximation
of the medial axis implicitly defined by the distance
map. The used approach first determines for each
segment the pixel with the maximum distance to the
segment’s border. In the next step, in contrast to the
previous approach we do not consider all directions
on a circle around the current position, but look only
at those directions with maximal distance to the bor-
der to find the 2D path. This can be done by using
our intermediate maps, which are generated when
calculating the final distance maps. Since in the
intermediate maps we have the distances separated
for the three main directions, i.e., horizontal, ver-
tical and diagonal. Thus by exploiting the current
position and the determined direction, an arc with
a certain angle and a given radius defines the pix-
els that are checked, in order to determine the two
pixels among them having the maximum distance
to the segments border. This process is repeated it-
eratively until the desired number of control points
is found or the border of the segment is reached. In
addition to the technique described in [12], we also
consider the surface normals in order to ensure that
labels do not appear on surfaces being almost paral-
lel to the viewing direction, since their perspective
distortion would be too high. Finally, the 2D label
path is calculated by using a 2D fitting curve defined
by the estimated control points.

With the thus computed 2D label paths we enter
the next stage of our algorithm to perform the 3D
shape fitting.

4.2 3D Shape Fitting

Now that the 2D label paths are available we take
into account the underlying depth structure in or-
der to generate Bezier patches approximating a seg-
ment’s surface. To determine the control points for
the used Bezier patches, we consider the volume co-
ordinates for each pixel. When using GPU-based
ray-casting [9] as in our system, the volume coordi-
nates for a surface can be easily obtained by writing
the first-hit positions into a 2D texture. Thus we can
fetch for each point lying on the 2D path its corre-
sponding volume coordinate and get the resulting
3D path. This 3D path is approximated by a 3D
fitting curve defined by the control points later re-
ferred to as si and can be thought of as an approxi-
mation of the medial axis of the Bezier surface used
to project the labels onto. Based on this medial axis
we construct the Bezier patches as illustrated in Fig-
ure 4. As it is shown the si serve as control points
for the Bezier patches. Additional control points
are generated by considering the main normalized
path direction of the current segment l as well as
the normalized gradient g at each si. The distance
of the newly computed control points to the si is
given by the volume space offset h. Thus we can
construct the outermost control points for the Bezier
patches by calculating m = h · (l × g) as well as
−m = −h ·(l×g) and projecting these points back
on the object’s surface as shown in Figure 4. Since
these are the outermost control points, h directly de-
termines the label height. Depending on the degree
of the Bezier patches we may add additional con-
trol points along l × g or between two successive
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si. While a higher horizontal degree, i.e., along the
main path direction, may be reasonable a high ver-
tical degree, i.e., along l × g, is usually not neces-
sary. Instead a higher vertical degree may result in
decreased readability through high perspective dis-
tortion.

5 Label Rendering

Based on the Bezier patch control points derived as
explained in the previous section, the Bezier patches
are generated to serve as a surface for the labels.
The actual label rendering is done by exploiting 2D
texturing functionality. Therefore we simply use the
Bezier patch parameters s and t as texture coordi-
nates in order to apply the labels, which we have
rendered into a bitmap initially. During this bitmap
generation we render the text with twice the desired
font size. This ensures that we get smoother look-
ing labels, since we can exploit the filtering capa-
bilities of the texturing hardware during the minifi-
cation process.

To increase contrast and further enhance read-
ability we additionally render a halo around each
letter. This is also done in the preprocessing ren-
dering pass where the label textures are generated.
Each label is rendered four times using the halo
color before rendering it once in the current font
color. During each halo rendering pass the label
is shifted by one pixel in the four main directions.
This ensures that the text rendered on top of this
halo is surrounded by the halo color in all direc-
tions. The effect of the halo color becomes clearly
visible in the Figures shown in Section 7.

Figure 4: The control points for the Bezier patches
are generated by adding points lying on the surface
vertically perpendicular to the respective gradient.

Figure 5: The graphical user interface used for in-
teractive label manipulation. The user can change
type, text and position of each label as well as
change the rendering parameters.

During rendering we possibly might run into oc-
clusion issues. Since the control points of the used
Bezier patch lie on the object’s surface and the patch
lies in the convex hull of its control points, it may
possibly intersect the surface. In these intersection
regions the text would be occluded by the objects of
interest. Therefore we ensure that the depth test is
disabled when rendering the labels.

6 Interactive Label Manipulation

Although the automatically generated label layout
is sufficient for most illustration cases, sometimes
it is desirable to apply modifications manually or
even integrate labels manually as done by radiolo-
gists during medical diagnosis. Therefore we have
integrated simple though effective interaction con-
cepts into our user interface which allow the user
to perform the label positioning manually (see Fig-
ure 6) and to modify the most important label prop-
erties (see Figure 5).

The automatic layout proposed by our system is
a hybrid layout, where internal 3D labels are used
for those objects of interest which provide suffi-
cient screen space. All other objects are anno-
tated by using external labels. The user can reposi-
tion internal as well as external labels via drag-and-
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Figure 6: When dealing with non-segmented data
sets, the user may select a series and add labels from
that series manually to the image. Furthermore pre-
sets for frequent series can be modified by adding
or removing labels.

drop, whereas the 3D shape of the internal labels is
adapted to their current position automatically. In
cases where the user drags an internal label outside
the screen space occupied by its associated object of
interest, the label turns into an external label, i.e.,
a connection line is added. By dragging the label
back to its object of interest it can be reverted into
an internal 3D label. Thus the user can change type
and position of all labels.

The automatic layout algorithm works only in
those cases where a segmentation for the current
data set is available. Otherwise it is not possi-
ble to generate an ID map, which is required to
calculate the label positions (see Subsection 4.1).
However, often in medical diagnosis when anno-
tation is required, no segmentation is present. For
these everyday tasks we have integrated a simple
though effective manual annotation technique. As
it is shown in Figure 6 the user interface provides
predefined label sets for different cases of diagno-
sis, e.g., heart CT or head MRI. These sets contain
the labels which the physician expects to use during
a diagnosis based on the given data set. While it is
possible to add and remove label sets, they can also
be modified by adding, deleting or editing labels in
order to serve the needs of the physician. Once the
required label sets are defined, a physician may add
the labels contained in a set to the current image.
This can be either done by pressing the Add All but-

ton or by applying a possibly multiple selection in
the label set. Once the labels to be used have been
specified, they appear in the lower right corner of
the 3D canvas and can be dragged to the desired
position. As described in Subsection 4.2, the la-
bels also match the surface structure of the underly-
ing objects. After the labels have been positioned,
their coordinates may be saved in order to reproduce
the renderings. Furthermore rendering parameters,
e.g., the transfer function or the thresholding, can
be changed during this task in order to be able to
associate labels with internal structures.

Further on the user may alter the most impor-
tant label properties. As it can be seen in Figure 5
the user may select which subset of labels is to be
shown: all, internal only or external only. Addition-
ally she may select the type of external label layout
- currently silhouette layout as well as side layout is
supported. Silhouette layout aligns the external la-
bels along the objects silhouette, side layout renders
the labels on the left and right side of the image. To
adjust the look of the individual labels, font size,
label color and halo color can be adapted. Further-
more the halo can be switched on and off. Changing
the font as well as halo color is especially necessary
for internal labels in order to increase the contrast
between the label and its background color given by
its object of interest. Therefore these options can be
changed separately for internal labels. To adjust the
shape of the internal labels, 3D shape fitting can be
switched on and off and can be modified by adapt-
ing the degrees of the used fitting curves.

The text of a label can also be changed easily by
performing a double click on top of it. All changes
made are saved within an XML document which is
associated with the segmented data set.

7 Application Examples

With the techniques proposed in the previous sec-
tions we are now able to integrate internal 3D labels
into existing medical applications. As noted above,
this approach is motivated by existing medical illus-
trations where text distortion provides an additional
shape cue. In Figure 7 a comparison of 2D and 3D
internal labels is shown. In both cases the text path
is determined by exploiting the shape of the object
of interest given in image space. In contrast to the
2D labels the 3D labels allow a better shape percep-
tion. This becomes clear when inspecting the region
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Figure 7: Comparison of internal 2D labels (left)
and the introduced 3D labels (right). Although
shading provides shape cues in both cases, the float-
ing labels in the left column make estimation of dis-
tances cognitively more challenging.

Figure 8: Comparison of internal 2D labels (top)
and the introduced 3D labels (bottom). The internal
3D labels smoothly approximate the surface struc-
ture.

labeled as A. pulmonalis dextra. In the left image it
is rather difficult to estimate the orientation of the
cutting plane, the label is associated with. When
using internal 3D labels the text distortion gives an
additional cue for comprehending this orientation.
Figure 8 shows a similar effect when visualizing
curved surfaces. With 3D labels the curvature of
the surface comes out more clearly, since the text
is distorted accordingly. For instance when inspect-
ing the distortion of the ll in pollicis. All these ef-
fects can be enhanced by using an appropriate label
placement with the interaction techniques discussed
in the previous section.

In Figure 9 the application of our technique
to the NCAT phantom data set is shown. Since
the Columna vertebralis does not provide enough

Figure 9: Application of our internal labeling tech-
nique to the NCAT phantom data set.

screen space for positioning an internal label in the
current view, an external label has been used au-
tomatically. Again the effects of surface structure
emphasize becomes visible. One may argue that
undistorted 2D labels would result in better read-
ability. However, it must be considered that there
is a tradeoff between the readability of the text and
the perception, or readability, of the whole illustra-
tion. Obviously the best label readability would be
achieved, when not even using 2D shape fitting and
just integrating horizontal labels. When looking at
medical text books, it can be seen that the reduced
readability is accepted and 2D as well as 3D shape
fitting is used. This approach has been evolved over
the years and ensures besides improved perception
of the illustration the characteristic style of medical
illustrations. In addition to the usage of text distor-
tion in classical medical illustrations, our approach
also allows the illustrator to easily tune the param-
eters in order to get the most convincing represen-
tation. For instance, the degree of the fitting curves
can be changed manually in order to emphasize or
deemphasize certain spatial structures.

Other examples of hybrid label layouts are shown
in Figure 10 and Figure 11. In contrast to the other
figures, where we exploit Phong shading, a quan-
tized toon shader has been used in Figure 10. To
further enhance the illustrative effect the silhouette
has been highlighted. In addition to the improved
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Figure 10: An automatically annotated illustration of a CT scan of a human hand. The internal labels are
positioned appropriately and fit smoothly to the surface of the metacarpus bones.

shape perception through internal 3D labels, Fig-
ure 11 shows also that the association between a la-
bel and its object of interest is cognitively less de-
manding when using internal labels in comparison
to external labels.

We have shown the images of Figure 9-11 as well
as the corresponding versions using internal 2D la-
bels to our medical partners. We got very positive
comments and the physicians especially liked the
internal 3D label approach to be used in anatomi-
cal illustrations containing parts of the skeleton as
in Figure 10.

8 Conclusion

In this paper we have proposed an interactive al-
gorithm for the generation of internal 3D labels.
The technique has been motivated by labeling tech-
niques found in medical illustrations and is also ap-
plicable during the interactive annotation process as
used in medical diagnosis. In contrast to commonly
used internal 2D labels, 3D labels have the benefit
that they may provide additional shape cues. Since
the distortion of the text being visualized on top of
the object of interest is influenced directly by its 3D
shape, spatial comprehension is expected to be im-
proved. We have presented guidelines for the layout
of internal 3D labels, have described our interactive
rendering technique and presented some application
examples.

Since text distortion may also influence readabil-
ity, a detailed evaluation is necessary in order to find

an optimal tradeoff between readability and spatial
comprehension. However, it should be noted again
that optimal readability can only be achieved when
using horizontal labels, without applying any shape
fitting. Since this would make it more difficult to
perceive the association between the objects and the
labels as well as the object’s shape, we believe that
shape fitting is a good way to enrich visualizations
having internal labels. Although we already got
positive comments about the interactive annotation
mechanism from radiologists, we plan to evaluate
this technique in order to further improve its usabil-
ity for medical diagnosis.

While in this paper we focussed on volumetric
visualization, it should be stated that the proposed
technique can also be applied to polygonal render-
ing. Moreover it can be used in any visualization
setup, as long as a depth image and eventually a
segmentation is available.
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Abstract

We present an interactive technique for the reg-
istration of captured images of elastic and rigid
body parts in which the user is given flexible con-
trol over material specific deformation properties.
Our method can effectively handle arbitrary stiff-
ness distributions and it achieves an accurate match-
ing without sacrificing the physical correctness of
the simulated deformations. The algorithm consists
of three steps, which are performed iteratively un-
til an optimal spatial mapping is determined: First,
the optical flow is used to predict an initial image
transformation. Second, a priori knowledge of the
deformation model is used to refine the predicted
field. A physics-based filter operation generates a
transformation that is consistent with the model of
linear elasticity. Third, the process is repeated using
the displaced template image. To achieve accurate
image deformations we employ implicit multigrid
solvers using finite differences (optical flow) and fi-
nite elements (linear elasticity). The robustness and
accuracy of our method is validated using synthetic
and real clinical data composed of heterogeneous
materials exhibiting different stiffness characteris-
tics.

1 Introduction

Especially in medical applications there is an ever
growing interest in techniques that can accurately
relate information in multiple data sets resulting
from different measurements. Image registration
techniques are designed for that purpose as they
try to find the correspondence between images
of the same anatomical structure taken under dif-
ferent conditions (e.g. different relative camera-
patient position, different methods of acquisition,
etc.). Such techniques compute a spatial mapping
of structures into a common coordinate system or
aim at compensating individual structural character-

istics and differences due to movements over time.
One of the main challenges in image registration

is to accurately model and simulate the deforma-
tion behavior of the structures contained in the data.
Scanned body parts are usually composed of highly
heterogeneous tissue types and in particular an elas-
tic modulus with a dynamic range of several orders
of magnitude is not unusual to be found in a sin-
gle scan. Registration techniques capable of deal-
ing with such data require to adjust the stiffness of
the transformation to permit realistic displacements
over all parts in the data. Physics-based deforma-
tion models then have to be considered to realisti-
cally simulate the structural changes.

In this work, we present an algorithm for image
registration that addresses the aforementioned re-
quirements by using a predictor-corrector approach
to iteratively compute an optimal spatial mapping.
The predicted deformation field can be computed
from image pairs using any standard evaluation
method. The corrector step implements a finite-
element solver for the Lagrangian equation of mo-
tion simulating linear elasticity. It takes as input the
predicted vector field and modifies it according to
the underlying physical model. As all parts of the
algorithm run interactively, intuitive control mech-
anisms to flexibly adjust the deformation properties
of specific regions in the data are integrated.

In particular, we utilize a GPU-based random
walker [14] for assigning specific stiffness values
to parts of an image. While it is generally possible
to assign these properties using a painting tool on a
per-pixel basis this is a tedious and time-consuming
task not feasible in clinical practice. Instead, we
use the segmentation algorithm to assign stiffness
on a per-object basis. The segmentation algorithm
extracts parts from the image automatically by sin-
gle mouse clicks or strokes on top of the object, and
it then fills the object’s interior with a user-defined
stiffness.
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1.1 Related Work

With respect to the assumed image transformation,
image registration techniques can be classified into
parametric and non-parametric approaches. Com-
prehensive surveys of these approaches along with
a number of application areas can be found in
[20, 28, 21]. Parametric approaches impose spe-
cific restrictions on the transformation, e.g. requir-
ing the transformation to be rigid, polynomial or
affine. Non-parametric, i.e. non-linear, approaches,
on the other hand, are far more flexible in the type
of transformation they compute. Such transforma-
tions rely on additional constraints like the regu-
larization of the displacement field, which can be
enforced by explicit smoothing of the deformation
field [1, 22, 25]. Over the last years special empha-
sis has been put on the development of variational
PDE approaches to obtain approximate solutions to
the non-linear registration problem [7]. In this case
an additional smoothing term is considered in the
global energy function to be minimized. In particu-
lar, physics-based regularizers based on linear elas-
tic and viscous fluid models have been shown to be
effective in penalizing unrealistic local and global
displacements [6, 27, 26, 4]. While finite difference
methods are frequently applied to discretize the lin-
ear elasticity equations [21], finite element methods
are so far rarely applied to the best of our knowl-
edge. This is due to the fact that they are computa-
tionally more complex, and thus result in poor per-
formance rates [15]. However, as has be shown by
Georgii and Westermann [12], multigrid algorithms
can efficiently be applied to speed up the solution
process of finite element techniques.

Curvature-based constraints for non-linear reg-
istration problem have been discussed in [11, 16].
While effective in computing deformations that
comply with the incorporated regularization mod-
els, only a few approaches have attempt to also take
heterogeneous materials exhibiting varying stiff-
ness into account [9, 19, 18].

2 Method

We propose a model-based approach for the com-
putation of a non-linear transformation of a tem-
plate imageT onto a reference imageR. A priori
knowledge about the physical deformation model
is exploited to make the transformation consistent
with this model. Our algorithm proceeds in multi-

ple steps, each of which is performed interactively
to accommodate steering of model-based parame-
ters by the user. The major parts of our algorithm
are illustrated in Figure 1.T e m p l a t e I m a g e R e f e r e n c e I m a g eS t i f f n e s s A s s i g n m e n t( S e g m e n t a t i o n )

O p t i c a l F l o wT e m p l a t e – R e f e r e n c eP h y s i c a l l y - B a s e d D e f o r m a t i o n
P r i n c i p l e C o m p o n e n t A n a l y s i sR i g i d R e g i s t r a t i o n

y e sC o n v e r g e n c e ?W a r p T e m p l a t e
R e g i s t e r e d I m a g e

n o
Figure 1: Overview of major parts of the registra-
tion system. A template and a reference image are
registered using our algorithm: After stiffness as-
signment the images are rigidly registered by PCA.
Then, our iterative loop estimates a vector field us-
ing the optical flow method. This field is corrected
by physically based image deformation. The loop
stops if the convergence criterium is met.

We utilize the Random Walker segmentation al-
gorithm [14] to automatically extract objects from
the image, for which we then specify the respec-
tive stiffness value. For our purposes, non-binary
segmentation algorithms like the Random Walker
provide attractive properties since the segmenta-
tion results yield a smooth transition between the
segmented object and the background. A smooth
stiffness distribution is required by the finite ele-
ment method, since material stiffness is only ap-
proximated C0-continuous, and thus large jumps
can introduce instabilities. The smooth transition
is highly desirable for stiffness assignment because
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the segmentation result can be mapped directly to
stiffness using a transfer function. In this way,
abrupt stiffness changes in the simulation grid can
be avoided at no extra cost, enabling realistic defor-
mations at boundary transitions.

In a pre-process a rigid PCA (principle compo-
nent analysis) registration is performed to obtain an
initial mapping betweenT andR. Therefore, the
covariance matrix of both images is computed by
weighting pixel-positions with the intensity values.
An eigenvalue decomposition of that matrix reveals
the relative rotation and scaling of the two images.
The relative translation is the distance between the
mean positions of both images.

2.1 Gridding

From the segmented and pre-registered template a
regular simulation grid consisting of quadrangular
elements is constructed by placing exactly one grid
vertex at each pixel center. Pixel colors and as-
sociated stiffness values are respectively assigned
as vertex and element attributes. Given such a
grid in the reference configurationx ∈ Ω, a de-
formed grid is modelled using a displacement func-
tion u(x), u : R2 → R

2 yielding the deformed
configurationx + u(x). The transformed template
image is then generated by rendering the deformed
grid onto a regular pixel grid. This image is used in
the next iteration to calculate the optical flow.

2.2 Deformation Estimate

An initial deformation estimate is computed using
classical optical flow as introduced by [17]. The
main idea behind this algorithm is to minimize a
global cost function representing the rate of change
of image brightness from one image to the other.
As the optical flow estimates the apparent motion
of brightness patterns in two images it is clear that
this particular kind of deformation estimate can-
not be applied in general for multi-modal registra-
tion. However, the optical flow works fine for sin-
gle modalities, where all images are generated with
the same scanning conditions. In the multi-modal
case, deformation estimates based on common sim-
ilarity measures like mutual information have to be
favored [21].

Since techniques based on the optical flow are
considered to be rather slow due to the numerical
complexity of the employed solvers, in a number of

research projects considerable effort has been put in
the development of advanced numerical techniques
like multigrid schemes. In this work, we make use
of the implementation by Bruhn et al. [4] to signifi-
cantly speedup the prediction of an initial deforma-
tion field.

2.3 Model-based Correction

Rather than penalizing the optical flow with a
model-based regularizer as proposed in [23], the
optical flow field is used as an external force field
driving the deformation of structures contained in
the template image. The deformation is based on a
linear elasticity model, where the dynamic behavior
is governed by the Lagrangian equation of motion.
An implicit multigrid solver presented in [13] is ex-
tended to efficiently compute the resulting displace-
ments.

In contrast to previous registration approaches
using finite differences, it is worth noting that our
method employs a finite-element discretization. In
this way, improved physical accuracy is achieved,
but we have to pay for that by an increasing numer-
ical complexity. As our timings show, however, the
multigrid solver we have developed performs favor-
able to respective finite difference techniques.

By using a model-based approach as described it
is clear, that the simulated displacement field en-
forced by the elasticity equation differs from the
optical flow field. Physically speaking, the optical
flow field is corrected towards a displacement field
that complies with the underlying model.

2.3.1 Linear Elasticity Model

If the object to be simulated obeys to the model of
linear elasticity the dynamic behavior is governed
by the Lagrangian equation of motion

Mü + Cu̇ + Ku = f (1)

whereM , C, andK are respectively known as the
mass, damping and stiffness matrices.u consists of
the linearized displacement vectors of all vertices
and f are the linearized force vectors applied to
each vertex. It is worth noting that in linear elas-
ticity we only consider material that has a linear re-
lationship between how hard it is squeezed or torn
(stress) and how much it deforms (strain). This re-
lationship is expressed by the material law, which is
accounted for by the stiffness matrixK.
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(a) Reference (b) Template (c) PCA/Seg.

(d) Prediction (e) Correction

Figure 2: The template image (b) is registered to the reference image (a) by first applying a PCA rigid
registration (c). Then, stiffness values are assigned to segmented parts (c). The iterative loop predicts a
vector field (d) using the optical flow method and corrects it by our physical deformation model (e) until
convergence is reached.

Equipped with any suitable discretization finite
element methods typically built these matrices by
assembling all element matrices to yield a sparse
system of linear equations. For the details on
the discretization process as well as the numerical
schemes used to solve the resulting system let us
refer the reader to [2, 3].

2.3.2 Finite Element Method

To improve simulation accuracy we have integrated
quadrangular elements with bilinear nodal basis
functions into our approach. Quadrangular ele-
ments consist of4 supporting nodesvk, thus inter-
polating the deformation in the interior as

u(x) =

4
X

k=1

Nk(x)uk

where

Nk(x) = c
k
0 + c

k
1x1 + c

k
2x2 + c

k
3x1x2

anduk is the displacement of thek-th node. The co-
efficientsck

i can be easily derived fromNk(vk) =
1 andNk(vi) = 0 if k 6= i. The shape functions
Nk(x) and its derivatives are needed to build the fi-
nal element matrices, which are then assembled into
the global stiffness matrix,

By using quadrangular elements the overall num-
ber of elements is reduced. This allows for a slightly
faster assembly process of the global system ma-
trix. Furthermore, the semi-quadratic interpolation
scheme increases the simulation accuracy and thus
improves physical correctness.
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Figure 3: The first image show the reference configuration. The second image was generated by a physically
deformation using the finite element method. The third imageshows the result of our registration algorithm.

3 System Assembly

In the following, we will show how we interconnect
the different parts of our algorithm into one system.
An illustration of our algorithm is depicted in Fig-
ure 2.

Once the user has selected two images to register,
stiffness values are assigned to all pixels of the tem-
plate image using a painting tool, a segmentation
algorithm (Random Walker), or other automatic as-
signment methods. Once the stiffness assignment is
done, the images are pre-registered using PCA.

All the upcoming steps are then performed auto-
matically, including mesh generation, deformation
estimate, model-based correction and image warp-
ing. These steps are performed iteratively until the
template image matches the reference image with
respect to any suitable metric, i.e. the mean square
deviation of the current per-vertex deformations to
the previous ones.

The iterative registration loop starts by com-
puting the optical flow field between the current
warped template image and the reference image.
Next, optical flow vectors are applied as external
forces to the finite element vertices. Bilinear inter-
polation of the four closest optical flow vectors is
used to obtain the force for one finite element vertex
in the deformed grid. Note that the external forces
are accumulate in each step while the previous ac-
cumulated force is damped by a small percentage.
The average force vector of all finite element ver-
tices is subtracted from all vertices in order to keep
the mesh in place. Since we cannot compute the ex-
act force field required for convergence in one sin-

gle step, we choose an iterative approach using a
dynamic simulation. Thus, in every time step we
only do a small step into the direction predicted by
the optical flow force field; this loop is iterated until
convergence is finally achieved.

To correct the predicted optical flow field via the
linear elasticity module we simulate the deforma-
tion over one time step until the multigrid solver
converges.

Resulting displacements are send to the graphics
card where the simulation mesh is updated accord-
ingly. This mesh is then rendered onto a regular
pixel grid using hardware supported interpolation
to generate the warped template image used in the
next iteration. As the update step is entirely per-
formed on graphics hardware, and because sending
displacement values from the CPU to the graph-
ics card does not introduce any time constraints,
its contribution to the overall runtime is negligible.
Note, that both the optical flow and the physical cor-
rection are computed on the CPU.

4 Results

4.1 Performance Measurement

For our experiments we used a computer with an In-
tel Core 2 6600 2,4 GHz CPU, equipped with 2 GB
RAM and an NVIDIA GeForce 8800 GTX graphics
card. The following table shows the performance
(one iteration) of the most important steps of our
algorithm on various grid sizes.

As can be seen in Table 1, one single iteration
loop runs at interactive speed. Therefore, param-
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Grid size 1282 2562 5122

OF 18.3 ms 79 ms 342 ms
Defo 28.8 ms 116 ms 478 ms
Update 5.4 ms 17 ms 52 ms
Total 52.5 ms 212 ms 872 ms

Table 1: Timing statistics for one iteration of the
proposed algorithm. In the first row, the time re-
quired by the optical flow computations (OF) are
listed. Then, timings for the elastic deformation en-
gine (Defo) and for the update of the vertices, forces
and template image (Update) are shown. Due to the
multigrid approach timings scale linearly with grid
size.

eters like force field scaling, stiffness values and
stiffness distribution can be changed interactively
within the iteration loop. Our examples shown in
the next section demonstrate that five to thirty it-
erative steps are required to achieve the final re-
sult. Note, that it is in general possible to use
smaller grids for deformation and optical flow cal-
culations. In all examples, the mesh resolution was
set to1282.

4.2 Examples

On the last page we show three results that have
been generated using our approach. Figure 5 shows
a synthetic data set demonstrating varying stiffness
distribution. Next, we created a semi-synthetic data
set from a MR scan of a brain by manually shrink-
ing the grey matter in the reference image (see Fig-
ure 6). Finally, we evaluate our method on a real
data set shown in Figure 7.

Our results demonstrated the accuracy of realistic
material deformation at interactive rates and the ef-
fective application to image registration problems.
The registration process converges if the accumu-
lated force field does not change anymore. This is
the case if all vectors produced by the optical flow
estimate are below a certain threshold, e.g.0.25
pixel width. Then, the internal forces of the de-
formed material are in balance with the external
forces of the predictor.

4.3 Validation

Schnabel et. al. have developed a general frame-
work for validation of non-rigid registration algo-

rithms [24]. Based on this framework, we have
validated our approach. We generated various im-
age pairs with a physically accurate finite element
method and registered them by means of our algo-
rithm. Figure 3 shows, that our algorithm achieves
highly accurate results even for large deformations.
The mean intensity difference between theses im-
ages is below10−2.

4.4 Discussion

In comparison to Modersitzki [21], our method dis-
tinguishes in several parts. First, we use a finite el-
ement discretization rather than a finite difference
method. This allows a much better approximation
of the partial derivatives and thus improves both sta-
bility and accuracy. Second, the external forces ap-
plied to the deformation engine are computed us-
ing an optical flow model rather than a gradient
based approach. Therefore, the elastic deformation
is driven more precisely to its final state, and thus
a significant smaller number of iteration steps is re-
quired until convergence. This effect is illustrated
in Figure 4. As a sidenote let us mention that both
the optical flow method [8] and the finite element
method [24] are used for validation of non-rigid reg-
istration techniques. By incorporating these tech-
niques into our registration algorithm, high accu-
racy can be achieved.

Figure 4: Comparison of image gradient (left) and
optical flow (right) as deformation estimator. As
can be seen, the optical flow yields generally much
more accurate vector fields.

Another benefit of our system is that both the pre-
diction and the correction stage are based on stan-
dard methods that can be used as black boxes. As a
consequence, the predictor as well as the corrector
can be easily adjusted to different methods that are
either faster or specificly adapted to the underlying
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image modalities. Especially, the deformation en-
gine used has several advantages: It can efficiently
handle different kinds of material parameters (het-
erogeneous, soft and stiff material) and strain for-
mulations (linear Cauchy strain, corotated Cauchy
strain). Due to its implicit nature, stability can be
guaranteed during the whole convergence process.

Especially for large deformations one might wish
to address the problem that the linear approximation
of the strain tensor lacks rotational invariance, thus
resulting in unrealistic deformations once elements
get rotated out of their reference configuration. For-
tunately, as has been shown in [13], co-rotated ele-
ments [10] could be easily integrated into the regis-
tration process by adapting the deformation engine
to the co-rotated strain measurement.

Note, that the method is especially applicable to
detect regions of the image where the optical flow
model and the elastic model contradict each other.
For example, this might be the case when registrat-
ing images before and after a bone fracture if the
bone parts are not healed at exactly the same cut sur-
face. In those cases, the registration process can be
either manually controlled, or a-priori knowledge
can be incorporated into the whole process. In this
example, one would allow the bone to deform such
that both images can match exactly.

Furthermore, due to this system design, our
method can be easily adapted to 3D registration
problems. Prediction of a 3D vector field can be
achieved via 3D optical flow or similar methods and
physical deformation engines based on volumetric
elements are already fast [13].

5 Conclusion

In this work we have described a physics-based
technique for image registration that enables flex-
ible control over the kind of deformations to per-
form. In extending previous methods we have pro-
posed a sophisticated predictor of an initial defor-
mation field, and we have shown that highly accu-
rate and stable finite-element methods can be inte-
grated into interactive scenarios. In this way, image
registrations can be achieved at high performance
while material specific deformation properties as
they arise in reality are simulated.

In the future, we will investigate more advanced
optical flow algorithms, e.g. the one proposed by
Bruhn et al. [5]. Furthermore, we will try to achieve

faster convergence of our registration algorithm;
one possibility is to optimize the way the optical
flow field is applied as external forces to the finite
element vertices. Additionally, we plan to improve
the algorithm by integrating mixed boundary con-
ditions (forces and displacements) into the dynamic
elasticity problem efficiently. This allows us to en-
force displacements at specific points, e.g. bones.

The extension of our registration algorithm to 3D
is straightforward enabling accurate registrations of
volumetric bodies. To deal with multi-modal reg-
istration problems, we can replace our deformation
estimator by an appropriate method like mutual in-
formation. Note, that due to the design of our sys-
tem the deformation engine is in no way affected by
this change.
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(a) Template (b) Reference (c) All hard (d) Mixed (e) All soft

Figure 5: This synthetic image simulates an object with two different tissue types. The template image
(a) is registered to the reference image (b) using differenttissue stiffness. Image (c) shows a uniformly
hard stiffness distribution over the object so that no deformation is possible. Image (d) shows the result of
assigning soft stiffness to the outer ring of the object. Now, the bump in the outer ring is matched while the
hard white core remains undeformed. Image (e) shows resultsfrom a uniformly soft tissue throughout the
object. Note, how the white core deforms.

(a) Template (b) Reference (c) Registered

Figure 6: This Figure shows a semi-synthetic data set of a manually shrunken brain. The template image (a)
is registered to the reference image (b). Image (c) shows theregistered result using a256 × 256 grid. The
stiffness was set to108 for the skull,106 for the grey matter and104 for dark area in between. Note, how
the brain compacts, the soft tissue expands and the bones remain stiff. The images register in5 iterations
(approximately1 second) with an average per pixel error of10−2.

(a) Template (b) Reference (c) Registered

Figure 7: Note the different image contrasts of the templateimage (a) and the reference image (b). Our
algorithm registers the two images accurately (c) in 0.5 seconds using a grid resolution of128 × 128.
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Abstract

We propose a new PDE based method for noise re-
duction in computed tomography (CT) using corre-
lation analysis and compare it to a previously intro-
duced wavelet based method. The arising nonlinear
(an)isotropic PDEs are solved by an efficient multi-
grid solver.

Both approaches are based on the assumption
that the data can be decomposed into information
and temporally uncorrelated noise. In CT two spa-
tially identical images can be generated by recon-
structions from disjoint subsets of projection, e.g.,
by taking every other projection respectively. Our
experimental results in 2D and 3D show that a noise
reduction up to66% can be achieved without noti-
cable loss of image resolution. Additionally, a radi-
ologist compared the visual quality of both methods
with respect to noise and visibility of structures for
real clinical data.

1 Introduction

Noise reduction in CT images gains more and
more attention. It provides a possibility to increase
the signal-to-noise ratio (SNR), hence giving more
space for a further reduction of radiation dose.

Several methods for the reduction of noise in CT
have been proposed [1, 2, 3], in most cases re-
ducing noise in the projections before reconstruc-
tion. In contrast to this we focus on the reduction
of noise in the reconstructed 2D slices or 3D vol-
umes. Noise reduction in reconstructed CT datasets
is not an easy task due to the difficult noise proper-
ties: after reconstruction the distribution of noise is
unknown. Furthermore, noise is non-stationary and
directed noise due to high attenuation along certain
directions may be present.

In [4] we proposed a wavelet based denoising
method for CT images. By separately reconstruct-
ing the odd and even numbered projections of a CT
scan two sets of slices are obtained which include
the same information but noise between the data is
uncorrelated. By using correlation analysis in the
wavelet domain combined with an orientation and
position dependent noise estimation [5] only those
wavelet coefficients containing image structure are
kept for reconstruction of a noise suppressed image.
In [6], the idea of this approach, e.g., using two data
sets with uncorrelated noise, is picked up and trans-
fered to the spatial domain, where we apply non-
linear isotropic diffusion filtering [7, 8]. Now, we
extend it to the anisotropic case, compare it to the
wavelets, and present results on clinical data.

An overview of the methodology is presented
in Section 2. Section 3 summarizes the wavelet
based approach. Then, we propose in Section 4
a new noise reduction method based on nonlinear
(an)isotropic diffusion that tries to estimate the real
image structure out of the correlations of two input
datasets affected with uncorrelated noise. In Sec-
tion 5 we compare the two methods with respect to
noise reduction and edge preservation for phantom
measurements in 2D and 3D. Furthermore, we dis-
cuss the visual results of real clinical data. Finally
Section 6 concludes our work.

2 Method Overview

Figure 1: Overview of the noise reduction method
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Figure 1 shows a brief overview of the denoising
methodology: first, two CT datasetsu1 andu2 are
generated, which only differ with respect to noise.
Note that if more than two sets are used, the SNR in
the separately reconstructed images decreases what
leads to a worse edge detection.

In CT, this can be achieved by separate recon-
structions from disjoint subsets of projectionsP1 ⊂
P and P2 ⊂ P, with P1 ∩ P2 = ∅. As-
suming that the sampling rate is high enough for
both single sets of projections (see [9, 10]), then
R {P} = 0.5 (R {P1}+ R {P2}), with R defin-
ing an arbitrary reconstruction operator. Specifi-
cally, we reconstruct one dataset from the even and
the other from the odd numbered projections using
the weighted filtered back projection (WFBP) [11].
Instead of just averagingu1 andu2 we use these
two datasets as input to our denoising algorithm,
which can be a wavelet based or PDE based method.

Both methods have in common that they try to
separate structure and noise by taking into account
the local correlation of the two input datasets. Addi-
tionally, the local standard deviation of noise can be
estimated from the difference betweenu1 andu2.
After denoising, we obtainu, which corresponds to
the reconstruction from the complete set of projec-
tions, but with improved signal-to-noise ratio.

3 Wavelet Based Denoising

The discrete, dyadic wavelet transformation (DWT)
of a signal is a linear operation that maps the dis-
crete d-dimensional input signal withN sample
points onto the set ofN wavelet coefficients:a(x)
defining the approximation andwD(x) the detail
coefficients at positionx = (x1, ..., xd) and ori-
entationD. For the 2D case, e.g., we haveD ∈
{LH, HL, HH} altogether resulting in four blocks
of coefficients: the lowpass filtered approximation
and three detail images which include high fre-
quency structures in the horizontal (LH), vertical
(HL) and diagonal (HH) directions, respectively,
together with noise in the corresponding frequency
band.

Multidimensional signals are usually decom-
posed by applying a 1D transformation successively
to all dimensions, whereas the 1D transformation
can be described by a filter bank [12]: The signal is
filtered with a high-pass filter̃g and a correspond-
ing lowpass filter̃h followed by a dyadic downsam-

pling step respectively. This decomposition can be
repeated for the lowpass filtered approximation co-
efficients until the maximum decomposition level
lmax ≤ log2 N (assumedN is a power of two) is
reached leading to a multiresolution decomposition.
For perfect reconstruction of the signal, the dual fil-
tersg andh are applied to the coefficients at decom-
position levell after upsampling. The two resulting
parts are summed up leading to the approximation
coefficients at levell − 1.

The two separately reconstructed datasetsu1 and
u2 are both decomposed into multiple frequency
bands and orientations by a discrete dyadic wavelet
transformation. Because of the linearity of the
wavelet transformation the average ofu1 and u2

can directly be computed in the wavelet domain.
The denoising is performed by applying adapted
weights to the averaged high frequency detail coef-
ficients. These weights depend on the local and fre-
quency dependent similarity of the input datasets.
Different methods for detecting correlated struc-
tures between the two datasets have been proposed
in [4]. Here, we use the correlation between the ap-
proximation coefficients for the detection of struc-
tures. At each decomposition levell for each po-
sition x, the empirical correlation coefficients be-
tween pixel regions taken from the approximation
at levell−1 are computed. The pixel regions in the
approximation are chosen within a local neighbor-
hoodΩx around the corresponding positionx

l−1 of
x

l:

r
l(x) =

Cov(al−1
1 , al−1

2 )
q

Var(al−1
1 )Var(al−1

2 )
(1)

with

Var(s) =
X

x̃∈Ωx

(s(x̃)− s̄)2 (2)

and

Cov(s1, s2) =
X

x̃∈Ωx

(s1(x̃)− s̄1) (s2(x̃)− s̄2) ,

(3)
whereal−1

1 andal−1
2 define the approximation co-

efficients ofu1 andu2, respectively,̄al−1
1 andāl−1

2

denote the corresponding average values withinΩx.
The neighborhoodΩx is chosen in dependence on
the used wavelet in order to assure that all pix-
els that influenced the detail coefficient at position
x during decomposition and all those coefficients
that are influenced by the reconstruction from this
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coefficient are included into the correlation anal-
ysis. Therefore, the neighborhood is defined by
the length of the used analysis (g̃, h̃) and synthe-
sis (g andh) filters. If we assume that the length
m = (m1, . . . , md) of all these four filters is the
same and even, we define

Ωx =
n

x̃
l−1
˛

˛

˛
|x̃l−1 − x

l−1| ≤ m

o

. (4)

The final noise suppressed resultu is computed by
an inverse wavelet transformation from the aver-
aged and weighted coefficients:

a
lmax(x) =

1

2

“

a
lmax

1 (x) + a
lmax

2 (x)
”

, (5)

w
D,l(x) =

1

2

“

w
D,l
1 (x) + w

D,l
2 (x)

”

f
l (x) ,

l ∈ {1, . . . , lmax},

with weighting function

f
l (x) =

1

2

“

r
l(x) + 1

”

. (6)

4 PDE Based Denoising

4.1 PDE model

In contrast to the wavelet based denoising the PDE
based denoising works in the spatial domain. Noise
is removed using a nonlinear diffusion process de-
scribed by the nonlinear PDE

u− u
0 = τdiv(g(‖∇u‖)∇u) (7)

with Neumann boundary conditions. This is equiv-
alent to solving a Perona and Malik nonlinear
isotropic diffusion equation [7] for a fixed artificial
time stepτ . The initial imageu0 is set to the aver-
age of the two input imagesu0

1 andu0
2. The edge-

stopping functiong(‖∇u‖) regulates the diffusion
process. We use the Tukey edge-stopping function

gσ(x) =

(

`

1− ( x
σ
)2
´2

, |x| ≤ σ,

0, |x| > σ.
(8)

introduced in [13] because of its good edge preserv-
ing properties. Usually, the parameterσ is set to the
standard deviation when dealing with white noise.

For denoising CT images we have to modifygσ

resulting ing̃V described next (cf. (15)) to achieve
adequate results and we simultaneously denoise the
two input CT imagesu0

1 andu0
2 and its averageu0.

This means we have to solve the nonlinear system
of partial differential equations

u− u
0 = τdiv(D′

u1,u2
∇u) (9a)

u1 − u
0
1 = τdiv(D′

u1,u2
∇u1) (9b)

u2 − u
0
2 = τdiv(D′

u1,u2
∇u2) (9c)

with Neumann boundary conditions. Here,D′

u1,u2

is a nonlinear diffusion tensor with

D
′

u1,u2
= g̃V · E (10)

in the isotropic case and

D
′

u1,u2
= g̃V (D) (11)

with D = 0.25
“

(∇u1 +∇u2) (∇u1 +∇u2)
T
”

in the anisotropic case.E denotes the identity ma-
trix and g̃V is applied, e.g., in the 2D case, toD
by applyingg̃V to the eigenvaluesλ1, λ2 of D and
leaving the eigenvectorsv1, v2 of D unchanged,
i.e.,D′

u1,u2
= g̃V (λ1)v1v

T
1 + g̃V (λ2)v2v

T
2 .

Two ways of exploiting the availability of two in-
put images with uncorrelated noise are to compute
the correlation between both and to estimate noise
variance.

Because of the spatially varying noise properties
in CT images the analysis is done locally in a neigh-
borhoodΩx around a pixelx analog to wavelet
based denoising. Additionally, the neighboring pix-
elsx̃ are weighted with Gaussian weights

α(x̃,x) =
1

σ
√

2π

„

−1

2
e
‖x̃−x‖2

σ
2

«

(12)

depending on the distance between pixelx̃ andx.
A local estimate for the correlation of two image re-
gions can be computed by the weighted correlation
coefficient

cα(x) =
Covα(u1, u2)

p

Varα(u1)Varα(u2)
.

using the weighted covariance

Covα(s1, s2) =
X

x̃∈Ωx

2
Y

j=1

(sj(x̃)− s̄j)α(x̃,x)

and weighted variance

Varα(s) =
X

x̃∈Ωx

(s(x̃)− s̄)2α(x̃,x),
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where s̄ is the local gray value average. Because
in our case only the amount of similarity between
image regions is interesting, the values below0 of
cα, denoting anti-correlation, are set to0, yielding
a local similarity measure

Cα(x) =

(

1 cα(x) > 0

0 cα(x) ≤ 0
. (13)

A visualization ofCα of the input images of a liver
CT scan is shown in Fig. 2(a).

Two input images give us the possibility to esti-
mate the local noise variance of the average of the
input images by [14]

V (x) =

X

x̃∈Ωx

α(x̃,x)(u1(x̃)− u2(x̃))2

4
X

x̃∈Ωx

α(x̃,x)
. (14)

A plot of the estimated local varianceV in Fig. 2(b)
shows the spatially changing behavior of the noise
variance.

(a) Correlation (b) Variance

Figure 2: Plot of the local correlationCα and local
variance estimateV of a liver CT scan.

Based on the Tukey edge-stopping function we
now design a new function taking into accountV

andCα. The fixed parameter for the noise standard
deviation of the Tukey edge-stopping function is re-
placed byV (x) resulting in

g̃V (x) =

8

<

:

“

1− x2

V (x)

”2

, |x| ≤ β
p

V (x),

0, |x| > β
p

V (x).

(15)
with an additional fixed weighting factorβ ∈ R

+.
If nothing else is stated, we setβ = 1.

The square root of the product of the gradients on
the input images

‖∇u1,2‖ =
p

‖∇u1‖ · ‖∇u2‖ (16)

is taken as input for the edge-stopping functiong̃V .
It is further linearly scaled by the local similarity
measure, i.e., we usẽgV (s), s ∈ R with

s =

(

‖∇u1,2‖ ·W (x) if W (x) > 0,

0 else
(17)

and
W (x) = 1 + γ(2Cα(x)− 1) (18)

with γ ∈ R
+. This has the effect to damp high gra-

dients in image regions with small similarity, e.g.,
in homogeneous regions, and to enlarge the gradient
where similarity is high, i.e., when image structure
is present.

4.2 PDE solver

We discretize Eq. (9) in 2D and 3D by finite vol-
umes on a cell-based gridΩh, the gradients required
for the computation of̃gV are approximated by fi-
nite differences. The resulting nonlinear system of
equations

A
h(uh) = f

h (19)

is solved by a cell-based nonlinear multigrid solver
on a hierarchy of grids [15, 16, 17, 18] based on
the full approximation scheme (FAS) [19] to obtain
the denoised discrete imageuh. In the following
explanations, we restrict ourselves to two grids for
simplicity, a fine gridΩh and a coarse gridΩH .

To deal with the nonlinearity we apply an inexact
lagged diffusivity [20, 21]. The idea is to keep the
diffusivity function g̃V (s) constant during the itera-
tion stepk + 1 and to evaluate it at the old iteration
stepk. That means we successively solve

u
k+1 − u0 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1) (20a)

u
k+1
1 − u

0
1 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1
1 ) (20b)

u
k+1
2 − u

0
2 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1
2 ) (20c)

Note that now the three solution componentsu, u1,
andu2 are decoupled and can be updated indepen-
dently from each other.

Within the FAS multigrid iteration the Gauss-
Seidel method denoted by the operatorSν , where
ν are the number of Gauss-Seidel iterations, serves
as pre- and post-smoother. After each Gauss-Seidel
iteration on each level, we update the values of the
diffusivity function g̃V (s). Furthermore, we apply
simple restriction and interpolation operators [16].
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The restriction operator in 2D can be described by
the stencil

I
H
h =

1

4

2

4

1 1
·

1 1

3

5 , (21)

where the dot in the stencil denotes the position on
the coarse grid at which the restriction is applied,
and the constant interpolation in 2D by the stencil

I
h
H =

3

5

1 1
·

1 1

2

4 . (22)

Extension to 3D is straightforward. We denote one
FAS iteration, e.g., by FAS(2,2), i.e., we perform
2 pre- and 2 post-smoothing steps. For the results
in the next section we typically apply 3-4 FAS(2,2)
iterations.

The FAS scheme can be extended to full multi-
grid (FMG) by constructing an image pyramid and
starting to compute a denoised image at the lowest
resolution or level. Then, the solution is interpo-
lated to the next finer level and used as an initial
guess there. On each level one or more FAS itera-
tions are computed. One recursive FAS iterations to
solve the nonlinear systemAhuh = fh is shown in
Algorithm 1. The initial guessu(0)

h = 0.

5 Comparison Results

For a thin reconstructed example slice (0.8 mm)
of an abdomen CT scan (see Fig.3), Fig. 4 shows
the results for the proposed method in comparison
to one standard nonlinear diffusion method and the
wavelet based approach.

(a) Original (b) (u1 − u2)/2

Figure 3: Original average image and its difference
images (one slice is of size512 × 512), displayed
with c = 0 andw = 200.

In 2D we used the redundant SWT, in 3D the non-
redundant DWT, both in combination with the Haar
wavelet and three decomposition levels. The noise
reduced images are compared to the average of the
input images, which corresponds to the result of a
reconstruction from all projections and is in the fol-
lowing referred to as the original image. In Fig. 5
the corresponding difference images to the origi-
nal image are shown, providing an impression of
the denoising behavior of the different approaches.
Fig. 4(a) clearly demonstrates that a standard non-
linear diffusion method fails to denoise a CT image
with spatially varying noise power in an adequate
manner. While noise in the center of the image
is nearly unchanged, the outer regions are already
blurred. Using the proposed PDE approach or the
wavelet based method (Fig. 4(c)- 4(f)) shows that
both methods are capable of adapting themselves to
the local noise variance, thus removing noise more
uniformly. For both approaches in 2D a noise re-
duction of about 45% is achieved throughout the
image. To get a proper estimate of the correla-
tion of the input images a5 × 5 neighborhood was
used in the wavelet approach and a8 × 8 neigh-
bourhood with gaussian weights of standard devia-
tion 2 in case of the PDEs. Because image struc-
tures like edges have influence on the correlation
value of distant pixels in their neighborhood, unfor-
tunately noise remains around high contrast edges
if the window for correlation analysis is chosen too
large. However, if the window is chosen too small
the correlation analysis gets unreliable. Using 3D
data reduces this problem, because pixels for es-
timating the noise variance and correlation can be
taken from the neighborhood in all three dimen-
sions. Fig. 4(d) and 4(f) show the results in 3D
using a window of5 × 5 × 5 pixels (with gaus-
sian weights of standart derivation 1 in case of the
PDEs). It can be seen clearly that a strong noise
suppression of about 60% is achieved while image
structures are well preserved.

These images were also used for clinical tests,
where a radiologist judged the images with respect
to noise and visibility of structures in two consecu-
tive tests. Within these tests unlabeled image pairs
were shown to the radiologist in randomized order.
For all image pairs, the radiologist decided if there
was one preferred image with respect to the cur-
rent evaluation criterion. Switching the position of
the two images, allowed to notice even small dif-
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Algorithm 1 FAS iteration (V-cycle): Computeu(k+1)
h = MFAS

h

“

u
(k)
h , Ah, fh, ν1, ν2

”

1: ū
(k)
h = S

ν1

h

“

u
(k)
h , Ah, fh

”

{pre-smoothing}
2: rh = fh −Ah

“

ū
(k)
h

”

{compute residual}
3: rH = IH

h rh {restrict residual}
4: ūH = IH

h ū
(k)
h {restrict solution}

5: fH = rH + AH
`

ūH
´

6: if number of coarse grid points< ǫmin then
7: Solve nonlinear problemAH(wH) = fH by a suitable nonlinear solver or sufficiently many Gauss-

Seidel iterations
8: else
9: wH = MFAS

H

`

ūH , AH , fH , ν1, ν2

´

10: end if
11: eH = wH − ūH

12: eh = Ih
HeH {interpolate error}

13: ũ
(k)
h = ū

(k)
h + eh {coarse grid correction}

14: u
(k+1)
h = S

ν2

h

“

ũ
(k)
h , Ah, fh

”

{post-smoothing}

ferences between the images. Within the tests all
denoised images were compared to the original im-
age. Furthermore, the 2D and 3D results of the pro-
posed PDE approach were compared to the results
of the wavelet based approach. Summarizing, the
test showed that all denoised images were judged
superior in comparison to the original for both eval-
uation criteria.

For the comparison between PDE and wavelets
the results of the tests were not that clear. With
respect to noise the wavelet based methods were
preferred. Regarding the visibility of structures the
PDE approach gives better results.

In addition to the visual inspection, quantitative
tests were performed evaluating noise reduction and
edge preservation in phantom images. For gen-
erating the simulated CT-scans theDRASIM soft-
ware package provided by Karl Stierstorfer [22]
was used. The phantom consists of a water cylinder
with an inlaid quartered cylinder of defined density.
In order to test the preservation of edges at differ-
ent contrast-to-noise levels the density of the object
was varied leading to edge-contrasts between 20 to
100 Hounsfield units (HU). The Hounsfield scale is
a quantitative measure for radiodensity, i.e., it de-
scribes the relative transparency of a material, if X-
rays pass through it.

In addition to noisy phantoms, ideal CT-scans
were simulated leading to noise-free ground-truth

data. In CT a standard measurement for resolu-
tion is the modulation transfer function (MTF) (see
e.g. [10, 23]), indicating how many line pairs per
cm (lp/cm) can be distinguished. It is possible to
determine the local MTF directly from the edge in
an image. For this purpose, we manually selected
a fixed region of20 × 125 pixels around an edge
(with a slope of approx. 4 degrees). The slight tilt of
the edge allows a higher sampling of the edge pro-
file, which is additionally averaged along the edge.
The derivation of the edge profile leads to the line-
spread function (LSF). The Fourier transformation
of the LSF results in the MTF, which is additionally
normalized so thatMTF(0) = 1. Reliable mea-
surements of the MTF from thisedge techniquecan
only be achieved if the contrast of the edge is much
higher than the pixel noise in the images [24].

In case of the wavelet based approach this can
be easily circumvented by applying the computed
weights at each decomposition level to the wavelet
coefficients of the ideal noise-free image and com-
puting the inverse transformation. This has the ef-
fect of making the influence of the weighting to the
real signal directly visible. The MTF can then be
computed at the edge in the processed noise-free
image.

In case of the diffusion method this is not pos-
sible and, therefore, the average of 200 denoised
slices was used for computing the MTF. The MTFs
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(a) Tukey - Original (b) 2D Anisotropic - Original

(c) 2D Isotropic - Original (d) 3D Isotropic - Original

(e) 2D Wavelet - Original (f) 3D Wavelet - Original

Figure 5: Difference images, displayed withc = 0
andw = 200.

measured at edges with different contrasts are plot-
ted in Fig. 6 and compared to the MTF measured at
the original edge of 100 HU. All approaches used a
5×5 neighborhood, the PDE with Gaussian weights
of standard derivation1.

It can be clearly seen that the preservation of an
edge very much depends on the contrast-to-noise
level. The lower the contrast at the edge the stronger
the MTF falls below the original curve, indicating
that the edge was blurred. Fig. 6(a) shows that
the phantom edges with a contrast of more than
40 HU are nearly fully preserved by the 2D PDE
method. Additionally, due to the large time pa-
rameter needed to obtain a noise reduction of45%
the edge is enhanced by the diffusion process. The
3D PDE approach leads to better results for low-
contrasty edges and the amount of sharpening ap-
plied is lower, as it can be seen in Fig. 6(c). Supris-

ingly, if anisotropic diffusion is used the edges are
blurred as Fig. 6(b) shows. It seems that this ap-
proach is not capable of denoising images with fine
structures, because even minor errors in the estima-
tion of the edge gradient lead to a blurring over it.

For comparing the PDE approach to the wavelet
based method theρ50-values of the MTFs were
plotted against the contrast of the edge in Fig. 7.
Theρ50-value is defined as MTF(ρ50) = 0.5. Ad-
ditionally, the values of the original noise-free im-
ages are plotted for comparison. It can be seen that
the edge preservation of the PDE method outper-
forms the wavelet based method.

6 Conclusions

Isotropic and Anisotropic diffusion is adapted to be
able to deal with the special noise characteristics of
CT data. The diffusion depends on local noise vari-
ations and an estimation of the real image structure
by calculating correlations between two input im-
ages with uncorrelated noise. The approach is com-
pared to a similar wavelet based denoising method.

To enable the use of the presented algorithms
in practical applications, it is necessary to improve
their performance. Currently it takes for both ap-
proaches on a Laptop (Pentium M 2.0 GHz and
1 GB RAM) and typical parameter settings about
3–7 seconds to denoise a 2D slice of size512 ×
512 and about 80–120 seconds for a 3D volume
of size 512 × 512 × 16. Although the wavelet
method is implemented within Matlab, it is slightly
faster. The PDE based approach is implemented in
C++. Applying standard optimization techniques
[25, 26, 27] to the unoptimized multigrid solver
could lead to a performance gain of factor 2–5.
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PDE or wavelet based method plotted against the
contrast of the edge.
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Figure 4: Denoising results for a CTA of a liver, displayed withc = 200 andw = 700.
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Abstract

Model-based image interpretation has proven to ro-
bustly extract high-level scene descriptors from raw
image data. Furthermore, geometric texture models
represent a fundamental component for visualizing
real-world scenarios. However, the motion of the
model and the real-world object must be similar in
order to portray natural activity. Again, this infor-
mation can be determined by inspecting images via
model-based image interpretation.

This paper sketches the challenge of fitting mod-
els to images, describes the shortcomings of current
approaches and proposes a technique based on ma-
chine learning techniques. We identify the objective
function as a crucial component for fitting models to
images. Furthermore, we state preferable properties
of these functions and we propose to learn such a
function from manually annotated example images.

1 Introduction

Model-based image interpretation is appropriate to
extract high-level information from single images
and from image sequences. Models induce a pri-
ori knowledge about the object of interest and re-
duce the large amount of image data to a small num-
ber of model parameters. The model parameters p
represent its configuration, including position, ro-
tation, scaling, and deformation. These parameters
are usually mapped to the surface of an image, via a
set of feature points, a contour, or a textured region.

Model fitting is the computational challenge of
finding the model parameters that describe the con-
tent of a given image best [6]. This task consists

∗This research is partly funded by a JSPS Postdoctoral Fellow-
ship for North American and European Researchers (FY2007).

of two components: the fitting algorithm and the
objective function. The objective function yields a
comparable value that determines how accurately a
parameterized model fits to an image. Without los-
ing generality, we consider lower values to repre-
sent a better model fitness. Depending on context,
they are also known as the likelihood, similarity, en-
ergy, cost, goodness or quality functions. The fitting
algorithm searches for the model parameters p that
optimize the objective function, i.e. it searches for
the global minimum or maximum, depending on the
definition of the objective function. Since the de-
scribed methods are independent of the used fitting
algorithm, this paper shall not elaborate on them but
we refer to [6] for a recent overview and categoriza-
tion.

For interpreting the content of image sequences,
model tracking fits the model to the individual im-
ages of the sequence. Each step benefits from
the pose estimate derived from the previous im-
age within the sequence. However, determining the
pose estimate for the first image of the sequence has
not been sufficiently solved yet. This so-called ini-
tial pose estimation is identical to fitting models to
single images.

This paper evaluates our approach considering a
rigid 3D model of a human face. Since faces highly
vary in shape and texture in contrast to artificial ob-
jects, such as cars, fitting face models to images rep-
resents a particular difficulty.

Many researchers engage in fitting 3D models.
Lepetit et al. [8] treat this issue as a classification
problem. They integrate decision trees to solve this
challenge.

Blanz et al. use a morphable three-dimensional
model of human faces that describes not only the
pose but also the appearance of the face [2]. Drum-
mond and Cipolla [13] track rigid object by per-
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Figure 1: The procedures for designing (left) and learning (right) objective functions.

forming a fitting step on every image. The model
pose is changed that way that the distances between
edges of the projected model and edges in the im-
age are minimized. Plagemann et al. [3] use dif-
ferent views of a model that are generated off-line
to estimate the pose of the object during the on-line
application.

Problem Statement. Although the accuracy of
model fitting heavily depends on the objective func-
tion, it is often designed by hand using the de-
signer’s intuition about a reasonable measure of fit-
ness. Afterwards, its appropriateness is subjectively
determined by inspecting the objective function on
example images and example model parameters. If
the result is not satisfactory the function is tuned or
redesigned from scratch [11, 5], see Figure 1 (left).
Therefore, building the objective function manually
is very time consuming and the function does not
guarantee to yield accurate results. Furthermore
domain-dependent knowledge is needed in this ap-
proach. First, knowledge of the modeled object
and the application is needed to select the image
features and afterwards mathematical knowledge is
needed to obtain the objective function. Therefore,
in summary, the traditional approach of designing
objective functions manually shows a bad temporal
behavior, requires a specialist to perform the work
and holds no guarantee concerning the quality of the
resulting objective function.

Solution Outline. Our novel approach focuses
on the root problem of model fitting: We improve
the objective function rather than the fitting algo-
rithm. As a solution to this challenge, we propose
to conduct a five-step methodology that learns ro-
bust local objective functions from annotated exam-
ple images. The obtained functions consider spe-
cific issues of 3D models, such as out-of-plane ro-
tations and self-occlusion. Here, we compute the
features not in the 2D image plane but in the space
of the 3D model. Therefore, we connect the indi-

vidual features directly to the model. No domain-
dependent knowledge is needed in this approach
and the time requirement is easily determinable.

Contributions. The resulting objective functions
work very accurately in real-world scenarios and
they are able to solve the challenge of initial pose
estimation that is required by model tracking. This
easy-to-use approach is applicable to various image
interpretation scenarios and requires the designer
just to annotate example images with the correct
model parameters. Since no further computer vi-
sion expertise is necessary, this approach has great
potential for commercialization.

The paper proceeds as follows. In Section 2, we
sketch the challenge of model-based image inter-
pretation. In Section 3, we propose our methodol-
ogy to learn accurate local objective functions from
annotated training images with particular focus on
3D models. Section 4 conducts experimental evalu-
ations that verify this approach. Section 5 summa-
rizes our approach and shows future work.

2 Model-based Image Interpretation

A rigid 3D model represents the geometric prop-
erties of a real-world object. A six-dimensional
parameter vector p=(tx, ty, tz, α, β, γ)T describes
its position and orientation. The model consists of
1≤n≤N three-dimensional model points specified
by cn(p) which are mapped on the image plane us-
ing perspective projection for feature extraction or
visualization. Figure 2 depicts our face model with
N=214 model points.

Fitting 3D models to images requires two essen-
tial components: The fitting algorithm searches for
the model parameters that match the content of the
image best. For this task, it searches for the mini-
mum of the objective function f(I, p), which deter-
mines how well a model p matches an image I . As
in Equation 1, this function is often subdivided into
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Figure 2: Our 3D model of a human face correctly
fitted to images.

N local components fn(I, x), one for each model
point [8, 1, 9].

f(I, p) =
NX

n=1

fn(I, cn(p)) (1)

These local functions determine how well the
nth model point at a three-dimensional position x
fits to the content of the image I . The advantage of
this partitioning is that designing the local functions
is more straightforward than designing the global
function, because only the image content in the
vicinity of one perceptively projected model point
needs to be taken into consideration. The disadvan-
tage is that dependencies and interactions between
local errors cannot be combined.

2.1 Ideal Objective Functions

This section explicitly formulates two properties
that local objective functions should have in the best
case. First, they should have a global minimum that
corresponds to the best model fit with model param-
eters p?

I . Otherwise, we cannot be certain that deter-
mining the minimum of the local objective function
yields the intended result. Second, local objective
functions should have no other local minima. This
implies that any minimum found corresponds to the
global minimum, which facilitates search.
P1: Correctness property: The global minimum

corresponds to the best model fit.

∀x(cn(p?
I) 6= x) ⇒

fn(I, cn(p?
I)) < fn(I, x)

P2: Uni-modality property: The objective function
has no local extrema.

∃m∀x (m 6= x) ⇒ fn(I, m) < fn(I, x)

∧ ∇fn(I, x) 6= 0

Property P1 relates to the correctness of the ob-
jective function. Fitting algorithms search for the
global minimum of the objective function and P1
ensures that the result of a successful search cor-
responds to the best fit of the model. Property P2
guarantees that any minimum that is found is the
global minimum. This facilitates search, as fitting
algorithms can not get stuck in a local minimum.
Local optimization strategies, which are easier to
design than global ones, then suffice to find the
global minimum. Note that the global minimum m
does not need to correspond with the best fit; this
is only required by the independent property P1.
We call functions that have both properties ideal. A
concrete example of an ideal local objective func-
tion is shown in Equation 2. As described in the
next section, our approach approximates an ideal
function by learning it from examples created by an
ideal objective function.

f?
n(I, x) = |x− cn(p?

I)| (2)

2.2 Characteristic Directions of Local Ob-
jective Functions

Fitting 2D contour models to images usually
searches along the perpendicular to the contour for
the minimum of the local objective function [4].
Our approach sticks to this procedure, and therefore
we create several local objective functions that are
specific to these characteristic directions.

In the case of 3D-models, we connect these three-
dimensional characteristic directions very tightly to
the structure of the model. Transforming the pose of

Figure 3: These four graphs display typical exam-
ple functions that do or do not have properties P1
and P2, which influence the behaviour of an ob-
jective function. The dashed line indicates the pre-
ferred position of the contour point. If both P1 and
P2 hold, the objective function is considered to be
ideal.
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Figure 4: Due to transformation of the face model
the characteristic direction will not remain parallel
to the image plane, most often.

the model will transform these directions as well.
Note, that in the case of 2D contour models these
characteristic directions are defined in image space
whereas they are defined in three-dimensional space
in the context of three-dimensional models. Again,
search for the minimum of the local objective func-
tion is conducted along these characteristic direc-
tions. As a novelty the input features positions
are also represented three-dimensionally, but their
value is calculated by projecting them to the image.

An image is most descriptive for a characteris-
tic direction if the characteristic direction is paral-
lel to the image plane. Unfortunately, transform-
ing the model will usually yield characteristic di-
rections that are not parallel to the image plane.
Therefore, we propose to consider not only one
but 1≤l≤L characteristic directions that are differ-
ently oriented. This yields a specific objective func-
tion fn,l(I, x) for each characteristic direction l
and each model point n. For every point we propose
to consider only the fn,l whose characteristic direc-
tion is most parallel to the image. The local objec-
tive function fn is computed as in Equation 3. The
indicator gn(p) computes the index of the charac-
teristic direction that is most significant for the cur-
rent pose p of the model and a model point n. Even
if these directions are arbitrary, we define them to
be pair wise orthogonal.

fn(I, x) = fn,gn(p)(I, x) (3)

3 Learning Objective Functions from
Image Annotations

Unfortunately, the ideal objective function f?
n can-

not be applied to previously unseen images, for
which the best model parameters p?

I are not known.
Nevertheless, we apply this ideal objective function

to annotated training images and obtain ideal train-
ing data for learning a further local objective func-
tion f `

n,l. The key idea behind our approach is that
since the training data is generated by an ideal local
objective function, the function learned from this
data will also be approximately ideal. The subse-
quent sections will explain the five steps of the pro-
posed procedure of learning local objective func-
tions, see also Figure 1 (right).

3.1 Step 1: Annotating Example Images
with the Preferred Model Parameters

We gather a database of 1≤k≤K images Ik and
each image is manually annotated with the preferred
model parameters p?

Ik
. These parameters are nec-

essary to compute the ideal local objective func-
tions f?

n . This annotation is the only laborious step
in the entire procedure. It takes less then 30 sec-
onds for an experienced person to annotate one im-
age. Figure 2 illustrates three example images for
which these preferred model parameters have been
specified.

3.2 Step 2: Generating Further Image
Annotations

Because x is set to cn(p?
I), the ideal objective

function returns the minimum f?
n(I, x)=0 for all

manual image annotations x=cn(p?
Ik

). Therefore,
these annotations are not sufficient to learn the char-
acteristics of f?

n and we will acquire image annota-
tions x 6=cn(p?

Ik
), for which f?

n(I, x)6=0. In gen-
eral, any position in space may represent one of
these annotations. However, it is more practicable
to restrict this displacement in terms of distance and
direction, see Figure 5. Therefore, we only take po-
sitions along the most important characteristic di-
rection. The maximum displacement ∆ is termed
learning radius

In this paper, we use L=3 characteristic direc-
tions, because the model points of our model are de-
fined within the Euclidean 3D space. The character-
istic direction with the largest angle to the normal of
the image plane is chosen to be the most important
one and thus selected by gn(p). That direction is
easily estimated, because it is also the longest when
projected in the image plane. Taking those reloca-
tions facilitates the later learning step and improves
the accuracy of the resulting calculation rules. The
first characteristic direction is chosen to be tangent
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Figure 5: Further annotations are generated by moving along the line that is longest when projected in the
image. That line is coloured white here. The directions illustrated in black are not used.

on the model’s surface. It is estimated with the help
of the nearest model point. The second characteris-
tic direction is perpendicular to the first characteris-
tic direction and minimizes the distance to the cen-
ter of gravity of the model. The third characteristic
direction is obtained from the cross product.

3.3 Step 3: Specifying Image Features

The point xk,n,d,l describes the annotation of
the nth model point in the image Ik, which is
displaced by d along the characteristic direction l.
Our approach learns the calculation rules of a
function f `

n,l(Ik, xk,n,d,l) that maps the values of
an image Ik and an annotation xk,n,d,l to the
value that is computed by the ideal objective func-
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Figure 6: The grid of image features moves along with the displacement.

tion f?
n(Ik, xk,n,d,l). Since f `

n,l has no knowledge
of p?

I , it must compute its value from the content of
the image.

Instead of learning a direct mapping from the
pixel values of I in the vicinity of the projec-
tion of x to f?

n(I, x), we use a feature-extracting
method [6], which extracts features from the im-
age around the projection of x. Our idea is to pro-
vide a multitude of image features, and let the train-
ing algorithm choose which of them are relevant to
the computation rules of the objective function and
which are not. Each feature ha(I, x) with 1≤a≤A
is calculated from an image I and a particular lo-
cation x and delivers a scalar value. The approach
presented in this paper relies on Haar-like features.
Note again, that x does not represent a 2D pixel po-
sition in the image I but a 3D position in Euclidean
space. However, its corresponding position in I is
obtained by applying the perspective projection.

Figure 7: This comprehensive set of image features
is provided for learning local objective functions.
In our experiments, we use a total number of A =
6 · 3 · 5 · 5 = 450 features.

Each Haar-like feature defines two regions of
pixels, depicted in black and white in Figure 7. Its
value is calculated by subtracting the sum of pixel
intensities within the black region from the sum of
pixel intensities within the white region. Figure 7
lists the styles and sizes of each Haar-like feature
used in this paper. Furthermore, these features are
not only computed at the location of the model point
itself, but also at positions located on a grid within
its vicinity, as shown in Figure 6 and Figure 7. This
variety of styles, sizes, and locations delivers a set
of A=450 different image features as we use it in
our experiments in Section 4. This multitude of fea-
tures enables the learned objective function to ex-
ploit the texture of the image at the projected model
point and in its surrounding area. When moving
the model point in space, the image features move
along with it in the image, leading their values to
change, as can be seen in Figure 6.

3.4 Step 4: Generating Training Data

The result of the manual annotation step (Step 1)
and the automated annotation step (Step 2) is
a list of correspondences between positions in
space and the corresponding value of f?

n . Since
K images, N model points, and 2D + 1 dis-
placements are landmarked these correspondences
amount to K·N ·(2D+1). From every image for
every point a line with Equation 4 illustrates the
list of these correspondences. Applying the list of
manually selected features to the list of correspon-
dences yields the list of training data in Equation 5.
This step simplifies matters greatly. Since each fea-
ture returns a single value, we hereby reduce the
problem of mapping the vast amount of image data
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[ Ik, xk,n,d,l, f?
n(Ik, xk,n,d,l) ] (4)

[ h1(Ik, xk,n,d,l), . . . , hA(Ik, xk,n,d,l), f?
n(Ik, xk,n,d,l) ] (5)

with 1≤k≤K, 1≤n≤N,l=g(pIk
), −D≤d≤D

and the related pixel locations to the corresponding
target value, to mapping a list of feature values to
the target value. Note that the size of the training
data amounts to K(2D+1) records for each of the
N model points.

3.5 Step 5: Learning the Calculation
Rules

Given the training data from Equation 5, the goal
is to now learn the function f `

n,l(I, x) that approx-
imates f?

n(I, x). Note that we are not simply re-
learning the already known function f?

n in Equa-
tion 2. The difference is that f `

n,l does not re-
quire knowledge of p?

I , and can therefore be applied
to previously unseen images as well. We obtain
this function by training a model tree [10, 14] with
the comprehensive training data from Equation 5.
The N ·L local objective functions f `

n,l have to be
learned separately. However, only those lines of
Equation 5 are necessary to generate one local ob-
jective function where n and l of the function f `

n,l

that is learned and xk,n,d,l match.

Model trees are a generalization of regression
trees and, in term, decision trees. Whereas deci-
sion trees have nominal values at their leaf nodes,
model trees have line segments, allowing them to
also map features to a continuous value, such as the
value returned by the ideal objective function. One
of the reasons for deciding for model trees is that
they tend to select only features that are relevant to
predict the target value. Therefore, they pick a small
number of Mn Haar-like features from the provided
set of A � Mn features.

After executing these five steps, we obtain a lo-
cal objective function f `

n,l for each model point n
and each direction l. It can now be called with an
arbitrary location x and an arbitrary direction l on
an arbitrary image I . The learned model tree cal-
culates the values of the specified features at this
location from the content of the image and executes
its calculation rules.

4 Experimental Evaluation

In this section, two experiments show the capability
of fitting algorithms equipped with a learned objec-
tive function to fit a face model to previously unseen
images. The objective functions were learned using
a database of 240 images. The evaluation is per-
formed on 80 test images with a non-overlapping
set of individuals. Furthermore, the images differ in
face pose, illumination, and background.

Our evaluations randomly displace the face mod-
els according to the manually specified pose. For
every model point, the fitting process exhaustively
searches along the most important characteristic di-
rection in order to determine the global minimum
of the local objective function. Then, the model pa-
rameters p are approximated. The figures below il-
lustrate the average point-to-point error between the
obtained model p and the manual annotation p?

I .
Our first evaluation investigates the impact of it-

eratively executing the fitting process. Figure 8
illustrates that each iteration improves the model
parameters. However, there is a lower bound to
the quality of the obtained model fit, because more

Figure 8: If the initial distance to the ideal pose is
smaller than the learning radius this distance is im-
proved within every iteration. Otherwise, the result
of the fitting step is unpredictable and the models
are spread further with every iteration.
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than 10 iterations do not improve the fraction of
well-fitted models significantly. In contrast, mod-
els with a high distance from the correct fit become
even more with every iteration, because the objec-
tive function’s value is arbitrary for these distances.
Therefore, these model parameters are affected by a
Gaussian distribution.

In our second experiment, we conduct model
fitting by subsequently applying the fitting pro-
cess with two different local objective functions fA

and fB learned with decreasing learning radii ∆.
fA with a large ∆ is able to handle large initial
displacements in translation and rotation. How-
ever, the obtained fitting result gets less accurate,
see Figure 9. The opposite holds true for fB . The
idea is to apply a local objective function learned
with large ∆ first and then gradually apply objec-
tive functions learned with smaller values for ∆. As
opposed to the previous experiment, where we iter-
atively executed the same objective function, this
iteration scheme executes different objective func-
tions, which compensates the weakness of one func-
tion by the strength of another.

The advantage of concatenating algorithms with
objective functions with decreasing learning radii
compared to iterating one algorithm several times
is illustrated by Figure 9. Sequentially applying fA

and fB is significantly better than both of the other
algorithms. Note that we execute each experiment
with ten iterations, because we don’t expect any im-

Figure 9: By combining fitting algorithms using ob-
jective functions with different learning radius we
obtain result that show the strengths of both objec-
tive functions. The sequential approach shows the
tolerance to errors of fA and the accuracy of fB

Figure 10: The number of rejected features in-
creases with the number of features offered to the
learning algorithm in total.

provement in quality with a higher number of iter-
ations, see our first experiment. Therefore, the ob-
tained accuracy from the sequential execution does
not base of the fact that some additional iterations
are applied.

Our last experiment evaluates the timing char-
acteristics of our approach by inspecting the num-
ber of operations performed when the objective
function is executed with respect to the number
of features provided. We consider basic arith-
metic operations to be atomic as well as compar-
isons. The model tree generated by the learning
algorithm selects the most important features pro-
vided. Therefore, usually only a small number of
features M � A is selected to build the model
tree. As shown in Figure 10 When the number of
features provided to the learning algorithm is small
all of them are used. However, as the number of
provided features is increased the algorithm rejects
less relevant features. The more features are pro-
vided the larger the fraction of rejected features gets
and the number of selected features converges to a
fixed number.

5 Summary and Outlook

In this paper, we present a five-step methodol-
ogy for learning local objective functions. This
approach automates many critical decisions and
the remaining manual steps require little domain-
dependent knowledge. Furthermore, it contains no
time-consuming loops within the design process.
These features enable non-expert users to customize
the fitting application to their specific domain.
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The resulting objective function is not only able
to process objects that look similarly, such as in [8,
7] but objects that differ significantly in shape and
texture, such as human faces. Being trained with a
limited number of annotated images as described in
Section 3 the resulting objective function is able to
fit faces that are not part of the training data as well.
However, the database of annotated faces must be
representative enough. If there were no bearded
men in the training data the algorithm would have
problem in fitting the model to an image of such a
man. The disadvantage of our approach is the la-
borious annotation step. Gathering and annotating
hundreds of images requires several days or even
weeks.

In our ongoing research, we are applying our
methods to tracking systems. Since tracking algo-
rithms can exploit knowledge about the illumina-
tion, background, camera settings, and current pose
of the model to bias search in the next image in
the sequence, they perform faster and more accu-
rately than algorithms for fitting a model to single
images [11]. Given the accuracy and speed with
which fitting algorithms can optimize learned ob-
jective functions, we expect to achieve excellent
tracking results.
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Abstract

Due to recent advances in high-quality digital pho-
tography, taking a large series of images is very in-
expensive. Especially in portrait situations, this re-
sults in a possible advantage because subjects of-
ten feel uncomfortable during acquisition. Select-
ing from a larger set of images increases the chance
of a more satisfying outcome. However, the selec-
tion process is not easy and time consuming as only
a small number of images is typically considered as
aesthetically pleasing. In this work, we propose a
machine learning approach to mimic the selection
process of a human subject. After a short training
period, a large set of images can be classified in-
stantly into two categories,goodor bad. With the
proposed automatic pre-selection, the advantage of
digital photography for portrait images is brought to
a new level.

1 Introduction

In the early days of photography, it was common
to have people waiting for several minutes in front
of the camera until the image could impress suffi-
ciently the photographic film. It was common to re-
touch some areas of the photo, such as eyes, mouth
and hands, which could hardly be kept immobile
for long time. Later, the technology of fast films al-
lowed to overcome this problem, but yet at a high
cost of photographic material, such as special pelli-
cles and a complex film development process.

Recent advances in high-quality digital photogra-
phy allow the acquisition of large series of images
in a very inexpensive way. Modern digital cameras
are capable of taking and storing hundreds of high-
resolution pictures within seconds. Some of them
allow capturing video streams which are converted
later to a sequence of individual photos. These im-
provements turn out in a low cost per picture for

Figure 1: Samples ofgoodandbadportraits.

the photographer and more comfort for the pho-
tographed subject. Especially in portrait situations,
such as studio or interview photos, the subject may
be entertained or involved in a conversation while
a fast sequence of pictures is captured. Later, the
best photos from the sequence may be extracted,
and the others may be discarded or digitally pro-
cessed. In general, photos obtained in that way look
much more natural and expressive because the sub-
ject is not worried about positioning himself into an
appropriate pose.

Selecting from a large set of photos increases the
chance for a better outcome. However, the selec-
tion process is very time consuming and usually
not easy. While the price for acquiring and storing
the images drops, the amount of produced pictures
makes it tedious to run the selection phase manu-
ally. In other words, a non-automated classification
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of several hundred photos quickly becomes an over-
whelming task. The main reason is that selection
should be applied involving complex criteria over a
large set, where only some few elements are con-
sidered aesthetically pleasing. Moreover, the group
of chosen photos may be highly dependent on the
person running the selection, even if the acceptance
rules are clearly stated.

For these reasons an automated solution for clas-
sifying portraits becomes very interesting. A semi-
automated portrait classifier should be able to get
rid of portraits that are obviously bad according to
some criteria. The remaining portraits may be then
finely classified by a human. A completely auto-
mated classifier system should be able to indicate
securely the photos in the set which would most fit
the predilection of the system user. For both cases,
it is necessary to mimic the selection process of a
human user. This is a non-trivial task, because the
rules for selection of pleasant and aesthetic portraits
are very problematic to be expressed in objective
ways.

1.1 Related Work

Image classification is an important part of re-
mote sensing, image analysis, and pattern recogni-
tion. It has a wide range of applications in many
different areas like, for example, classification of
satellite images and air photos [8], image content
based search engines in the Web[12], and Biomet-
ric recognition[4][6]. Although these works present
particularities dependent on the modality, all of
them classify images into classes defined by previ-
ously known subjects.

The main challenges in this work are likewise
how to identify facial elements, extract features and
the final classification. Moreover the system should
be able to learn the user’s taste, based on user input.

Considering the actual research work on rec-
ognizing and classifying subject portraits, theIm-
age Intelligence[2] technology fromFujifilm brings
some approaches for face picture classification
based on face recognition. On the World Wide
Web, a good example of portrait a recognition-
classification system is the Riya System [12]. It is a
new kind of visual search engine specialized in fa-
cial recognition cataloguing. It offers the users the
possibility to find similar faces and objects on many
images across the web.

Most research made with facial picture classifi-
cation considers face recognition. In other words,
the main objective is to recognisewhois the subject
in the picture. That is the goal, for example, in bio-
metrics authentication area. Although we use some
common techniques, we are mainly interested in
classifying pictures into qualitative categories such
as good or bad.

In this point of view, some similar work can be
found in the area of affective computing, an appli-
cation of pattern recognition introduced by Picard
[11]. The recognition of facial expressions, brings
many contributions to the face classification area.
Pantic and Rothkrantz[9] provide an overview over
the area of facial expression analysis.

Some contributions for the qualitative classifica-
tion of portraits were introduced in [13] with their
concept of identifying neutral faces. The main mo-
tivation for this work is augmenting the accuracy
of an arbitrary authentication algorithm by feed-
ing it with a neutral face. Moreover, an impressive
method for portrait images processing is presented
in [7]. In contrast to a pattern recognition approach,
the method automatically increases the predicted at-
tractiveness rating of the face image. However, their
method actually distorts the face and the beautifica-
tion comes at the cost of identity loss.

All the cited work have some indirect relation to
our topic, but as far as we know, no work was de-
veloped in order to separate portraits in adequation
qualitative classes, asgoodor bad (Figure 1).

2 Portrait Classification

Figure 2: First the face is selected, then eyes and
mouth regions are separated and used to feed the
feature extraction module. Finally, the features are
classified. If both eyes and mouth are classified as
good the picture is considered good, else it is con-
sideredbad.

The main goal of this work is, using machine
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learn techniques, mimic the selection process of a
human subject allowing later an automatic selection
of good portrait photos from a sequence of natu-
ral poses. This section presents an overview of our
system with the main stages needed to evaluate a
portrait image and classify it as agoodor badshot
(Figure 2).

As input, our method receives pictures contain-
ing a single person photographed in a frontal pose.
It inspects them to determine whether the presented
picture is a good shot or not. However, the percep-
tion of how ”good” a picture is very subjective. For
example, some persons may prefer portraits where
the photographed subject appears smiling, while
others may consider the smile a sign of frivolity or
distrust. This personal aspect restrains the acquisi-
tion of an enough general training set for the appli-
cation. We propose two distinct approaches to over-
come this problem. The difference between these
approaches depends only on the origin of the train-
ing set.

Since mouth and eyes play extraordinary roles
in facial expressions, we limit the classification to
those features. In this way, we can focus on smaller,
more significant regions of the picture.

The first approach is a more general system,
which tries to learn the common sense of pleasant-
ness of an image. The idea is to identify and discard
face images with undesired details as, for example,
closed eyes or mouths in movement (often present
when someone speaks). For this mode of opera-
tion, we trained our portrait classifier with samples
of eyes and mouth images in many different config-
urations. The samples were generated from images
of a face database and were labelled asgoodor bad,
according to simple criteria as discussed previously.

The second approach requires additionally two
input image sets selected by the user, one contain-
ing good shots and the other disliked pictures. Our
system then tries to learn the person’s taste for the
following classifications.

2.1 Detecting Face Regions

At any classification procedure, the feature extrac-
tion process plays a very important role. Largely
applied in the field of machine learning and pattern
recognition, feature extraction is an intelligent way
to reduce the dimensionality of a large set of data,
in our case, face images. The reduction of the di-
mensionality minimizes the amount of resources re-

quired to describe an image, and thus the resource
demand for the training algorithms. We have cho-
sen Adaptative Boosting (AdaBoost)[3] combined
with Principal Component Analyses (PCA)[10] in
order to define our feature set. The AdaBoost mod-
ule detects the eyes and mouth regions, while the
PCA module extracts the main components of these
regions.

Adaptative Boosting, also called AdaBoost, was
introduced in 1995 in [3]. It is a special case of
Boosting, which is a general way to increase the
accuracy of any given learning algorithm. We em-
ploy for our face detection module a very interesting
AdaBoost implementation proposed by Viola and
Jones in [16] to select the eyes and mouth regions
of a portrait.

For our approach we trained two different Ada-
Boost modules, one for eye detection and another
for mouth detection. Both classifiers are trained by
two image sets. A positive set, containing images
from the object of interest and a negative set, con-
taining background images i.e. any possible image
that does not correspond to the object.

To train the cascade of classifiers, the AdaBoost
algorithm tries to meet an adequate trade-off be-
tween the quantity of features chosen for the classi-
fier and the time necessary to compute the classifier.
Each stage in the cascade reduces the false positive
rate and decreases the detection rate as well. Each
classifier stage is trained by adding features until a
desired level of detection and false positive rates for
the respective stage is reached. Similarly, stages are
added until the overall desired levels of detection
and false positive rates are met (see Figure 3 and 4).

Figure 3: Haar-like features for the first stage of the
AdaBoost algorithm trained to detect eyes. The first
up to fourth features are marked in green, magenta,
blue, and yellow, respectively.

245



Figure 4: Haar-like features for the first stage of the
AdaBoost algorithm trained to detect mouths. First
up to fourth features are marked in green, magenta,
blue, and yellow, respectively.

2.2 Feature Extraction

After detecting the regions of interest (eyes and
mouth), the next step is to extract specific features
of these regions. These are usually more robust than
working directly on pixel values and can addition-
ally encode ad-hoc domain knowledge which is oth-
erwise difficult to learn using a finite quantity of
training data. Using Principal Component Analysis
(PCA) [14] is a common approach to find such ro-
bust feature descriptions in images. We follow this
approach, by using the set of eyes and mouths previ-
ously selected by the detection module to calculate
an eigenobject basis. Another possibility for a train-
ing set, used for the general classification mode, are
the images used to train the detector module. This
approach has the advantage that the images are bet-
ter controlled, giving better results.

Figure 5 shows the ten most significant eigenob-
jects calculated for the eye and mouth spaces re-
spectively. Interesting aspects from the eigenobject
pictures can be seen. For example, the first eigenob-
ject picture of the eye space represents eyes that
look straight very well, while the second an third
eigenobjects represent eyes looking to the right and
left, respectively. In the case of the mouth space,
the first eigenobject represents a laughing mouth,
while the second represents a closed mouth. The
appearance of the eigenobjects supports the hypoth-
esis that our training set is very well represented in
terms of the extracted eigenobjects.

2.3 Classification

The last step of our method is the final classifica-
tion which partitions the input into a number of cat-
egories or classes[5]. In the case of recognizing

Figure 5: 5 first calculated eigenobjects for the eye
and mouth space, respectively. Sorted from the
more significant to the less significant.

whether a face image is a good shot or not, two fi-
nal classes are defined: one class for the ”good” and
another for the ”bad” pictures.

The classification approach adopted in this work
follows a geometric approach based on decision
boundaries. We chose to use a Support Vector
Machine[15] (SVM) classifier in order to catego-
rize the final selected features. The introduction
of support vector classifiers by Vapnik[15] is one
of the most interesting advances in classifier de-
sign. The SVM maximizes the margin between the
classes by selecting a minimum number of support
vectors. The SVM algorithm is now-a-days one of
the most commonly used classifiers and has many
advantages, e.g., it can generate nonlinear classi-
fiers with a very good generalization performance,
even when using a small training set. Furthermore,
when a large training set is used, the SVM classifier
is able to select the minimal set of support vectors.
This minimizes the computing requirements when
testing new samples and avoids overfitting.

For our approach we trained two distinct classifi-
cation modules, one for eye and another for mouth
classification. If both eyes and mouth are classi-
fied asgood the picture is considered good, else it
is consideredbad. The training sets used for the
classification modules are explained in detail in the
sections 3.3.1 and 3.3.2.

3 Results

This section describes some results obtained us-
ing our approach to classify portraits, including de-
tails about the structure and training of the different
modules presented in Section 2.

In order to demonstrate the efficiency of our ap-
proach for portrait classification, we performed ex-
periments with a pre-stored sequence of face images
from different subjects in different poses. The used
image database contains both training and test sets,
but the composition of such sets variate depending
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on the experiment.

3.1 Face Database

The first step in the implementation of the sys-
tem was the creation of a face database, that is a
database of face portraits. The major incentive to
create a new database comes from the need of a
large quantity of data and the idea of training and
testing the system with real, i.e. not pre-processed
images. The images were taken in a semi-controlled
environment: Only frontal face pictures avoiding
head rotations of more than 15 degrees and each
picture including only one person. Moreover, the
image acquisition was made at different days, and
though under different conditions of lighting.

The camera utilized during the acquisition of the
database images was a Canon EOS 5D, with shut-
ter speed of1/6 Sec., aperture of F1.6, Lens 50mm
and Focal Length 50.0mm. Furthermore, the shots
were taken in aContinuous Shot Modeof one pic-
ture per second and stored in a Canon proprietary
raw format to avoid compression artefacts.

The database contains a total of 1262 images
from 12 distinct subjects at different facial poses, as
for example: Open and closed eyes, looking toward
different directions, laughing, speaking, yawning,
etc.

3.2 Object Selection

We implemented two object selection modules:
One for eye detection and another for mouth de-
tection of face images. Both modules are similar.
They differ only in the image training set and some
simple restrictions discussed in section 3.2.1

For the eye detection module, we trained the sys-
tem using 834 positive samples in different con-
figurations and 2168 negative samples containing
pieces of the background of some face images. Af-
ter the training process, a classifier with 16 stages
was achieved.

The mouth detection module was trained using
472 positive samples and 1884 negative samples.
Figures 6 and 7 show some examples of positive
and negative samples used to train the detector for
eyes and mouths, respectively.

The training time for the AdaBoost algorithm is
rather long. It takes several hours to accomplish a
satisfying object detector. However, once the detec-
tor is adequately trained, the features that compose

Figure 6: Example of images from the eye and
mouth databases, to train the eye and mouth detec-
tion modules, respectively.

Figure 7: Examples of negative samples to train the
eye and mouth detection modules, respectively.

the classifier for each AdaBoost stage can be stored.
After the training, the classifiers detect objects in
real-time.

3.2.1 Detection Results

The face selection module extracts the face from an
input image and feeds it into the selection modules
for eyes and mouths. It was implemented using a
stage classifier with 24 stages, pre-defined in the
face detection application from OpenCV[1]. The
detector returns any possible occurrence of a face
in a given image. Occasionally, the stage classi-
fier misclassifies one region and extracts some non-
face images. We call such regions a false posi-
tive detection. In general, the face selector mod-
ule achieved a high detection rate. About 99% of
the faces were detected successfully in a test set
containing 645 pictures from 10 different subjects.
False positive detections were extracted in 12% of
the pictures additionally to the correct face. How-
ever, the false positive detections are not meaning-
ful for the face detection module. Even if the pro-
gram extracts some other non-face regions, the ap-
plication searches in each of the candidate regions
for at least two eyes and one mouth occurrences.
Because the eye and mouth detection modules are
unlikely to find target objects in a non-face region,
this kind of region is naturally discarded.

In contrast to the face detection case, false pos-
itive detections arising during the eye and mouth
selection may be problematic. That is because
no filtering is made after the regions are selected.
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Thus, we apply some simple location constraints for
the eye and mouth detector in order to reduce the
false positive detection. Our eye detection module
achieved a detection rate of 90% over 332 previ-
ously selected faces, i.e. 664 eyes. Additional false
positive detections were found in 7% of the images.
Such set of portraits considered 5 distinct subjects,
where three of them did not contributed to the train-
ing set of the eye detector. Considering the 10% of
non-detected eyes, about 75% of them consisted of
closed eyes. In this case, it is not a problem to re-
ject the picture, since a portrait with closed eyes is
not considered agoodportrait. Table 1 shows the
individual results per subject. The second column
indicates the rate of eyes correctly extracted from
the quantity in column 4. The false positive indica-
tor corresponds to the quota of portraits where miss-
detected regions were additionally found. Similarly
for the mouth selection, the system achieved 97% of
successful detection over the same set of portraits.
Table 2 shows the individual results per subject.

Figure 8 shows an example of the complete ob-
ject detection process, including the face and face
components selection.

Subject Detection False Eye
Rate Positives Quantity

Person 1 91% 13% 150
Person 2 80% 5% 110
Person 3 93% 2% 110
Person 4 97% 9% 154
Person 5 86% 24% 140

Table 1: Eye detection, individual results. The pic-
tures of the last three persons in the table did not
contribute to the training set for the eye detection
module.

Subject Detection False Mouth
Rate Positives Quantity

Person 1 97% 19% 70
Person 2 96% 36% 55
Person 3 96% 35% 55
Person 4 97% 66% 77
Person 5 97% 47% 70

Table 2: Mouth detection, individual results. The
pictures of the last three persons in the table did not
contribute to the training set for the mouth detection
module.

Figure 8: complete object detection process, includ-
ing the face and face components selection.

3.3 Classification

This section shows some results accomplished with
both classification approaches: The general ap-
proach, where the classifier is trained with previ-
ously defined sample sets of eyes and mouths la-
belled asgoodor bad. And the personal approach,
where the user supplies a training face image set,
representing his personal taste, labelled in the same
way.

3.3.1 General Classifier

In order to build the eyes and mouth training set for
the general classifier, we selected eyes and mouths
from the detection module positive sample set. The
labelling criteria for eyes and mouths follows a sim-
ple rule: An eye is labelled asbadwhen it is closed
or looks to the right or left. Otherwise, it is labelled
as good. A mouth is labelled asbad when it is
open, when it makes some movement to speak, or
when the smile is too large. Figures 9 and 10 show,
respectively, examples of our training sets for eyes
and mouths.

(a) Eyes labeled as good.

(b) Eyes labeled as bad.

Figure 9: Example of images (eyes) from the train-
ing set used for the general classification mode.
Manually labeled asgoodor bad.

We tested the general classifier approach with 7
different subjects. Of the 7 persons used in this test,
only two of them have taken part in the training set
for the classification. This image test set is distinct
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(a) Mouths labeled as good.

(b) Mouths labeled as bad.

Figure 10: Example of images (mouth) from the
training set used for the general classification mode.
Manually labeled asgoodor bad.

from image training set considered for the detec-
tion module and for the classifier. Table 3, shows
some results for the general classification test. The
columnHit Ratelists the percentage of face images
which were correctly classified. It variates in range
from 67% to 96%.

Most classification errors occurred when the im-
ages were to be classified asbadbut were classified
as good. Similarly to the terminology adopted in
the detection phase, we call such misclassified el-
ements a false positive classification. In the same
way, we call it a false negative classification if the
element was classified asbad, but was actually to
be classified asgood.

One can notice the strong incidence of false posi-
tive classification when classifying mouth elements.
Analyzing the images where this kind of error oc-
curs, we perceived that a considerable part of them
have a mouth pose that should be consideredbad.
For such cases, our mouth classifier was not able
to generalize as well as the eye classifier for deal-
ing with counter-examples. That is explained by
the fact that the mouth negative training set was not
large enough. It implies that some new and unde-
sired mouth configurations were not covered ade-
quately by the training set. For the classification
of eye elements the test rejected all occurrences of
closed eyes and most of occurrences of eyes looking
to right of left.

The variation in the classification hit rate for the
different subjects lies mainly in the fact that be-
tween the bad images, some have more pictures
with bad eyes while others with bad mouth poses.
For example, most of the misclassified bad pictures
for person 5were cases in which the person slightly
pressed the lips, while the eyes were considered
good. In this case, additionalbad mouth poses are
required for the training of the classifier.

Hit Rate Miss rate Samples
FP FN Good Bad

1 88% 3% 9% 20 13
2 79% 0% 21% 37 29
3 96% 0% 4% 13 14
4 79% 0% 21% 27 29
5 67% 0% 33% 32 22
6 80% 5% 15% 57 17
7 93% 7% 0% 13 16

Table 3: Classification results for the general mode,
where the classifier is trained with previously de-
fined sample sets of eyes and mouths (FP means
False Positive and FN, False Negative). The per-
sons 2 and 4 have taken participation in the training
of the classifier.

3.3.2 Personal Classifier

In order to validate the personal classification mode,
we executed a leave-one-out cross-validation with
the same subjects from the general classification ap-
proach. For each subject, training sets are supplied,
one containing face images labelled asgoodand an-
other labelled asbad.

For each iteration of the test, the eyes and mouth
are extracted from the pictures that compose the
training set. If the picture is labelled asgood, the
extracted regions are also considered good, else the
extracted regions are considered bad. After all the
eye and mouth elements are extracted and labelled,
the software extracts the features of the regions and
uses them to train the eyes and mouth classifier, re-
spectively. When the classifier is trained, the test
picture can be classified. In a similar process to
the used in the training phase, the eye and mouth
elements from the test image are detected and its
features are then evaluated by corresponding clas-
sifiers. If the two detected eyes and the mouth are
classified asgood, the picture is, as well, indicated
to be good. Otherwise it is considered a bad picture.

The results of the leave-one-out cross-validation
are shown in table 4. The columnHit rate indicates
the percentage of the pictures that were classified
accordingly with the original labels. For misclas-
sified portraits, we indicate also the rate of false
positive and false negative classification. The last
two columns depict the amount of pictures for each
subject and its original distribution in good and bad
sets. More classification results can be seen in the
Figure 12.

249



Hit rate Miss rate Samples
FP FN Good Bad

1 78% 19% 3% 20 12
2 70% 12% 18% 31 35
3 89% 7% 4% 13 14
4 89% 5,5% 5,5% 27 29
5 76% 7% 17% 32 22
6 72% 20% 8% 56 18
7 74% 16% 0% 13 17

Table 4: Results of the leave-one-out cross-
validation for the personal classifier (FP means
False Positive and FN, False Negative). Invidual re-
sults for 7 subjects

4 Conclusion & Future Work

In this work, we proposed a procedure to efficiently
carry out a qualitative classification of portraits in a
machine learning environment. To the best of our
knowledge, we are the first to establish a workflow
that entails such task. Our workflow brings together
established techniques used in the area of feature
extraction and machine learning. We are able to
classify portraits within qualitative categories, such
as good/pleasant and bad/unpleasant shots, with an
accuracy rate up to 96 percent.

Our system is also capable of learning the user’s
preferences or taste. The user must not know de-
tails about the underlying classification system, but
he indicates his taste by selecting example images
for good and bad photos. We consider these aspects
fundamental for the application of an qualitative im-
age classification in realistic applications. Although
our approach deals only with eyes and mouth re-
gions of a portrait when inferring its quality the per-
formance of our classifier was very good in gen-
eral. To further increase the performance, the sys-
tem may be extended to take in account other por-
trait elements, such as eyebrows, ears or the nose.
Since the single detection units are independent,
such additional features are easily added.

Another very interesting extension of our appli-
cation would be to select the best shots from video
sequences. The overhead to implement this exten-
sion is minimal because the set of video frames cor-
responds directly to a set of portraits in the face
database.
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Figure 11: Example classfication results. The first circle is the vote of the Personal Classifier trained with
the taste of one of the authors. The second shows the vote of the GeneralClassifier.(green for good, red for
bad)
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Figure 12: Example classfication results. The first is the vote of the Personal Classifier trained with the taste
of one of the authors. The second shows the vote of the General Classifier. (green for good, red for bad)
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Abstract

A common problem in movement recognition is the
recognition of movements of a particular type. E.g.
pointing movements are of a particular type but dif-
fer in terms of the pointing direction. Arm move-
ments with the goal of reaching out and grasping
an object are of a particular type but differ with
the location of the involved object. In this paper,
we present an exemplar-based parametric hidden
Markov model (PHMM) that is able to recognize
and synthesize movements of a particular type. The
PHMM is based on exemplar movements that have
to be “demonstrated” to the system. Recognition
and synthesis are carried out through locally linear
interpolation of the exemplar movements. Exper-
iments are performed with pointing and grasping
movements. Synthesis is done based on the object
position as parameterization. In case of the recog-
nition, the coordinates of the grasped or pointed at
object are recovered. Our experiments show the
flexibility of our exemplar-based PHMMs in terms
of the amount of training data and its robustness in
terms of noisy observation data.

1 Introduction

One of the major problems in action and movement1

recognition is to recognize actions that are of the
same type but can have very different appearances
depending on the situation they appear in. In addi-
tion, for some actions these differences are of major
importance in order to convey their meaning. Con-
sider for example the movement of a human point-

1we use the termsaction andmovementinterchangingly. Ac-
tions usually denote movements that involve objects.

ing at an object, “This object there...”, with the fin-
ger pointing at a particular object. Clearly, for such
an action, the action itself needs to be recognized
but also the spot in 3D space at which the human
is pointing. Only together do these two pieces of
information convey the full semantics of the move-
ment. Another common problem is the synthesis
of action: This concerns two major problem ar-
eas: In robotics, one is interested in teaching robots
through simple demonstrations (imitation learning)
[3, 13, 2]. In 3D human body tracking, one is inter-
ested in using motion models in order to constrain
the parameter space (e.g. [11] for simple cyclic mo-
tions). In both cases, one is interested in teaching
the system in an easy and efficient manner a partic-
ular movement so that afterwards, the system is able
to synthesize movements of the same type, how-
ever, with a different parameterization. Here, we
consider grasping movements as an example where
a human is reaching out for an object to grasp it2.
One may perform as demonstration a set of grasp-
ing movements. All grasping movements depend on
the location of the object to be grasped. In case of a
humanoid robot, the synthesis should then allow the
robot to perform the learned grasping movements
with new parameterizations, e.g., grasping objects
at different positions. In case of the 3D body track-
ing, the synthesis would allow a better prediction of
the next pose.

Most current approaches model movements with
a set of movementprototypes, and identify a move-
ment by identifying the prototype which explains
the observed movement best. This approach, how-

2The precise choice of a hand grasp depends on the type of
object, from where it is being grasped, etc. In our discussion, we
omit the issue of the different hand grasps and focus only on the
arm movements.
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ever, has its limits concerning efficiency when the
space of possible parameterizations is large.

A pioneering work in this context was done by
Wilson and Bobick [15]. Wilson and Bobick pre-
sented a parametric HMM approach that is able to
learn an HMM based on a set of demonstrations.
Their training and recognition approach is based
on the EM algorithm, where the parameters of the
movements are taken as latent variables. For recog-
nition, they recover the parameter set that explains
best the observation.

In this paper, we develop a different parametric
hidden Markov model approach. Contrary to Wil-
son and Bobick, our aim is recognition as well as
synthesis. Also, we would like to provide a simpler
and more efficient training strategy by being able to
simply provide exemplars based on which the gen-
eration of novel HMMs can be done.

In the following section, we give a short overview
of the related work. In Sect. 3 and 4 we introduce
our exemplar-based parametric HMMs. Extensive
experimental results are presented in Sect. 5. Con-
clusions in Sect. 6 complete our paper.

2 Related Work

Most approaches for movement representation that
are of interest in our problem context are trajec-
tory based: Training trajectories, e.g., sequences of
human body poses, are encoded in a suitable man-
ner. Newly incoming trajectories are then compared
with the previously trained ones. A recent review
can be found in [9].

Some of the most common approaches to rep-
resent movement trajectories use hidden Markov
models (HMMs) [12, 5]. HMMs offer a statisti-
cal framework for representing and recognition of
movements. One major advantage of HMMs is their
ability to compensate for some uncertainty in time.
However, due to their nature, HMMs are only able
to model specific movement trajectories, but they
are not able to generalize over a class of movements
that vary accordingly to a specific set of parameters.

One possibility to recognize an entire class of
movements is to use a set of hidden Markov mod-
els (HMMs) in a mixture-of-experts approach, as
first proposed in [7]. In order to deal with a large
parameter space one ends up, however, with a lot
of experts and a large amount of training becomes
necessary.

Another extension of the classical HMMs into
parametric HMMs was presented in [15], as men-
tioned above. A more recent approach was pre-
sented by [2]. In this work, the interpolation is car-
ried out in spline space where the trajectory of the
end-effector is modeled. Apart from the fact that
the authors have not yet performed an evaluation of
their system, their approach does not seem suitable
for controlling the entire arm movements for move-
ment synthesis and recognition.

In addition to HMMs, there are also other move-
ment representations that are interesting in our con-
text, e.g., [14, 8]. However, these approaches share
the same problems as the HMM based approaches.

3 Preliminaries

A hidden Markov model is a probabilistic finite
state machine, which is generally defined as a triple
λ = (A, B, π), where the transition matrixA de-
fines the transition probability between the hidden
statesq = 1, . . . , N , B defines the output proba-
bilities of each state, andπ defines the probabilities
of each state of being the initial state of a hidden
state sequence.

In this approach continues HMMs are used,
whose output probabilities are modeled by single
Gaussian distribution. For each statei the output
distributionbi(x) = P(x|q = i) = N (x|µi,Σi)
is just defined by the parametersµi and Σi. In
this simple case of single Gaussian distributions it
is more intuitive to use the notationNi(x) instead
of bi(x).

To facilitate synthesis of actions we chose to use
left-right HMMs (as used in [4]) to model the ac-
tions. Here, a state sequence always has to start at
the same state, thereforeπ is setπ = (1, 0, . . . , 0).
In addition, state transition are restricted to the state
itself or to the next state (other transition probabil-
ities are set to zero). Such an HMM is depicted in
Fig. 1.

3.1 Recognition using HMMs

For recognition or classification HMMs are gener-
ally used as follows: For each specific classk of
sequences an HMMλk is trained by a representa-
tive training setX k for that class. The training of
an HMM λ is done by adjusting the model parame-
ters to values, which are maximizing the likelihood
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Figure 1: Left-to-Right HMM. For each statei the
output normal distributionNi is implied by an el-
lipsoid. An output sequenceX = x1 . . . x9 go-
ing from left to right is implied by small black
dots. This sequence is likely to be generated by that
HMM, whereP(X |λ) ≫ 0.

functionP(X|λ). For this maximization, we apply
the Baum/Welch algorithm [6].

The classification of an specific output se-
quenceX = x1 . . . xT is done by selecting that
class k, for which the likelihoodP(X |λk) =
maxi P(X |λi) is maximal.

One obvious approach for handling whole classes
of parameterized actions for the purpose of action
recognition and parameter estimation is a mixture-
of-experts approach [7] and to sample the param-
eter space by training for each sample a prototype
HMM. The HMM maximizing the likelihood of an
given action sequence identifies class membership
and the parameterization of the action. However,
this approach is not appropriate, because too many
repetitions of the action are needed to train the pro-
totype HMMs of all samples.

4 Parametric HMMs

The main idea of our approach for handling whole
classes of parameterized actions is a supervised
learning approach where we generate an HMM
for novel action parameters by locally linear inter-
polation of exemplar HMMs that were previously
trained on exemplar movements with known pa-
rameters. The generation of a newly parameterized
HMM can be done online or offline.

The interpolation of HMMs is carried out state-
wise, as we will explain in Sect. 4.1. As we will
see, an interpolation is only possible, if the states
of the exemplar HMMs are aligned in time. This
alignment is discussed in Sect. 4.2. In Sect. 4.3 and
4.4, we explain the approaches for recognition and
synthesis of the movements.

4.1 Interpolation of HMM

For simplicity the approach is explained in the case
of a class of actions parameterized by a single pa-
rameteru, e. g., sequences of trajectories of a per-
son’s wrist leading to different positions on a table,
where the positions are on a straight line leading
from left to right on the table. This idea is depicted
in Fig. 2.

It is assumed that two HMMsλl andλr belong-
ing to motions of different parameterizationu are
given, whereu = 0 andu = 1 respectively. Addi-
tionally, it is assumed that the GaussiansN l

i andN r

i

of λl andλr are arranged as depicted in Fig. 2. Un-
der this assumptions the GaussiansN u

i of an HMM,
that shall model motions leading to some parame-
terized locationu, can be approximated by state-
wise interpolation of corresponding Gaussians. The
interpolation of the Gaussians is directly applied to
the means and sigmas:

N u
i (x) = N (x|µu

i ,Σu
i ), (1)

where

µ
u
i = (1− u)µl

i + uµ
r

i

Σu
i = (1− u)Σl

i + uΣr

i

(2)

This is very intuitive in the constellation of Fig. 2,
e. g., foru = 0.5, theN u

i would define horizontal-
oriented ellipsoids laying between theN l

i andN r

i .
Clearly, the interpolation is not meaningful if the
two Gaussians of the same state of different HMMs
do not belong to the same part of different motions,
e. g., if the third state of one HMM belongs to a part
of a forward motion of a forward-and-backward
motion and the third state of the other belongs to
the backward part of that motion.

Therefore, it is crucial for a meaningful interpo-
lation that learned HMMs are synchronized or state-
wise aligned.

4.2 Aligned or Synchronized Setup of sev-
eral HMMs

Starting point are movements that are performed
into different directions. Even if they are aligned
through linear warping the alignment with in the
training sequences is not sufficiently good. Dy-
namic time warping algorithms [10] are existing
just for pairwise alignment of sequences. And time
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Figure 2: The upper three dark ellipsoids are de-
picting the output normal densitiesN l

1, . . . ,N
l

3 of
the states1, . . . , 3 of an HMM λl that is trained
by sequences beginning on the left side of the pic-
ture and are leading onto the left of the vertical
line, where the parameter of the parameterization
of these sequences is supposed to beu = 0. The
dots passing this ellipsoids imply one training se-
quence. Accordingly, the lower three ellipsoids due
to an HMM λr trained by sequences leading to the
right of the line, where the parameteru is supposed
to beu = 1. Additionally, GaussiansNi of an λ

trained by sequences of different parameterizations
u ∈ [0, 1] are indicated in light gray.

warping does not solve the problem of setting up the
aligned HMMs. Our aim now is to train HMMs for
non-aligned training data such that the HMM states
correspond, so that Eq. (2) becomes senseful.

For easier explanation, we will use again the ex-
ample setup from Sect. 4.1: For both HMMsλl, λr

training setsX l andX r are given. In order to find
the two aligned HMMsλr andλl, we first train a
more general HMMλ for the whole training data
X l ∪ X r. In Fig. 2, we have depicted the general
HMM λ with light gray ellipses. Now, for each
samplex of each sequenceX in X l andX r, the
closest Gaussian (or State) of the HMMλ can be
easily assigned. HMMλ is then used as the start-
ing point for the training of the specific HMMsλl

andλr using this assignment. In that sense, HMM
λ can be interpreted as a pre-alignment of the train-
ing data.

In the precise notion of the Baum/Welch EM-
algorithm—an iterative algorithm, that repeatedly
executes EM steps—that aligned setup is per-
formed, e. g., by starting with the HMMλl := λ

trained by the whole training set (likewise:λr :=
λ). Then, one EM step is performed forλl just us-
ing the dataX l for training. The same procedure is
applied to setup all HMMs for the needed key points

in parameter space (like the HMMλr usingX r in
our example). The single final EM step adapts the
GaussiansNi to its specific exemplar movements,
but preserves the alignment.

Now, let’s look at the precise EM steps, and let’s
considerλl. Let X l = {X1, . . . , XM} be the
training set ofλl, which repetitions are denoted by
Xk = xk

1 . . . xk
T . In the E step the posterior proba-

bilities γk
t (i) = P(qt = i|Xk, λ) of being in state

i at timet (wherexk
t is emitted) are computed for

eachXk. Thus,γk
t (i) defines the responsibility of

statei for generatingxk
t —or vice versa the mem-

bership ofxk
t to statei. In the M step the out-

put probability density functions are re-estimated.
Therefore, the means and covariance matrices are
re-estimated for each GaussianNi of statei based
on the responsibilitiesγk

t (i). In the case of a sin-
gle output sequenceX = x1 . . . xT the mean re-
estimation

µi =

P

t γt(i)xt
P

t γt(i)
(3)

can be regarded as the weighted mean of
x1, . . . , xT by using the responsibilities as weights.
The covariance re-estimation

Σi =

P

t γt(i)(xt − µt)
⊤(xt − µt)

P

t γt(i)
(4)

can also be regarded asγt(i)-weighted covariance,
whereµi denotes the previous re-estimation. (In
the case of multiple observationXk the nominators
and denominators of (3,4) have to be extended to
marginalizeγk

t (·) andxk
t overk.) As the responsi-

bilities γt(i) are chosen due to the general HMMλ
each state of the HMM trained with a subset of the
training data remains aligned to those of the other
HMMs.

4.3 Recognition of Parameterized Se-
quences

The recognition of parameterized sequences is
straightforward compared to the simple class classi-
fication. Given a sequenceX . For each classk and
corresponding parameterized HMMλφ

k that classk
and parameterφ ∈ R

n are taken, which yields the
maximal likelihoodmaxk,φ P(X |λφ

k ).
In the more general casen > 1 with φ =

(φ1, . . . , φn) this is done by using gradient de-
scent methods for the maximization ofP (X |λφ

k )
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for eachk separately. Therefore, for a fixedk the
parameters ofφ are iteratively adapted in the direc-
tion of the gradient ∂

∂φ P (X |λφ

k ), into which the

likelihood functionf(φ) = P (X |λφ

k ) increases.
Therefore, the likelihood functionf has to be eval-
uated several times in the iteration process. The
computation is done by the Forward/Backward Al-
gorithm [6], which is the standard algorithm for this
task. It is worth to be mentioned that the compu-
tationally cost of the evaluation off is very small
O(NT ) in case of left-right HMMs. Here,N is the
number of states, andT is the length of the output
sequence.

In the case of several available exemplar HMMs,
one needs to find those four closest exemplar
HMMs that interpolate a newly observed movement
most accurately. We do this by recursively compar-
ing pairwise sets of HMMs. Consider the case of
2 × 3 aligned HMMsλij with associated grasping
positionspij , that are forming a grid on the table
such as

»

p01 p11 p21

p00 p10 p20

–

.

First, the bilinear interpolation parametersu, v of

λ
uv =

`

1− u, u
´

»

λ01 λ21

λ00 λ20

–„

1− v

v

«

maximizingP(X |λuv) are determined. Now, if the
point

p
uv =

`

1− u, u
´

»

p01 p21

p00 p20

–„

1− v

v

«

is lying on the left side of the line defined byp11

and p10 the procedure is repeated using the four
left most HMMsλ01, λ00, λ11, λ10, otherwise us-
ing the four right most.

4.4 Action Synthesis

Suppose a grasp positionp on the table-top is given.
Then synthesis can be done as following:

1. The three HMMsλi,i=1,2,3 with closest asso-
ciated grasp positionspi are chosen under the
constraint that thepi are not collinear.

2. Then the interpolation parametersu, v are es-
timated as given by the point equation

p − p
1 =

h

p
2 − p

1

˛

˛

˛
p

3 − p
1

i

„

u

v

«

.

Here, least-squares approximation has to be
used in that case thatp is not exactly in the
plane ofpi.

3. As basis for synthesis the interpolated HMM
λuv = λ1 + u(λ2 − λ1) + v(λ3 − λ1)
is used. The synthesized sequence is the se-
quenceµ

1
. . . µN of the means of the HMM

λuv. As the number of statesN is small com-
pared to the original recorded sequences, the
sequence is linearly interpolated.

5 Experiments

In our experiments we focus our considerations on
pointing and grasping actions, which are in com-
mon action scenarios the most important move-
ments. The pointing movements were movements
such as “This object there...”. Our grasping move-
ments are reaching towards a particular object in or-
der to grasp it.

In our experiments we do not use visual track-
ing data but limit our considerations on data that is
acquired using a motion capture system. This way,
we exclude the vision problem and are able to fo-
cus only on the representational issues for move-
ment representation.

The motion capture data is acquired with the
electro-magnetic motion capture systemMotion
Star by Ascension[1]. For the capturing seven
markers are placed on the person (see Fig. 3): one

Figure 3: The dots mark the positions of the electro-
magnetic sensors in our dataset.

at the neck and one at the shoulder, the wrist, in
the middle of the hand, at the index finger and the
thumb of the right elbow. The captured sequences
consist of the 3D point positions for each of the
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seven markers recorded with 25Hz. The person or
actor sits in front of a table (see Fig. 4). The po-
sitions on the table, on which the actions are per-
formed, are covering a region of 30cm(in deeps) by
80cm (in width). For recognition the 3D point po-
sitions of the markers of right arm are directly used
for training the HMMs. We have recorded six dif-

Figure 4: The image shows the setup of the record-
ing session of our dataset.

ferent exemplar movements (i.e. (action/grasping)
movements to six different distinct positions on the
table), each one with 9 repetitions. Two table posi-
tions are at the left and two are at the right side of
the30cm× 80cm region. The other two exemplars
are in the middle. For validation of the approach,
additional movements to 10 different random posi-
tions on the table were recorded with 4 repetitions,
each. All training and test sequences are normalized
to 50 samples in length (2 sec.). No additional tem-
poral alignment between the sequences was done.

5.1 Synchronized Setup of HMMs

The synchronized setup of the special/prototype
HMMs for the 6 exemplar positions is done as de-
scribed in Sect. 4.2. As one of the aims is to pro-
vide an approach with fast and simple training, we
will focus our investigation of synthesis and recog-
nition performance vs. number of HMM statesN ,
number of exemplar movements and number of rep-
etitions R. In our experiments, we have trained
HMMs with N = 16, 28, 40 states, with 4 or 6
exemplar movements and withR = 3, 6, 9 repe-
titions3. Fig. 5 shows example images of different

3The relatively high number of states is used to assure a rea-
sonable good precision of the synthesis. Arguably, we could have

states of the synchronized HMMs (yellow) and the
general HMM (red). Here, one can verify the syn-
chronization visually. In the recognition and syn-
thesis experiments, below, we will implicitly verify
the quality of the alignment.

Figure 5: The 6 images (row-wise) are showing
the states 1,7,9,14,25 and 30 of six synchronized
HMMs with 40 states trained with grasping se-
quences of the six exemplar positions on the table
(yellow arms) and the same states of the general
HMM (red), that was used to align the states of the
six HMMs.

5.2 Synthesis

In this section we summarize our results for the syn-
thesis experiments. Here, we have tested the qual-
ity of the synthesis of movements, given a specific
parameterization. The parameters were given as co-
ordinates on the table. As test parameters we used
those of the 10 random test movements. The quality
of our synthesis approach has been tested based on
these 10 random test movements, which serve here
as ground truth references with known parameters
(coordinates). The synthesis tests have been done
for pointing and for grasping movements.

As explained above, we have trained different ex-
emplar HMMs with different number of states and
different number of repetitions. To estimate the syn-
thesis quality we have tested based on

chosen HMMs with less states.
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1. different number of statesN = 16, 28, 40,
2. different number of repetitionsR = 3, 6, 9,
3. 4 and 6 exemplar movements for interpolation.

Tab. 1 and Tab. 2 summarize the experimental re-
sults for different number of HMM states, num-
ber of repetitions for each exemplar movement and
number of exemplars used for the synthesis. As
the intuitively best configuration, we chose a setting
of 16 states, 6 repetitions for each exemplar and 6
exemplars movements. This setting is highlighted
bold for grasping and pointing (top of each table).

The errors in the table were computed as follows:
A movement is synthesized for each of the ran-
dom table positions. Each synthesized movement
is compared to the corresponding reference move-
ment by computing the average Euclidean distance
between the synthesized movement and the refer-
ence movement. The mean and standard deviation
of this error are listed in the tables asSynthesis Er-
ror and is given incm.

There is a natural variance in the human move-
ments. As a reference, we have computed the mean
error and the variance for the 40 different refer-
ence movements (10 movements with 4 repetitions
each). These values are denoted in the tables asIn-
trinsic Error and are again given incm.

Table 1: Synthesis of Grasping. For different num-
bers of States, Repetitions of exemplars and differ-
ent number of Exemplars: the average Synthesis Er-
ror for 10 randomly chosen positions and the Stan-
dard Deviation in regard to the positions are listed
in cm. Additionally, the Intrinsic Error Means and
Deviations are listed.

Synth. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.7 0.7 1.4 0.4
16 6 4 3.2 0.7 1.4 0.4
28 6 6 3.0 0.6 1.4 0.4
40 6 6 3.1 0.6 1.4 0.4
16 3 4 2.7 0.7 1.4 0.4
16 9 4 2.8 0.7 1.4 0.4

One can see that the synthesis error is rather
small ≈ 3cm, where the intrinsic error is above
1cm. Furthermore, it is interesting to see that the
influence of different number of states or repetitions
on the synthesis quality is surprisingly small. Also

Table 2: Synthesis of Grasping. For different num-
bers of States, Repetitions of exemplars and number
of Exemplars: the Synthesis and Intrinsic Errors for
10 positions are listed incm.

Synth. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.5 0.5 1.5 0.3
16 6 4 2.6 0.5 1.5 0.3
28 6 6 2.6 0.5 1.5 0.3
40 6 6 2.6 0.5 1.5 0.3
16 3 4 2.5 0.4 1.5 0.3
16 9 4 2.4 0.5 1.5 0.3

interesting is that the experiment with only three
repetitions and only four exemplars gave one of the
best results.

5.3 Recognition

In the experiments for recognition, we do not
test the ability to recognize the type of move-
ment (pointing/grasping), but how good our ap-
proach is able to recover the parameterization of a
newly observed movement. Once the parameters
are known, the recovery of the movement type is
trivially solved with ML. We have used for test-
ing the 80 random movements (10 movements with
4 repetitions each for pointing and grasping) with
known ground truth. For each of these movements,
the parameters, i.e., the coordinates on the table,
were recovered and compared to the ground truth
values.

As above, we have run our experiment with dif-
ferent settings (number of states, number of repe-
titions used for the prototype exemplars and num-
ber of prototypes). The recognized positionsp =
p(u, v) are calculated by using the interpolation pa-
rametersu, v, which maximize the likelihood func-
tion f(u, v) = P(X |λuv) of the bilinear interpo-
lation between the 4 HMMs of the nearest exem-
plars. As the grasping/pointing positions of the 6
exemplars are labeled, the recognized positionp is
calculated through bilinear interpolation.

In Tab. 3 and Tab. 4 the recognized position mean
error and standard deviation with respect to the 80
test movements are summarized. It is interesting
to note that since the random pointing actions were
supposed to be performed in a “natural” way, the in-
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Table 3: Recognition of Grasping Positions. The
Recognition Error and Intrinsic Error are listed for
each setup.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 3.2 1.1 0.6 0.3
16 6 4 5.0 1.5 0.6 0.3
28 6 6 2.7 1.1 0.6 0.3
40 6 6 2.7 1.2 0.6 0.3
16 3 4 3.0 1.0 0.6 0.3
16 9 4 3.2 1.1 0.6 0.3

Table 4: Recognition of Pointing Positions. Here,
the recognition of the meant Pointing Positions on
the table (upper block of table) and Fingertip Posi-
tions (lower block) are listed, separately. (The Fin-
gertip doesn’t touch the table!) The Recognition
Error and Intrinsic Error are listed for each setup.
However, as the meant pointing positions on the ta-
ble are given ahead, no intrinsic error is meaningful.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.5 1.0
16 6 4 3.7 0.8
28 6 6 2.5 0.9
40 6 6 2.4 0.9
16 3 4 2.7 1.2
16 9 4 2.3 0.9

16 6 6 4.2 1.9 2.0 0.9
16 6 4 4.7 1.4 2.0 0.9
28 6 6 4.2 1.7 2.0 0.9
40 6 6 4.0 1.7 2.0 0.9
16 3 4 4.7 2.1 2.0 0.9
16 9 4 4.1 1.9 2.0 0.9

dex finger did not touch the table but rather stopped
somecm above! Therefore, we summarize in the
Tab. 4 two different errors: the error of the rec-
ognized pointing position on the table, which was
meant by the person as elongation of the pointing
direction, and the index finger tip position itself.

As before, we compute the intrinsic mean errors
and standard deviations of the ground-truth coordi-
nates of the 80 test movements. However, as the
meant pointing position on the table is predefined

and supposed to be correct, no intrinsic errors are
listed. On the other hand, the grasping positions
and the fingertip positions of the pointing actions
are given by the motion sequences.

The entire experiment has been repeated with the
random test movements disturbed by noise. The
added noise was Gaussian withσ = 5, 10, 15cm.
Tab. 5 and Tab. 6 summarize the results forσ =
15cm. For σ = 5, 10cm, no or only a very minor
error increase was observable.

The errors of the recognized positions are accept-
able (≈ 3cm) and as presumed slightly higher for
the meant pointing positions on the table. In con-
trast to the results of synthesis fewer prototype ex-
emplars (4 instead of 6) give significantly less accu-
rate results (errors≈ 4− 5cm).

Table 5: Recognition of Grasping Positions with
Noise. The noise is normal distributed with sigma
equal 15cm.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 4.1 1.5 0.6 0.3
16 6 4 5.7 1.3 0.6 0.3
28 6 6 3.5 1.3 0.6 0.3
40 6 6 3.0 1.3 0.6 0.3
16 3 4 4.5 1.7 0.6 0.3
16 9 4 3.0 1.2 0.6 0.3

6 Conclusion

In this paper we have presented an exemplar-based
parametric hidden Markov model which allows to
represent entire classes of movements. We have
focused our considerations on human arm move-
ments, but we believe that the approach can also be
used in other contexts such as surveillance scenar-
ios.

We have limited our considerations on movement
data captured with an electro-magnetic motion cap-
ture system. We view the vision and the move-
ment representation issues as two distinct problems
and have focused our considerations on the move-
ment representation alone. Presently, we are in the
process of combining our movement representation
with our 3D human body tracker.

260



Table 6: Recognition of Pointing Positions with
Noise. The noise is normal distributed with sigma
equal 15cm. Again, the recognition of the meant
Pointing Positions on the table (upper block) and
Fingertip Positions (lower block) are listed, sepa-
rately.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 4.0 0.8
16 6 4 4.3 1.0
28 6 6 3.2 1.2
40 6 6 3.2 1.2
16 3 4 5.0 2.0
16 9 4 4.5 2.2

16 6 6 5.1 1.2 2.0 0.9
16 6 4 5.1 1.8 2.0 0.9
28 6 6 4.9 1.6 2.0 0.9
40 6 6 4.9 1.6 2.0 0.9
16 3 4 6.2 2.1 2.0 0.9
16 9 4 5.3 3.0 2.0 0.9
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