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Kurzzusammenfassung – Short Abstract

Kurzzusammenfassung – Deutsch

Diese Arbeit befasst sich mit der 3D Rekonstruktion und der 3D Bewegungsschätzung
aus Stereodaten unter Verwendung von Variationsansätzen, die auf dichten Verfahren zur
Berechnung des optischen Flusses beruhen. Im ersten Teil der Arbeit untersuchen wir ein
neues Anwendungsgebiet von dichtem optischen Fluss, nämlich die Bestimmung der Fun-
damentalmatrix aus Stereobildpaaren. Indemwir die Abhängigkeit zwischen der geschätzten
Stereogeometrie in Form der Fundamentalmatrix und den berechneten Bildkorresponden-
zen geeignet ausnutzen, sind wir in der Lage, im zweiten Teil der Arbeit eine gekop-
pelte Bestimmung der Fundamentalmatrix und des optischen Flusses vorzuschlagen, die
zur einer Erhöhung der Genauigkeit beider Schätzungen führt. Im Gegensatz zu vielen
existierenden Verfahren berechnet unser gekoppelter Ansatz dabei die Lage der Kameras
und die 3D Szenenstruktur nicht einzeln, sonderen bestimmt sie in einem einzigen gemein-
samen Optimierungsschritt. Dem Prinzip der gemeinsamen Schätzung weiter folgend kop-
peln wir im letzten Teil der Arbeit die dichte 3D Rekonstruktion der Szene zusätzlich mit
der Bestimmung der zugehörigen 3D Bewegung. Dies wird durch die Intergation von
räumlicher und zeitlicher Information aus mehreren Stereobildpaaren in ein neues Modell
zur Szenenflussschätzung realisiert.

Short Abstract – English

This work deals with 3D reconstruction and 3D motion estimation from stereo images us-
ing variational methods that are based on dense optical flow. In the first part of the thesis,
we will investigate a novel application for dense optical flow, namely the estimation of
the fundamental matrix of a stereo image pair. By exploiting the high interdependency
between the recovered stereo geometry and the established image correspondences, we
propose a coupled refinement of the fundamental matrix and the optical flow as a second
contribution, thereby improving the accuracy of both. As opposed to many existing tech-
niques, our joint method does not solve for the camera pose and scene structure separately,
but recovers them in a single optimisation step. True to our principle of joint optimisation,
we further couple the dense 3D reconstruction of the scene to the estimation of its 3D
motion in the final part of this thesis. This is achieved by integrating spatial and temporal
information from multiple stereo pairs in a novel model for scene flow computation.
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Zusammenfassung

Variationsansätze zur Bestimmung des optischen Flusses haben sich als die genauesten
und am besten verstandenen Verfahren für die Bewegunsschätzung aus Bildfolgen etabliert.
Sie beruhen auf der Minimierung eines einzigen globalen Energiefunktionals, das die
zeitliche Konstanz gewisser Bildeigenschaften modelliert (wie z.B. des Grauwerts), wäh-
rend es gleichzeitig sicherstellt, dass das gesuchte Verschiebungsvektorfeld eine Form von
Regularität aufweist. Im Laufe der Zeit wurden solche Verfahren so weiterentwickelt, dass
sie in der Lage sind, große Verschiebungen zu schätzen, robust unter Rauschen und fehler-
hafte Daten zu sein, scharfe Bewegungsgrenzen zu liefern – und dies alles in Echtzeit
für praktische Anwendungen. Trotz dieser Fortschritte hat relativ wenig Forschung auf
dem eng verwandten Gebiet der Stereo-Rekonstruktion stattgefunden, einem Bereich, der
typischerweise von anderen Ansätzen zur Korrespondenzfindung dominiert wird.
In dieser Arbeit zeigen wir anhand von drei Beiträgen, dass diese Unterteilung in ver-

schiedene Anwendungsgebiete hinfällig ist. Zum einen untersuchen wir ein neues An-
wendungsszenario für dichten optischen Fluss: die Berechnung der Fundamentalmatrix.
Diese Matrix beschreibt die projektive Geometrie eines Stereo-Bildpaars und bildet die
Grundlage für viele Algorithmen zur 3D-Rekonstruktion. Zum anderen schlagen wir
einen neuen Variationsansatz vor, der die Fundamentalmatrix und den optischen Fluss
gleichzeitig als Minimierer eines gemeinsamen Energiefunktionals berechnet. Konzep-
tionell bestimmt dieses Verfahren die relative Lage und Orientierung der beiden Kameras
sowie die Struktur der Szene in einem gemeinsamen Optimierungsrahmen, wodurch eine
dichte Rekonstruktion der abgebildeten Szene möglich wird. Als dritten Beitrag erweitern
wir die gemeinsame Schätzung von Korrespondenzen und Stereo-Geometrie auf den Fall
mehrerer Bilderpaare. In diesem Zusammenhang entwicklen wir ein Variationsansatz,
der für zwei aufeinander folgende Bildpaare einer Stereosequenz die Fundmentalmatrix
und die Verschiebungsvektorfelder zwischen allen Bildern bestimmt. Neben einer dichter
Rekonstruktion der abgebildeten Szene ermöglicht dieser Ansatz die Berechnung der tat-
sächlichen 3D-Bewegung von Objekten in der Szene, den so genannten Szenenfluss.
Der Schwerpunkt dieser Arbeit liegt auf einer konsequenten Modellierung als gemein-

sames Optimierungsproblem und auf der gleichzeitige Schätzung von Geometrie, Struk-
tur und Bewegung der zugrunde liegenden 3D-Szene. Wir gehen diese Aufgabe in einer
sehr systematischen Weise an, indem wir zunächst untersuchen, ob die Bestimmung der
Stereogeometrie aus dichtem optischen Fluss genau genug ist, um als Grundlage für weit-
ere integrierte Ansätze zu dienen. In einem ausführlichen Vergleich mit zwölf merkmals-
basierten Verfahren zeigen wir, dass dichte Flussfelder eine konkurrenzsfähige Schätzung
der Geometrie mit Sub-Pixel Genauigkeit erlauben. Anschließend demonstrieren wir, dass
eine gemeinsame Berechnung des optischen Flusses und der Fundamentalmatrix nicht nur
eine stabilisierende Wirkung auf das Ergebnis hat, sondern auch zu einer Steigerung der
Genauigkeit gegenüber einer sequentiellen Schätzung führt. In einem letzten Schritt kop-
peln wir schließlich die Rekonstruktion der Szene und die Bestimmung der 3D-Bewegung.
Neben diesem allgemeinen Modell für den Szenenfluss stellen wir noch einige weitere
Verbesserungen vor. Im Rahmen der hierarchischen Optimierung, die typischerweise zur
Schätzung grosser Verschiebungen verwendet wird, führen wir eine kompakte Tensor-
notation ein, die eine Normalisierung der Modellannahmen ermöglicht. Auf diese Weise
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machen wir nicht nur die Abweichungen von Modellannahmen als Entfernungen in der
Bildebene interpretierbar, sondern können auch ihre Äquivalenz zu weit verbreiteten ge-
ometrischen Fehlermaßen im Bereich des Maschinensehens zeigen. Darüber hinaus bes-
timmen wir explizit Verdeckungen, die aufgrund der Bewegung der Szene oder der Kam-
eras entstanden sind, und schliessen die zugehörigen Korrespondenzen von der Schätzung
aus. Alle diese Modellierungsschritte führen schließlich zu einem Ansatz, der aktuelle
Verfahren in der Literatur zur Berechnung des Szenenflusses hinsichtlich der Genauigkeit
der Schätzung übertrifft – obwohl diese explizit von der Kenntnis der zugrunde liegenden
Stereo-Geometrie Gebrauch machen.
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Abstract

Variational optical flow methods have established themselves as one of the most accu-
rate and well understood techniques for motion estimation from image sequences. They
minimise a single global energy functional that models the temporal constancy of certain
image properties, e.g. the image grey value, while imposing some form of regularity on the
displacement field. Over the course of time, optical flow algorithms have been specialised
to cope with large displacements, to be robust under noise and corrupted data, to provide
sharp motion boundaries and to perform in real-time for practical applications. Despite
this progress, much less research has been done in the context of stereo reconstruction, a
closely related field that has been typically dominated by other correspondence methods.
In this thesis we bridge this separation into different application domains by three contri-

butions. First we investigate a new application for dense optical flow, namely the compu-
tation of the fundamental matrix. The fundamental matrix is the intrinsic representation of
the projective geometry of a stereo image pair and forms the basis for many reconstruction
algorithms. Secondly, we propose a new variational model that recovers the fundamental
matrix and the optical flow simultaneously as the minimisers of a single energy functional.
Conceptually, this method recovers the relative position of the two cameras and the struc-
ture of the scene in a single optimisation step, thereby providing a dense reconstruction
of the depicted scene. As a third contribution, we extend our framework for the joint
estimation of correspondences and stereo geometry to multiple images. For two stereo
image pairs taken at two different time steps, we develop a variational method that simul-
taneously recovers the fundamental matrix and all optical flows between the images. In
addition to providing a dense reconstruction of the depicted scene, this approach allows us
to recover the actual 3D motion of the objects in the scene, the so-called scene flow.
The focus of this thesis lies on a consistent modelling in a variational framework and

on the simultaneous estimation of stereo geometry, 3D scene structure and 3D scene mo-
tion. We will approach this task in a very systematic way by first asking ourselves if the
recovery of the stereo geometry from dense optical flow is accurate enough to serve as a
basis for more integrated methods. In an extensive comparison with twelve widely-used
sparse feature based estimation techniques we demonstrate that we can estimate the stereo
geometry with competitive sub-pixel quality. In a next step, we show that a coupled solu-
tion of the optical flow and the fundamental matrix will not only have a stabilising effect
on the outcome, but will at the same time push the accuracy bounds further down. In a
last step, we finally couple the reconstruction of the scene to the retrieval of its 3D mo-
tion field. Aside from this novel generalised model for scene flow, we introduce several
further refinements. Within the multi-resolution framework required to handle large dis-
placements, we introduce a compact notation that makes a normalisation of the linearised
model assumptions possible. This way, we make the deviations from model assumptions
interpretable as distances in the image plane and can show their equivalence to widely-
known geometrical error measures from computer vision. In addition we explicitly detect
occlusions due to scene motion and changes in camera viewpoint and exclude them from
the estimation process. All these design steps ultimately lead to an approach that even out-
performs recent scene flow techniques that make explicit use of a given stereo geometry.
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1 Introduction

1.1 Motivation

Visual perception is one of our most important senses and is unlike any other responsible
for the way we experience the world in which we live. Making an automated system, like
a computer, derive the same information from images as we do, has been a goal for many
years and has given rise to the fields of digital image processing and computer vision.
An important step in building a visual system is granting it the capability of inferring

a three-dimensional model of the world from two-dimensional image information. Since
depth information can not be recovered from a single image alone, at least two cameras are
necessary to produce a 3D reconstruction of the observed scene. To reconstruct an object
that is seen in the left image of a stereo image pair, it needs to be identified in the right
image as well. The reconstruction problem is therefore intrinsically related to the image
correspondence problem. In this thesis we will solve the correspondence problem by esti-
mating the two-dimensional displacement field that maps pixels in the left image to their
new location in the right image, the so-called optical flow. In contrast to traditional optical
flow, however, the displacement field between two stereo images can not be arbitrary and
for its computation specific geometric constraints have to be taken into account.
Aside from recovering the static structure of the observed scene, we will also be inter-

ested in determining its dynamic behaviour. This property is related to how the objects
in the scene move within their environment and how they change their shape. The actual
motion of the scene can be described by a three-dimensional displacement field that is
referred to as the scene flow. The estimation of scene flow includes a time component
and its retrieval is not possible from two stereo images alone. Instead, its computation re-
quires a temporal series of stereo pairs in the form of a stereo image sequence. This gives
the problem an extra dimension, as objects need not only be identified in the left and the
right image, but need to be tracked additionally throughout the image sequences. Scene
flow estimation thus not only relies on the computation of a constrained optical flow for
the 3D reconstruction of the scene, but has furthermore a strong connection to classical
unrestricted optical flow estimation for the recovery of the motion of the scene.

Fields of Application. The 3D reconstruction from two stereo images has a direct in-
fluence on algorithms that seek for a more complete model of the scene from multiple
views [SCD+06, BBH08]. With the increasing importance of online image data bases and
visual search on the Internet, these algorithms have found new applications. One example
is photo tourism [SSS06, ASS+09], where large unstructured collections of photographs
are used to reconstruct cities and viewpoints that enable exploration of the data base in 3D.
Closely related is the generation of intermediate viewpoints and the seamless navigation
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2 Introduction

through multiple video streams by exploiting the common 3D geometry of the underlying
scene [BBPP10]. In application areas that are traditionally dominated by 2D techniques,
three-dimensional cues are steadily integrated because they often lead to a more discrimi-
native outcome. This is for instance the case for face recognition [BBK05, KPT+07].
Since optical flow can be regarded as the projection of the scene flow on the image

plane, it is not surprising that there exists an overlap of application domains. Classical ex-
amples of motion detection are vehicle navigation and the segmentation of moving objects,
which are an integral part of robotics and drivers assistance systems [WMR+09, UWSI10].
Another exciting field of research of scene flow is that of human face capture [MCT09,
CGZZ10, BHPS10], where movements and expressions are detected that can tell us some-
thing about emotions or even about speech [LW08]. Strongly related are techniques for
markerless motion capture and pose tracking [MHK06, dAST+08, SRBW11] that have
received interest from the medical field, as well as from the entertainment industry.

Fig. 1.1: Application areas of stereo reconstruction and scene flow computation. Top

Row: (a) Reconstruction of cities and monuments from large online image data bases
(from [ASS+09]). (b) Markerless motion capture and pose tracking (from [dAST+08]).
Bottom Row: (c) Vehicle navigation and pedestrian avoidance (from [WMR+09]).
(d) Capturing of facial expressions and motion (from [VBZ+10]).
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1.2 Overview

The goal of this thesis is the development of variational methods for the task of stereo
reconstruction and scene flow computation from stereo image pairs and stereo image se-
quences. The stereo reconstruction problem is composed of two highly interconnected
sub-problems, namely the recovery of the camera motion and the estimation of the scene
structure. The camera motion refers to the change in view point from one stereo im-
age to the other and can be associated with one global entity, the fundamental matrix.
The scene structure, on the other hand, is defined by the arrangement of the individual
three-dimensional points in space and how they project on corresponding two-dimensional
points in different images. It is therefore inherently linked to the local change in position
of each pixel and thus to the concept of dense optical flow. Scene flow is the dense motion
of the three-dimensional points in the scene and it can be thought of as a correspondence
between two reconstructions of the scene at consecutive time instances.

Our general contribution exists in exploiting the high interdependency between funda-
mental matrix computation and optical flow estimation in a stereo setting to improve the
accuracy of both. On a higher level, the emphasis of this thesis ultimately lies on the
development of high performance methods for the joint computation of camera motion,

scene structure and scene flow in a variational framework. We will approach this task in a
very systematic way. First we ask ourselves if the derivation of the stereo geometry from a
given dense optical flow field makes sense and if it is accurate enough to provide the basis
for more integrated methods. In doing so we introduce a novel application area of dense
optical flow, namely the estimation of the fundamental matrix from a stereo image pair. In
a next step we will show that a coupled solution of the optical flow and the fundamental
matrix will not only have a stabilising effect on the outcome, but will at the same time
push the accuracy bounds further down. As opposed to many existing techniques, our
joint methodology does not treat the sub-problems of camera motion and scene structure
estimation separately, but fuses them into a single optimisation problem. True to our prin-
ciple of joint optimisation, we couple the reconstruction of the scene to the retrieval of its
three-dimensional motion field in a last step. This is achieved by integrating spatial and
temporal information from multiple stereo pairs in a novel scene flow model.

In the following we will give a more detailed overview of the important concepts in this
thesis and of the three contributions discussed above.

Variational Optical Flow. Variational methods for optical flow computation determine
the displacement field between two images as the minimiser of a suitable energy func-
tional. Ever since the seminal approach of Horn and Schunck [HS81], this energy func-
tional mostly consists of two terms: a data term that imposes constancy on characteristic
image features and a smoothness term that regularises the possibly non-unique solution
of the data term by locally filling in information from neighbouring regions. A general
formulation of this energy is given by

E(w) =

∫

Ω

(
ED(g1, g2,w)
︸ ︷︷ ︸
data term

+ α ES(∇w)
︸ ︷︷ ︸

smoothness term

)
dx , (1.1)
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where x = (x, y)⊤ is a point in the rectangular image domain Ω and g1(x, y) and g2(x, y)
are the intensity values of the two images between which the optical flow w = (u, v)⊤

is estimated. Further, ∇ = (∂x, ∂y)
⊤ stands for the spatial gradient operator and the

regularisation weight α determines the degree of smoothness of the solution.
Apart from their high accuracy [BBPW04, ZPB07a, NBK08, BBM09, ZBW+09], vari-

ational methods for optical flow estimation offer two main advantages over other ap-
proaches for estimating image correspondences:

• No Hidden Model Assumptions. All assumptions on the data and the type of solution
are integrated in one energy functional. This automatically leads to a transparent and
consistent modelling and a minimisation that does not rely on hidden intermediate
processing steps. In this thesis we only design methods that minimise a single en-
ergy containing all model assumptions and all problem unknowns.

• Dense Flow Fields without Gross Outliers. Due to the filling-in of flow information
from other image regions by the smoothness term, variational methods provide us
with a dense flow field. By construction, they are thus global methods and result
in an image correspondence for each pixel without requiring any final interpolation
steps. Moreover, no gross outliers in the correspondences are created because of the
combination of robust data constraints and global smoothness assumptions.

Estimation of the Fundamental Matrix. The optical flow between a pair of images
is normally unrestricted and can be the result of motion in the scene as well as of the
movement of the camera. Now we will make the assumption that the scene is either
static or, equivalently, that the images are taken from different view points at the same
time instance. In this case, both images form a stereo pair and the optical flow will be
restricted by the underlying stereo geometry. A complete description of the geometry
of two stereo images is provided by the fundamental matrix F [HZ00, FLP01], a 3 × 3
matrix which associates with each point in the image a line in the other image, on which
its corresponding point has to lie. If a point (x, y)⊤ in the first image lies on the epipolar
line of its corresponding point (x + u, y + v)⊤ in the second image and vice versa, both
points are said to satisfy the epipolar constraint



x+ u
y + v
1



⊤

F



x
y
1


 = 0 . (1.2)

This constraint prescribes that (x+ u, y + v)⊤ has to lie on the epipolar line F (x, y, 1)⊤,
or equivalently that (x, y)⊤ has to lie on the epipolar line F⊤(x+ u, y + v)⊤.
The epipolar constraint has to be satisfied in each point of the image. Provided that the

dense optical flow (u, v)⊤ is known, the entries of the fundamental matrix can thus be in-
ferred by imposing the constraint (1.2) in all pixels. In fact, this makes the problem highly
overdetermined since far less image correspondences are theoretically necessary to deter-
mine the nine entries of F . In practice, however, the computed correspondences are not
exact and including a large amount of them will improve the stability and the robustness
of the estimation process. The quality of the fundamental matrix will additionally benefit
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from the previously mentioned advantages of dense variational optical flow, namely their
high matching accuracy and their inherent robustness against large outliers.
Our proposed method of estimating the fundamental matrix from all correspondences

provided by dense optical flow contrasts with well-established techniques that compute
the stereo geometry by matching a small set of sophistically optimised interest points
(e.g. [HS88, Low04, WAH93, LF96, TM97, HZ00, FLP01]). These sparse feature based
methods spend most of their effort on singling out only the very best correspondences
and many elaborate statistical approaches [FB81, RL87, RFP08] have been developed to
achieve this. Despite the fact that ideas from dense optical flow computation have been
widely adopted in many matching tasks, including stereo matching, the estimation of the
fundamental matrix has generally been the exclusive domain of sparse techniques.

⋆ Contribution 1. Our first main goal is to introduce a novel application area for optical
flow by demonstrating that dense methods can be very beneficial for estimating the fun-
damental matrix. Important with this respect, is a juxtaposition with the currently leading
class of techniques that are based on matching sparse image correspondences. By com-
paring our results with those obtained by feature based techniques, we identify cases in
which dense methods have advantages over sparse approaches.

Joint Estimation of the Optical Flow and the Fundamental Matrix. The matching
process of variational optical flow methods is guided by the assumption that certain image
features remain constant along the motion trajectory. One of the most common constancy
assumptions in this context is the assumption that the image brightness does not change
under the apparent motion. This can be expressed as

g2(x+w)− g1(x) = 0 . (1.3)

In practice, the brightness constancy constraint is approximated by a first order Taylor
expansion, either early on in the model or later during the minimisation. It then becomes

g2xu+ g2yv + g2(x)− g1(x) = 0 , (1.4)

where g2x and g2y stand for the spatial derivatives of g2(x) in x and y direction. The
above equation is clearly insufficient to determine the two optical flow components u and
v uniquely, a problem referred to as the aperture problem. With his respect, the linearised
brightness constancy constraint is a line constraint that tells us on which line the matching
point has to lie, but not exactly where. As illustrated in Fig. 1.2 (b), only the component
of the optical flow orthogonal to this line, the so-called normal flow, can be determined.
The aperture problem may be overcome by assuming constancy on other image features,
such as the image gradient, but these should not depend linearly on the brightness. In
the extreme case, all neighbouring points share the same brightness value (homogeneous
region) and the matching process is undefined. This is shown in Fig. 1.2 (a).
The epipolar constraint (1.2) can be considered as an additional line constraint on the

optical flow. The requirement that a corresponding point has to lie on its epipolar line
can thus be used as an extra cue for disambiguating the possibly multiple solutions of
the data term. This is shown in Fig. 1.2 (c). If the fundamental matrix is known, the
epipolar lines are fixed and the epipolar constraint can be imposed as a hard constraint.
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(a) (c)(b)

Fig. 1.2: The aperture problem (partially adapted from [Bru06]). (a)No image information,
the correspondence can lie anywhere. (b) Linearised brightness constancy assumption in
a textured region, the correspondence lies on a line. (c) Additional epipolar constraint, the
correspondence can be determined uniquely.

This reduces the originally two-dimensional matching process to a one-dimensional search
along the epipolar lines [ADSW02, SBW05, BAS07]. A disadvantage of this approach is
that the quality of the optical flow depends on how well the fundamental matrix has been
estimated. Conversely, the same is also true for the quality of the fundamental matrix
when we estimate it from a given fixed optical flow field. In this light it thus makes sense
to estimate both quantities simultaneously, such that the accuracy of one is not limited by
the method used to compute the other. This can be achieved by adding an epipolar term

to the optical flow functional that imposes the epipolar constraint as a soft constraint

E(w, F ) =

∫

Ω

(
ED(g1, g2,w) + α ES(∇w) + β EE(w, F )

︸ ︷︷ ︸
epipolar term

)
dx . (1.5)

By minimising E(w, F ) for w and F , we are introducing a feedback between both un-
knowns, such that the optical flow can benefit from an improved stereo geometry and vice
versa. Moreover, estimating all quantities within a single optimisation framework puts the
overall approach on a more solid theoretical basis and guarantees an equal (symmetric)
treatment of geometry (epipolar lines) and flow (correspondences).

⋆ Contribution 2. Motivated by the promising results of our first contribution, we propose
a new variational model that recovers the fundamental matrix and the optical flow simul-
taneously as the minimisers of a single energy functional. We demonstrate that this joint
approach further improves the quality of the fundamental matrix estimation and yields
better results than an optical flow approach without epipolar geometry estimation.

Stereo Reconstruction. The joint estimation of the fundamental matrix and the optical
flow solves the dense reconstruction problem in a single optimisation step. With the help of
the recovered fundamental matrix, we can now project each corresponding point pair back
into space and find the associated three-dimensional point. This type of reconstruction,
however, is mostly not metrically correct. A more truthful reconstruction can be obtained
under the assumption that certain information about the cameras is known, such as the
focal length. In this case, the fundamental matrix can be expressed in coordinates that
have been normalised by the camera parameters and will take on a special form known
as the essential matrix [Lon81]. In this thesis we will compute the essential matrix from
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the fundamental matrix as an intermediate step in obtaining a realistic reconstruction of
the scene. The question that immediately arises is why we do not directly estimate the
essential matrix? First of all, we have experienced that there is no relevant gain over the
already high accuracy of the geometry estimated via the fundamental matrix. Secondly,
estimating the fundamental matrix makes our approach more generally applicable, even if
no information at all is available about the camera system. Finally, and more importantly,
there is a modelling reason for not doing so: The essential matrix does not live in the pixel
space that is commonly used for optical flow computation and its retrieval would therefore
cut apart the symmetric treatment of flow and geometry in a joint model.

Joint Stereo Reconstruction and Scene Flow Estimation. Since depth information is
required to determine three-dimensional motion, scene flow can not be computed without
estimating the scene structure as well. In contrast to structure from motion [IA99, TZ99],
scene flow does not relate to a static world. Instead, objects in the scene are allowed to
move freely and in a non-rigid fashion. Thus, for estimating scene flow, stereo sequences
are required that provide at least two views per time instance. The minimal set-up for
scene flow computation is depicted in Fig. 1.3, where (g1, g2) is a stereo pair at time t and
(g3, g4) represents a stereo pair at the next time instance t + 1.
By adding the time dimension to our problem, we obtain a mixture of pure optical flow

estimation (scene motion) and the estimation of stereo geometry and stereo correspon-
dences (scene reconstruction). Existing algorithms often treat stereo and motion indepen-
dently and rely on a sequential computation of the scene flow and structure [PAT96, ZK01,
VBR+05, PKF07, WRV+08]. However, to improve the quality of the estimation it is im-
portant that motion and shape estimation are coupled. To estimate all the optical flows
between the images and all the fundamental matrices between the stereo pairs in a joint
variational framework, we will minimise an extended energy of the form

E(w1, . . . ,wk, F1, . . . , Fl) =

∫

Ω

( k∑

i=1

EDi(g1, . . . , gn,w1, . . . ,wk)

+

k∑

i=1

αi ESi(∇wi)

+

l∑

i=1

βi EEi(w1, . . . ,wk, Fi)

)
dx . (1.6)

In the above general energy, the enumeration index n stands for the number of images
in the model, k for the number of optical flows between them and l for the number of
image pairs between which a fundamental matrix can be computed. For our four-frame
model of Fig. 1.3, n= 4, k = 6 and l = 2. We will see in this thesis that the six pairs of
optical flow variablesw1,w2, . . . ,w6 are redundant and that their number can be reduced
by taking into account the connections that exist between all image correspondences. It is
additionally reasonable to assume that the fundamental matrix remains constant between
the two time instances t and t + 1 if the stereo system does not change too much under
operation. This will eventually lead to a minimal parameterisation for the joint estimation
of camera motion, scene structure and scene flow from stereo image sequences.
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w2, F2

g3 g4

w3 w4

g1 g2
w1, F1

w6

w5

time t

time t+ 1

Fig. 1.3: The four-frame set-up used for computing scene flow. The original location of a
point in image g1 is indicated by a black dot, the new location in the other images by a
white dot. The stereo correspondences have to lie on corresponding epipolar lines.

⋆ Contribution 3. As a third main contribution, we extend our framework for the joint
estimation of correspondences and stereo geometry to multiple images. For the four-frame
case, consisting of two stereo image pairs with a temporal offset, we develop a variational
method that simultaneously reconstructs the scene at two different time instances. Because
we recover the fundamental matrix in the process, our method is able to compute the three-
dimensional scene flow for sequences with an unknown and arbitrary stereo geometry.

1.3 Related Work

After giving an overview of the thesis and the most important contributions therein, we
turn our attention to related work.

Estimation of the Fundamental Matrix. We start by sketching existing approaches
for estimating the epipolar geometry. The epipolar geometry is the relation that un-
derlies two stereo views and can be described by a single entity, the fundamental ma-
trix [HZ00, FLP01]. The fundamental matrix is a 3 × 3 matrix of rank 2 that is defined
up to a scale factor. For uncalibrated images – i.e. images taken by cameras for which no
information about orientation, pose or internal settings is available – it is possible to esti-
mate the fundamental matrix solely from image correspondences by means of the epipolar
constraint [HZ00, FLP01]. Most techniques establish these correspondences by matching
a sparse set of characteristic image features. Such feature based techniques proceed in
different stages:

• Feature Extraction. Classical examples of image features include edges [MH80,
Can86], Förstner-Harris features [FG87, HS88] and KLT features [LK81, TK91,
ST94]. Matching can for instance be achieved by thresholding the correlation score
of the surrounding image patch. The set of correspondences obtained this way is
often ambiguous since several points might be paired to the same one [ZDFL95].
More recently, scale invariant SIFT [Low04] and SURF [BETV08] features have
been proposed that identify locations of interest in scale-space [Wit83, Lin94] and
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associate with each of them a highly distinctive descriptor vector. These type of
features can be matched correctly with a higher probability. Comparative studies by
Mikolajczyk and Schmid [MS05] have repeatedly put forward SIFT as one of the
most accurate local matching algorithms to date.

• Fundamental Matrix Estimation. Feature based approaches for estimating the fun-
damental matrix go back to Longuet-Higgins [Lon81], who introduced the 8-point
algorithm to compute the essential matrix, the equivalent of the fundamental ma-
trix for internally calibrated cameras. The 8-point algorithm excels in simplicity
because of its linear nature but it has the disadvantage that the quantity being min-
imised has no geometrical interpretation. To overcome this shortcoming, Weng et

al. [WHA89] and Luong and Faugeras [LF96] proposed nonlinear techniques in-
volving geometrically meaningful measures such as the distance of a point to its
epipolar line. Hartley and Zisserman [HZ00] recommend a Maximum Likelihood
(ML) estimation that minimises the distance of a point to the manifold determined
by the parameterisation of the fundamental matrix. TheML estimate is optimal from
a statistical viewpoint if a Gaussian error model is assumed [WAH93] and is some-
times called the Gold Standard algorithm. A non-linear technique that makes use
of the minimal set of point correspondences that is theoretically needed to compute
the fundamental matrix is the 7 point algorithm [HZ00]. As opposed to the 8-point
algorithm, the 7-point algorithm directly imposes the rank 2 constraint but can lead
to multiple solutions and can not be extended to an arbitrary number of features.

• Outlier Removal. In practice, a feature based estimation method has to be able to
deal with false correspondences arising from the lack of geometrical constraints in
the matching process. This has led to a multitude of robust extensions that can han-
dle a relatively large amount of outliers: M-estimators [Hub81], Least Median of
Squares (LMedS) [RL87] and the Random Sample Consensus (RANSAC) [FB81]
number among such robust techniques. In recent years numerous RANSAC variants
have been developed to further increase robustness against localisation noise (LO-
RANSAC [CMO04]) and degenerate configurations (DEGENSAC [CWM05] and
QDEGSAC [FP06]). An overview of robust estimators in the context of fundamen-
tal matrix computation is given in [TM97, Zha98, Ste99, RFP08].

Clearly, the quality of feature based methods relies on the quality of the random
sampling approach. However, one should not forget that features may also suffer
from well-known localisation errors due to their computation in scale-space; see
e.g. [WB94, ZGS+09].

In addition to feature based methods there also exists a limited number of approaches that
estimate the fundamental matrix directly from image information [SHS07].

Estimation of Dense Image Correspondences. Now that we have discussed sparse fea-
ture based methods for estimating the fundamental matrix, we review dense techniques
for establishing correspondences within a global energy minimisation framework. Typical
representatives are variational methods for computing the optical flow and methods for
estimating the correspondences from stereo pairs.
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• Optical Flow. Variational optical flow methods minimise an energy functional that
models temporal constancy of image properties via a data term and regularity of the
flow field via a smoothness term. The quadratic data term of the seminal model
of Horn and Schunck [HS81] has been gradually extended with robust variants
that combine several constancy assumptions in order to cope with noise, occlusions
and illumination changes [BBPW04, KMK05, MBW07, SPC09a, WPB10]. To re-
spect discontinuities in the optical flow, smoothness terms have been proposed that
take into account image edges [NE86, AELS99], edges in the evolving flow field
[Sch94, WS01a] or both [ZBW+09, ZBW11]. Similar extensions have been intro-
duced in a probabilistic setting using discrete models [BA91, MP98a, SRLB08] or
by coupled systems of partial differential equations [PVPO94]. More recently, vari-
ational optical flow estimation has been coupled to feature based descriptor match-
ing in order to combine their respective advantages [Val07] and to allow for the
recovery of the large motion of small objects [BBM09, BM10]. The minimisation
of variational optical flow models mostly proceeds by means of a gradient descent
algorithm or via a discretisation of the Euler-Lagrange equations. In recent years,
fast numerical schemes have played an increasingly important role in the real-time
application of optical flow [BWKS06, ZPB07a, GZG+10].

• Stereo Correspondences. The basic idea of using dense, energy-based methods is
not restricted to optical flow computation, it can also be applied to depth estima-
tion from stereo pairs. If the epipolar geometry of a stereo image pair is known,
the correspondence problem even reduces to a one dimensional search – the search
along epipolar lines. Most successful stereo correspondence methods are either dis-
crete or continuous optimisation techniques [SS02]. Discrete methods model the
images and displacement field as Markov random fields and try to find the most
probable displacement for the given data. Minimisation is usually done by means
of graph cuts [KZ02], belief propagation [KSK06, FH06] or dynamic programming
[LSY06]. While discrete approaches allow a better optimisation of the energy by
constraining the depth values to a discrete subset, continuous variational methods
can be advantageous when smooth transitions are favoured. Variational methods
decompose the optical flow along the epipolar lines [ADSW02, SBW05], restrict
the estimation process in horizontal direction [BAS07] after rectifying the images,
or solve for the unknown depth in every pixel [RD96, STV03]. Since the latter
approaches will generally lead to a highly non-linear energy, not many convincing
minimisation strategies exist that solve directly for the unknown depth [SGC10].
Aside from methods that include the epipolar constraint as a hard constraint, there
is also a limited number of approaches that feed a precomputed epipolar geometry
into an optical flow method by means of a soft constraint [WPB+08].

Estimation of the Epipolar Geometry from Optical Flow. Related to our first contri-
bution are methods that recover stereo information from dense image correspondences.
Early ideas that couple optical flow with the estimation of the epipolar geometry go back
to the differential form of the epipolar constraint by Viéville and Faugeras [VF95] and
Brooks et al. [BCB97]. Based on these works, Ohta and Kanatani [OK95] and Kanatani
et al. [KSO+00] have presented statistical evaluations of the estimation of the stereo geo-
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metry and the depth from monocular image sequences. These studies suffered, however,
from inaccurate optical flow methods and a lack of absolute performance measures. More-
over, in such a differential setting optical flow is regarded as the infinitesimal velocity field
of an image sequences , thereby strictly separating structure from motion from wide base-

line stereo. In this thesis we do not make such a distinction, since recent optical flow
methods are able to cope with both small and large displacements. In another early work,
Irani and Anandan [IA99] already advocate the use of dense correspondences for the es-
timation of motion models in a structure from motion setting. Only the more recent work
of Strecha et al. [SFV04] is known to us in which dense optical flow correspondences are
used for the calibration of a stereo rig, but no quantitative results are reported.

Coupled Estimation of the Epipolar Geometry and Correspondences. Our second
contribution is a coupled model for optical flow and epipolar geometry estimation, where
a rigid motion model enters the functional in the form of a soft constraint with unknown
fundamental matrix entries. In the optical flow model of Nir et al. [NBK08] this happens
via an explicit parameterisation of the displacements by unknown motion coefficients.
Also close in spirit to our ideas are feature based ML methods that simultaneously es-
timate the fundamental matrix while correcting an initial set of point correspondences
[WAH93, HZ00]. These methods are, however, sparse in nature and differ by the dis-
tance measure that is being minimised. Another more recent sparse method that pairs
the epipolar constraint with the brightness constancy assumption is that of Saragih and
Goecke [SG07]. In an early work, Hanna [Han91] iteratively estimates camera motion
and dense structure parameters in a joint refinement process by using the optical flow as
an intermediate representation. Contrary to our approach, the problem is formulated in a
differential setting and the optimisation performed locally. A simultaneous estimation of
the fundamental matrix and the three-dimensional surface is proposed in an uncalibrated
discrete setting by Schlesinger et al. [SFS04]. Despite a joint model formulation, proper
initialisation is required to bootstrap the method. More recently it has been argued that it
can be beneficial to couple the computation of epipolar geometry and optical flow fields
within a joint energy functional [VBW08, WCPB09].

Estimation of Scene Flow. We conclude this related work section by providing a short
survey of methods that retrieve the three-dimensional motion of the scene, i.e. the scene
flow. As mentioned before, scene flow can not be computed without estimating the scene
structure as well. Existing scene flow algorithms often treat this motion and stereo com-
ponent independently. In fact, most of them rely on a sequential computation of the scene
flow and structure [PAT96, ZK01, VBR+05, PKF07, WRV+08]. To improve the qual-
ity of the estimation, however, some methods exploit the spatial and temporal depen-
dencies in the image sequence [ZK01, CK02, MS06, HD07, CPMK09]. Among those
methods that solve for the scene flow and structure simultaneously, variational approaches
play a major role. A small number of these techniques parameterise the problem di-
rectly in 3D space [CPMK09, BMK10]. Others are based on optical flow computation
[ZK01, MS06, HD07, WVM+08] and have consistently improved their accuracy over the
years in the wake of increasing optical flow accuracy.
Closest related to the scene flow algorithm that we propose as the third main contribution

in this thesis are the methods of [ZK01, MS06, HD07], which jointly compute spatial and
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temporal motion fields by minimising a single energy. In particular the method of Huguet
and Devernay [HD07] uses similar data constraints as our approach. As opposed to our
energy, it applies a joint smoothness term to all appearing displacement fields. A more ad-
equate separate treatment of the smoothness term is proposed by Wedel et al. [WVM+08]
who decouple the estimation of structure and motion to achieve real-time performance. In
their case, however, the separate smoothness term does not yield more accurate results than
their preceding work with joint regularisation [WRV+08]. Apart from these methods that
parameterise the displacements in terms of image coordinates, there are also techniques
that work directly in 3D space. Such techniques include methods based on reprojection er-
rors [CPMK09], space carving and nonlinear optimisation [VBSK00, CK02], deformable
meshes [FP08], Markov Random Fields [IM06] and direct depth estimation [BMK10]. In
contrast to our approach, all these methods rely on a previous calibration step, since they
are either based on rectified sequences or require explicit camera information.

1.4 Outline

Different parts of the work presented in this thesis have been published at conferences
[VBW08, VBZ+10] and in journals [VBMW11]. In the following we give an outline of
the thesis and shortly discuss the content of the different chapters. We make use of this
summary to highlight additional contributions that have not received consideration in the
overview section 1.2.

A Brief History of Stereo Geometry. Chapter 2 lays the basis for our work by dis-
cussing the image formation process and introducing the mathematical tools that are nec-
essary to establish relations between the two- and three-dimensional world. We give an
introduction to projective geometry and provide an elementary camera model that can be
abstracted by a single matrix operation. We will see that one image alone does not allow
us to perform a reconstruction of the depicted scene and that at least a second camera
has to be added to overcome the depth ambiguity. The chapter then introduces the most
important description of the geometry of an uncalibrated stereo pair, the fundamental ma-
trix, and its counterpart for known internal camera parameters, the essential matrix. The
estimation of the fundamental matrix and the subsequent extraction of the essential matrix
will allow us to reconstruct a scene up to scale in the camera coordinate system.

Variational Optical Flow. Chapter 3 is devoted to the modelling and numerical solution
of variational optical flow methods. With the estimation of the fundamental matrix as a
later application in mind, we will consider here classical unrestricted optical flow between
two stereo images. Typical for a stereo setting is that our optical flow model has to be able
to cope with the large displacements that can arise from a substantial change in viewpoint.
To this end, we focus on choices for the data term that can handle large displacements
and are at the same time robust under noise and illumination changes. With respect to the
smoothness term, we discuss the classification of discontinuity preserving regularisation
strategies according to [WS01a], as well as more recent ideas that extend this taxonomy.
A suitable combination of data and smoothness constraints will then give rise to the model
prototype of Brox et al. [BBPW04] that will serve as a baseline method for most of the
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techniques proposed in this thesis. We finally move on to the minimisation and discreti-
sation of our prototypical model, where the coarse-to-fine warping strategy will play a
central role in avoiding local minima. An incremental computation based on the motion
tensor will further assure convexity of the final energy.

Fundamental Matrix from Dense Optical Flow. In Chapter 4 we collect our know-
ledge from the two previous chapters and propose a two-step method for estimating the
epipolar geometry of a stereo pair. Our technique first establishes a dense set of image
correspondences by means of optical flow and then estimates the fundamental matrix by
imposing the epipolar constraint in each pixel. The estimation is based on a modified
version of the 8-point algorithm [Lon81] that exploits the large amount of optical flow
correspondences and their inherent robustness against large outliers in a reweighted least-
squares framework. Via a systematic juxtaposition of our dense method with existing
sparse feature based methods, we demonstrate that modern optical flow methods can serve
as novel approaches for estimating the epipolar geometry with competitive quality and
identify scenarios where dense techniques should be preferred over sparse ones.
While these key results are of a more general nature, we have to restrict our methodology

to prototypical representatives. As a baseline method for accurate dense optical flow, we
choose the approach of Brox et al. [BBPW04]. For feature based approaches we consider
two feature matching algorithms (KLT [ST94] and SIFT [Low04]), three random sampling
algorithms (LMedS [RL87], LORANSAC [CMO04] and DEGENSAC [CWM05]), and
two different distancemeasures (epipolar distance [FLP01] and reprojection error [HZ00]).
This comes down to twelve different variants of feature based methods.

Optical Flow for Uncalibrated Stereo Images. In Chapter 5 we demonstrate that not
only the estimation of the epipolar geometry from dense optical flow is promising, but that
there exists also a benefit in the opposite direction: Knowing the epipolar geometry can
have a stabilising effect on the estimation of the optical flow. To this end we introduce a
novel technique that estimates the optical flow and the fundamental matrix simultaneously
in a single variational framework. In contrast to existing stereo methods that make explicit
use of a given precomputed fundamental matrix, we do not require the epipolar geometry
to be known beforehand. This makes our approach more flexible and applicable in uncal-

ibrated stereo settings, where no knowledge about the stereo geometry is available.
In practice, we achieve this goal by incorporating the epipolar constraint as a soft con-

straint into the optical flow functional. This allows the optical flow and the fundamental
matrix to correct each other during a joint optimisation process, which ensures a set of im-
age correspondences that is most consistent with the estimated stereo geometry. Besides
yielding better optical flow results than approaches that do not estimate the epipolar geo-
metry in the process, our experiments will show that our joint estimation method further
improves the fundamental matrix estimation of the two-step method of Chapter 4. Since
the modelling in a variational framework is very general, our strategy can profit directly
from any progress in future optical flow research. This will be demonstrated by replacing
the baseline optical flow approach of Brox et al. [BBPW04] by the more recent method
of Zimmer et al. [ZBW11]. We conclude the chapter with a discussion of the advantages
and shortcomings of our joint variational method.
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Scene Flow for Uncalibrated Stereo Sequences. In Chapter 6 we propose a variational
scene flow method for uncalibrated stereo sequences. We do this by integrating the spatial
and temporal information from two stereo pairs in a global energy functional while simul-
taneously estimating the unknown stereo geometry on consecutive time steps. Assuming
that the internal camera parameters are known, our method allows to recover the dense
scene structure and the dense scene flow up to a scale factor.
Apart from this novel generalised model, we make four additional contributions: (i)

Within the multi-resolution framework required to handle large displacements, we extend
the motion tensor notation of optical flow [BW05, Bru06] to multi-dimensional linearised
data constraints and to the soft epipolar constraint. This notation allows us to normalise
these constraints such that deviations from model assumptions can be interpreted as ge-
ometrical distances. (ii) Secondly, we show the equivalence of the normalised epipolar
constraint to two widely-used distance measures that have so far only been encountered in
the context of feature based methods in Chapter 4: the epipolar distance [FLP01] and the
Sampson error [WHA89]. (iii) Thirdly, we propose a regularisation strategy that penalises
discontinuities in the different displacement fields separately. This makes sense, since
motion and depth continuities do not necessarily coincide. (iv) As a final contribution,
we explicitly detect occlusions due to scene motion and changes in camera viewpoint and
exclude them from the estimation process. Experiments on synthetic calibrated and un-
calibrated data and on real-world sequences demonstrate the benefits of our contributions.
We even outperform recent techniques that make explicit use of a given stereo geometry.



2 A Brief History of Stereo Geometry

The work presented in this thesis deals with methods that aim to infer properties of the
three-dimensional world from two-dimensional images. To be able to do this we must
understand how the real world relates to its projected image and vice versa. In other
words, we must investigate how images are formed and what the connections are between
images of the same scene. Only by this understanding we will be able to perform the
inverse task of recovering the position of a point in the 3D world from its 2D projections.
This chapter lays the basis for our work by introducing the mathematical tools that are

necessary to establish relations between the 2D and 3D world. In Sec. 2.1 we will start
with a short overview of projective geometry which is the representation of choice for the
actions of a projective camera. Sec. 2.2 is devoted to single view geometry and provides
an elementary camera model that can be abstracted by the operation of a single projection
matrix. We will see that one image alone does not allow us to perform a 3D reconstruction
of the depicted scene and that at least a second camera has to be added to overcome the
depth ambiguity. Two view geometry will be the topic of Sec. 2.3, which introduces the
most important matrix entity of this thesis: the fundamental matrix. While the fundamental
matrix is a complete description of the geometric relation between two stereo images, it
does not suffice for a truthful reconstruction of the scene. This is where a third matrix, the
essential matrix, comes into play. Trough its recovery in Sec. 2.4 we will close in on our
final goal: a reconstruction of the scene up to scale in the camera coordinate system.

2.1 Projective Geometry in a Nutshell

Central to the mechanism of image formation is the concept of projection, which associates
a point in the image plane with points in the real world. For describing projections and
the relations between different images of the same scene, traditional Euclidean geometry
has proven inadequate. For instance, parallel lines in R

3 will generally not be parallel
anymore after they have been projected onto the image plane in R

2. In fact they will
meet in a vanishing point, which is the projection of a world point that lies infinitely
far away from the observer. Parallelism is therefore clearly not preserved by projection,
and neither are angles and distances. This is where projective geometry enters the game.
Projective geometry describes a larger class of transformations than the usual translation
and rotation of Euclidean geometry, including the perspective projection of a camera. In
particular, projective geometry makes it possible to reason about infinity, as illustrated
before by the projected intersection of parallel lines: Points at infinity, which are not
defined in Euclidean space, are not treated any differently in projective space and can even
be mapped to finite points. This makes projective geometry an important tool in the study
of the geometry of multiple images and their relation to the three-dimensional world.
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The two-dimensional projective space P2 will be used to describe entities in the image
plane. It is a simple extension of the Euclidean space R

2, obtained by adding a 1 to the
coordinates of a pointx = (x, y)⊤ ∈ R

2. This results in the coordinate triple (x, y, 1)⊤. To
ensure a one-to-one correspondence between the Euclidean and the projective coordinates,
we additionally demand that (x, y, 1)⊤ and (kx, ky, k)⊤, with k ∈ R0, represent the same
projective point. The points of P2 are thus represented by equivalence classes of coordinate
triples and are equal when they differ by a common scale factor. Because of the scale
factor, the projective coordinates of a point x are also called homogeneous coordinates

and will be denoted further by xh. Conversely, the two Euclidean coordinates can be
obtained by dividing the homogeneous coordinates by their last entry. Points with the
homogeneous coordinate (x, y, 0)⊤ have no Euclidean equivalent but can be interpreted as
the limit of a point in R

2 in the direction (x, y)⊤: They are points at infinity.
Just as points, lines in P

2 are represented by a homogeneous three-coordinate vector.
This shared representation allows for the elegant formulation of several properties in which
the roles of points and lines can be interchanged. The incidence of a point xh = (x, y, 1)⊤

and a line l = (a, b, c)⊤, for instance, can be expressed by the equation

l⊤xh = x⊤
h l = 0 , (2.1)

which is nothing else than the standard equation of a line ax + by + c = 0. Moreover,
the properties of intersection of two lines and join of two points can be expressed in an
equivalent way, namely by the cross product of their respective coordinates. As such, the
line joining two points x and x′ can be written as

xh × x′
h = [xh]×x

′
h , (2.2)

where [xh]× is the skew-symmetric matrix (up to scale)




0 −1 y
1 0 −x
−y x 0


 , (2.3)

whose left and right null-space are xh [HZ00, FLP01]. The symmetric role that points
and lines play in P2 is commonly known as the duality principle and greatly facilitates the
understanding of many projective relations, including the all-important epipolar constraint.

The extension of the three-dimensional Euclidean space R
3 to the corresponding pro-

jective space P
3 is carried out in the same way as for R2. This time the equivalence

classes are the three-dimensional points and planes that are both represented by a vec-
tor of four coordinates defined up to a scale factor. The homogeneous coordinates of the
three-dimensional point X = (X, Y, Z)⊤ ∈ R

3 are (X, Y, Z, 1)⊤ and will be denoted by
Xh. Join and incidence relations for points and planes in P

3 are derived analogously as
for points and lines in P

2 and there exists a similar duality for both. The representation
of lines in P

3 is based on so-called Plücker coordinates that satisfy a quadratic constraint
known as the Plücker relation [HZ00, FLP01]. The treatment and duality of lines in P

3 is
generally more complex than in P2 and falls outside the scope of this thesis.
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2.2 One View

A camera performs a transformation between the 3D world and the 2D image plane. One
of the simplest mathematical models for this mapping is provided by the pinhole camera
model depicted in Fig. 2.1 (a). It works by means of a central projection of points in space
onto a plane. Using projective geometry, this mapping can be represented by a matrix
operation. In the following we will derive a general form of the projection matrix of a
camera and analyse how it encodes the specific camera properties.

2.2.1 A Simple Camera Model

At first we assume that the centre of projection C coincides with the origin of the Eu-
clidean world coordinate system. As shown in Fig. 2.1 (a) the Z-axis of this system is
chosen to be perpendicular to the image plane and is called the optical axis. It intersects
the image plane in positive direction in the principal point p, which in turn serves as the
origin of the 2D image coordinate system. The distance from the camera centre C to the
image plane is known as the focal length and will be denoted by f .

image plane
X

Z

X

Y

x

y
p

C

x

f

scene point

principle axis

camera

principal
focal

optical ray

length
point

center

image
point

X

Z
C

X

f

fX/Z

p

x

Fig. 2.1: The pinhole camera geometry. Left: (a)Overview. Right: (b)X-Z cross section.

A 3D world point X = (X, Y, Z)⊤ is projected onto the point x = (fX/Z, fY/Z)⊤

where the optical ray, the line joiningX andC , meets the image plane. This relationship
can be easily derived from Fig. 2.1 (b) by means of the theorem of intersecting lines. If
the world point and the image point are expressed in homogeneous coordinates, the central
projection is simply a linear mapping and can be written as

xh =



fX
fY
Z


 =



f 0

f 0
1 0







X
Y
Z
1


 = PXh , (2.4)

where an empty entry denotes 0. The 3×4matrix P is called the camera projection matrix
and has the form

P = diag (f, f, 1) (I3, 03) , (2.5)

where I3 is the 3×3 identity matrix, 03 the 3×1 zero vector and diag (a, b, c) denotes the
3× 3 diagonal matrix with diagonal entries a, b and c.
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Definition 2.1. The 3 × 4 matrix P which represents a linear projective mapping from

points in P3 to points in P2 is called the camera projection matrix, or short, camera matrix.

2.2.2 A General Camera Model

The camera matrix provides a complete description of the projective action of a pinhole
camera, but its formulation in Eq. (2.5) is due to our particular choice of coordinate
system. In general, the world and image coordinate axes are not aligned with the camera,
as illustrated in Fig. 2.2. In the following we will investigate a more general form of the
camera matrix that maps points in a world coordinate frame to pixel coordinates.

X

ZC

XC
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x
world coordinate

system
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Fig. 2.2: The general pinhole camera geometry.

2.2.2.1 Intrinsic Camera Parameters

In most image processing and computer vision applications, the origin of the pixel coor-
dinate system in the image plane is chosen to be in the upper left corner of the image,
and not in the principle point p. If we take into account the offset of p = (x0, y0)

⊤

from the origin, the image point x corresponding to X = (X, Y, Z)⊤ has the coordinate
(fX/Z + x0, fY/Z + y0)

⊤. As a consequence, the camera matrix becomes

P = K(I3, 03) with K =



f x0

f y0
1


 , (2.6)

the 3×3 camera calibration matrix. In the above expression, empty matrix entries indicate
a zero. The calibration matrix describes a change of coordinate system within the image
plane and can be associated with the internal characteristics of the actual camera device.
For a general pinhole camera, this is not only restricted to a change in origin, such as de-
scribed by calibration matrixK, but can also involve a scaling in both axial directions and
a possible skew due to the non-orthogonality of the coordinate system. A general calibra-
tion matrix is therefore an upper triangular matrix with 5 degrees of freedom describing
the camera intrinsics or internal parameters. For our purposes, however, the focal length
f and the principle point p are the most important intrinsic parameters and definition (2.6)
of K with its 3 degrees of freedom is sufficient. Both f and p are expressed in pixel units
and when their values are known the camera is said to be internally calibrated.
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2.2.2.2 Extrinsic Camera Parameters

If we consider only one camera, we are free to choose the world coordinate system
equal to the camera coordinate system such that the camera matrix can be written as
P = K(I3, 03). When two cameras are involved, however, we have to take into account
the rotation and translation of at least one of them with respect to the world system. In
this case the camera matrix will take on a more general form. If we denote by XC the
coordinates of a world point X with respect to the camera coordinate system, then the
mapping between the world system and the camera system can be expressed as

XC = R(X −C) = RX + t . (2.7)

Here R is the 3×3 rotation matrix that aligns the two systems andC the world coordinate
of the camera centre. We have further introduced the 3 × 1 vector t = −RC to make the
translation part less explicit on R andC . In homogeneous coordinates we can write

XC h =

(
R 03

03⊤ 1

)(
X

1

)
+

(
t

0

)
(2.8)

=

(
R t

03⊤ 1

)
Xh . (2.9)

With the help of expression (2.6) we can now write

xh = K(I3, 03) XC h = K(I3, 03)

(
R t

03⊤ 1

)
Xh = K(R, t) Xh . (2.10)

The camera matrix P of a general pinhole camera is

P = K(R, t) , (2.11)

where R and t are the extrinsics or external camera parameters associated with the pose
and orientation of the camera with respect to the world. When the internal and external
parameters of a camera are known, the camera is said to be fully calibrated.

2.2.2.3 Properties of the General Camera Matrix

In the following we summarise the most important properties of the camera projection
matrix P = K(R, t) = (KR,Kt):

• The matrix P is a homogeneous quantity that is defined up to a scale factor and
has in general 11 degrees of freedom: 5 from the calibration matrix K, 3 from the
rotation matrix R and 3 from the translation vector t. The camera matrix has rank
3, because the rank of the submatrixKR is 3.

• The camera rotation R and the internal parameters K can be recovered by decom-
posing the 3×3 submatrixKR into the product of an upper-triangular matrixK and
an orthogonal matrix R via the QR-decomposition [GV89]. The calibration matrix
K must have a positive diagonal.
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• The homogeneous pointCh is the right null-space of P , which can be easily shown
by considering PCh = K(R,−RC)(C⊤, 1)⊤ = 03. The camera centre C is thus
the only point in space for which the image is undefined. Denoting the last column
of P by p4, the camera centre can be computed as [HZ00]

C = −(KR)−1p4 . (2.12)

• The depth of a 3D pointX with respect to the camera P is the distance to the plane
through the camera centre parallel to the image plane. It can be computed as [HZ00]

sgn
(
det (KR)

)
w

||m3||
, (2.13)

where the vector m3 is the third row of the submatrix KR and w the homogeneous
scale factor stemming from the projection PXh = w(x, y, 1)⊤. Formula (2.13) is
independent of the scaling ofXh and P and it can be used to determine ifX lies in
front of or behind the camera.

Remark on the General Camera Matrix. In our derivation of the camera matrix we
have only considered Euclidean world transformations, such as rotations and translations.
These transformations are in accordance with our concept of the real world and are suffi-
cient for most practical purposes. The camera matrix is, however, in essence a projective
device between two projective spaces. If we want to take into account the larger class of
projective transformations of P3, we should represent relation (2.7) between the camera
and world coordinates by an invertible 4× 4 homogeneous matrixH4 as XC h = H4Xh.
Similarly, a projective transformation represented by a 3 × 3 matrix H3 could be applied
to the image coordinates in P

2. In its most general form the camera matrix is therefore
composed of a projective transformation of 3D space, a projection of 3D space on a 2D
image and a projective transformation of the 2D image. It can then be written as

P = H3(I3, 03)H4 = (M,p4) . (2.14)

The rank of P has to be 3, because for a smaller rank the range of the camera mapping
would be a line or a point, and not the whole image plane. The formulation (2.14) also
includes parallel projections with a camera centre at infinity and a singular submatrix M .
In this work we do not consider such special cameras and restrict ourselves to perspective
cameras with a finite camera centre for whichM = KR is unique.

2.3 Two Views

The projective mapping of a camera constitutes a reduction of our world representation
by one dimension. Inverting this projection, i.e. recovering a 3D point from its image,
is a difficult task since we try to go from a poor 2D representation to a richer 3D rep-
resentation. If we take a look back at the basic camera model in Fig. 2.1 (a), we see
that the projection of a 3D point on the image plane represents a whole incoming ray of
light. Therefore, the image point x is not only the projection of its corresponding 3D point
X = (X, Y, Z)⊤, but also the projection of all points (kX, kY, kZ)⊤, k ∈ R0, on the opti-
cal ray through x. As a consequence there is a depth ambiguitywhich makes it impossible
to infer the position of a 3D scene point from a single image alone.
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2.3.1 Reconstruction from Two Views

If we have two cameras, we can consider the projections of the same 3D point in the two
images and find the intersection of their optical rays. Such a stereo set-up is shown in
Fig. 2.3, where a 3D point X is observed by two cameras, one with camera centre in C

and one with camera centre in C ′. To be able to infer the position of the two optical rays
through X , we now need to know two things: a full description of the geometry of both

cameras, i.e. the camera matrices P and P ′, and the pair of corresponding image points

x and x′ on which X is projected by P and P ′. For known camera matrices and image
correspondences, we can computeX by solving the system of equations

{
PXh = xh

P ′Xh = x′
h

. (2.15)

The camera matrices P and P ′ encode the relative position of the right camera with respect
to the left one. This is often referred to as the camera motion. In order for the system (2.15)
to have a solution, there has to be at least a non-zero translation between the two camera
centres, otherwise the two optical rays through the corresponding points coincide and the
depth ambiguity remains. If the two images are taken from different view points, there is a
change in position between the corresponding image points x and x′. As we will show for
a special type of camera geometry, this change in position is determined by the position of
the 3D point X in space. For a given camera geometry, the displacement field induced in
the image plane is therefore directly related to the scene structure.
Determining the relative camera pose and the scene structure are highly interconnected

sub-problems and together they are referred to as the reconstruction problem. Before mo-
ving on to the design of methods for estimating structure and motion from image corre-
spondences, we first have to analyse the basic relations that underly these correspondences.
For a solution of (2.15) to exist, the coordinates of x and x′ can not be arbitrary but have to
satisfy a certain constraint. This brings us to the epipolar constraint and the representation
of the projective geometry of two stereo views by the fundamental matrix.

2.3.2 The Fundamental Matrix

When a point x in the left image is given, the position of the corresponding point x′ in
the right image can not be arbitrary. This is because the 3D point X has to lie on the
optical ray through x. As a consequence, x′ is constrained to lie on the projection of the
optical ray in the right image. This constraint is known as the epipolar constraint and, by
denoting the image of the optical ray by its projective coordinate l′, we can write it as

x′⊤
h l′ = 0 . (2.16)

Analogously, x has to lie on l, the projection of the optical ray through x′ in the left
image. The lines l′ and l are called the epipolar lines of x and x′. As illustrated in
Fig. 2.3, the epipolar lines are the intersection of the image planes and the epipolar plane
through C , C ′ and X . The line that connects the two camera centres C and C ′ is called
the baseline and it intersects the image planes in the points e and e′. These points are
called the epipoles. The left epipole e is the projection of C ′ on the left image plane and
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Fig. 2.3: The epipolar geometry of a stereo image pair.

the right epipole e′ is the projection of C on the right image plane. Since the baseline is
contained in the epipolar plane of every space point, it is clear that the epipolar lines of all
corresponding points intersect in the epipoles, thereby forming a pencil of lines.
The epipolar geometry describes a mapping between points and lines, more precisely

between a point in one image and its corresponding epipolar line in the other image. In
the following we will formalise this mapping by assuming that the two camera projection
matrices P and P ′ are known. We consider the following parameterization of the optical
ray through x in the left image [XZ96, HZ00, FLP01]:

Xh(λ) = P+xh + λCh , (2.17)

where P+ is the pseudo-inverse of P [Pen56, PTVF92, HJ94]. To verify that Xh(λ)
indeed lies on the optical ray through x, we consider the projection:

PXh(λ) = PP+xh + λPCh = xh , (2.18)

where we have made use of the properties PP+ = I3 and PCh = 03. The projections of
the space points P+xh andCh on the right image plane are P ′P+xh and the right epipole
P ′Ch = e′

h. The epipolar line l
′ is the join of these two points and can be written as the

cross product of their projective coordinates

l′ = [e′
h]×P

′P+xh = Fxh . (2.19)

Here, the matrix
F = [e′

h]×P
′P+ , (2.20)

that describes the correspondence of xh and l is defined as the fundamental matrix.

Definition 2.2. The 3× 3 matrix F , which represents a projective mapping from points in

the left image plane to the pencil of epipolar lines through e′ in the right image plane, is

called the fundamental matrix of the two views.



2.3 Two Views 23

If we now insert result (2.19) for the epipolar line l′ into equation (2.16), we obtain the
following expression for the epipolar constraint

x′⊤
h F xh = 0 . (2.21)

Note that the epipolar constraint in this form does not depend on any specific knowledge
about the camera matrices P and P ′. Instead, equation (2.21) describes the relation be-
tween corresponding points in the image plane and the fundamental matrix of the two
views. For a complete description of the two-dimensional projective geometry of two
stereo images, it is therefore not necessary to have full calibration details of the cameras
but it is sufficient to know the fundamental matrix between the images. A pair of views
for which the fundamental matrix is known, is said to be weakly calibrated.

2.3.2.1 Properties of the Fundamental Matrix

Here we summarise the most important properties of the fundamental matrix F :

• The matrix F is a homogeneous quantity that is defined up to a scale factor and has
7 degrees of freedom: the 8 degrees of freedom of a homogeneous 3 × 3 matrix
minus the constraint that F is of rank 2. The singularity of F is apparent from
definition (2.20) where [e′

h]× has rank 2 and P ′P+ rank 3. The rank deficiency can
also be understood from the fact that all points of an epipolar line l will be mapped
by F to the same entity, namely the corresponding epipolar line l′.

• The fundamental matrix is independent of the scene structure. It only depends on
the internal and external parameters of the two cameras and can be computed from
the camera matrices via formula (2.20). Without any knowledge about the camera
matrices, however, F can be computed solely from a set of corresponding image
points using the epipolar constraint (2.21). Techniques that estimate the fundamental
matrix from image correspondences will be the topic of Chapter 4.

• If F is the fundamental matrix between the cameras P and P ′, then F⊤ is the funda-
mental matrix between the cameras P ′ and P . F⊤ represents a projective mapping
from the right image plane to the pencil of epipolar lines through e. As a conse-
quence, an epipolar line in the left image can be written as

l = F⊤x′
h . (2.22)

• All epipolar lines l′ = Fxh in the right image contain the epipole e′, such that
e′⊤
h Fxh = 0, ∀x. This means that e′⊤

h F = 03 and thus that the right epipole e′
h is

the left null-space of F . Equivalently, the left epipole e′
h is the right null-space of

F . Algorithmically, the epipoles are found as the singular vector belonging to the
smallest singular value of F or F⊤ via singular value decomposition (SVD) [TH84].

• A pair of camera matrices (P, P ′) uniquely determines a fundamental matrix F via
Eq. (2.20). On the other hand, F only determines a pair of camera matrices up to
a multiplication by a projective transformation. To see this, we consider the 4 × 4
matrixH representing a projective transformation of the world coordinates. Then

PX = PHH−1X and P ′X = P ′HH−1X , (2.23)
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hold for a 3D point X . The corresponding points of X under (P, P ′) are thus the
same as the corresponding points of H−1X under (PH, P ′H). This means that the
fundamental matrices for the camera pairs (P, P ′) and (PH, P ′H) are the same and
that F is invariant under a projective transformation of 3D space.

2.3.3 Special Motion Types

The fundamental matrix for a general camera motion can be expressed as a function of the
intrinsic and extrinsic parameters of the camera pair. As an example we will compute the
fundamental matrix for a motion arising from a pure translation without rotation. We will
further derive properties of the epipolar geometry for the special case where the translation
is parallel to the image plane, the so-called ortho-parallel camera set-up. This configu-
ration plays an important role in classical stereo vision because the corresponding image
points lie on horizontal lines, thus greatly simplifying the correspondence problem.

2.3.3.1 Translating and Rotating Cameras

Since F is invariant under projective transformations of 3D space, we can assume without
loss of generality that the left camera coincides with the world coordinate system. If we
denote by R and t the rotation and translation between the two cameras, we can write the
camera matrices as P = K(I3, 03) and P ′ = K ′(R, t) with camera centres C = 03 and
C ′ = −(KR)−1Kt. The epipoles are then

eh = PC ′
h = KR⊤t and e′

h = P ′Ch = K ′t . (2.24)

Substituting the camera matrices into the explicit formula (2.20) for the fundamental ma-
trix leads to an expression of F in function ofK,K ′, R and t:

F = [e′
h]×P

′P+, (2.25)

= [K ′t ]×K
′(R, t)

(
K−1

03⊤

)
, (2.26)

= [K ′t ]×K
′RK−1, (2.27)

= K ′−⊤[t]×RK−1 . (2.28)

In the last step we made use of the rule for commuting a skew-symmetric matrix [t]× with
a non-singular matrixK ′ that says [K ′t ]× = K ′−⊤[t]×K

′−1 [HZ00, FLP01].

2.3.3.2 Translating Cameras

We now assume that the camera centre translates without a rotation of the camera, i.e.
R = I3. If we further assume for simplicity that both cameras have the same calibration
matrix K = K ′, we can write the fundamental matrix according to formula (2.28) as

F = K−⊤[t]×K−1 = [Kt ]× . (2.29)

Moreover, it is easy to see that the epipoles in the left and the right image are equal:

eh = PC ′
h = Kt = P ′Ch = e′

h , (2.30)
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where the equality signs stand for an equality up to a scale factor. Since the fundamental
matrix (2.29) is skew-symmetric 1, it further holds for any pointx thatx⊤

h Fxh = x⊤
h l = 0.

Each point x in the left image lies thus on its corresponding epipolar line l. Since the
corresponding point x′ also lies on l, it follows that the epipolar line is the line of apparent
motion of x and the epipole e = e′ the vanishing point of the motion for all image points.

2.3.3.3 Ortho-parallel Cameras

We can simplify things even further by assuming that the baseline vector t lies within
the image plane. Without loss of generality we can choose t to lie on the X-axis, i.e.
t = (−b, 0, 0)⊤ for a camera centre C that moves to (b, 0, 0)⊤. According to Eq. (2.30),
the epipole now takes on the form

e′
h = Kt = (1, 0, 0)⊤ (2.31)

and represents the direction of the x-axis in the image plane. As a result, all epipolar lines
for the ortho-parallel scenario are horizontal and all corresponding points have the same
y-coordinate. The fundamental matrix thus becomes

F = [e′
h]× =




0 0 0
0 0 −1
0 1 0


 . (2.32)

Disparity of a Point. The horizontal displacement between x′ and x is often referred to
as the disparity d. In the following we derive an expression of the disparity of x in terms
of the depth of its corresponding 3D point X = (X, Y, Z)⊤. If we assume that (x, y)⊤

are the inhomogeneous coordinates of x, then we can write its homogeneous coordinates
as PXh = KX = (Zx, Zy, Z)⊤. The homogeneous coordinates of the corresponding
image point x′ are found by projectingX = (X, Y, Z)⊤ on the right image plane

P ′Xh = K(I3, t)Xh (2.33)

= KX +Kt (2.34)

= (Zx− f b, Zy, Z)⊤ , (2.35)

with Kt = (−f b, 0, 0)⊤ for a calibration matrix of the form (2.6). The disparity is now
the change in x-coordinate between the points (x− f b/Z, y)⊤ and (x, y)⊤

d = −f b

Z
, (2.36)

where f is the focal length, b the signed baseline distance between the camera centres and
Z the depth of X . When certain internal and external camera properties are given, it is
thus possible to recover the scene depth by estimating the displacement of the points in
the image. We further see that the disparity is inversely proportional to the scene depth.
This means that the image of an object close to the camera will undergo a larger apparent
motion than that of an object far away from the camera. A disparity of zero assumes that
the object is infinitely far away from the cameras.

1. for a skew-symmetric matrix A ∈ R
n×n, it holds that a⊤Aa = 0 for all a ∈ R

n
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Reconstruction from Ortho-parallel Cameras. For the special case of ortho-parallel
cameras there exists a simple relation between the coordinates of a 3D space point X =
(X, Y, Z)⊤, its projection (x, y)⊤ in the left image and the corresponding disparity d. This
relation can be used to recoverX and is given by



x
y
d


 =

f

Z




X
Y
−b


+



x0

y0
0


 , (2.37)

where (x0, y0)
⊤ are the coordinates of the principal point. This equality results directly

from Eq. (2.36) and from the projection ofX by the camera matrix P = K(I3, 03).

Application: Image Rectification. If the fundamental matrix F is known for an arbi-
trary stereo pair, both images can be transformed to make the epipolar geometry simpler.
More precisely we can compute two 3× 3 projective mappingsH andH ′ such that

F = H ′⊤[(1, 0, 0)⊤]×H , (2.38)

where [(1, 0, 0)⊤]× is the fundamental matrix (2.32) for the ortho-parallel camera set-up.
The transformed points Hxh and H ′x′

h will thus satisfy the ortho-parallel stereo geo-
metry and will have the same y-coordinate. This process is known as image rectification
and most proposed algorithms [HG93, Fau93, Har99, LZ99, FLP01] compute the recti-
fying transformations H and H ′ by mapping the epipoles of both images to infinity. An
example of image rectification obtained with the method outlined in [HZ00] is given in
Fig. 2.4. It can be observed that the epipolar lines of the rectified images coincide and
that corresponding points lie on the same horizontal line. If one of the epipoles lies inside
the image, care has to be taken that the rectified images do not become infinitely large and
appropriate algorithms have to be used [PKV99].

2.4 Two Calibrated Views

We have previously seen that a 3D point X can be reconstructed from its image corre-
spondences x and x′ by solving the system of equations (2.15), a process that is known as
triangulation. To be able to determine X , however, the camera projection matrices need
to be determined. In this section we discuss how a pair of camera matrices can be obtained
if the fundamental matrix has been determined from a set of corresponding image points
between two stereo views. We will show that for uncalibrated cameras a pair of camera
matrices can be extracted from the fundamental matrix up to a projective transformation of
space. This projective ambiguity is the best that we can achieve for a reconstruction from
image correspondences alone. It can only be resolved by taking into account additional
information about the scene or the cameras. One such type of information that is often
readily available for a camera, are the intrinsic parameters. We will see that for internally
calibrated cameras the fundamental matrix takes on a more specialised form, the essential
matrix, from which the camera matrices can be retrieved up to a scale factor.
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Fig. 2.4: An example of image rectification. Top Row: (a) + (b) The two original images
with the corresponding epipolar lines superimposed as white lines. The epipolar geometry
has been estimated with the method proposed in Chapter 4. Bottom Row: (c) + (d)

Rectified images obtained by mapping the epipoles to infinity using the method of [HZ00].

2.4.1 The Projective Ambiguity

Assume that the fundamental matrix F has been determined from a set of image correspon-
dences, then we can extract a pair of canonical camera matrices as [LV96, HZ00, FLP01]

P = (I3, 03) and P ′ = ([e′
h]×F, e

′
h) . (2.39)

The projective invariance of the fundamental matrix has the important implication that this
is not the only pair of camera matrices that corresponds to F . According to result (2.23),
any two camera pairs (P1, P

′
1) and (P2, P

′
2) corresponding to the same fundamental matrix

F , differ by a projective transformationH and their reconstructions are related byX2h =
H−1X1h. Because a projective transformation of the cameras and the structure does not
change the projected points, a reconstruction from image correspondences alone is at best
up to a projective ambiguity of three-dimensional space [Fau92, HGC92]. That it is in
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general impossible to recover all intrinsic and extrinsic parameters from the fundamental
matrix alone is also obvious from equality (2.28): Even if we take both calibration matrices
to be equal and assume that t is only known up to a scale factor, we still have a total number
of 10 camera parameters, whereas F has only 7 degrees of freedom.

2.4.2 The Essential Matrix

The essential matrix is the specialisation of the fundamental matrix for known internal pa-
rameters of the cameras and was introduced by Longuet-Higgins in [Lon81]. It describes
a mapping between points and epipolar lines in coordinates that have been normalised by
the camera calibration matrices. If K and K ′ are the calibration matrices of P and P ′,
then the normalised image points are obtained by x̂h = K−1xh and x̂′

h = K ′−1x′
h. Using

formulation (2.28) of the fundamental matrix as a function of the camera parameters we
can write the epipolar constraint in terms of the normalised image coordinates

x′⊤
h K ′−⊤[t]×RK−1xh = 0 ⇐⇒ (2.40)

x̂′⊤
h [t]×R x̂h = 0 ⇐⇒ (2.41)

x̂′⊤
h E x̂h = 0 . (2.42)

Definition 2.3. The essential matrix of a pair of cameras P = K(I3, 03) and P ′ =
K ′(R, t) is the 3× 3 matrix

E = [t]×R . (2.43)

Just as the fundamental matrix F = [e′
h]×P

′P+, the essential matrix E can be factored
as the product of a skew-symmetric matrix and a second non-singular matrix. Whereas,
the second matrix is not uniquely defined in the case of the fundamental matrix, it is
given by the rotation matrix between the cameras for the essential matrix. Moreover, the
skew-symmetric part of the essential matrix is related to the direction of the translation
vector t, making E only dependent on the camera pose. The essential matrix is therefore
a Euclidean description of the camera geometry, as opposed to the fundamental matrix,
which is a projective description.

2.4.2.1 Properties of the Essential Matrix

In the following we summarise the most important properties of the essential matrix E:

• The essential matrix is a homogeneous quantity with five degrees of freedom: three
from t and three from R, minus the scale ambiguity.

• The relation between the fundamental matrix and the essential matrix is given by

E = K ′ ⊤FK . (2.44)

From this relation it is clear that E inherits the rank two constraint from F .
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• A camera pair (P, P ′) that has been extracted from the essential matrix is correct up
to a displacement and a scaling of three-dimensional space. Let such a similarity

transformation be given by the 4× 4 matrix

H = λ

(
R3 t3

03⊤ 1

)
, (2.45)

whereR3 and t3 are a 3D rotation and translation and λ an overall scaling. Then it is
easily verified that (P, P ′) and (PH, P ′H) have the same calibration matrices. An
ambiguity up to a similarity transformation thus exists for calibrated cameras.

• An important property of the essential matrix is that it has two equal singular values
while the third one is zero. This means that the SVD of E can be written as

E = U diag (σ, σ, 0) V ⊤ . (2.46)

The zero singular value simply follows from the rank two constraint. To verify
further that an SVD with two equal non-zero singular values indeed represents an
essential matrix we consider the following factorisation of the diagonal matrix

diag (σ, σ, 0) = σ [t0]×R0 , (2.47)

where we have defined the generic skew-symmetric matrix [t0]× and the rotation
matrix R0 as

[t0]× =




0 1 0
−1 0 0
0 0 0


 and R0 =



0 −1 0
1 0 0
0 0 1


 . (2.48)

By substituting this factorisation into the SVD (2.46) and by taking into account that
U and V are orthogonal matrices, we can now write E as follows

E = σ
(
U [t0]×U

⊤
)

︸ ︷︷ ︸
[t]×

(
UR0 V

⊤
)

︸ ︷︷ ︸
R

. (2.49)

Since UR0 V
⊤ is still a rotation matrix and since it can be verified that U [t0]×U

⊤

is still a skew-symmetric matrix [GV89], the matrix E can be decomposed as the
product of a skew-symmetric matrix [t]× and a rotation matrix R. Per definition,
E is thus an essential matrix. At first glance this decomposition has 6 degrees of
freedom, 3 from U and V each. Due to the fact that the two non-zero singular
values are equal, however, the SVD is not unique and one degree of freedom is lost.

2.4.3 Reconstruction up to Scale

The essential matrix can be estimated from image correspondences for a pair of camera
matrices with known internal parameters. This can be achieved either directly from the
normalised epipolar constraint (2.42) or via the fundamental matrix with the help of rela-
tion (2.44). As opposed to the fundamental matrix, the camera pose can be extracted from
the factorisation of the essential matrix as the product of a skew-symmetric matrix and a
rotation matrix. We will see that this leads to four possible choices for the two camera
matrices, but that only one choice corresponds to a physical camera pair. Because it is not
possible to determine the baseline distance from the essential matrix, the computed 3D
reconstruction will differ from the true reconstruction by an overall scale factor.
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2.4.3.1 Recovery of the Camera Translation and Rotation

If we assume that the left camera is given by P = K(I3, 03) and that the SVD of the
essential matrix is given by E = Udiag (σ, σ, 0) V ⊤, we can recover the translational and
rotational parts of P ′ = K ′(R, t) from the factorisation (2.49). We start by noting that t is
the right null-space of the matrix [t×] and that therefore U [t0]×U

⊤t = 0 must hold. It can
be verified that this requirement is satisfied for the choice

t = U (0, 0, 1)⊤ = u3 , (2.50)

where u3 is the last column of U . By setting t to the last left singular vector of E we
have implicitly fixed the size of the baseline to |t| = 1. This is a valid choice since the
true magnitude of the translation can not be recovered due to the scale ambiguity of the
essential matrix. This ambiguity also applies to the sign of t and therefore

t = u3 or t = −u3 . (2.51)

Before moving on to the computation of R, we point out that the same factorisation as
(2.49) also holds for the transposed of the matrices [t0]× and R0. This is clear from in-
spection and it has been shown [Lon81, Har92, HZ00] that both factorisations of E in
terms of a skew-symmetric matrix and a rotation matrix are unique. As a consequence,
there are two possible choices for R

R = UR0 V
⊤ or R = UR⊤

0 V ⊤ . (2.52)

In total there are thus four rotation-translation pairs (R, t) that can be associated with the
same essential matrix, a result that was already mentioned by Longuet-Higgins [Lon81].
Hartley [Har92] further developed this and similar methods for retrieving the camera trans-
lation and rotation have been reported by Faugeras [Fau92, Fau93].

2.4.3.2 Selection of the Camera Matrices

From the previous results we obtain four possibilities for the camera matrix P ′:

P ′ = K ′(UR0V
⊤, u3) or (2.53)

P ′ = K ′(UR0V
⊤,− u3) or (2.54)

P ′ = K ′(UR⊤
0 V

⊤, u3) or (2.55)

P ′ = K ′(UR⊤
0 V

⊤,−u3) . (2.56)

The first two camera matrices only differ by the direction of the baseline. It can be shown
that the third camera differs from the first one by a rotation of 180◦ about the baseline. The
same is true for the fourth and the second camera. All four camera pairs (P, P ′) are illus-
trated in Fig. 2.5, where the rows show the pairs with reversed baseline and the columns
the pairs with reversed orientation. However, for only one of these configurations a recon-
structed point X will lie in front of both cameras. It is therefore sufficient to determine
the reconstruction of a single image correspondence and select the camera pair for which
its depth (2.13) with respect to both cameras is positive. This would correspond to the
camera pair (a) in the figure. It has to be noted that although the camera rotation has been
retrieved unambiguously from the essential matrix, the baseline has been normalised for
convenience. Moving the two camera centres along the baseline does indeed not change
the essential matrix but only leads to a scaling of the reconstructed scene.
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Fig. 2.5: The four possible camera pairs from the essential matrix (adapted from [HZ00]).
The camera pairs (a) + (b) and (c) + (d) correspond to a reversed baseline, while the pairs
(a) + (c) and (b) + (d) correspond to a reversed orientation.

Remark on the SVD of E. If we determine E from an estimate of F via Eq. (2.44),
the SVD of E will in practice be given by E = UDV ⊤, with D = diag(σ1, σ2, 0) and
σ1 ≥ σ2 ≥ 0. The closest true essential matrix in Frobenius norm E ′ is then obtained by
averaging σ1 and σ2 as E ′ = U diag((σ1+σ2)/2, (σ1+σ2)/2, 0)V

⊤ [HZ00]. To compute
the two camera matrices from the essential matrix, an expression for E ′ is, however, not
needed because only the matrices U and V ⊤ are used in the computation of P and P ′.
Since the singular vectors of E and E ′ are the same, the camera matrices can be retrieved
from the SVD of E without explicitly computing E ′. It is thus possible that E is not an
essential matrix, but this is not a requirement for the reconstruction method described here.

2.4.3.3 Reconstruction by Triangulation

For calibrated ortho-parallel cameras, the reconstruction of a 3D point from its two pro-
jections can be found via the explicit relation (2.37). For general (converging) cameras
with known camera matrices, on the other hand, we have no choice but to solve the sys-
tem (2.15). This system is an equality between homogeneous vectors and by keeping in
mind that xh and PXh have to be parallel, the unknown scale factor can be eliminated by
rewriting the equations with the help of the cross product [HZ00]

{
xh × PXh = 03

x′
h × P ′Xh = 03

. (2.57)

It now turns out that only four of the six equations of this new system are linearly indepen-
dent, but this still suffices to determine the four coordinates of Xh uniquely. In practice,
there will be errors in the measured point correspondences and in the estimated camera
matrices, such that a solution in a least squares sense is preferred.
Besides this simple linear algorithm, there are two triangulation methods that find the

unknown point X in a geometrically interpretable way. As can be seen in Fig. 2.6 (a),
triangulation comes down to finding the intersection of the optical rays through x and
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Fig. 2.6: (a) The geometrical interpretation of the triangulation process. (b) Finding the
closest point to the optical rays. (c) Minimising the reprojection error.

x′ (thereby closing the triangle CXC ′). Due to the earlier mentioned estimation errors,
these two rays generally do not intersect in space and an approximate solution for X is
needed. A first possible solution is depicted in Fig. 2.6 (b) and is given by the midpoint
of the line segment that intersects both optical rays orthogonally. This midpoint corre-
sponds to the 3D point that lies closest to both optical rays and it can be found in a linear
way [TV98]. A second solution exist in finding an image point pair (x̃, x̃′) that lies close
to the measured point pair (x,x′) and satisfies the epipolar constraint exactly. The optical
rays through x̃ and x̃′ will intersect in a unique point X that can be found by solving
the equation system (2.57) in x̃ and x̃′. This idea is shown in Fig. 2.6 (c). The latter
method minimises the so-called reprojection error between (x,x′) and (x̃, x̃′) [HZ00]
and is closely related to the non-linear technique described in Sec. 4.2.3.2.

2.5 Summary

In this chapter we have given an overview of the most important concepts of single view
geometry and uncalibrated and calibrated two view stereo geometry. We have introduced
three important projective entities that take on the form of three homogeneous matrices
and have explored their specific properties. We presented the triangulation equations that
allow to reconstruct a 3D point from its 2D projections and a pair of camera matrices and
concluded the chapter with one of the most significant results of calibrated stereo, namely
the recovery of the camera matrices up to scale via the essential matrix.



3 Variational Optical Flow

This chapter forms the second pillar of this thesis. It is devoted to the modelling and nu-
merical solution of variational optical flow methods. It will pave the road for the develop-
ment of novel energy-based correspondence methods and is crucial for the understanding
of the variational techniques presented in Chapters 5 and 6.
The chapter naturally break down into two parts. The first part, Sec. 3.1, addresses mod-

elling aspects and covers different choices of data and smoothness terms. In case of the
data term, the focus lies on the constancy of appropriate image features and its robustness
under noise and illumination changes. For the smoothness term, the preservation of se-
mantically important discontinuities in the flow field is of interest. Sec. 3.2 comprises the
second part of this chapter and deals with minimisation and discretisation aspects.
An important property of the correspondence methods examined in this thesis, is their

ability to cope with the large displacements that can arise from changes in viewpoint. In
this chapter, most important concepts of variational optical flow will be introduced by
example of a model prototype which will serve as a baseline method for the variational
techniques introduced later in this thesis. Contrary to small displacement approaches, such
as the classical optical flow method of Horn and Schunck [HS81], constancy assumptions
will appear in our prototypical functional in their original implicit form, and not as lin-
earised expressions. This will have its effect on the choice of the minimisation strategy, as
the resulting energy is generally not convex. An import aspect of the energy optimisation
therefore lies in breaking down the initial non-convex problem into convex sub-problems,
such that a minimiser can be found by means of established global solvers. Here, a coarse-
to-fine warping strategy plays a central role in avoiding meaningless local minima, while
an incremental computation assures convexity of the energy.

3.1 Modelling of Large Displacement Optical Flow

To formulate an energy for the variational computation of optical flow between two stereo
images, we start from a scalar-valued image sequence g(x, y, t) : Ω× [0,∞) → R, defined
over a rectangular image domain Ω ⊂ R

2. In general, g has been obtained by convolving
the original image sequence g0 with a Gaussian kernel Kσ of standard deviation σ

g = Kσ ∗ g0 . (3.1)

This presmoothing step removes noisy high frequency components in the input data and
guarantees that g ∈ C∞, which is a prerequisite for the well-posedness of any optical
flow method. Furthermore, the Taylor approximation of the constancy assumptions, that
is performed either early on in the model or later during minimisation, only holds for large
displacements if g has a certain degree of smoothness.

33
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Without loss of generality we now assume that the left and right image of an uncalibrated
stereo pair are embedded as two consecutive frames in the image sequence:

gl(x, y) = g(x, y, t) and gr(x, y) = g(x, y, t+ 1) . (3.2)

By defining the left and right image this way, we have removed the explicit dependency
on the time variable t. This makes sense in a stereo setting, because the optical flow
field is not regarded anymore as the instantaneous velocity of an image point, but as the
displacement between the projections of a static scene point onto the two stereo images.
The optical flow will be denoted by the two-component vectorw = (u, v)⊤ and is found

by minimising an energy functional of the general form

E(w) =

∫

Ω

(
ED(w) + α ES(∇w)

)
dx , (3.3)

where x = (x, y)⊤ is a point in the image domain Ω and∇w := (∇u,∇v)⊤. Energy (3.3)
consists of two terms: the data term ED(w), which relates the image data to the unknown
optical flow, and the smoothness term ES(∇w), which regularises the possibly non-unique
solution of the data term. While the data term formalises the assumption that characteristic
image features stay constant along the motion trajectory, thereby matching corresponding
objects in both stereo frames, the smoothness term imposes the assumption that neigh-
bouring points are likely to belong to the same object and thus undergo a similar motion.
The smoothness weight α > 0 serves as a regularisation parameter, the larger its value, the
stronger the penalisation of flow gradients and the smoother the flow field.

3.1.1 The Data Term

To retrieve corresponding structures in two images, we must impose constancy assump-
tions on suitable image features. These have to be chosen in accordance with the illumi-
nation conditions during acquisition and the prevailing type of motion. In the following,
we will design a data term that is based on a combination of two such image features and
which has proven to be successful in the context of motion estimation: the image bright-
ness and the image gradient. Additionally, we require our method to be able to handle
large displacements. Therefore we refrain from linearising the constancy assumptions, as
opposed to what is commonly done for small-displacement optical flow methods.

3.1.1.1 Constancy of the Image Brightness

The oldest and most frequently used constancy assumption in literature is the assumption
that the grey value of a pixel does not change along its path of motion. This assumption
has been used in the classical approaches of Horn and Schunck [HS81] and Nagel and
Enkelmann [NE86] and is only valid if the lighting conditions for the left and the right
frame are the same. The constancy of image brightness can be formulated as

gr(x+w)− gl(x) = 0 . (3.4)

To impose this constraint in an energy minimisation framework, we penalise deviations of
the grey value difference from zero by means of the quadratic data term [HS81, LK81]

ED(w) = |gr(x+w)− gl(x)|2 . (3.5)
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3.1.1.2 Constancy of the Image Gradient

The assumption that the image brightness is invariant under the occurring motion is often
violated. Particularly in real-world situations, constancy should be imposed on image fea-
tures that are less sensitive to illumination changes. An efficient strategy in this context is
the consideration of derivatives. To account for additive illumination changes in the scene,
we can for instance assume that the spatial brightness gradient does not change under
its displacement [TP84, Sch93, PBB+06]. Since the spatial gradient is a two-component
vector, we obtain the following two constraints

∂x gr(x+w)− ∂x gl(x) = 0, (3.6)

∂y gr(x+w)− ∂y gl(x) = 0 . (3.7)

Because specific knowledge on the illumination conditions is often not available or in-
complete, several constancy assumptions can be combined by means of a linear combina-
tion. A combination of the gradient and the grey value constancy assumption is obtained
by squaring the constraints (3.6) and (3.7) and adding them to the data term (3.5). This
gives rise to the following data term [BBPW04]

ED(w) = |gr(x+w)− gl(x)|2 + γ |∇gr(x+w)−∇gl(x)|2 , (3.8)

where γ a positive weight that steers the influence of the gradient constancy assumption.
Aside from an improved performance under varying illumination, the combination of sev-
eral image features has the advantage of including more information than a data term that
is based on a single constraint. We will see in Sec. 3.2.1.1 that equation (3.4) alone is not
sufficient to determine the two unknowns u and v uniquely, but that it is possible to obtain
a local solution of the data term by combining several independent data constraints.

3.1.1.3 Constancy of Other Image Features

To cope with additive illumination changes, higher order derivatives – such as the spatial
Hessian [PBB+06] – can be considered as well. Both the gradient and the Hessian contain
directional information and any constancy of these image features implies a constancy
on their orientation. As a consequence, these constraints are useful for the estimation
of translational or slow rotational motion, but might lead to slightly poorer results if fast
rotations are dominating [Bru06]. As a remedy, rotationally invariant features have been
proposed like the gradient magnitude and the Laplacian [RD96, PBB+06]. Despite the
theoretical shortcomings of the gradient constancy assumption, it has nevertheless proven
very successful in combination with the brightness constancy constraint. In this work we
will therefore opt for this combination and do not consider additional data constraints.

3.1.1.4 Non-quadratic Penalisation

The data term that we have considered so far penalises deviations from constancy assump-
tions quadratically. As a consequence, outliers – such as those arising from noise and
from violations of model assumptions in occluded areas – will have a large influence on
the estimation process. To provide the data term with robustness against these outliers it is
desirable to penalise them less severely [Hub81, HRRS86, RL87]. This can be achieved
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by using a non-quadratic penalisation function Ψ(s2), where s denotes the data constraint
[BA91, MP98a, BBPW04]. In the light of the Taylor linearisation of the data constraints
that will be carried out during the minimisation in Sec. 3.2.1.1, Ψ(s2) is generally chosen
to be convex in s. This is necessary to guarantee the convexity and well-posedness of the
resulting energy and to allow the use of globally convergent numerical solvers. An exam-
ple of a function that penalises its argument sub-quadratically is the regularised L1-norm

Ψ(s2) =
√
s2 + ǫ2 , (3.9)

where ǫ is a small positive constant. Replacing the quadratic penaliser in ED(w) by the
proposed L1-function, results in the data term

ED(w) = Ψ
(
|gr(x+w)− gl(x)|2 + γ |∇gr(x+w)−∇gl(x)|2

)
. (3.10)

3.1.1.5 Colour Information

In most cases, the use of colour images leads to slightly better results than for grey value
versions of the same images, because extra information is available for the matching pro-
cess. To integrate colour information in our methods, we consider a multi-channel variant
of the data term in which the three colour channels are coupled as follows:

ED(w)=Ψ

(
3∑

i=1

|gr i(x+w)− gl i(x)|2+γ
3∑

i=1

|∇gr i(x+w)−∇gl i(x)|2
)

, (3.11)

where g1, g2 and g3 represent the three RGB colour channels of an image g. Please note
that we seek a common displacement field for all three channels.

3.1.2 The Smoothness Term

We have seen that the data term might be insufficient to determine a locally unique so-
lution for the optical flow. To overcome this problem, variational methods make use of
an additional term that regularises the solution in these regions: the smoothness term or
regulariser. While the data term includes prior knowledge of the scene, the smoothness
term makes assumptions on the solution itself. The simplest optical flow regulariser, for
instance, – the quadratic regulariser of Horn and Schunck [HS81]

ES(∇w) = |∇u|2 + |∇v|2 (3.12)

– penalises deviations from smoothness of the flow field. As shown by Weickert and
Schnörr [WS01a], the design of the smoothness term is closely related to the modelling of
diffusion processes for vector-valued images. In fact, the smoothness term will give rise to
a diffusion process that is responsible for the propagation of neighbourhood information
to locations where no unique solution for the data term exists. This filling-in effect is also
the reason why variational optical flow methods give dense flow fields as opposed to many
local methods that produce incomplete or sparse displacement fields. Because we consider
a two-image stereo setup in this thesis, we will only focus on spatial regularisers and not
on spatial-temporal regularisers that assume smoothness over multiple frames.
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3.1.2.1 The Euler-Lagrange Equations

According to the calculus of variations [Els61, GF00], a minimiser (u, v)⊤ of the en-
ergy (3.3) necessarily has to fulfil the Euler-Lagrange equations. They are given by the
system of partial differential equations (PDEs)

0 = ∂u ED − α
(
∂x (∂ux

ES) + ∂y (∂uy
ES)
)
, (3.13)

0 = ∂v ED
︸ ︷︷ ︸
data

(reaction)

−α
(
∂x (∂vx ES) + ∂y (∂vy ES)
︸ ︷︷ ︸

smoothness
(diffusion)

)
, (3.14)

with homogeneous Neumann (reflecting) boundary conditions. An alternative way of
looking at these equations is by interpreting them as the steady state of a diffusion-reaction
system of a vector-valued image (u, v)⊤, where the diffusion part results from the smooth-
ness term ES and the reaction part from the data term ED. In [WS01a] this relation is used
to classify the different regularisers depending on the type of diffusion process that they
induce. In the following we will take a closer look at this classification.

3.1.2.2 A Classification of Spatial Regularisers for Optical Flow

The simple Horn and Schunck regulariser can be related to homogeneous diffusion and
comes down to a Gaussian blurring of the optical flow components. As a consequence,
the motion field estimated with this regulariser will be smoothed equally in all directions,
resulting in less sharp and dislocated flow edges. For good results, it is of course necessary
that the semantically important edges are preserved during estimation and that smoothing
across flow discontinuities is inhibited as much as possible. Table 3.1 gives an overview
of discontinuity preserving regularisers and their corresponding diffusion processes based
on [WS01a] and [ZBW11]. In the following we will describe them in more detail.

Flow-driven Isotropic Regularisers. Flow-driven regularisers take into account the dis-
continuities of the unknown displacement field and introduce a feedback of the evolving
flow into the smoothing process. One way of achieving this effect is by replacing the
quadratic penaliser of the homogeneous smoothness term (3.12) by a non-quadratic func-
tion Ψ(s2) [SH89, Sch94]. Thus, we obtain the isotropic flow-driven regulariser

ES(∇w) = Ψ
(
|∇u|2 + |∇v|2

)
. (3.15)

As can be seen in Table 3.1, this regulariser is associated to non-linear diffusion with
a scalar-valued diffusivity function Ψ′(s2). The diffusivity is positive and generally de-
creasing in s in order to reduce the amount of smoothing at high gradient locations. The
corresponding diffusion part of the Euler-Lagrange equation for the u-component is

div
(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u
)

. (3.16)
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Flow-driven Anisotropic Regularisers. The scalar valued diffusivity Ψ′(s2) does not
contain any directional information and does not distinguish between smoothing across
or along flow edges. While diffusion across discontinuities is often not desired, smooth-
ing along them can be advantageous, especially with respect to noisy boundaries. Such
anisotropic behaviour can be obtained by means of a diffusion tensor D which steers the
direction and intensity of the local diffusion process. Following the ideas of Weickert and
Schnörr [WS01a], a suitable diffusion tensor is for instance given by

D(∇u,∇v) = Ψ′(∇u∇u⊤ +∇v∇v⊤) :=

2∑

i=1

Ψ′(µi) vi v
⊤
i , (3.17)

where µ1 and µ2 are the eigenvalues and v1 and v2 the eigenvectors of the 2 × 2 tensor
∇u∇u⊤ + ∇v∇v⊤. While v1 and v2 represent the orthogonal directions of highest and
lowest contrast in the flow field, µ1 and µ2 represent the corresponding contrast values. Ac-
cording to definition (3.17), the tensor-valued diffusivity function Ψ′(∇u∇u⊤+∇v∇v⊤)
applies the diffusivity Ψ′(s2) to the eigenvalues of its argument, while keeping its eigen-
vectors fixed. This way, a diffusion tensor is obtained that mainly inhibits smoothing
across dominant flow features i.e. in the direction of highest contrast, but much less along
edges. The resulting diffusion process can be obtained by replacing the scalar-valued dif-
fusivity in the divergence expression (3.16) by the diffusion tensorD:

div (D ∇u) = div
(
Ψ′
(
∇u∇u⊤ +∇v∇v⊤

)
∇u
)

. (3.18)

The corresponding flow-driven anisotropic regulariser ES is listed in Tab. 3.1.

Remark on the Diffusion Tensor Notation. By writing divergence expression (3.16) as

div
(
Ψ′
(
|∇u|2 + |∇v|2

)
I2 ∇u

)
, (3.19)

with I2 the 2 × 2 identity matrix, we can also write isotropic diffusion in a common
divergence form div (D ∇u). As a result, both isotropic and anisotropic regularisers can
be classified by the diffusion tensor of their corresponding vector-valued diffusion process.

Image-driven Isotropic andAnisotropic Regularisers. Image-driven regularisers work
along the same line as flow-driven regularisers, but adapt their smoothing behaviour to
edges in the image data instead of edges in the evolving flow field. Isotropic [AELS99],
as well as anisotropic [Nag83] techniques have been proposed, and both give rise to linear
diffusion processes with a locally varying but constant diffusivity function or diffusion ten-
sor. A notable example of an image-driven anisotropic technique is the method of Nagel
and Enkelmann [Nag83, NE86], which uses the regularised projection matrix

D(∇gl) =
1

|∇gl|2 + 2ǫ2

(
∇g⊥l ∇g⊥l

⊤
+ ǫ2I2

)
, (3.20)

as diffusion tensor. Here,∇g⊥l is a vector perpendicular to∇gl and ǫ a small regularisation
constant. While image-driven techniques can give very sharp and well localised flow
boundaries, they have the disadvantage of oversegmentation artifacts. This is because not
all image edges coincide with flow edges, such as in the presence of texture.
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Tab. 3.1: A classification of optical flow regularisers based on their corresponding vector-
valued diffusion process (adapted from [WS01a], [ZBV+08] and [ZBW11]).

optical flow regulariser
ES

diffusion tensor D of the
vector-valued diffusion process

div (D ∇u)

flow-driven
isotropic
[Sch94]

Ψ
(
|∇u|2 + |∇v|2

)
Ψ′
(
|∇u|2 + |∇v|2

)
I2

flow-driven
anisotropic
[WS01a]

trΨ
(
∇u∇u⊤ +∇v∇v⊤

)
Ψ′
(
∇u∇u⊤ +∇v∇v⊤

)

image-driven
isotropic
[AELS99]

Ψ′
(
|∇gl|2

) (
|∇u|2 + |∇v|2

)
Ψ′
(
|∇gl|2

)
I2

image-driven
anisotropic
[Nag83]

∇u⊤D(∇gl) ∇u

+∇v⊤D(∇gl) ∇v

1
|∇gl|2+2ǫ2

(
∇g⊥l ∇g⊥l

⊤
+ ǫ2I2

)

flow- and
image-driven
anisotropic
[ZBW+09]

Ψ
(
(r⊤1 ∇u)2 + (r⊤1 ∇v)2

)

+(r⊤2 ∇u)2 + (r⊤2 ∇v)2
Ψ′
(
(r⊤1 ∇u)2 + (r⊤1 ∇v)2

)
r1r

⊤
1 + r2r

⊤
2

PDE based
flow-driven
anisotropic
[ZBV+08]

– Ψ′
(
Kρ ∗

(
∇uθ∇u⊤θ +∇vθ∇v⊤θ

))

Regularisers that Extend the Classification of Weickert and Schnörr. An anisotro-
pic smoothness term that adapts its smoothing directions to the image structure, but steers
its smoothing strength with respect to the flow contrast, was presented by Sun et al.

[SRLB08] in a discrete setting. Such regularisation behaviour can be classified as joint
image- and flow-driven and can produce sharp flow edges without the effect of overseg-
mentation. In contrast to the regulariser of Nagel and Enkelmann, which uses ∇g⊥l for
directional information, the smoothness term of Sun et al. obtains a more robust estimate
of the local direction by analysing the eigenvectors of the structure tensor [FG87]

Kρ ∗
(
∇gl∇g⊤l

)
, (3.21)
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with an integration scale ρ > 0. A first remark with respect to this type of regularisation, is
that the directional information from the structure tensor is not consistent with the imposed
brightness and gradient constraints of the data term. It is therefore more natural to take
into account the directional information provided by the data constraints and steer the
regularisation process with respect to constraint edges instead of image edges. To this
end, Zimmer et al. [ZBW+09, ZBW11] recently proposed to additionally include gradient
channel information and analyse the eigenvectors ri, i ∈ {1, 2} of

Kρ ∗
( (

∇gl∇g⊤l
)
+ γ

(
∇glx∇g⊤lx +∇gly∇g⊤ly

) )
. (3.22)

This regularisation tensor can be regarded as a generalisation of the structure tensor which
is complementary to the data term (3.8). The regulariser of Zimmer et al. then reads

ES(∇w) = Ψ
(
(r⊤

1 ∇u)2 + (r⊤
1 ∇v)2

)
+ (r⊤

2 ∇u)2 + (r⊤
2 ∇v)2 , (3.23)

where the regularisation direction is now adapted to the constraint directions r1 and r2,
whereas the magnitude of the regularisation depends on the flow contrast encoded in the
directional derivatives r⊤

i ∇u and r⊤
i ∇v. Since, the data term mainly constrains the flow

in the direction of the largest eigenvalue of the regularisation tensor, a single robust penal-
isation in r1-direction is proposed. In the orthogonal r2-direction, a quadratic penalisation
ensures a strong filling-in effect of missing information. The separate penalisation of both
directions additionally ensures rotational invariance in the smoothness term. For a unified
formulation of all previously mentioned smoothness terms using the regularisation tensor
notation and for an extension to colour images we refer to [ZBW11].

Smoothing Strategies that Do not Fit the Classification of Weickert and Schnörr.

For flow-driven anisotropic optical flow, the diffusion tensor (3.17) includes a coupling
between the two flow components u and v of the displacement field. This way, the desired
anisotropic behaviour is ensured because the eigenvectors v1 and v2 of the structure detec-
tor ∇u∇u⊤ +∇v∇v⊤ are in general not parallel to the gradients of u and v. Inspired by
the diffusion filter of [Wei94b], one could improve the anisotropic behaviour of the tensor
∇u∇u⊤+∇v∇v⊤ in two ways: (i) By regularising the components u and v by a Gaussian
convolution of standard deviation θ, staircaising artifacts and problems with noise can be
reduced [CLMC92]. (ii) By integrating neighbourhood information via a convolution of
the tensor entries with a Gaussian kernel of standard deviation ρ, we can overcome un-
desired cancellation effects in the gradients ∇uθ and ∇vθ. Taking these extensions into
account, the resulting diffusion tensor would take on the form

D(∇uθ,∇vθ) = Ψ′
(
Kρ ∗

(
∇uθ∇u⊤

θ +∇vθ∇v⊤θ
) )

. (3.24)

Originally proposed in the setting of one dimensional stereo matching [ZBV+08], this
type of diffusion process can only be formulated within the PDE framework of the Euler-
Lagrange equations. Because of the Gaussian regularisation of the unknowns, a corre-
sponding energy formulation is not known and consequently such PDE based flow-driven

anisotropic smoothing falls outside the classification of Table 3.1. PDE based design can
lead to more powerful smoothing strategies that have shown their benefit in the context of
image denoising [Wei94b, Wei00] and PDE based inpainting [GWW+05].
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3.1.2.3 The Diffusivity Function

An appropriate choice for Ψ(s2) is the previously introduced L1-norm (3.9) [BBPW04].
It corresponds to the well known total variation (TV) diffusivity [ROF92] given by

Ψ′(s2) =
1

2
√
s2 + ǫ2

. (3.25)

Other choices for the diffusivity can even lead to an enhancement of flow edges due to
the backward diffusion that they might induce. An example of this type of function is the
Perona-Malik diffusivity [PM87, PM90] with contrast parameter c > 0

Ψ′(s2) =
c2

s2 + c2
. (3.26)

3.1.3 Our Model Prototype

The model that will serve as an example of variational optical flow in this chapter and
that will form the basis for the design of novel correspondence methods in this thesis, is
the method proposed by Brox et al. and Papenberg et al. [BBPW04, PBB+06]. This
model prototype integrates four successful concepts that add to its robustness and high
accuracy: (i) Firstly, it combines the brightness and gradient constancy assumptions to
obtain optimal performance in the presence of additive illumination changes. (ii) These
constancy assumptions are expressed as an implicit dependency of the optical flow on the
image data, which allows a correct treatment of large displacements. (iii) To render the
model more robust with respect to noise and occlusions, a joint non-quadratic penalisation
function based on the L1-norm is applied to the combined data constraints. (iv) Finally,
this method makes use of an isotropic flow-driven regularisation strategy based on the total
variation, which allows for the preservation of meaningful discontinuities in the flow field.
We can combine these four concepts in a single variational framework by joining the

data term (3.10) and the smoothness term (3.15) into one energy functional

E(w) =

∫

Ω

(
Ψ
(
|gr(x+w)− gl(x)|2 + γ |∇gr(x+w)−∇gl(x)|2

)

+ αΨ
(
|∇w|2

) )
dx , (3.27)

where the flow gradient |∇w|2 := |∇u|2 + |∇v|2. In both the data term and the smooth-
ness term,Ψ is the regularised L1 penaliser (3.9) with ǫ = 0.001. It has to be noted that we
use a variant of the method of Brox et al. with spatial regularisation, and not with spatio-
temporal regularisation as proposed originally in [BBPW04]. In this thesis we will further
exploit colour information if it is available. For experiments with colour sequences we will
therefore replace the data term in the energy above by its multi-channel version (3.11). For
modelling purposes and for describing the minimisation and discretisation of the energy,
however, we will adhere to the grey-value formulation for simplicity. Extending the solu-
tion strategies to multiple image channels is in all cases straightforward.
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While the method above will serve as our baseline algorithm for the development of
novel correspondence methods, we will additionally integrate our ideas into a more so-
phisticated optical flow method for the experiments of Sec. 5.2. This method goes back
to Zimmer et al. [ZBW11] and applies a separate robustification of the brightness and
gradient constancy assumptions in the data term. In addition, it incorporates the flow- and
image-driven anisotropic regularisation of (3.23) and includes an automatic estimation of
the smoothness weight. The use of this recent technique will serve as an illustration that
our modelling ideas are not limited to a specific variational method, but that they can be
directly integrated into more advanced optical flow approaches as well.

3.2 Minimisation and Numerical Solution

The energy functional of our optical flow prototype (3.27) has one important property that
has a major influence on the minimisation strategy that we will use: the desired flow field
depends implicitly on the data term. This raises two problems that we have to overcome

• Multiple Local Minima. The proposed energy functional will in general be non-

convex. As a result there will be multiple local minima, aside from the global mini-
mum that we are looking for. Since the Euler-Lagrange equations only constitute a
necessary condition for a minimiser, they will be satisfied by all minima and have
thus no unique solution. As a consequence, gradient descent-based methods are no
longer globally convergent and might find the minimum closest to the initialisation.

• Implicit Terms. If we derive the Euler-Lagrange equations of the energy functional,
we obtain terms that depend implicitly on the optical flow. These terms can not be
discretised by standard schemes and have to be made explicit in the unknowns.

While there is no general consensus on how to proceed in the case of multi-modal func-
tionals, the most common approach is to combine an incremental computation of the opti-
cal flow with a coarse-to-fine multi-scale approach. An incremental computation assumes
that an initial estimate of the flow is known, such that the original implicit constraints can
be approximated by a series of constraints that are linearised with respect to an unknown
flow increment. Embedding this approach in a coarse-to-fine framework then solves the
linearised problem for successively smoothed representations of the input images. In this
context, it is usually assumed that the linearised constancy assumptions are valid at the
coarsest image scale, and that the solution can be refined henceforth by an incremental
computation on the subsequently finer scales. More important, the hierarchical multi-
scale procedure will reduce the chance of getting trapped in erroneous local minima since
small local minima in the energy tend to vanish at coarse image scales. Two examples of
coarse-to-fine minimisation are shown in Fig. 3.1. A non-hierarchical minimisation of the
original energy will easily get trapped in a local minimum if the initialisation is bad. This
is illustrated by the red arrow. With the help of an increasingly coarse scale representation
of the original problem, the global minimum can be found or at least approximated suffi-
ciently well. In practice, the solution on the current scale will then serve as an initialisation
on the next finer scale, a process that is illustrated by the green arrows.
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global minimum global minimum

initialisation initialisation

local
minimum

local
minimum

good local minimum

(a) (b)

Fig. 3.1: Coarse-to-fine minimisation of a non-convex energy functional (adapted from
[Bru06]). Red: Non-hierarchical minimisation of the original energy. Green: Coarse-to-
fine minimisation. (a) Global minimum found. (b) Useful local minimum found.

3.2.1 Coarse-to-fine Warping Strategies

With respect to the incremental coarse-to-fine estimation of the optical flow, two strate-
gies are often considered: (i) a fixed point iteration on the Euler-Lagrange equations
[BBPW04] or (ii) the approximation of the original functional by a series of energies
on every scale level [MP98a, MP02]. The first strategy starts from the Euler-Lagrange
equations of the original energy and introduces a semi-implicit iteration scheme in these
equations. The coarse-to-fine strategy is then embedded in a fixed point iteration on the
Euler-Lagrange equations and all implicit expressions are linearised within this fixed point
iteration. The second strategy formulates the energy functional directly in terms of the un-
known flow increments. Linearisation is then performed within the functional itself and a
minimiser is found for each scale level. Because the latter strategy requires a compensa-
tion of the images for the already computed motion field, a so-called image warping, such
techniques are also known as warping methods. It has been shown in [BBPW04] that both
incremental coarse-to-fine strategies are related and that the warping method can be de-
rived as a hierarchical fixed point iteration on the Euler-Lagrange equations for our specific
optical flow prototype (3.27). For some variational models in this thesis, however, – such
as the models described in Chap. 6 – it is difficult to derive the Euler-Lagrange equations
without first reformulating the energy in terms of the flow increments in a coarse-to-fine
framework. To adopt a common strategy for the minimisation of all models in this thesis,
we will therefore stick to the second warping strategy.

In the following we discuss how the energy will be formulated on each scale level and
how the minimisation is embedded in the coarse-to-fine framework. Assuming that a
solution for the optical flow w = (u, v)⊤ is available from a coarser scale, we aim at
expressing the total energy in terms of an unknown small flow increment dw = (du, dv)⊤.
To achieve this, we first resolve the data term, which depends implicitly on the optical flow,
and introduce a tensor notation that makes the convexity of the resulting energy explicit.
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3.2.1.1 Linearisation in the Data Term: The Motion Tensor

Let us first discuss the differential form of the data term. Using a first order Taylor expan-
sion at the warped image location x +w, we can linearise the brightness difference with
respect to the flow increment dw and obtain the approximation

gr(x+w+dw)−gl(x) ≈ gr(x+w)+∂x gr(x+w) du+∂y gr(x+w) dv−gl(x) . (3.28)

If we introduce the following abbreviations

grx = ∂x gr(x+w) , gry = ∂y gr(x+w) , gz = gr(x+w)− gl(x) , (3.29)

we can write the linearised term in (3.28) as an inner product

j⊤dh = grxdu+ grydv + gz , (3.30)

where we have defined the homogeneous motion increment dh := (du, dv, 1)⊤ and the
extended gradient vector

j := (grx, gry, gz)
⊤ . (3.31)

The linearised brightness constancy assumption can now be expressed by the equation

j⊤dh = 0 . (3.32)

This equation can be seen as a large displacement variant of the classical optical flow con-

straint (OFC) of Horn and Schunck [HS81], as given by Eq. (1.4). Only this time, the
temporal brightness difference is replaced by gz, which can be understood as a brightness
difference along the motion trajectory. It is clear that equation (3.32) expresses the con-
straint that the point (du, dv)⊤ has to lie on the line represented by j. It does, however,
not tell us where exactly on this line the point has to lie. Since every point on the line is
a valid flow vector, the OFC alone is not sufficient to determine a unique local solution.
This problem is known as the aperture problem [BPT88].
Introducing the additional abbreviations

grxx = ∂xx gr(x+w) , grxy = ∂xy gr(x+w) , gryy = ∂yy gr(x+w) (3.33)

gxz = ∂x gz , gyz = ∂y gz , ,(3.34)

we can also write the two gradient component differences as inner products

∂x gr(x+w + dw)− ∂x gl(x) ≈ j⊤x dh, (3.35)

∂y gr(x+w + dw)− ∂y gl(x) ≈ j⊤y dh , (3.36)

where we have defined the vectors

jx := ∂x j = (grxx, grxy, gxz)
⊤ and jy := ∂y j = (grxy, gryy, gyz)

⊤ . (3.37)

The linearised gradient constancy assumption can thus be expressed by the two equations

j⊤x dh = 0, (3.38)

j⊤y dh = 0 . (3.39)
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Now, it immediately becomes clear why it can be advantageous to include extra constancy
assumptions in the data term: Each linearised assumption adds a new line constraint to the
problem, which might help to disambiguate the solution.
If we now insert the three line constraints into the data term of energy (3.27), we can

simplify the notation by writing the squared inner products as a quadratic form:

ED(dw) = Ψ
(
( j⊤dh )

2 + γ (j⊤x dh )
2 + γ (j⊤y dh )

2
)
, (3.40)

= Ψ
(
d⊤
h J dh

)
. (3.41)

Here, the symmetric 3× 3 motion tensor [BW05]

J := j j⊤ + γ jx j
⊤
x + γ jy j

⊤
y , (3.42)

provides coupling between the components of the flow increment. The motion tensor for
the multi-channel data term (3.11) can be simply obtained by adding the motion tensors of
each of the three image channels, as illustrated in [ZBW+09].

The Rank of the Motion Tensor. It has been shown in [Bru06] that the rank of the 2×2
submatrix of J containing the spatial derivatives determines the type of solution provided
by the data term. Only for a full rank, the solution is unique, and this corresponds to
at least two independently varying image features. For a rank smaller than two, we are
confronted with the aperture problem: The solution has either an ambiguity along a line –
as in the case of a single data constraint – or within the whole image plane – as in the case
of homogeneous image regions (where the first two entries of j, jx and jy are zero).

3.2.1.2 The Differential Form of the Energy

If we combine the above data term with linearised constraints and the smoothness term
expressed in function of the flow increment, we obtain the following differential form of
the energy that has to be minimised at each level of the coarse-to-fine approach

E(dw) =

∫

Ω

(
Ψ
(
d⊤
h J dh

)
+ αΨ

(
|∇(w + dw)|2

))
dx .

Deriving the Euler-Lagrange equations of E(dw)with respect to dw leads to the following
system of coupled partial differential equations:

0 = Ψ′
(
d⊤
h J dh

)
(J11 du+ J12 dv + J13)

−α div
(
Ψ′
(
|∇(w + dw)|2

)
∇(u+ du)

)
, (3.43)

0 = Ψ′
(
d⊤
h J dh

)
(J12 du+ J22 dv + J23)

−α div
(
Ψ′
(
|∇(w + dw)|2

)
∇(v + dv)

)
. (3.44)

Here, Jkl, for k, l ∈ {1, 2, 3}, denotes the kl-th entry of J . It has to be noted that these
equations are non-linear due to the function Ψ′. Because Ψ′ is strictly convex, however,
they have a unique solution which can be found by any globally convergent algorithm.
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3.2.1.3 Hierarchical Minimisation

To embed the solution of the Euler-Lagrange equations in a coarse-to-fine framework, we
use a representation of the images gr and gl that are smoothed at different scales. If we
associate a variable k to the current image scale, we can start the coarse-to-fine refinement
with a very smooth version of the images at the coarsest scale and use successively less
smoothed image representations in the subsequent iterations. The smoothed images can
for instance be obtained by convolving gr and gl with a Gaussian kernel of decreasing
standard deviation or by using downsampled versions of the original images with a steadily
increasing resolution. If the equation system (3.43) - (3.44) has been solved for the motion
increments duk and dvk on the current image scale (gkr , g

k
l ), we can update the total optical

flow by adding the motion increments to the already known flow

wk+1 = wk + dwk . (3.45)

After this update has been performed, we move on to the next image scale (gk+1
r , gk+1

l ),
where the motion tensor is recomputed by warping gk+1

r with the new estimate wk+1.
The Euler-Lagrange equations (3.43) - (3.44) are then solved again, but this time for the
motion increments duk+1 and dvk+1. Adding these increments to wk+1 gives us a new
update for the total optical flow. This process of successive refinement through smoothed
image representations is repeated until we reach the original image scale.
Algorithmically, we implement the coarse-to-fine framework by means of a multi-reso-

lution technique [BAHH92, BA96, MP98b] that downsamples the image data to make
use of the different resolution levels. Because of the smaller image sizes on the coarser
levels, this approach is more efficient than the well-known scale-space strategy [AWS99],
that considers Gaussian smoothed variants of the input data at a constant resolution. To
resample the original images to a coarser resolution level and to interpolate the total optical
flow w + dw to the next finer level, we apply an area-based interpolation scheme as in
[BWKS05]. The image warping by the known optical flow w is realised by a backward
image registration approach that is based on bilinear interpolation [MP98a, BBPW04].
We further reduce the resolution from one level to the next according to a downsampling
factor η ∈ (0, 1). For higher values (η ∈ [0.90, 0.95]) we generally obtain more accurate
results, while small values (η ∈ [0.5, 0.7]) allow for a faster computation. In this thesis the
emphasis is on accuracy rather than on run time and we therefore set η = 0.95.

3.2.2 Discretisation

In the previous section we have seen how the non-convex energy of our optical flow proto-
type can be minimised in a coarse-to-fine framework. By expressing the energy in function
of the unknown optical flow increments, we obtained a system of Euler-Lagrange equa-
tions for every level of the multi-resolution pyramid. In this section we present a discrete
version of this coupled system of non-linear partial differential equations and discuss how
its structure can help to find a solution by means of efficient numerical algorithms.
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Tab. 3.2: Discretisations of averaging and differential operators (adapted from [Bru06]).

M±
x

(
[z]i,j

)
:=

[z]i±1,j+[z]i,j
2

one-sided averaging

M±
y

(
[z]i,j

)
:=

[z]i,j±1+[z]i,j
2

D±
x

(
[z]i,j

)
:= ± [z]i±1,j−[z]i,j

h
one-sided differences

D±
y

(
[z]i,j

)
:= ± [z]i,j±1−[z]i,j

h

Dx

(
[z]i,j

)
:=

[z]i+1,j−[z]i−1,j

2h
central differences

Dy

(
[z]i,j

)
:=

[z]i,j+1−[z]i,j−1

2h

D2
x

(
[z]i,j

)
:= 1

2

(
D+
x

(
[z]i,j

))2
+ 1

2

(
D−
x

(
[z]i,j

))2
squared differences

D2
y

(
[z]i,j

)
:= 1

2

(
D+
y

(
[z]i,j

))2
+ 1

2

(
D−
y

(
[z]i,j

))2

gradient magnitude
∣∣D2

(
[z]i,j

)∣∣ :=
√

D2
x

(
[z]i,j

)
+ D2

y

(
[z]i,j

)

3.2.2.1 Discretisation Aspects

To solve the Euler-Lagrange equations numerically, we discretise them by means of finite
differences [MG80, EBY99]. To this end we consider the unknown increments du(x, y)
and dv(x, y) on a rectangular pixel grid with a grid spacing of hx in x-direction and hy in
y-direction. In this thesis we assume square pixel sizes such that we can set hx = hy = h.
We further denote by [ du ]i,j and [ dv ]i,j the approximations of du and dv at pixel location
(i, j), with i= 1, . . . , nx and j = 1, . . . , ny. The total number of pixels is thus given by
n=nx×ny. It has to be noted that in this section the image size n refers to the resampled
image size on the current level of the multi-resolution pyramid. Due to the notational
burden, however, we will refrain from indexing all variables by the current level.
Before we move on to a discretised version of the Euler-Lagrange equations, we first

discuss the discretisation of the differential operator arising from the smoothness term. In
the most general case, this differential operator can be written as a divergence expression
involving a symmetric 2× 2 diffusion tensor

div(D∇z) = ∂x (D11 ∂x z) + ∂x (D12 ∂y z) + ∂y (D12 ∂x z) + ∂y (D22 ∂y z) . (3.46)

The terms ∂x (D11 ∂x z) and ∂y (D22 ∂y z) are discretised by backward and forward differ-
ences, while ∂x (D12 ∂y z) and ∂y (D12 ∂x z) are discretised by central differences

∂x (D11 ∂xz) ≈ D−
x

(
M+

x ( [D11]i,j) D
+
x ( [z]i,j )

)
, (3.47)

∂x (D12 ∂yz) ≈ Dx

(
[D12]i,j Dy ( [z]i,j )

)
, (3.48)

∂y (D12 ∂xz) ≈ Dy

(
[D12]i,j Dx ( [z]i,j )

)
, (3.49)

∂y (D22 ∂yz) ≈ D−
y

(
M+

y ( [D22]i,j) D
+
y ( [z]i,j )

)
, (3.50)
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where [Dkl]i,j for k, l ∈ {1, 2} denotes the discretised kl-th entry of the tensorD. The ap-
plied difference operators are clarified in Table 3.2. This finite difference approximation of
the divergence expression can be obtained by discretising the original energy [Wei96]. For
isotropic flow-driven regularisation, such as the one in our energy prototype, the diffusion
tensor is a diagonal matrix, more specificallyD = Ψ′

(
|∇(w+dw)|2

)
I2. In this case, the

discretisations (3.47) and (3.50) will result in a communication of the central pixel (i, j)
with its four neighbours in axial directions. In the case of anisotropic regularisation, the
mixed terms ∂x(D12 ∂yz) and ∂y(D12 ∂xz) have to be considered as well. These will re-
sult in an additional communication of the central pixel with its neighbours in diagonal
direction. To ensure a stable discretisation, which bounds over- and undershoots in the
solutions, the anisotropic stencil weights have to satisfy the non-negativity requirement.
Since this property is generally not guaranteed by the discretisation (3.47) - (3.50) we use
the anisotropic stencil proposed in [Wei96]. All spatial derivatives of the image data, used
in the computation of the motion tensor entries, are approximated using fourth-order finite
differences with stencil (1,−8, 0, 8,−1)/12h.

3.2.2.2 The Discrete Euler-Lagrange Equations

The discrete Euler-Lagrange equations, that correspond to our optical flow prototype, form
a system of non-linear equations in the unknowns [ du ]i,j and [ dv ]i,j . To analyse the
structure of this system, we first write the Euler-Lagrange equations (3.43) - (3.44) in
point-based notation for a pixel location (i, j). The equations for [ du ]i,j and [ dv ]i,j are

0 = [Ψ′
D]i,j [J11]i,j [ du ]i,j + [Ψ′

D]i,j [J12]i,j [ dv ]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ du ]̃i,j̃ − [ du ]i,j

)

h2

+ [Ψ′
D]i,j [J13]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ u ]̃i,j̃ − [ u ]i,j

)

h2
(3.51)

0 = [Ψ′
D]i,j [J12]i,j [ du ]i,j + [Ψ′

D]i,j [J22]i,j [ dv ]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ dv ]̃i,j̃ − [ dv ]i,j

)

h2

+ [Ψ′
D]i,j [J23]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ v ]̃i,j̃ − [ v ]i,j

)

h2
, (3.52)

for i = 1, . . . , nx and j = 1, . . . , ny. Here, Nl(i, j) denotes the set of the two neighbours
of the pixel (i, j) in the axis direction l, with l ∈ {x, y}. Further, [Ψ′

D]i,j and [Ψ′
S]i,j

denote the approximations of Ψ′
(
d⊤
h J dh

)
and Ψ′

(
|∇(w + dw)|2

)
respectively in the
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pixel (i, j). For the TV diffusivity (3.25), they can be computed as

[Ψ′
D]i,j =

1

2

√(
[ du ]i,j, [ dv ]i,j, 1

)
[J ]i,j

(
[ du ]i,j, [ dv ]i,j, 1

)⊤
+ ǫ2

, (3.53)

[Ψ′
S]i,j =

1

2
√∣∣D2

(
[ u ]i,j + [ du ]i,j

)∣∣2 +
∣∣D2
(
[ v ]i,j + [ dv ]i,j

)∣∣2 + ǫ2
, (3.54)

where [J ]i,j is the discrete approximation of the motion tensor and the discrete gradient
magnitude operator

∣∣D2
(
[z]i,j

)∣∣ is defined in Table 3.2. It has to be noted that the non-
linearity of the equation system (3.51)-(3.52) is due to the expressions [Ψ′

D]i,j and [Ψ′
S]i,j

that depend on the unknowns [ du ]i,j and [ dv ]i,j . The convexity of the corresponding
energy functional nevertheless guarantees a unique solution.

3.2.2.3 Structure of the Non-linear System

In the point-based Euler-Lagrange equations we have already gathered those terms that
directly depend on the unknown increments [ du ]i,j and [ dv ]i,j and those terms that only
depend indirectly on the increments via the expressions [Ψ′

D]i,j and [Ψ′
S]i,j . To see how

these dependencies influence the structure of the overall equation system we first arrange
the unknowns via a row-major ordering in two n× 1 vectors

du :=
(
[ du ]1,1, . . . , [ du ]nx,ny

)⊤
, (3.55)

dv :=
(
[ dv ]1,1, . . . , [ dv ]nx,ny

)⊤
. (3.56)

To keep an overview, we additionally introduce the following compact notations

u :=
(
[ u ]1,1, . . . , [ u ]nx,ny

)⊤
, (3.57)

v :=
(
[ v ]1,1, . . . , [ v ]nx,ny

)⊤
, (3.58)

jkl :=
(
[Jkl]1,1, . . . , [ Jkl ]nx,ny

)⊤
for k, l ∈ {1, 2, 3}, (3.59)

Jkl := diag
(
[Jkl]1,1, . . . , [ Jkl ]nx,ny

)
for k, l ∈ {1, 2, 3}, (3.60)

Ψ′
D(du,dv) := diag

(
[Ψ′

D]1,1, . . . , [Ψ
′
D]nx,ny

)
. (3.61)

The discrete Euler-Lagrange equation system can now be written as

((
Ψ′

D(du,dv)J11 Ψ′
D(du,dv)J12

Ψ′
D(du,dv)J12 Ψ′

D(du,dv)J22

)
− α

(
L(du,dv) 0n

0n L(du,dv)

))

︸ ︷︷ ︸
A(p)

(
du

dv

)

︸ ︷︷ ︸
p

+

(
Ψ′

D(du,dv) j13
Ψ′

D(du,dv) j23

)
− α

(
L(du,dv) 0n

0n L(du,dv)

)(
u

v

)

︸ ︷︷ ︸
c(p)

=

(
0n

0n

)

︸ ︷︷ ︸
b

, (3.62)
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whereL(du,dv) is the discrete version of the differential operator arising from the smooth-
ness term. It is a symmetric negative semidefinite n × n matrix that has a pentadiagonal
structure resulting from the five non-zero weights in the discretisation stencil of the di-
vergence expression [Wei94a]. By construction, the matrices Ψ′

D(du,dv), J11 and J22

are symmetric positive semidefinite and, as a result, the overall 2n × 2n system matrix
A shares this property as well [Bru06, SBK10]. For non-constant images one can even
show that A is positive definite, which means that it is invertible and that a unique solution
exists [Bru06]. It has to be noted that A has a very sparse structure and that there is only
a point-wise coupling (i.e. in each pixel) between du and dv via the off-diagonal block
J12 and a neighbourhood coupling (i.e. between the five neighbouring pixels) via the five
non-zero diagonals of L(du,dv). The remaining terms in Eq. (3.62) have been gathered
in the 2n×1 vector c, while the right hand side b is zero. If we represent the 2n unknowns
by the parameter vector p, we are thus solving a non-linear system of the form

f(p) = b , (3.63)

where the non-linear operator f can be split into a matrix operation and a vector addition

f(p) = A(p)p+ c(p) , (3.64)

that are both depending on the variable p. As we will see next, this particular structure
will grant us the possibility to approach the problem as a series of linear problems that can
be solved by means of established linear techniques.

3.2.3 Solvers

To solve the non-linear system of discrete Euler-Lagrange equations we extend the classi-
cal Gauß-Seidel method for solving linear systems of equations to the non-linear case and
make use of advanced multigrid schemes to speed up computation.

3.2.3.1 The Lagged Diffusivity Method

The non-linear dependencies that arise in the discrete Euler-Lagrange equations (3.62)
from the use of the robust functionΨ are collected in the matrix A(p) and the vector c(p).
If we now evaluate both operators A(p) and c(p) for an already known solution pk, we
can consider the following linear system

A(pk)pk+1 =
(
b− c(pk)

)
. (3.65)

Because the system matrix A(p) is symmetric positive definite for all p, it is invertible
such that the update pk+1 can be found by

pk+1 = A−1(pk)
(
b− c(pk)

)
. (3.66)

By doing so, we have actually introduced a fixed-point iteration with respect to the old
or lagged solution that decomposes the original non-linear problem in a series of linear
problems. This approach, which is often encountered in literature for solving systems of
non-linear equations, is called the lagged diffusivity method [KNPS68, FKN73, CM99].
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The linear system (3.65) that has to be solved at each fixed-point iteration step can be
written in point-based notation as

0 = [Ψ′
D]

k
i,j [J11]i,j [ du ]k+1

i,j + [Ψ′
D]

k
i,j [J12]i,j [ dv ]

k+1
i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ du ]k+1

ĩ,j̃
− [ du ]k+1

i,j

)

+ [Ψ′
D]

k
i,j [J13]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ u ]̃i,j̃ − [ u ]i,j

)
(3.67)

0 = [Ψ′
D]

k
i,j [J12]i,j [ du ]k+1

i,j + [Ψ′
D]

k
i,j [J22]i,j [ dv ]

k+1
i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ dv ]k+1

ĩ,j̃
− [ dv ]k+1

i,j

)

+ [Ψ′
D]

k
i,j [J23]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ v ]̃i,j̃ − [ v ]i,j

)
, (3.68)

for i = 1, . . . , nx and j = 1, . . . , ny. This system has to be solved for the unknowns
[ du ]k+1

i,j and [ dv ]k+1
i,j while keeping the expressions [Ψ′

D]i,j and [Ψ′
S]i,j fixed in the solu-

tions [ du ]ki,j and [ dv ]
k
i,j of the previous iteration step.

3.2.3.2 Basic Solver

A direct solution of the linear system (3.65) by inverting the system matrix A does not
come into consideration as the size of the problem would have severe repercussions on
memory requirement and computation time. Instead, various iterative methods exist that
speed up the computation by embedding the solution in a fixed-point iteration while replac-
ing the true inverse by a sufficiently good approximation that is cheap enough to determine.
Often this approximation is a triangular matrix, such that the system can be solved in every
iteration step by a simple point-wise forward substitution. The idea of iteratively solving
simplified versions of the original linear system, forms the basis for some of the most
frequently used relaxation techniques to date, including the Gauß-Seidel and Successive

Overrelaxation (SOR) method [You71]. The convergence of these methods is guaranteed
for any symmetric positive definite system matrix and the sparsity of our specific problem
furthermore allows for an optimal linear time complexity of O(n). Because of the better
smoothing behaviour of the classical Gauß-Seidel method of high error frequencies, we
will prefer this method over SOR in view of a multigrid extension afterwards.
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The Gauß-Seidel Relaxation. To formalise the Gauß-Seidel method for our linear sys-
tem (3.65), we denote by pi, 1 ≤ i ≤ 2n, the i-th entry of the parameter vector p and by
Aij(p), 1 ≤ j ≤ 2n the ij-th entry of the system matrix A(p). The update instruction for
the i-th unknown then reads

pk+1,m+1
i =

1

Aii(pk)

(
bi − ci(p

k)−
i−1∑

j=1

Aij(p
k) pk+1,m+1

j −
n∑

j=i+1

Aij(p
k) pk+1,m

j

)
, (3.69)

where m denotes the iteration index of the linear solver. Here, it is usually unnecessary
and computationally overly expensive to solve the linear system (3.65) exactly, because
the weights [Ψ′

D] and [Ψ′
S] have been computed for an old solution and we are thus only

solving an approximation to the true Euler-Lagrange equations. It is in fact more ad-
vantageous with respect to computational efficiency to only perform a few Gauß-Seidel
relaxation steps before moving on to the update of the lagged non-linear expressions
[WHS+01, Vog02, FSHW04]. In the extreme case one may even think of updating the
non-linear expressions after each iteration of the basic solver, in which case the solver
index m collapses to the lagged diffusivity iteration index k. This technique, where the
non-linear expressions are kept fixed for only one Gauß-Seidel iteration, is known as the
lagged-diffusivity method with frozen coefficients.

The Coupled Point Gauß-Seidel Relaxation. In this thesis we are additionally inter-
ested in exploiting the coupling that exists between the unknowns in the equation system.
With regard to this, we will perform in the forward substitution step a simultaneous update
of both flow increments du and dv in the same pixel. This variant of the Gauß-Seidel tech-
nique that computes the unknowns in a block-wise fashion is known as the coupled point

relaxation (CPR) method [Wes92]. To formalise the CPR method for our linear system,
we denote by pi, 1 ≤ i ≤ n, the 2× 1 vector that contains the two discretised flow incre-
ments that belong to a certain pixel i. This time, Aij(p) denotes the 2 × 2 sub-matrix of
A(p) that only contains those entries that relate to the two pixels i and j. Then, the CPR
iteration instruction with frozen coefficients for the i-th pixel can be formulated as

pk+1
i = A−1

ii (pk)

(
bi − ci(p

k)−
i−1∑

j=1

Aij(p
k)pk+1

j −
n∑

j=i+1

Aij(p
k)pk

j

)
. (3.70)

In essence we are thus solving a 2 × 2 equation system in every pixel. If we denote again
by (i, j) the location of a certain pixel in the image grid, we can write this system in
point-based notation as

(
[ du ]k+1

i,j

[ dv ]k+1
i,j

)
=

(
[M11]

k
i,j [M12]

k
i,j

[M12]
k
i,j [M22]

k
i,j

)−1(
[r1]

k
i,j

[r2]
k
i,j

)
, (3.71)
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for i = 1, . . . , nx and j = 1, . . . , ny. The matrix entries are given by

[M11]
k
i,j = [Ψ′

D]
k
i,j [J11]i,j + α

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
, (3.72)

[M22]
k
i,j = [Ψ′

D]
k
i,j [J22]i,j + α

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
, (3.73)

[M12]
k
i,j = [Ψ′

D]
k
i,j [J12]i,j , (3.74)

and the right hand side by

[r1]
k
i,j = − [Ψ′

D]
k
i,j [J13]i,j

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N−
l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ du ]k+1

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N+

l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ du ]k

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ u ]̃i,j̃ − [ u ]i,j

)
, (3.75)

[r2]
k
i,j = − [Ψ′

D]
k
i,j [J23]i,j

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N−
l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ dv ]k+1

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N+

l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ dv ]k

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ v ]̃i,j̃ − [ v ]i,j

)
, (3.76)

whereN−(i, j) is the set of neighbours of pixel (i, j) in the direction of the l-axis that have
already been updated (i.e. for which ĩ < i and j̃ < j) and N+(i, j) the set of neighbours
that still need to be updated (i.e. for which ĩ > i and j̃ > j).

3.2.3.3 Multigrid Methods

The equation systems in this thesis have in common that there only exists a local cou-
pling between the unknowns via the small neighbourhood used to discretise the differ-
ential operator (3.46). Due to the resulting slow exchange of information between con-
secutive iteration steps, classical relaxation techniques, such as the Gauß-Seidel method,
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have difficulties suppressing low error frequencies in the solution for this type of cou-
pling [Bra77, Hac85, BHM00]. As a consequence, these methods may exhibit poor con-
vergence behaviour and may require many iterations before producing an estimate that is
close enough to the true solution. As a remedy, hierarchical solvers have been developed
that solve additional coarse grid representations of the original equation system to achieve
better error reduction characteristics. Such multigrid techniques belong to the fastest nu-
merical schemes to date for solving linear and nonlinear systems of equations.

The V-cycle. Crucial to the idea of multigrid methods, is that the low frequency com-
ponents in the error – defined here as the difference between the current estimate and the
true solution – will be suppressed slowly by a Gauß-Seidel-like method, while higher fre-
quency components will be suppressed more efficiently. Since low frequency components
will reappear as higher ones on a coarser grid representation, however, they can in turn be
attenuated by applying the relaxation technique on multiple grid levels. It is important to
note that this frequency analysis only applies to the error of the solution and not to the so-
lution itself, as the desired optical flow is allowed to contain both low and high frequency
components. To improve the convergence behaviour of non-hierarchical solvers, multigrid
methods therefore introduce a correction step that estimates the error of the current fine

grid solution on a coarser grid level, and then correct the fine grid solution by this coarse
grid error. A two-grid correction cycle typically contains the following five steps:

1. Presmoothing Relaxation: High frequency components in the estimation error are
removed by performing a fixed number of CPR Gauß-Seidel iterations on the origi-
nal fine grid equation system.

2. Coarse Grid Transfer: Next, a coarse grid version of the equation system has to be
created. Since we are not interested in computing the actual optical flow at a coarser
level, but the error, we do not transfer the original equation system. Instead we
build a coarse grid version of the so-called residual equation system. The residual
equation system has as a solution the error of the current optical flow estimate and
can be derived as a modification of the original equation system [Bru06].

3. Coarse Grid Solution: The low frequency components that remain in the error after
the presmoothing relaxation step reappear on the coarser grid as higher frequencies.
These can now be attenuated by applying the basic CPR Gauß-Seidel solver to the
coarse version of the residual equation system.

4. Fine Grid Transfer and Correction: The estimated coarse grid error is transferred
back to the fine grid level and is used to correct the optical flow from the presmooth-
ing relaxation step. This is done by simply adding the error to the current estimate.

5. Postsmoothing Relaxation: Possible high frequency components that have been in-
troduced by transferring the coarse grid error to the fine grid are eliminated by per-
forming a final number of Gauß-Seidel iterations on the original equation system.
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Fig. 3.2: A two-grid
V-cycle.

A graphical representation of these five steps is shown in Fig. 3.2.
The two grid levels are represented by dotted horizontal lines and
the numbers correspond to the steps listed above. Each dot in the
graph denotes the execution of a number of relaxation steps, while
the red lines stand for the intergrid transfer operations. Because of
the shape of the two-grid correction cycle, it is generally referred
to as a V-cycle. It is of course possible to include more grid levels
than the two depicted here. In such case, a third grid would provide
a correction for the solution on the second grid and so on. In the
case of multiple resolution levels we can even think of performing
a second correction step on each grid level for improved accuracy.
This will give rise to a recursive scheme that is known as aW-cycle.

The Full Multigrid Cycle. For the best performance, however, we will additionally
apply a strategy that we have used before in the context of energy minimisation and embed
the V- or W-cycles in a coarse-to-fine framework. This means that we do not directly
start with our multigrid method on the finest grid level, but instead perform our correction
cycles at coarser levels and use the result as initialisation for the next finer one. Aside from
speeding up the computation by providing the V- and W-cycles with a good initialisation
on each grid level, this strategy has the additional benefit of avoiding bad local minima,
especially for nonlinear problems such as ours. This type of multigrid method is called
full multigrid and has a proven linear time complexity of O(n) for simple linear problems.
Although a full multigrid approach requires the creation and the solution of a large number
of equation systems, the overall speedup comes from the fact that less iterations of the
basic solver are required and that the equation systems on the coarser grid levels can be
solved much cheaper than the one on the finest grid. A graphical representation of a full
multigrid cycle using four grid levels and 2 W-cycles per level is depicted in Fig. 3.3 (b).

Nested Hierarchical Ideas. The hierarchical full multigrid method is meant as a fast
solver for the Euler-Lagrange equations. We keep in mind, however, that the Euler-
Lagrange equations have to be solved on each level of a hierarchical coarse-to-fine ap-
proach themselves (see Section 3.2.1.3). The big picture thus involves twomulti-resolution
pyramids as depicted in Fig. 3.3 – (a) one for the coarse-to-fine warping strategy and
(b) one for the full multigrid scheme. These two pyramids are generally not the same and
differ in the following way: (i) While the coarse-to-fine warping pyramid often requires a
downsampling factor of η = 0.9 or higher for good accuracy, a factor of η = 0.5 is already
sufficient for the multigrid pyramid. (ii) The coarse-to-fine pyramid furthermore consist
of resampled versions of the original images. The multigrid pyramid, on the other hand,
is rather a hierarchy of equation systems, obtained by resampling the coefficients of the
original equation system and recomputing the penaliser weights that depend non-linearly
on the solution. To resample the coefficients and to interpolate the error to the next finer
level we can, nevertheless, apply the same area-based scheme that we used for resam-
pling the images in the coarse-to-fine warping approach [BWKS05]. The nested hierarchy
discussed here, leads to a sophisticated solution strategy that guarantees high accuracy
results, but can make the implementation at the same time quite challenging.



56 Variational Optical Flow

fine

coarsest resolution

original resolution

coarse

(a)

(b)

Fig. 3.3: The hierarchical ideas used in this thesis. (a) The coarse-to-fine warping strategy
used to minimise the energy. Starting on the coarsest image scale, we successively refine
the optical flow by using the estimate on the current scale as an initialisation for the solu-
tion on the next scale. The red line depicts the transition through the image pyramid and
the approximate computation time. The main motivation for this approach is to reduce the
probability of ending up in a bad local minimum. (b) The full multigrid strategy used to
solve the Euler-Lagrange equations. This is a combination of the previous coarse-to-fine
strategy and the multigrid correction idea. The red line depicts the transition through the
multigrid pyramid and the black dots the execution of a certain number of iterations of the
basic solver. Note that the different levels are visited multiple times to improve accuracy.
The main motivation behind full multigrid is a reduction of computation time.

3.3 Summary

In this chapter we discussed the modelling and numerical solution of variational optical
flow methods for large displacements. First we reviewed the design of the data term,
where the emphasis was on the combination of constancy assumptions that are robust un-
der illumination changes and perform well in the presence of noise, outliers and different
motion types. We then moved on to choices for the smoothness term and identified dif-
ferent edge-preserving regularisation strategies based on the classification of the induced
vector-valued diffusion process. A robust data term incorporating the brightness and gra-
dient constancy and a smoothness term based on TV regularisation were finally combined
in a model prototype that will serve as a baseline algorithm for novel correspondence
methods in this thesis. In the second part of the chapter we investigated the minimisa-
tion of this model prototype via an incremental coarse-to-fine solution. A linearisation of
the constancy assumptions with respect to a small flow increment lead to the concept of
motion tensor, which makes the coupling between the flow components and the convexity
of the resulting energy explicit. Provided with this simplified notation, we were able to
clearly lay out the discretisation of the Euler-Lagrange equations and propose an efficient
numerical scheme under the form of the lagged diffusivity method.
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A three-dimensional point can be reconstructed from its projections if the camera matrices
of both stereo views are known. The classical way of determining a pair of camera matrices
is by relating a carefully chosen set of 3D control points to their projections on the image
plane. Such a full camera calibration is mostly performed with the help of a calibration
pattern of known dimensions [HZ00, FLP01]. For many image data, however, such as data
from online repositories or hand-held cameras, a full calibration is not possible because
the image source is unknown or because the stereo system changes during operation. In
these cases it makes sense to ease the requirement from fully to weakly calibrated and
compute the fundamental matrix as a first step towards a projective reconstruction. As
mentioned earlier in Chap. 2, the estimation of the fundamental matrix does not require
any prior knowledge about the scene and can be based on image correspondences alone.
In this chapter we introduce a new application of optical flow: the dense estimation of

the fundamental matrix of two stereo images. To this end, we will combine the concepts
from the two previous chapters in a two-step method that first establishes a set of dense
image correspondences by computing a displacement vector in every pixel and then esti-
mates the fundamental matrix by imposing the epipolar constraint on all matches. Apart
from their high accuracy, variational optical flow methods offer two potential advantages
for the computation of the fundamental matrix: (i) Due to the filling-in effect they provide
a dense flow field, and thus a huge amount of correspondences, that can increase the ro-
bustness of the estimation process. (ii) They do not create gross outliers because of the
combination of robust data constraints and a global smoothness assumptions.
Mismatches, on the other hand, are inherent to the widely-used class of sparse feature

based methods. These techniques put most of their effort in selecting a small sophistically
optimised set of feature correspondences that is most useful for the computation of the
fundamental matrix. In this chapter we compare our dense results with those obtained
by state-of-the-art feature based techniques and we will identify scenarios in which dense
methods have a clear advantage over sparse approaches.
Our dense two-step method for estimating the fundamental matrix from optical flow is

outlined in Sec. 4.1. In Sec. 4.2 we will give an overview of the different steps that make
up sparse feature based methods and discuss twelve variants that incorporate the current
state of the art. We will present a systematic juxtaposition of sparse and dense methods
in Sec. 4.3 and demonstrate that modern optical flow based methods can serve as novel
approaches for estimating the epipolar geometry with competitive quality. Throughout
this chapter, we assume that the images have already been corrected for radial distortion.
The linear methods discussed here, however, can be extended to simultaneously recover
the fundamental matrix and the radial distortion [Fit01].

57
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4.1 Fundamental Matrix Estimation from Optical Flow

In Chapter 3 we have described how dense optical flow can be computed between two
stereo images by means of the variational method of Brox et al. [BBPW04]. In this
section we will discuss how we can estimate the fundamental matrix from the set of cor-
respondences that is provided by the optical flow. We will do this by studying a linear
technique that computes the fundamental matrix directly from the epipolar constraint by
means of a least squares fit on all the available correspondences. To minimise the least
squares energy we consider two strategies: A total least squares solution in which we op-
timise all entries of the fundamental matrix simultaneously and an ordinary least squares
solution in which we repeatedly fit a reduced number of parameters to the correspondence
data. The main advantage of these linear methods is that they provide a good tradeoff
between accuracy and ease of implementation. On the other hand, least squares fits are
known to be relatively sensitive to noise in the correspondence data. To reduce the negative
effect of outliers we will therefore introduce a robust weighing of the epipolar constraint,
which will lead to a non-linear optimisation in a reweighted least squares framework.

4.1.1 The 8-point Algorithm of Longuet-Higgins

If the optical flow w has been estimated between two stereo images by minimising the
energy (3.27), we can establish an image correspondence in every point of the left image.
More precisely, the computed optical flow relates to every point x = (x, y)⊤ in the left
image a corresponding point in the right image that is given by

x′ = (x′, y′)⊤ = x+w = (x+ u, y + v)⊤ . (4.1)

In practice, we do this at the discrete pixel locations, resulting in a finite number of
matches. We exclude points that are warped outside the image domain by the optical
flow because the data term cannot be evaluated in these regions, leading to less reliable
correspondences.
In order to develop a least squares based method for estimating the fundamental ma-

trix F from the dense set of image correspondences provided by the optical flow, we first
rewrite the epipolar constraint between x and x′ as a product of two vectors [FLP01]

x′⊤
h F xh = s⊤f = 0 . (4.2)

Here, the 9× 1 constraint vector s and parameter vector f are defined as

s := (xx′, y x′, x′, x y′, y y′, y′, x, y, 1)
⊤ , (4.3)

f := (F11, F12, F13, F21, F22, F23, F31, F32, F33)
⊤ , (4.4)

where Fij for i, j ∈ {1, 2, 3} denotes the ij-th entry of the fundamental matrix F . If we
now consider equation (4.2) for n given point correspondences (xi,x

′
i), for 1 ≤ i ≤ n, we

can compose the following homogeneous system of which f has to be a solution

S f = 09 , (4.5)

where the n× 9 system matrix S is formed by the n constraint vectors

S =
(
s⊤1 , . . . , s

⊤
n

)⊤
. (4.6)
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If we assume for a moment that the correspondences are exact (noise-free), the system
matrix S can be at most of rank 8 for a solution to exist, because f is only defined up to a
scale factor. Moreover, for n ≥ 8 exact point correspondences, S will have exactly rank 8
and the fundamental matrix f will be given by the right null-space of S.

4.1.1.1 Total Least Squares Solution

Basic Idea. In practice, however, established point correspondences are not exact and it
makes sense to include more than 8 point matches to achieve a stable solution. For the
estimation of the fundamental matrix from optical flow, for instance, we wish to include
all n = nx ny available image correspondences, where nx × ny is the image resolution.
In such case, the homogeneous system (4.5) becomes overdetermined and the rank of S
generally becomes 9. To obtain a solution that is different from the trivial solution f = 09,
we can formulate the problem in a least squares sense by defining the following energy

E(f) =
n∑

i=1

(s⊤i f)
2 = ‖S f‖2 , (4.7)

while imposing the explicit constraint on the Frobenius norm of F

‖F‖2Frob = ‖f‖2 = f⊤f = 1 . (4.8)

This approach is commonly known as a total least squares (TLS) solution [Lon81, vV91,
TM97] and corresponds to an optimal Maximum Likelihood estimate of the fundamental
matrix if the noise in the elements of s is assumed to be Gaussian with constant variance.

Solution as an Eigenvalue Problem. To find a minimiser of the energy (4.7) under the
constraint (4.8), we make use of the method of the Lagrange multipliers and look for
critical points of the Lagrangian

L(f , λ) =
n∑

i=1

(s⊤i f)
2 + λ(1− f⊤f ) . (4.9)

Before differentiating the Lagrangian, we simplify things by rewriting L(f , λ) as follows

L(f , λ) = f⊤

(
n∑

i=1

sis
⊤
i

)
f + λ(1− f⊤f) (4.10)

= f⊤S⊤S f + λ(1− f⊤f ) , (4.11)

where the 9 × 9 matrix S⊤S is symmetric positive definite by construction. The critical
points of L(f , λ) are found by setting the derivatives with respect to f and λ to zero. If we
denote by∇f the gradient operator (∂f1 , · · · , ∂f9)⊤, it can be easily verified that a critical
point of the Lagrangian has to fulfil the set of equations

∇f L(f , λ) =
(
S⊤S − λI

)
f = 09, (4.12)

∂λ L(f , λ) = 1− ‖f‖2 = 0 , (4.13)
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where we have dropped the factor 2 from the differentiation because of the equality to zero.
Upon closer inspection, these equations constitute an eigenvalue problem where (4.12) is
the eigenvalue equation of S⊤S and (4.13) the usual requirement that each eigenvector has
to be of unit norm. As a consequence, all eigenvector-eigenvalue pairs of S⊤S are critical
points of the Lagrangian. Because of its convex nature, however, only one eigenvector is
a minimiser of the energy E(f). If we represent by vi the normalised eigenvector of S⊤S
belonging to the i-th eigenvalue µi, then the energy in vi evaluates to

E(vi) = ‖S vi‖2 = v⊤
i S

⊤S vi = v⊤
i µi vi = µi. (4.14)

In other words, the energy of an eigenvector of S⊤S is the corresponding eigenvalue. The
unit norm vector f that minimises E(f) is thus the eigenvector belonging to the smallest
eigenvalue of S⊤S. This simple algorithm for the estimation of the fundamental matrix
from n image correspondences was already formulated by Longuet-Higgins in [Lon81].
In literature, it is generally known as the 8-point algorithm and it can be implemented
numerically with the help of the Jacobi method [Sch88, GV89, PTVF92].

4.1.1.2 Ordinary Least Squares Solution

Basic Idea. In the TLS approach, the trivial solution to the least squares problem is
avoided by imposing a constraint on the Frobenius norm of the fundamental matrix. As
an alternative, we can think of avoiding the zero solution by setting one of the entries of
the fundamental matrix fixed to a value other than zero. This is equivalent to a parame-
terization of the fundamental matrix by the eight remaining entries of f . For this type of
solution, we implicitly assume that noise can only be present in the corresponding entry
of the constraint vector s. It is well known that this leads to an ordinary least squares

(OLS) problem, which is solved via the corresponding normal equation [vV91, SB02].
The disadvantage of this approach with respect to the TLS technique, is that the entries of
f do not play an equal role and that all nine possible normal equations have to be solved.

Solution via the Normal Equation. If we assume that fundamental matrix entry fj , for
any 1 ≤ j ≤ 9, has been set to 1, we can denote by f̃ := (f1, . . . , fj−1, fj+1, . . . , f9)

⊤ the
vector of the 8 remaining entries of f . If we further denote by sij the j-th entry of the i-th
constraint vector si, for 1 ≤ i ≤ n, we can express by s̃i := (si1, . . . , si j−1, si j+1, . . . , si9)

⊤

the constraint vector obtained by dropping the j-th entry of si. Then the least squares en-
ergy (4.7) can be formulated in function of the parameter vector f̃ as

E(f̃) =
n∑

i=1

(s̃⊤i f̃ + sij)
2 = ‖A f̃ − b‖2 . (4.15)

Here, the n × 8 matrix A equals the matrix S without the j-th column. The n × 1 right
hand side vector b collects the entries −sij , 1 ≤ i ≤ n. The minimiser of this energy is
now given by the solution of the classical normal equation

f̃ = (A⊤A)−1A⊤b . (4.16)

Since all nine entries of the fundamental matrix can be chosen 1, a solution to all nine
possible normal equations has to be found. This additionally prevents that a zero entry of
F would be erroneously represented by a non-zero value. The OLS solution that produces
a minimum value for the original energy (4.7) is finally retained.
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4.1.2 Robust Estimation of the Fundamental Matrix

If we use image correspondences that have been established by an optical flow method, we
expect that there will be moderate outliers that do not fully satisfy the epipolar constraint.
Such outliers can be due to noise in the input data or due to effects that have not been
modelled by the optical flow method, such as occlusions or multiplicative illumination
changes. Since a Gaussian noise distribution with zero mean is assumed in a least squares
framework, outliers can severely degrade the estimation process, which in turn may lead to
a loss of accuracy. To reduce the effects of outlying data, we can apply the same strategy as
for optical flow modelling and replace the squared penalisation by a sub-quadratic robust
function. This will lead to a set of non-linear equations, the solution of which can be
formulated as a reweighted least squares problem.

4.1.2.1 Reweighted Total Least Squares Solution

Basic Idea. To account for outliers in the correspondence data, we estimate the funda-
mental matrix with a robust version of the 8-point algorithm. This is achieved by replacing
the quadratic penaliser in the TLS energy (4.7) by another function of the argument:

E(f) =
n∑

i=1

Ψ
(
(s⊤i f )

2
)
. (4.17)

Here, Ψ(s2) is a positive, symmetric and in general convex function in s that grows sub-
quadratically. In our applications we will set Ψ to the regularised L1 norm (3.9). As a
result, the least squares problem is transformed to the minimisation of the sum of absolute
values. Our choice of robust function can be motivated by the fact that a minimiser of the
sum of absolute differences can be associated to the median of the measurements [RL87],
while a least squares solution is related to the mean value. As a statistical measure, it is
well-known that the median is much less sensitive to outliers than the mean value.

Solution by Reweighted Least Squares. As in the previous section, we avoid the trivial
solution via the explicit constraint ‖f‖2 = 1 and minimise the energy (4.17) by looking
for critical points of the Lagrangian

L(f , λ) =
n∑

i=1

Ψ
(
(s⊤i f )

2
)
+ λ(1− f⊤f ) . (4.18)

The derivative of L(f , λ) with respect to f can be written as

∇f L(f , λ) =

n∑

i=1

Ψ′
(
(s⊤i f )

2
)
∇f (s

⊤
i f )

2 − 2 λf , (4.19)

= 2

n∑

i=1

Ψ′
(
(s⊤i f )

2
)


si 1 s

⊤
i f

...
si 9 s

⊤
i f


− 2 λf , (4.20)

= 2
( n∑

i=1

Ψ′
(
(s⊤i f)

2
)
sis

⊤
i f − λf

)
, (4.21)
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= 2
(
S⊤W (f)S − λI

)
f , (4.22)

where sij is the j-th entry of si, for 1 ≤ j ≤ 9, and where we have defined the matrix
W (f ) as the n× n diagonal matrix containing the positive non-linear expressions:

W (f) = diag
(
Ψ′
(
(s⊤1 f)

2
)
, . . . ,Ψ′

(
(s⊤nf)

2
))

. (4.23)

Critical points of the Lagrangian are thus solutions of the non-linear set of equations
(
S⊤W (f )S − λI

)
f = 09, (4.24)

1− ‖f‖2 = 0 . (4.25)

This system of equations is very similar to the eigenvalue problem (4.12) - (4.13) of the 8-
point algorithm discussed previously, only this time the system matrix S⊤W (f)S itself is
depending on the fundamental matrix f . To find a solution, we propose an iterative scheme
that is similar to the lagged-diffusivity method that is used in optical flow computation for
handling the non-linearities in the Euler-Lagrange equations. To this end we decompose
the non-linear system into a series of linear eigenvalue problems by means of a fixed-point
iteration around the current solution. We can achieve this by fixing the system matrix for
a current estimate of the fundamental matrix f k

(
S⊤W (fk)S − λI

)
fk+1 = 09, (4.26)

1− ‖fk+1‖2 = 0 , (4.27)

and seeking the update fk+1. Since W (fk) is positive definite, the 9 × 9 system matrix
S⊤W (f k)S is symmetric positive definite with real non-negative eigenvalues. We can
thus compute fk+1 via the 8-point algorithm, and use it in the next iteration step to refine
the solution further. The weights in W (f) are recomputed in every iteration step and
therefore this approach comes down to a reweighted total least squares (RTLS) problem.
Because the calculation of the weights requires an estimate of the fundamental matrix and
vice versa, we use the standard 8-point algorithm to obtain an initial estimate.

4.1.2.2 Reweighted Ordinary Least Squares Solution

Basic Idea. In the same way as we did for the ordinary least squares approach in Sec.
4.1.1.2, we can parameterise the robust energy by eight of the nine entries of the funda-
mental matrix, while choosing the remaining entry fixed. To avoid representing a zero
entry by a non-zero value, we have to evaluate the energy for all nine possible solutions.

Solution by Reweighted Normal Equations. Expressing the robust least squares en-
ergy (4.17) in function of the reduced parameter vector f̃ , we obtain

E(f̃) =
n∑

i=1

Ψ
(
(s̃⊤i f̃ + sij)

2
)
. (4.28)

To find a minimiser of E(f̃), we set its derivative with respect to f̃ to zero. Keeping in
mind that f only differs from f̃ by a 1 in the j-th entry we can write

Ψ
(
(s̃⊤i f̃ + sij)

2
)
= Ψ

(
(s⊤i f )

2
)

for 1 ≤ j ≤ 9 , (4.29)
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such that the derivative becomes

∇f̃ E(f̃) =
n∑

i=1

(
Ψ′
(
(s⊤i f )

2
)
s̃is̃

⊤
i f̃ +Ψ′

(
(s⊤i f )

2
)
s̃i sij

)
, (4.30)

= A⊤W (f)Af̃ −W (f)A⊤b, (4.31)

where the diagonal matrix W (f) is the same as the one defined in equation (4.23). As
in the reweighted total least squares case, we can fix the system matrix A⊤W (f)A and
the right hand side W (f)A⊤b for a current estimate of the fundamental matrix fk. We
will designate this type of minimisation as a reweighted ordinary least squares (ROLS)
solution. The ROLS update instruction for f̃ k+1 is given by the normal equation solution

f̃ k+1 = (A⊤W (fk)A)−1W (fk)A⊤b . (4.32)

4.1.3 Data Normalisation

The 8-point algorithm is not invariant to similarity transformations, such as translation, ro-
tation and scaling of the image coordinates. At the same time, the eigenvalue problem of
the TLS and the normal equation of the OLS are generally poorly conditioned because of
the different orders of magnitude of the homogeneous point coordinates for typical image
sizes. It is therefore advisable that all point correspondences are expressed in a fixed co-
ordinate frame prior to the application of the linear methods discussed earlier. In [Har97],
Hartley proposes a data normalisation procedure that transforms the corresponding points
xi and x′

i, for 1 ≤ i ≤ n, by two mappings T and T ′, such that the transformed points
Txhi and T ′x′

hi have the projective coordinate (1, 1, 1)
⊤ on average. In practice, T and T ′

are computed as a combination of a translation and a scaling, such that:

• The centroid of the transformed points comes to lie in the origin of the image.

• The average distance of the transformed points to the origin becomes
√
2.

Keeping this in mind, both transformations will then take on the form of a 3× 3 matrix

T =



s 0 s x̄
0 s s ȳ
0 0 1


 and T ′ =



s′ 0 s′ x̄′

0 s′ s′ ȳ′

0 0 1


 . (4.33)

Here x̄ = (x̄, ȳ)⊤ and x̄′ = (x̄′, ȳ′)⊤ are the centroids of the two point sets xi and x′
i, for

1 ≤ i ≤ n, and s and s′ are scale factors. While the coordinates of x̄ and x̄′ denote the
shifts in x- and y-direction that place the centroids in the origin, s and s′ scale the images
such that the distance of the transformed points to x̄ and x̄′ becomes

√
2 on average.

Such a normalisation step has been widely regarded as indispensable in combination with
the linear estimation techniques presented in this section [HZ00, FLP01]. Because we
experienced a dramatic gain in accuracy and stability for our robust extensions as well, we
will from here on always perform a data normalisation of the optical flow correspondences
prior to the fundamental matrix estimation via RTLS or ROLS.
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To express the robust energy (4.17) in function of the normalised correspondence data,
we rewrite the epipolar constraint as

x′ ⊤
h T ′⊤F̂ T xh = ŝ⊤f̂ = 0 , (4.34)

where f̂ is the parameter vector for the fundamental matrix F̂ of the transformed data and
ŝ the constraint vector for the transformed data. Now f̂ can be found by minimising

E(f̂) =
n∑

i=1

Ψ
(
(ŝ⊤i f̂ )

2
)
, (4.35)

either in a RTLS or ROLS framework. A fundamental matrix for the original non-nor-
malised data can be recovered as F = T ′⊤ F̂ T . Hartley noted, however, that if F̂ is
the minimiser of the transformed energy 4.35 in a least squares sense, T ′⊤ F̂ T is not
necessarily the minimiser of the original energy (4.17) in a least squares sense.

4.1.4 Enforcing the Rank 2 Constraint

A second issue posed by the methods described in this section concerns the rank of F .
The solution of a least squares fit will in general not satisfy the singularity constraint, such
that it is common to perform a rank enforcement step after the estimation. This can be
done, for instance, by replacing the final solution with the closest rank 2 approximation
in Frobenius norm [TH84]. It can be shown that this comes down to setting the smallest
singular value of F to zero. Thus, if U diag (σ1, σ2, σ3) V

⊤, with σ1 ≥ σ2,≥ σ3 ≥ 0, is
the SVD of a least squares solution, the closest rank two estimate is given by

F = U diag (σ1, σ2, 0)V
⊤ . (4.36)

If the estimation of the fundamental matrix is based on normalised correspondences data,
the rank enforcement is performed before the denormalisation step.

4.2 Feature Based Methods for Comparison

We will compare the estimation of the fundamental matrix from optical flow with up to
twelve variants of feature based techniques that are frequently encountered in literature.
These feature based methods extract a sparse set of n distinctive point pairs and minimise
an energy of the general form

E(F ) =

n∑

i=1

d 2
i , (4.37)

where the distance measure d can be interpreted as a geometrical distance in the image
plane. Based on these distance measures, we divide the feature based methods in two dif-
ferent classes. The first class minimises the distance of a point to its corresponding epipo-
lar line, while the second class minimises the so-called reprojection error in a Maximum
Likelihood (ML) framework. We will refer to the first class of feature based technique as
method class F1 and to the second class of feature based techniques as F2. In the following
we will give an overview of the different steps that make up these two classes.
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4.2.1 Feature Extraction and Matching

Under feature or interest point extraction, one traditionally understands the selection of
a set of salient image locations with distinctive neighbourhood information. Classical
examples include edges [MH80, Can86] and corners [HS88]. Once a certain number of
features has been extracted in both images, correspondences must be established between
them. This can for instance be achieved by thresholding the correlation score of the image
patches surrounding the features. As opposed to dense optical flow, the set of correspon-
dences found this way is sparse and often ambiguous since one point might be paired to
several other points [ZDFL95]. Simple correlation based methods are sensitive to view-
point changes and deformations and are characterised by a low matching repeatability.
Therefore, recent techniques make use of a so called descriptor: a high-dimensional vec-
tor representation of the spatial neighborhood of the point of interest. Matching is then
based on a comparison of the Euclidian or the Mahalanobis distance [Mah36] in descrip-
tor space. To obtain a sparse set of feature correspondences for our comparison, we apply
two widely used feature matching algorithms which will be discussed here.

4.2.1.1 The Scale Invariant Feature Transform

The first feature matching algorithm that we consider is the Scale Invariant Feature Trans-
form (SIFT) [Low99, Low04]. SIFT features are characterised by a sub-pixel location and
are detectable under changes in location, scale and orientation. To this end, SIFT identi-
fies locations of interest in scale-space [Wit83, Lin94] and associates with each of them a
high dimensional descriptor vector. This descriptor representation is based on normalized
gradient information of a local image patch surrounding the feature and is designed to be
invariant with respect to scale and rotation and partially invariant under affine distortions
and illumination changes. This results in a set of distinctive image features that can be
matches correctly between two or more images with high probability. Matching of SIFT
features is mostly done by means of a nearest neighbour search in descriptor space. To
avoid false matches, the distance to the closest neighbour is compared with the distance to
the second closest neighbour. The rationale behind this is that a correct match will have its
closest neighbour significantly closer than the closest incorrect match; a feature with no
correct match, on the other hand, will have several neighbours that are comparably close
in descriptor space. Comparative studies by Mikolajczyk and Schmid [MS05] have put
forward SIFT as one of the most accurate local matching algorithms to date.

4.2.1.2 The Kanade-Lucas-Tomasi Tracker

While SIFT has become an accepted standard for stereo matching and object recognition, it
may be outperformed in small-baseline scenarios by methods that are specifically tailored
towards small displacements. To account for such cases, we consider as a second feature
matching algorithm the Kanade-Lucas-Tomasi Tracker (KLT), [LK81, TK91]. The KLT
algorithm looks for local maxima of the eigenvalues of the structure tensor [FG87] and
tries to detect the same features in the second image by minimising the intensity difference
over a small local neighbourhood. While KLT feature extraction is closely related to the
detection of classical points of interest, such as Harris corners [HS88], the tracking is
essentially done by means of the sparse Lucas-Kanade optical flow method [LK81].
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4.2.2 Inlier Selection and Initialisation

The number of feature correspondences that is returned by a matching algorithm is gener-
ally controlled by thresholding a quality measure, such as the distance ratio between the
first and the second nearest neighbour for SIFT descriptors and the smallest eigenvalue of
the structure tensor for KLT features. Choosing the threshold less strict often guarantees
a larger number of tentative correspondences, but at the same time increases the portion
of false matches that have an adverse effect on the estimation of the fundamental matrix.
Two robust techniques that are frequently used in computer vision to reduce the influ-
ence of such gross outliers are the Random Sampling Consensus (RANSAC) [FB81] and
the Least Median of Squares (LMedS) [RL87]. In contrast to other robust methods that
include as many correspondences as possible, RANSAC and LMedS repeatedly estimate
the fundamental matrix from randomly sampled minimal data sets in a so-called hypothe-

size-and-verify framework. Since the fundamental matrix has only 7 degrees of freedom,
the size of the minimal correspondence set is 7. To generate a hypothesis, the 7-point
algorithm [HZ00] is used which finds the rank 2 matrix that satisfies the cubic constraint 1

det (αF1 + (1− α)F2) = 0 . (4.38)

Here, F1 and F2 are the fundamental matrices obtained from the two smallest right singular
vectors f1 and f 2 of the 7× 9 system matrix (4.6).

4.2.2.1 Selection Criterion and Sample Count

In the case of RANSAC, the minimal correspondence set is enlarged by including corre-
spondences that are consistent with the estimated fundamental matrix, the so called con-
sensus set. This is done by computing the distances d for all n matches, and comparing it
to an inlier threshold:

{
inlier if d2i < t2

outlier if d2i ≥ t2
for 1 ≤ i ≤ n . (4.39)

The threshold t is chosen such that with a certain probability a data point is an inlier. If
certain assumptions are made about the probability distribution of the distances, t can be
expressed in terms of the standard deviation σ of the set of inliers. Since neither the true
set of inliers, nor the correct fundamental matrix are known, an estimate of σ is often not
available 2, such that t is often chosen empirically in practice. RANSAC ultimately returns
as best solution the fundamental matrix that gives the largest consensus set.
LMedS on the other hand, returns the fundamental matrix for which the median of the

squared distances is smallest over all random samples. To determine the set of inliers,
criterion (4.39) is applied for t =

√
3.84σr, where the robust standard deviation σr is

estimated from the distance median as proposed by Rousseeuw and Leroy [RL87]

σr = 1.4826 (1 + 5/(n− 8))median
i

|di| . (4.40)

1. The 7-point algorithm thus generates three hypotheses per sample that have to be verified by RANSAC
or LMedS.

2. The robust estimation of the standard deviation itself could be done by means of a random sampling
technique, such as LMedS.
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The number of random samples k that have to be drawn, is generally chosen such that
with a probability of p = 0.99, at least one of the samples is free from outliers. If we
denote by o the fraction of outliers in the data, the minimum number of samples of size 7
that has to be drawn can then be computed as [HZ00, FLP01]

k = log(1− p)/ log
(
1− (1− o) 7

)
. (4.41)

Mostly, the true value of o is not known and k can not be computed beforehand. The
true fraction of outliers can, however, be estimated adaptively during the sampling process
as the ratio of the current number of outliers and the total number of correspondences.
Every time a consensus set is found that is larger than the previously largest one, the value
of o becomes smaller and k is reduced according to Eq. (4.41). The random sampling
algorithm ends as soon as the number of samples taken is equal or greater than k.

4.2.2.2 RANSAC Extensions

In the last decade several extensions have been proposed to improve the performance of
the random sampling algorithms. Hereby the focus has been primarily on RANSAC due to
its capability of dealing with a large proportion of mismatches. To incorporate the current
state of the art in the field, we consider in this thesis two such RANSAC extensions.

LORANSAC. The first extension has been proposed by Chum et al. [CMK03, CMO04]
to reduce the influence of noise in the correspondence data and to simultaneously achieve a
run-time that is closer to the theoretically predicted number of samples that has to be drawn
(as given by Eq. (4.41)). It consists of performing a local optimisation (LO) step for each
estimated fundamental matrix that has a larger support than all hypotheses generated so far.
The LO-step comes down to applying an inner RANSAC loop that draws a fixed number
of samples (20) from the current set of inliers. Since the samples are only drawn from
correspondences that have been labeled as inliers, the chance is high that an improved
hypothesis will be generated. The LO-step then returns this high quality fundamental
matrix to the standard RANSAC algorithm, which will likely meet its termination criterion
more rapidly. Since the LO-step is only invoked if a newmaximum in the number of inliers
is reached, it has hardly any impact on the overall run-time of RANSAC.

DEGENSAC. From the same authors comes a second extension to classical RANSAC
that helps overcome the ambiguity that can occur in the estimation process when the ma-
jority of points lie on a dominant plane. In [CWM05] Chum et al. show that if five or more
correspondences in a sample of size 7 are related by a planar homography (a projective
mapping between two planes), the estimated epipolar geometry might be incorrect, yet
consistent with a high number of correspondences. For such degenerate configurations,
the DEGENSAC algorithm simultaneously estimates a fundamental matrix and a planar
homography and uses model selection to choose a correct solution. More specifically, this
model selection is performed by taking samples from the correspondences that are out-
liers to the estimated homography and computing the fundamental matrix from this outlier
sample and the homography by means of the plane-and-parallax algorithm [HZ00].

Both LORANSAC and DEGENSAC extensions are implemented as nested RANSAC
loops and can be combined in a standard RANSAC loop for improved robustness.
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4.2.3 Minimisation of a Geometrical Distance Measure

For the estimation of the fundamental matrix from optical flow in Sec. 4.1, the distance
measure in the general energy (4.37) took on the form of the algebraic distance [HZ00]

d = s⊤f . (4.42)

While the algebraic distance clearly has the advantage of being linear in the fundamental
matrix entries, it does not represent a meaningful distance in the image plane. Moreover, it
depends on the scaling of the fundamental matrix and its variance depends on the location
of the feature correspondences in the image [TM97]. Because these properties are gen-
erally not regarded as beneficial for feature based estimation, alternative measures have
been developed over time representing geometrically meaningful distances in the image.
Two such distance measures and their minimisation will be discussed next in more detail.
At the end of the section we conclude with a summary of all distance measures that are
covered in this chapter. This overview can be found in Table 4.1 on page 72.

4.2.3.1 Method Class F1: Minimisation of the Epipolar Distance.

Basic Idea. As a geometrically meaningful distance measure that does not depend on the
scale of F , Luong and Faugeras [LF96] and Faugeras et al. [FLP01] propose to minimise
the squared epipolar distance over all inliers (xi,x

′
i), 1 ≤ i ≤ n:

EF1(F ) =
n∑

i=1

(
d2(xhi, F

⊤x′
hi) + d2(x′

hi, Fxhi)
)

. (4.43)

Here, d(xh, l) denotes the Euclidean (orthogonal) distance between a point x and a line
l in the image plane. The epipolar distance measures how far a point x lies from the
epipolar line of the corresponding point x′. Since the epipolar lines have to be considered
in both the left and the right image, definition (4.43) ensures that the epipolar distance
measure is symmetric with respect to x and x′. The two parts of the epipolar distance
are illustrated in Fig. 4.1. Ideally, all feature points should satisfy the epipolar constraint,
but due to measurement noise these points do not lie exactly on each others epipolar lines.
Minimising energy (4.43) expresses the objective of finding the fundamental matrix for
which the corresponding point-line distance is smallest.

x

l = F⊤x′
h

d(xh, l) d(x′
h, l

′)

x′

l′ = Fxh

Fig. 4.1: The distance to the epipolar line in the left image and the right image.
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Solution by Reweighted Least Squares. To minimise energy (4.43) with respect to the
entries of F , we rewrite the epipolar distance as a local weighing of the algebraic distance.
We minimise the reformulated energy

EF1(f) =
n∑

i=1

w2
i (f) (s

⊤
i f)

2, (4.44)

with the weight w(f) defined as

w(f) :=

(
1

a2 + b2
+

1

a′ 2 + b′ 2

)1/2

. (4.45)

In this definition, the epipolar line coefficients a and b are the first two coordinates of
the epipolar line l = F⊤x′

h in the left image and the coefficients a′ and b′ the first two
coordinates of the epipolar line l′ = Fxh in the right image:

a := (F⊤x′
h)1, b := (F⊤x′

h)2, a′ := (Fxh)1 and b′ := (Fxh)2 . (4.46)

It is clear from expression (4.44), that the epipolar distance does not depend on the scaling
of F , because the same scaling factor is contained in the coefficients a, b, a′ and b′.
As proposed by Torr and Murray [TM97], we minimise the energy (4.44) subject to the

constraint ‖f‖2 = 1. By keeping the weights wi(f ), 1 ≤ i ≤ n, constant for a given f , it
can be easily verified that we obtain a familiar RTLS problem, as discussed in Sec. 4.1.2.
The solution thus comes down to iteratively solving the eigenvalue problem

(
S⊤W (f)S − λI

)
f = 09, (4.47)

1− ‖f‖2 = 0 , (4.48)

where the n× n diagonal matrixW (f) contains the weights w2
i (f).

We further reduce the effects of remaining outliers in the data by including a statistical
weighing of the epipolar distance by the tri-weight function as proposed by Huber in the
context of M-estimators [Hub81, FLP01, TM97, Ste99]. To this end, we multiply each
weight w2 inW (f ) by the additional M-estimator weight

h
(
w s⊤f

)
. (4.49)

The tri-weight function h is defined as

h(s) =





1 |s| ≤ σr

σr/|s| σr < |s| ≤ 3σr

0 3σr < |s|
, (4.50)

where the robust standard deviation σr is estimated via equation (4.40). Since the M-
estimator requires a good estimate of the fundamental matrix to start with, we initialise
our implementation of the feature based method F1 with the estimate provided by the
random sampling algorithm. The rank of the final solution is enforced by SVD.
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4.2.3.2 Method Class F2: Minimisation of the Reprojection Error.

Basic Idea. As a second important geometrical distance measure for the estimation of
the fundamental matrix, Hartley and Zisserman [HZ00] propose to minimise the reprojec-
tion error over all n inliers:

EF2(P ′,X1, . . . ,Xn) =

n∑

i=1

(
d2(xhi, PXhi) + d2(x′

hi, P
′Xhi)

)
, (4.51)

where d(xh,x
′
h) denotes the Euclidean distance between two inhomogeneous pointsx and

x′ in the image plane. In the above definition, P and P ′ denote the 3×4 camera projection
matrices for the left and the right image and X i, 1 ≤ i ≤ n, are the 3D points that are
reconstructed from the matched feature pairs (xi,x

′
i). The reprojection error describes

the distance of a point x in the left image to a corrected point location PXh that has a
perfect match P ′Xh in the right image. Definition (4.51) further ensures that the distance
measure is symmetric with respect to x and x′. The two parts of the reprojection error are
illustrated in Fig. 4.2. The projections PXh and P ′Xh can be regarded as the most likely
true positions of the feature points x and x′ if the errors in the localisation are assumed to
be independent and Gaussian distributed [WAH93]. The Maximum Likelihood estimate
of the fundamental matrix is then given by the rank 2 matrix F for which the corrected
point locations satisfy the epipolar constraint exactly:

(P ′Xhi)
⊤F (PXhi) = 0 for 1 ≤ i ≤ n . (4.52)

x

d(xh, PXh) d(x′
h, P

′Xh)

x′

PXh P ′Xh

Fig. 4.2: The distance to the corrected point locations in the left image and the right image.

Solution via Non-linear Optimisation. We recall that the fundamental matrix can be
written in terms of a pair of canonical camera matrices (2.39) via the equality (2.20).
As a results, we can fix the left camera matrix in the world origin as P = (I3, 03) and
parameterise F by the 12 entries of the right camera matrix P ′. By construction, this
parameterisation of F ensures the singularity constraint. Together with the 3 degrees of
freedom of the reconstructed 3D points, it brings the total number of variables to 3n+12.
To minimise the energy (4.51), we simplify the notation by collecting all 3n+12 un-

knowns in a parameter vector p. which is composed of the 12 motion parameters P ′ and
the 3n structure parameters X i, 1 ≤ i ≤ n. We then consider the function f : R(3n+12) →
R

4n that maps the parameter vector onto the inhomogeneous corrected point coordinates

f : p →
(
(PXh1)1, (PXh1)2, (P

′Xh1)1, (P
′Xh1)2, . . . , (P

′Xhn)1, (P
′Xhn)2

)
. (4.53)
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If we define the 4n×1 vector b = (x1,x
′
1, . . . ,xn,x

′
n)

⊤ of feature measurements, we can
rewrite the energy (4.51) as a squared error norm

EF2(p) = ‖f(p)− b‖2 . (4.54)

In contrast to the epipolar distance, this error norm is highly nonlinear in the unknowns
and its minimisation can not be formulated as a reweighted least squares problem. Instead
we have to proceed by means of a non-linear optimisation method such as the iterative
Levenberg-Marquardt (LM) technique [Lev44, Mar63].
The Levenberg-Marquardt algorithm smoothly shifts between a gradient descent method,

that can always be applied far from the minimum, and a Gauss-Newton method, that as-
sures fast convergence in a small neighbourhood. This is achieved by augmenting the
Hessian of f(p) with a factor λ that controls the transition between these two extremes.
More concretely, we iteratively solve an augmented normal equation [PTVF92]

(A⊤A + λ I 3n+12) dp = −A⊤(f(p)− b) , (4.55)

for an increment dp, where A denotes the Jacobian of f(p) and A⊤A an approximation of
the Hessian. After computing the increment dp, the energy EF2(p+dp) is evaluated and λ
is increased or decreased by a factor of 10 depending on whether the energy has increased
or not. The method terminates when the energy has dropped by some small fractional
amount like 10−3. In the case of the reprojection error, the Jacobian A has a sparse block
structure consisting of a 4 × 12 and a 4 × 3 block for each of the n corrected point pairs.
This is due to the fact that a corrected point pair (PXhi, P

′Xhi) only depends on the
parameters P ′ and Xhi, but not on the n−1 other 3D points. This block structure can be
exploited to speed up the computation by means of a partitioned variant of the Levenberg-
Marquardt algorithm. For our specific implementation we have based ourselves on the fast
sparse Levenberg-Marquardt algorithm outlined in detail in [HZ00].
As we did in the case of method F1, we reduce the effects of remaining outliers in the

correspondences, by including an additional weighting by the tri-weight function (4.50).
To this end, we multiply the blocks in A⊤A that correspond to (PXhi, P

′Xhi) with

h
((

d2(xhi, PXhi) + d2(x′
hi, P

′Xhi)
)1/2)

. (4.56)

A First-Order approximation to the Reprojection Error. An approximation to the
reprojection error was introduced by Weng et al. [WHA89], adapted from the work of
Sampson on conic fitting [Sam82]. This distance measure is known as the Sampson error
and it can be written as a weighing of the algebraic distance by

w(f) :=

(
1

a2 + b2 + a′ 2 + b′ 2

)1/2

. (4.57)

The epipolar line coefficients a, b, a′ and b′ are defined as in Eq. (4.46). The Sampson error
is a well-established distance measure in computer vision, but it will not be considered in
this chapter since we have experienced that its performance is mostly bounded by that of
methods F1 and F2. It is, however, mentioned at this point because it will be derived from
the epipolar constraint via a novel normalisation strategy in Chapter 6.
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Tab. 4.1: Overview of the distance measures discussed in this chapter.

Method distance measure d

optical flow based x′⊤
h F xh

F1 [LF96] w(F )
(
x′⊤
h F xh

)
with w(F ) :=

(
1

a2+b2 + 1
a′ 2+b′ 2

)1/2

F2 [HZ00]
(
d2(xh, x̃h) + d2(x′

h, x̃
′
h)
)1/2

with x̃h := PXh and x̃′
h := P ′Xh

Sampson [WHA89] w(F )
(
x′⊤
h F xh

)
with w(F ) :=

(
1

a2+b2+a′ 2+b′ 2

)1/2

4.2.4 Inlier Refinement

After the fundamental matrix has been estimated from the set of inliers via method F1 or
F2, we reclassify the correspondences in inliers and outliers by a similar selection criterion
as used by RANSAC and LMedS. This is done by applying criterion (4.39) for the current
fundamental matrix estimate. The threshold t is chosen to be

√
3.84σr [HZ00, TM97],

where the robust standard deviation σr is computed via (4.40). Re-estimation of the fun-
damental matrix from the new set of inliers and reclassification of the correspondences is
repeated until the final number of inliers converges.

4.3 Evaluation of the Optical Flow Based Method

In this experimental section we will compare the performance of our dense optical flow
based method for the estimation of the fundamental matrix with the two sparse feature
based method classes F1 and F2. In six different tests we compute the epipolar geometry of
real-world image pairs that have been selected from two online multiview stereo databases.
All images in these databases have been calibrated in advance by conventional techniques
(based on a planar calibration grid and manually selected feature points) such that the
ground truth fundamental matrix is known for all image pairs.

Error Measure. To assess the quality of our results, we evaluate the symmetric error
between the estimated fundamental matrix Fe and the ground truth fundamental matrix Fg

according to [Zha98] and [FLP01]. This error measure is computed as follows:

1. In the left image: Choose a random point x as depicted in Fig. 4.3.

2. In the right image: Determine the epipolar line l′e of x using Fe and the epipolar line
l′g of x using Fg. Choose a random point x′

e on l
′
e and a random point x′

g on l′g.

3. In the left image: Reverse the roles of Fe and Fg by computing the epipolar line le
of x′

g using Fe and the epipolar line lg of x′
e using Fg.
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x

lg

x′
g

l′g
le

d1

d2
d3

d4

x′
el′e

Fig. 4.3: The distances used in the computation of dF .

4. Compute the four distances depicted in Fig. 4.3: d1 = d(x, le), d2 = d(x, lg),
d3 = d(x′

e, l
′
g) and d4 = d(x′

g, l
′
e)

5. Repeat step 1 to 4 for a large number (100000) of times and compute the average of
all distances.

This error measure, which we will denote by dF from now on, is a symmetric distance that
describes the average deviation of the estimated epipolar geometry from the ground truth
geometry in pixel units. Because it is defined in image space, dF is more meaningful than
comparing for instance the Frobenius norms of Fe and Fg [FLP01].

Feature Based Implementation. All together, we consider for the feature based ap-
proaches two feature matching algorithms (KLT and SIFT), three random sampling algo-
rithms (LMedS, LORANSAC and DEGENSAC), and two different distance measures (the
epipolar distance of method class F1 and the reprojection error of method class F2). This
comes down to twelve different variants of feature based methods. The implementational
details for the feature extraction and random sampling are given below.

• Feature Extraction. For the SIFT feature extraction we use the implementation of
David Lowe 3. We only consider effective SIFT matches by removing feature pairs
that have the same image locations but different histogram orientations. For the
extraction of KLT features, we use publicly available code 4 that is based on the
affine tracking algorithm described in [ST94]. SIFT and KLT are applied to all
image test pairs, but we only list errors for the feature type for which we obtain the
best result in combination with the distance measures minimised by F1 and F2.

• Random Sampling. Similarly, we either apply RANSAC or LMedS for the inlier
selection, depending on which random sampling technique gives the best result in
combination with SIFT or KLT and in combination with the distance measures min-
imised by F1 and F2. For both random sampling algorithms, we choose a minimal
sample size of 7 and use the 7-point algorithm to generate hypotheses for F [HZ00].
By taking into account a certain radius around the feature points during sampling, we
additionally assure that all points in a sample lie scattered enough over the whole im-
age such that unstable estimates are avoided. For RANSAC, we estimate the number

3. available at http://www.cs.ubc.ca/~lowe/keypoints/

4. available at http://www.ces.clemson.edu/~stb/klt/
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of samples adaptively, as discussed in Sec. 4.2.2.1, and use a fixed inlier threshold
t between 0.5 and 1 pixels. This threshold works well in practice because the dis-
tance measures that are minimised by F1 and F2 can be interpreted as geometrical
distances in the image plane. If degeneracy is suspected, we apply the DEGENSAC
variant of RANSAC. Both standard RANSAC and DEGENSAC are equipped with
a LO-step for local model optimisation. The number of samples taken by LMedS
normally requires an estimate of the proportion of outliers. Following [FLP01],
choosing a number of 2000 samples assures us that we can deal with the maximum
percentage of outliers in LMedS 5. Due to the random nature of both RANSAC and
LMedS, we run the feature based method classes F1 and F2 for 100 consecutive
times and present the minimum and mean for the error dF over all test runs.

Optical Flow Based Settings. Our evaluation includes indoor sequences that have been
captured under lab conditions, as well as outdoor sequences with varying illumination
and large relative motion. All images are in colour and have been corrected for radial
distortion. The indoor image pairs depict a bright object against a homogeneous black
background. Because the optical flow is less reliable in the background, we exclude it from
our optical flow based estimation method by detecting the object silhouette with a region-
based Chan-Vese segmentation technique [CV01]. For a fair comparison with the feature
based methods, we run our optical flow based method for a set of optimised parameters
and for a set of default parameters that are given by α = 20.0, γ = 20.0 and σ = 0.9. The
optimal parameters are chosen for each image pair separately to give the lowest error dF
over a wide range of settings. To visualise the estimated epipolar geometries, we draw the
epipolar lines for a set of meaningful points in the left and the right image. For the left
image these are 8 feature points from the set of inliers that corresponds to the best feature
based result. For the right image these are either the corresponding features or the pixel
locations warped by the optical flow.

4.3.1 Low Texture

In our first experiment we investigate the influence of texture on the estimation of the
epipolar geometry from image correspondences. This is done by the example of frames
24 and 25 of the DinoRing sequence 6 from the Middlebury multiview evaluation data
set [SCD+06]. Both images have a resolution of 640×480, with a maximum displacement
of 26 pixels. The camera rotates around the model of a small dinosaur set against a black
background and the scene is characterised by the absence of texture. The results that are
obtained by our optical flow based method and by the feature based methods F1 and F2
are summarised in Table 4.4. For the optical flow based estimation we list the results for
both the RTLS solution and the ROLS solution. In the following we examine these results
in more detail:

5. The maximum fraction of outliers for LMedS is 50%, because for a larger fraction the median distance
would belong to an outlier. That 2000 iterations is more than enough to deal with the maximum fraction
of outliers can be easily verified by means of formula (4.41) by setting p = 0.99 and o = 0.5.

6. available at http://vision.middlebury.edu/mview/data/
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Tab. 4.2: Overview of the settings for the feature extraction corresponding to the best result
for each image pair. We list the type of feature used (SIFT/KLT), the ratio of distances
of the first and second neighbour in SIFT descriptor space (ratio) and the total number of
matches (# match). For KLT we used the standard settings of the publicly available code.

Image Pair Feature Extraction
sequence frames type ratio # match

DinoRing 24 - 25 KLT - 919
Entry-P10 1 - 0 SIFT 0.80 979
TempleRing 13 - 14 SIFT 0.90 627
Fountain-P11 1 - 2 SIFT 0.90 667
Herz-Jesu-P25 5 - 6 SIFT 0.90 945
City-Hall 1 - 2 SIFT 0.90 1502

Tab. 4.3: Overview of the settings for the feature based method classes F1 and F2 cor-
responding to the best result for each image pair. We list the type of random sampling
algorithm (randsam), the applied RANSAC threshold t (thresh) and the number of inliers
(# inl) corresponding to the best result over 100 test runs.

Image Pair F1 F2
sequence frames randsam thresh # inl randsam thresh # inl

DinoRing 24 - 25 LORANSAC 0.5 697 LORANSAC 0.5 688
Entry-P10 1 - 0 DEGENSAC 1.0 733 DEGENSAC 1.0 728
TempleRing 13 - 14 LORANSAC 0.8 464 LORANSAC 0.8 463
Fountain-P11 1 - 2 LORANSAC 1.0 445 LORANSAC 1.0 446
Herz-Jesu-P25 5 - 6 LMedS - 662 LMedS - 663
City-Hall 1 - 2 LORANSAC 1.0 1100 LORANSAC 1.0 1094

Tab. 4.4: Overview of the error dF for our optical flow based method and for the feature
based method classes F1 and F2 over 100 test runs. The best results are highlighted.

Optical Flow Based Method Feature Based Methods

RTLS ROLS F1 F2
Image Pair

default (opt) default (opt) mean (min) mean (min)

DinoRing 0.717 (0.245) 0.724 (0.348) 4.398 (0.422) 3.928 (0.451)
Entry-P10 2.448 (0.762) 1.491 (0.984) 3.530 (1.058) 4.611 (0.945)
TempleRing 0.151 (0.080) 0.151 (0.078) 0.810 (0.089) 0.881 (0.371)
Fountain-P11 2.060 (0.266) 2.057 (0.232) 0.682 (0.373) 0.888 (0.312)
Herz-Jesu-P25 3.227 (1.040) 3.302 (1.318) 1.139 (0.725) 3.021 (0.446)

City-Hall 7.349 (0.986) 7.105 (5.641) 1.236 (0.910) 1.159 (0.524)
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• Optical Flow based estimation. For the default setting of our optical flow based
method we obtain an error dF of 0.717 for the RTLS solution. This means that the
deviation of the estimated epipolar lines from the ground truth lines is well within
sub-pixel precision. For optimised parameters we reduce the error further to 0.245,
while similar results are obtained for the ROLS solution. The correspondence es-
timation by means of optical flow clearly benefits from the filling-in effect in ho-
mogeneous image regions that is caused by the global smoothness constraint. The
flow field within the silhouette of the model is shown in Fig. 4.4 (a) for optimised
optical flow settings. For visualisation we use the colour code shown in Fig. 4.5 (a),
where colour encodes the direction of the flow and brightness the magnitude. We
can distinguish some occlusion artifacts where the tail of the dinosaur covers parts
of the base, but their influence on the fundamental matrix estimation is reduced by
the proposed robust L1 penalisation. Fig. 4.4 (b) and (c) further show the epipolar
geometry that is estimated from the optical flow. The corresponding points in the
left and right image for which the epipolar lines are drawn are marked as red crosses.
The estimated epipolar lines are depicted as full white lines, while the ground truth
lines are dotted. We observe that both sets of lines are aligned quite well.

• Feature based Estimation. The settings that are used for the feature extraction in
all image pairs of this section are listed in Table 4.2 and Table 4.3. Whereas op-
tical flow based methods benefit from the filling-in effect of the smoothness term
in homogeneous regions, insufficient texture often poses a challenge to feature ex-
traction. SIFT, for instance is unable to provide a sufficient amount of features in
the DinoRing images (≈ 180) for sub-pixel performance. The number of features
tracked by the KLT algorithm for this sequence is larger and renders the best results
of F1 and F2 sub-pixel precise. We can conclude from Table 4.4, however, that
the KLT features suffer from poor localisation, as the average performance of the
feature based techniques is worse than our method. It is well-known that features
may suffer from localisation errors due to their computation in scale-space; see e.g.
[WB94, ZGS+09]. Fig. 4.4 shows the estimated epipolar geometries and the set of
inliers that correspond to the best feature based result.

4.3.2 Near-Degeneracy and Repetitive Structures

The epipolar geometry of two images taken from different viewpoints is unique. A set of
established image correspondences, on the other hand, does not always uniquely define
the epipolar geometry. Such a configuration is called degenerate with respect to the com-
putation of the fundamental matrix. A scenario that frequently occurs in stereo vision is
that the majority of correspondences lie in the same plane, such as in the case of a domi-
nant plane or when features are primarily extracted on a planar surface. Then there exists
a 2D projective transformation, a homography H3, that relates an in-plane point x in the
left image to its corresponding in-plane point x′ = H3x in the right image. The epipolar
constraint between x and x′ can then be written as

x′⊤
h F xh = x′⊤

h FH3−1
x′
h = 0 . (4.58)
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Fig. 4.4: Results for DinoRing. Top Row: (a) The optical flow between frames 24 and 25
within the object silhouette (optimal settings: α = 31.6, γ = 53.0 and σ = 0.9). (b) + (c)

The epipolar geometry estimated from the optical flow for frames 24 and 25. The points
are depicted as red crosses, the corresponding estimated epipolar lines as full white lines
and the corresponding ground truth lines as dotted lines. Bottom Row: (d) The inliers for
the best result of F1. The correspondences are drawn on frame 24 as lines connecting the
matched features. (e) + (f) The epipolar geometry estimated from these inliers.

This equation is satisfied for all in-plane points x′ whenever the matrix FH3−1 is skew-
symmetric. A solution for the fundamental matrix F is thus given by any matrix of the
form ZH3, where Z is a 3 × 3 skew-symmetric matrix. Such a solution is clearly not
unique, and as a result the system matrix of equation system (4.5) will not provide enough
constraints to uniquely determine the fundamental matrix [HZ00].
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Fig. 4.5: Left: (a) Colour circle. Right: (b) Histogram for the Entry-P10 data set for F1 in
combination with SIFT–LORANSAC.

A random sampling algorithm that is based on the 7- or 8-point algorithm is especially
sensitive to planar degeneracies and can easily produce a consensus set of coplanar inliers.
RANSAC, in particular, will return the solution that is consistent with the majority of
the data, but it does not verify its uniqueness [CWM05, FP06]. The extra constraints
necessary to overcome the ambiguity posed by a dominant plane must be provided by the
small number of out-of-plane inliers. These are, however, often discarded as outliers in
the sampling process. Moreover, actual outliers pose a treat: They are often regarded as
inliers when they lie in the degenerate plane or they unwillingly disambiguate the solution
towards a wrong estimate, thereby masking the degeneracy [TZM95].
For near-degenerate configurations, it is crucial that sufficient out-of-plane inliers are

selected to overcome the estimation ambiguity, While this requires special care in the case
of sparse feature based methods [TZM95, CWM05, FP06], optical flow will likely include
a number of out-of-plane correspondences due to its dense and global nature. Optical flow
thus provides the necessary constraints for the 8-point algorithm in a natural way. We
illustrate this intrinsic robustness by estimating the epipolar geometry of frames 1 and 0
of the Entry-P10 7 multiview data set [SvHV+08]. This image pair depicts the facade of a
building with a balcony as the only out-of-plane element. To ensure realistic run times for
the parameter optimisation of our optical flow based technique, we tested all the methods
on 640 × 427 versions of the original 3072 × 2048 images. A scalability test on the full
resolution images will be presented in a later experiment in Chapter 5. The largest motion
that is present in the downsampled images is 44 pixels.

• Optical flow based estimation. For our optical flow based technique we achieve a
sub-pixel accuracy of 0.762 for optimised settings. The optical flow and the esti-
mated epipolar geometry corresponding to these settings are shown in the top row
of Fig. 4.6. The balcony is clearly visible in the flow field and the estimated epipolar
lines are close to ground truth. For the standard settings we obtained a larger error
because of the disturbing occlusion caused by a vehicle wheel disappearing in the
lower right corner.

7. available at http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
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• Feature based Estimation. If we take a look at the histogram of dF for method F1
in Fig. 4.5, we can clearly distinguish a pronounced mode centred between 3 and 4.
This mode corresponds to about 50% of the 100 LORANSAC test runs that pre-
dominantly select the inliers within the plane of the facade. The middle row of
Fig. 4.6 shows such a degenerate set of inliers and the corresponding epipolar lines.
These are wrongly estimated as the vanishing lines of the facade. A similar sensitiv-
ity to degeneracy was also observed for LMedS. Applying the robust DEGENSAC
algorithm improves the performance of the feature based methods, but the results
hardly become sub-pixel, as can be seen in Table 4.4. The reason for this is the large
amount of in-plane outliers that arise from mismatched repetitive structures such as
windows. These outnumber the out-of-plane inliers and model verification based on
the amount of support tends to fail, even when the planar homography is estimated
correctly. The inliers for the best result of F2 are depicted in the bottom row of
Fig. 4.6, together with the outliers and the homography estimated by DEGENSAC.

4.3.3 Sufficient Texture and No Degeneracy

For the remainder of our comparison we have selected 4 image pairs that do not suffer
from a lack of texture or degeneracy. First we compute the fundamental matrix for frames
13 and 14 of the Middlebury TempleRing 8 sequence. Both images have a resolution of
640× 480 and a maximum displacement of approximately 20 pixels. The depicted temple
model is much more textured than the DinoRing model. In Table 4.4 we observe that
all estimation methods achieve sub-pixel precision, but that our optical flow based method
performs best with an error of only 0.078 pixels for optimised parameters. The error for the
default settings lies well below the average of both feature based methods. Fig. 4.7 shows
the optimised optical flow within the model silhouette and the corresponding epipolar
geometry. It can be observed that the epipolar lines practically coincide with the ground
truth. The set of inliers for the best feature based result is also shown.
For our next experiments we again select image pairs from the Strecha multiview data

base. All images have been scaled down to a resolution of 640× 427 for parameter tuning
purposes. We start with frames 1 and 2 of the Fountain-P11 data set. The results in Table
4.4 show that our optical flow based method is the most accurate for optimised parameters,
but that the feature based method F1 has a better overall performance with an average sub-
pixel precision. The optical flow, depicted in the first column of Fig. 4.8, is not well
estimated in the upper right corner. This results in a certain sensitivity to the parameter
settings, explaining the difference between the optimised and the default error. The best
feature based result is shown in the second column of Fig. 4.8.
We continue with 640 × 427 versions of frames 5 and 6 of the Herz-Jesu-P25 8 data

set. It depicts the ornamented front view of a building, but contrary to the Entry-P10 data
set, the entrances of the building provide sufficient out-of-plane correspondences to avoid
degeneracy. The maximum displacement is approximately 53 pixels. In Table 4.4 we ob-
serve that our optical flow based method achieves an error of almost 1 pixel for optimal
parameter settings but is outperformed by both feature based methods. The optimised flow
and the corresponding epipolar geometry are shown in Fig. 4.9, together with the set of

8. available at http://vision.middlebury.edu/mview/data/
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Fig. 4.7: Results for TempleRing. Top Row: (a) The optical flow between frames 13 and
14 within the silhouette (optimal settings: α = 25.5, γ = 43.8 and σ = 0.3). (b) + (c) The
epipolar geometry estimated from the optical flow. Bottom Row: (d) The inliers for the
best result of F1. (e) + (f) The epipolar geometry estimated from the inliers.

inliers for the best feature based result. For outdoor sequences like this one, SIFT cor-
respondences were overall more accurate than the tracked KLT features due to the large
apparent motion. It can be seen in the cobbled stone region of the scene that the large
change in viewpoint also makes matching more difficult for optical flow, causing a deteri-
oration in the flow field at the bottom of the image. This leads to an undesirable parameter
sensitivity and explains the error difference between the optimised and the default settings.
We conclude this section with the recovery of the epipolar geometry of frames 1 and 2 of

the City-Hall 9 sequence [STV03]. Despite being scaled down to a resolution of 640×427,
the image pair contains displacements of more than 85 pixels. The large apparent motion
and occlusion on the left side of the building distort the optical flow for a wide range
of settings. This is reflected by the large error of 7.3 for the default parameters of our
method. For optimised settings we nevertheless obtain sub-pixel precision. Both feature

9. available at http://cvlab.epfl.ch/data/strechamvs/
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Fig. 4.8: Results for Fountain-P11. Left Column: (a) The optical flow between frames 1
and 2 (optimal settings: α = 6.2, γ = 7.2 and σ = 0.4). (c) + (e) The epipolar geometry
estimated from the optical flow. Right Column:(b) The inliers for the best result of F2.
(d) + (f) The epipolar geometry estimated from the inliers.

based methods have a similar performance with an average error close to one pixel and a
sub-pixel minimum. The optimised optical flow, the corresponding epipolar geometry and
the set of inliers for the best feature based result are shown in Fig. 4.10.

4.4 Summary

In this chapter we have explored a new application field for dense optical flow techniques:
the robust estimation of the fundamental matrix. Variational optical flow methods incor-
porate a global smoothness constraint that ensures filling-in in the absence of texture and
dense correspondences in the case of degeneracy. Our experiments demonstrate that in



4.4 Summary 83

Fig. 4.9: Results for Herz-Jesu-P25. Left Column: (a) The optical flow between frames 5
and 6 (optimal settings: α = 22.9, γ = 10.5 and σ = 0.5). (c) + (e) The epipolar geometry
estimated from the optical flow. Right Column:(b) The inliers for the best result of F2.
(d) + (f) The epipolar geometry estimated from the inliers.

these scenarios optical flow based fundamental matrix estimation clearly outperforms the
widely-used feature based methods. In these scenarios we recommend to favour dense
over sparse methods for estimating the fundamental matrix.
From our quantitative experiments it seems inconclusive if we should use a total least

squares estimation or an ordinary least squares fit to compute the fundamental matrix.
With this respect we give preference to the former, as it is based on the consistent mod-
elling by a single energy and an extra constraint on the fundamental matrix norm. In
addition, in a total least squares setting all entries of the fundamental matrix are treated
with equal weight, which automatically leads to their simultaneous optimisation.
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Fig. 4.10: Results for City-Hall. Left Column: (a) The optical flow between frames 1 and
2. (optimal settings: α = 27.7, γ = 51.9 and σ = 1.0). (c) + (e) The epipolar geometry
estimated from the optical flow. Right Column:(b) The inliers for the best result of F2.
(d) + (f) The epipolar geometry estimated from the inliers.

It is interesting to analyse the reasons why a dense approach that incorporates all cor-
respondences can be competitive with fairly sophisticated strategies that single out only
the very best correspondences. Our explanation for this observation is that in those cases
where feature based methods produce a mismatch, its influence on the final result is severe.
Hence they require involved robustification methods such as RANSAC and its numerous
variants. Dense methods, on the other hand, incorporate smoothness terms that prevent in-
dividual outliers. Furthermore, the accuracy of the fundamental matrix estimation benefits
from the error averaging when exploiting thousands of correspondences. This accuracy
will improve even further with ongoing, rapid progress in dense optical flow estimation.



5 Optical Flow for Uncalibrated Stereo Images

In the previous chapter we have seen that the estimation of the fundamental matrix from
dense optical flow can be competitive with classical estimation techniques that rely on
sparse image features. Due to the symmetry in the epipolar constraint, however, not only
the estimation of the epipolar geometry can benefit from a known optical flow field, but
knowledge about the epipolar geometry could at the same time have an advantageous
effect on the computation of the optical flow. As a matter of fact, while reliable stereo
correspondences are crucial for a precise estimation of the fundamental matrix, an accurate
fundamental matrix might help us establish better correspondences to start with.
In this chapter we will solve this chicken and egg problem by simultaneously estimating

the fundamental matrix and the optical flow of an uncalibrated stereo pair. We do this
by feeding information about the computed epipolar geometry back into the optical flow
estimation, thereby replacing the traditionally unconstrained estimation of the optical flow
by one that takes into account the stereo geometry and the rigidity of the relative scene
motion. Besides yielding better optical flow results than approaches that do not estimate
the epipolar geometry in the process, optical flow methods for uncalibrated stereo further
improve the fundamental matrix estimation of the two-step method that was presented in
the previous chapter. Last but not least, a joint estimation of the fundamental matrix and
the optical flow fuses the two steps of classical projective reconstruction: We solve for
both the camera motion and the scene structure in a single variational framework.
We introduce our method for the joint estimation of the fundamental matrix and the

optical flow in Sec. 5.1, where we discuss modelling aspects, minimisation strategies and
the numerical solution. In Sec. 5.2 we evaluate the estimation accuracy of our joint method
for both the epipolar geometry and the optical flow. Here, we also present results with
respect to one of the main goals of this thesis: the 3D reconstruction of the depicted scene.

5.1 A Joint Variational Model

So far we have fed a given dense optical flow field into a classical approach for estimating
the epipolar geometry. On the other side of the spectrum, there exists a large number of
variational methods that use a given epipolar geometry to guide the estimation of the cor-
respondences [ADSW02, SBW05, BAS07, ZBV+08]. Let us now investigate how we can
achieve further improvements by coupling optical flow computation and fundamental ma-
trix estimation in a joint model where they influence each other in a beneficial way. To this
end we look at the epipolar constraint as a means of fitting a fundamental matrix to a set
of correspondences and at the same time as a restriction on the correspondence search. In
this section we present an intuitiveway of coupling the computation of fundamental matrix
and optical flow by minimising a single functional for both unknowns. Their simultaneous
solution will ensure a scene structure that is most consistent with the camera motion, and
vice versa, resulting in a higher overall accuracy and a lower parameter sensitivity.
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5.1.1 The Epipolar Constraint as a Soft Constraint

To obtain a method for the joint estimation of the optical flow and the fundamental matrix,
we propose to extend our general optical flow functional (3.3) with an extra term:

E(w, F ) =

∫

Ω

(
ED(w) + α ES(∇w) + β EE(w, F )

)
dx . (5.1)

While the first two terms in E(w, F ) correspond to the data and smoothness term of a stan-
dard optical flow model, the third term has been newly introduced to penalise deviations
from the epipolar constraint (x+w)⊤h F xh = 0. We will call this term the epipolar term.
Similar to the smoothness weight α, the weight β determines the relative importance of
the epipolar term and to what extent the epipolar constraint will be satisfied in all points.
As opposed to methods that impose the epipolar constraint as a hard constraint by re-

ducing the correspondence problem to a one-dimensional line search [ADSW02, SBW05],
our joint model imposes the epipolar constraint as a soft constraint. This has two main ad-
vantages: (i) Contrary to methods that impose a hard epipolar constraint, our method is not
restricted to image pairs with a known epipolar geometry (i.e. calibrated stereo images)
and therefore offers a higher flexibility and usability. (ii) Additionally, the joint estimation
of the optical flow and the fundamental matrix can benefit easily from progress in the de-
sign of new data and smoothness terms, since a soft constraint can be integrated directly
in any future variational optical flow model that has a general form of (3.3).

5.1.1.1 A Model Prototype

If we integrate the epipolar term in our prototypical optical flow model (3.27), we obtain
an energy of the form

E(w, F ) =

∫

Ω

(
Ψ
(
|gr(x+w)− gl(x)|2 + γ|∇gr(x+w)−∇gl(x)|2

)

+ αΨ
(
|∇w|2

)
+ β Ψ

((
(x+w)⊤hF xh

)2)
)
dx dy . (5.2)

As in the case of the data and smoothness term, we choose for the penaliser Ψ in the
epipolar term the regularised L1 function (3.9). This reduces the influence of outliers in
the computation of both F andw. To avoid the trivial solution for the fundamental matrix
F , we minimise energy (5.2) under the explicit constraint on the Frobenius norm

‖F‖2Frob = 1 . (5.3)

In our experiments we will mainly make use of RGB colour images and we therefore need
an extension to multiple image channels. This can be easily achieved by replacing the data
term in the above model by its multi-channel variant (3.11).
While this model will serve as the baseline algorithm for the better part of our evalu-

ation, some of our experiments will demonstrate the previously mentioned extensibility
by integrating the epipolar term into a more recent optical flow method. For this we
choose the method of Zimmer et al. [ZBW11], which has been described in more de-
tail in Chap. 3. This optical flow method is characterised by a separate robustification of
the brightness and gradient constancy assumption in the data term and it uses a flow- and
image-driven anisotropic regulariser that works complementary to the data constraints.
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Fig. 5.1: The decomposition of the optical flow in its component along the epipolar line
and its component perpendicular to the epipolar line.

5.1.1.2 Rewriting the Epipolar Constraint

Before turning to the minimisation of our prototypical energy (5.2), we provide two alter-
native formulations of the epipolar term that will be helpful in the process.

In terms of the Optical Flow. First of all, we note that we can rewrite the epipolar
constraint between the points x and x+w as

(x+w)⊤h F xh = 0 ⇐⇒ (5.4)

a′ (x+ u) + b′ (y + v) + c′ = 0 . (5.5)

This is actually the equation of the epipolar line l′ = F xh in the right image. We have
defined the coefficients of the epipolar line l′ as

a′(x, F ) = (F xh)1 = F11x+ F12y + F13, (5.6)

b′(x, F ) = (F xh)2 = F21x+ F22y + F23, (5.7)

c′(x, F ) = (F xh)3 = F31x+ F32y + F33 , (5.8)

with Fkl, for k, l ∈ {1, 2, 3}, the kl-th entry of the fundamental matrix F . Note that the
coefficients (a′, b′, c′)⊤ are a function of x and that equation (5.5) forms a line constraint
on the optical flow in every point of the left image. If we denote by q′ the quadratic form

q′(x, F ) = x⊤
h F xh = a′ x+ b′ y + c′ , (5.9)

the epipolar constraint (5.5) can be further reduced to the expression

a′ u+ b′ v + q′ = 0 . (5.10)

An interesting remark is that q′ has a geometrical meaning: Up to the normalisation factor√
a′2 + b′2, it can be interpreted as the signed orthogonal distance of the point x to the

corresponding epipolar line l′. This is illustrated in Fig. 5.1, which shows the decomposi-
tion of the optical flow along and orthogonal to the epipolar line direction. The epipolar
term can now be written explicitly in function of the optical flow as

EE(w, F ) = Ψ
((

a′(F ) u+ b′(F ) v + q′(F )
)2)

. (5.11)
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In terms of the Fundamental Matrix. Secondly, we recall from Chap. 4 that the epipo-
lar constraint can be written in function of the fundamental matrix entries as

s⊤f = 0 . (5.12)

Here, the 9 × 1 constraint vector s collects the coordinates of the corresponding image
locations x and x+w as defined in Eq. (4.3) and the 9×1 vector f denotes the row major
ordering of the fundamental matrix entries as defined in Eq. (4.4). The epipolar term can
thus be written explicitly in terms of the fundamental matrix as

EE(w, f) = Ψ
((

s⊤(w) f
)2)

. (5.13)

The two alternative formulations given here additionally show that the epipolar con-
straint is linear in both the optical flow and the fundamental matrix. This has the advantage
that the contribution of the epipolar term to the energy is convex in both unknowns.

5.1.2 Minimisation and Numerical Solution

Let us now turn to the minimisation of our prototypical model energy. Parameterising the
fundamental matrix by a row major ordering of its entries, as discussed above, we aim to
minimise the energy

E(w, f) =

∫

Ω

(
ED(w) + α ES(∇w) + β EE(w, f )

)
dx , (5.14)

with respect to the optical floww and the fundamental matrix f , subject to the constraint

‖f‖2 = f⊤f = 1 . (5.15)

In this section we will solve this constrained optimisation problem by applying the method
of the Lagrange multipliers, a strategy that we have used before in the previous chapter.
We will show that the minimisation with respect to f will lead to an eigenvalue problem
with matrix entries that depend on the optical flow. The minimisation with respect to w

will lead to a system of Euler-Lagrange equations whose coefficients are a function of the
estimated epipolar geometry. To solve for both f and w simultaneously, we will propose
an alternating solution scheme that exhibits convergence in practice.

To allow for the estimation of large displacements and to avoid irrelevant local minima,
we will formulate the minimisation in an incremental coarse-to-fine framework along the
same line as for standard optical flow. To this end, we rewrite our joint energy (5.14) in
terms of a small flow increment. In analogy with the motion tensor in the data term, this
allows us to introduce a similar tensor notation for the epipolar term, which we will refer
to as the epipolar tensor. The epipolar tensor will not only lead to a more compact notation
that makes the convexity of the energy apparent, but will also prove important in the next
chapter where we give a geometrical interpretation to the quantities being penalised.



5.1 A Joint Variational Model 89

5.1.2.1 Treatment of the Epipolar Term: The Epipolar Tensor

To express the epipolar term in function of an unknown flow increment dw = (du, dv)⊤,
we write the epipolar constraint (5.10) in terms of the total optical floww+dw as

a′ (u+ du) + b′ (v + dv) + q′ = 0 , (5.16)

where w = (u, v)⊤ is a given solution, stemming from a coarser resolution level of the
coarse-to-fine warping pyramid. We further introduce the value

q̃′ = a′ u+ b′ v + q′ . (5.17)

Similar to q′, q̃′ can be interpreted as a signed orthogonal distance to the epipolar line
l′ = F xh. This time, however, the distance is not measured between the point x and its
epipolar line, but between the warped point x +w and l′ (again, up to the normalisation

factor
√

a′2 + b′2). The epipolar constraint, written as

a′ du+ b′ dv + q̃′ = 0 , (5.18)

now defines a line constraint on the flow increment in every point of the left image.
Using this notation, we can write the argument of the epipolar term as an inner product

e⊤dh = a′ du+ b′ dv + q̃′ , (5.19)

where dh := (du, dv, 1)⊤ is the homogeneous flow increment and e defined as

e := (a′, b′, q̃′)⊤ . (5.20)

The equation
e⊤dh = 0 , (5.21)

can thus be regarded as a variant of the epipolar constraint for small perturbations in the
right image position. Similar to the classical optical flow constraint (OFC) (3.32) of the
data term, it expresses the restriction that the point (du, dv)⊤ has to lie on the line repre-
sented by e. As in the case of the OFC, this equation does not tell us where exactly the
increment has to lie on this line. Since every point on the epipolar line is a valid corre-
spondence, the epipolar term alone does not provide a unique solution and additional data
and smoothness constraints are necessary to resolve the ambiguity.
If we finally insert expression (5.19) as argument in the epipolar term, we can simplify

the notation by writing the squared inner product as a quadratic form in the increment

EE(dw, f ) = Ψ
(
( e⊤dh )

2
)
, (5.22)

= Ψ
(
d⊤
h E dh

)
. (5.23)

Here we have defined the symmetric 3× 3 epipolar tensor as

E := ee⊤ . (5.24)

In contrast to the motion tensor, the epipolar tensor is always of rank one, which is a direct
consequence of the fact that the epipolar constraint describes a single line constraint.
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5.1.2.2 Minimisation of the Differential Form of the Energy

The differential forms of the data and smoothness term are the same as for pure optical
flow and have been derived earlier in Sec. 3.2.1.1 and Sec. 3.2.1.2. If we combine these
expressions with the epipolar term EE(dw, f ), we obtain the differential form of the total
energy E(dw, f). This energy will be minimised with respect to du, dv and f on each
level of a coarse-to-fine approach. Taking into account the constraint ‖f‖2 = 1, we apply
the method of Lagrange multipliers and search for critical points of the Lagrangian

L(dw, f , λ) = E(dw, f) + λ(1− f⊤f ) . (5.25)

These are tuples (du∗, dv∗, f ∗, λ∗)⊤ for which the functional derivatives of L with respect
to du and dv and the derivatives of L with respect to f and λ vanish.

Solving for the Optical Flow. To solve for the optical flow, we express the differential
energy as

E(dw, f) =

∫

Ω

(
Ψ
(
d⊤
h J dh

)
+ αΨ

(
|∇(w + dw)|2

)
+ β Ψ

(
d⊤
hE dh

) )
dx , (5.26)

where J is the symmetric motion tensor defined earlier in Eq. (3.42). By setting

∂

∂ du
L(dw, f , λ) = 0 and

∂

∂ dv
L(dw, f , λ) = 0 , (5.27)

we obtain the Euler-Lagrange equations of the optical flow increments du and dv. They
are given by the following system of coupled partial differential equations

0 = Ψ′
(
d⊤
h J dh

)
(J11 du+ J12 dv + J13)

−α div
(
Ψ′
(
|∇(w + dw)|2

)
∇(u+ du)

)

+βΨ′
(
d⊤
hE dh

)
(E11 du+ E12 dv + E13) , (5.28)

0 = Ψ′
(
d⊤
h J dh

)
(J12 du+ J22 dv + J23)

−α div
(
Ψ′
(
|∇(w + dw)|2

)
∇(v + dv)

)

+βΨ′
(
d⊤
hE dh

)
(E12 du+ E22 dv + E23) , (5.29)

where Jkl and Ekl, for k, l ∈ {1, 2, 3}, denote the kl-th entry of J and E. These equations
are non-linear in du and dv because of the penaliser function Ψ′. The strict convexity of
the regularised L1-norm, however, guarantees a unique solution.

Solving for the Fundamental Matrix. To solve for the fundamental matrix, we express
the differential energy as

E(dw, f) =

∫

Ω

(
Ψ
(
d⊤
h J dh

)
+ αΨ

(
|∇(w + dw)|2

)
+ βΨ

(
s⊤f

) )
dx , (5.30)
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and set

∇f L(dw, f , λ) = 0 and
∂

∂λ
L(dw, f , λ) = 0 , (5.31)

where ∇f stands for the gradient operator (∂f1 , . . . , ∂f9)
⊤. To differentiate the Lagran-

gian L with respect to f we only have to consider the newly introduced epipolar term,
since neither the data term nor the smoothness term depends on the fundamental matrix.
We have encountered this type of minimisation before in Sec. 4.1.2, with the difference
that the energy is now an integral over the continuous image domain Ω and not a sum over
the discrete pixels. As in the discrete case, however, differentiation of the Lagrangian with
respect to f and λ will give rise to an eigenvalue problem. It has the form

(∫

Ω

Ψ′
(
(s⊤f )2

)
ss⊤ dx dy − λI

)
f =: (M − λI) f = 09 (5.32)

1− ‖f‖2 = 0 . (5.33)

Note that we were able to switch the order of differentiation and integration because f is
constant over the image domain Ω. The system matrix M is symmetric positive definite
and its entries are formed by the integral expressions

mi,j =

∫

Ω

Ψ′
(
(s⊤f)2

)
sisj dx dy , (5.34)

with 1 ≤ i, j ≤ 9 and si being the i-th component of s.

5.1.2.3 Solution of the System of Equations

The coefficients of the Euler-Lagrange equations (5.28) – (5.29) depend on the funda-
mental matrix entries via the epipolar tensor E. The system matrix M of the eigenvalue
problem (5.32) – (5.33) in turn depends on the optical flow via the constraint vector s. To
solve forw and f simultaneously, two strategies can be considered:

A Fully Coupled Solution in a Coarse-to-Fine Framework. As a first approach, the
estimation of the optical flow and the fundamental matrix can be embedded in the same
coarse-to-fine framework. In this case we associate a variable k with the current image
scale and assume that solutions wk and fk are already available from the previous image
scale. Using these values, we compute the motion tensor Jk and the epipolar tensorEk for
the current level and solve the Euler-Lagrange equations for the flow increment dwk. Now,
the total flow updatewk+1 = wk+dwk can be used to compose the system matrixMk and
to solve the eigenvalue problem for fk+1. The updated flow and the updated fundamental
matrix can then be used as an initialisation on the next finer image scale.
While this approach provides a maximal coupling between the optical flow and the

fundamental matrix at each level of the multi-resolution pyramid, we have experienced
that a solution of this kind tends to be unstable. The reason for this is that the initial
fundamental matrix is estimated on a coarse image scale and is therefore mostly of bad
quality due to the small amount of correspondences and due to the less reliable coarse flow.
Any errors that appear in the epipolar geometry at a coarse scale then easily propagate
throughout the coarse-to-fine pyramid, where they may be exacerbated further. Because
of this observation, we will consider a second, alternative strategy in practice.
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An Alternating Solution of the Optical Flow and the Fundamental Matrix. Instead
of initialising the fundamental matrix at a coarse grid level, we kick-start its estimation by
a more robust method, such as the optical flow based estimation method of the previous
chapter. Assuming that we have an accurate estimate f of the fundamental matrix to
start from, we can then solve the Euler-Lagrange equations in a coarse-to-fine framework
where we keep f constant over all image scales. After computing the optical flow w, we
compose the system matrix M and solve the eigenvalue problem for a new fundamental
matrix. This updated epipolar geometry will in turn be used to compute the optical flow
again by solving the Euler-Lagrange equations. This alternating process of fundamental
matrix estimation and optical flow computation is repeated until convergence.
In practice, we initialise the fundamental matrix with the zero matrix. This disables the

epipolar term in the first iteration step, which automatically comes down to an estimation
of the fundamental matrix from pure optical flow, as described in the previous chapter.
We further exclude points from the estimation process that are warped outside the image
by the optical flow, because the flow vectors are less reliable there. Our joint model does
not explicitly enforce the singularity constraint on the fundamental matrix and therefore
its rank is not enforced during the iterative process. The rank is, however, enforced on
the final estimate. Since the estimation of the fundamental matrix proceeds by means of a
familiar reweighted total least squares (RTLS) fit, as described in detail in Sec. 4.1.2, only
the discretisation of the Euler-Lagrange equations remains to be discussed.

5.1.2.4 The Discrete Euler-Lagrange Equations

As we did for optical flow in Chap. 3, we denote by [ du ]i,j and [ dv ]i,j the approximations
of du and dv at the pixel location (i, j), with i = 1, . . . , nx and j = 1, . . . , ny. The image
size on the current resolution level of the coarse-to-fine pyramid is assumed to be nx×ny .

Point-Based Notation. Following the discretisation rules outlined in Sec. 3.2.2, we can
discretise the equations (5.28) – (5.29) in all n = nxny pixel locations as

0 = [Ψ′
D]i,j [J11]i,j [ du ]i,j + [Ψ′

D]i,j [J12]i,j [ dv ]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ du ]̃i,j̃ − [ du ]i,j

)

h2

+ β [Ψ′
E]i,j [E11]i,j [ du ]i,j + β [Ψ′

E]i,j [E12]i,j [ dv ]i,j

+ [Ψ′
D]i,j [J13]i,j + β [Ψ′

E]i,j [E13]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ u ]̃i,j̃ − [ u ]i,j

)

h2
(5.35)

0 = [Ψ′
D]i,j [J12]i,j [ du ]i,j + [Ψ′

D]i,j [J22]i,j [ dv ]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ dv ]̃i,j̃ − [ dv ]i,j

)

h2
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+ β [Ψ′
E]i,j [E12]i,j [ du ]i,j + β [Ψ′

E]i,j [E22]i,j [ dv ]i,j

+ [Ψ′
D]i,j [J23]i,j + β [Ψ′

E]i,j [E23]i,j

− α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S ]̃i,j̃ + [Ψ′
S]i,j
)

2

(
[ v ]̃i,j̃ − [ v ]i,j

)

h2
, (5.36)

for i = 1, . . . , nx and j = 1, . . . , ny. Here, we introduced the additional abbreviation

[Ψ′
E]i,j =

1

2

√(
[ du ]i,j, [ dv ]i,j, 1

)
[E ]i,j

(
[ du ]i,j , [ dv ]i,j, 1

)⊤
+ ǫ2

, (5.37)

for the approximation ofΨ′
(
d⊤
hE dh

)
in the pixel (i, j), withΨ′ the TV diffusivity (3.25).

As before, Nl(i, j) denotes the set of the two neighbours of the pixel (i, j) in the axis
direction l ∈ {x, y} and [Ψ′

D]i,j and [Ψ′
S]i,j denote the approximations of Ψ′

(
d⊤
h J dh

)

and Ψ′
(
|∇(w + dw)|2

)
in the pixel (i, j).

General Structure. The structure of the discrete Euler-Lagrange equation system can
be made clear by writing it as

A(p)p+ c(p) = 02n , (5.38)

where the 2n × 1 parameter vector is defined as p := (du⊤,dv⊤)⊤ and the 2n × 2n
matrix A(p) and the 2n× 1 vector c(p) are defined as

A(p) :=

(
Ψ′

D(du,dv)J11 Ψ′
D(du,dv)J12

Ψ′
D(du,dv)J12 Ψ′

D(du,dv)J22

)
− α

(
L(du,dv) 0n

0n L(du,dv)

)

+ β

(
Ψ′

E(du,dv)E11 Ψ′
E(du,dv)E12

Ψ′
E(du,dv)E12 Ψ′

E(du,dv)E22

)
, (5.39)

c(p) :=

(
Ψ′

D(du,dv) j13
Ψ′

D(du,dv) j23

)
− α

(
L(du,dv) 0n

0n L(du,dv)

)(
u

v

)

+ β

(
Ψ′

E(du,dv) e13
Ψ′

E(du,dv) e23

)
. (5.40)

Here we have used the same compact notations du, dv, u, v, jkl, Jkl, ΨD(du,dv) and
L(du,dv) as in Sec. 3.2.2.3. We further defined ekl, Ekl and Ψ′

E(du,dv) as

ekl :=
(
[Ekl]1,1, . . . , [Ekl ]nx,ny

)⊤
for k, l ∈ {1, 2, 3}, (5.41)

Ekl := diag
(
[Ekl]1,1, . . . , [Ekl ]nx,ny

)
for k, l ∈ {1, 2, 3}, (5.42)

Ψ′
E(du,dv) := diag

(
[Ψ′

E]1,1, . . . , [Ψ
′
E]nx,ny

)
. (5.43)

The matrix−L(du,dv) and the matrices arising from the data term and the epipolar term
are symmetric positive definite, such that the matrix A is symmetric positive definite as
well. The matrix A has a sparse structure and provides a point-wise coupling between
du and dv via the off-diagonal blocks J12 and E12 and a neighbourhood coupling via the
non-zero diagonals of L(du,dv). Because of this structure, we will be able to solve the
non-linear system by means of the Gauß-Seidel method with frozen coefficients.
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5.1.2.5 Solution by Coupled Point Gauß-Seidel Relaxation

To solve the discrete Euler-Lagrange equations, we introduce a lagged diffusivity index k,
and assume that a solution ([ du ]ki,j, [ du ]ki,j) is known from a previous iteration step. We
then update the flow increments via a coupled point Gauß-Seidel relaxation step, whose
update rule reads in point-based notation:

(
[ du ]k+1

i,j

[ dv ]k+1
i,j

)
=

(
[M11]

k
i,j [M12]

k
i,j

[M12]
k
i,j [M22]

k
i,j

)−1(
[r1]

k
i,j

[r2]
k
i,j

)
, (5.44)

for i = 1, . . . , nx and j = 1, . . . , ny. The matrix entries are given by

[M11]
k
i,j = [Ψ′

D]
k
i,j [J11]i,j + α

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

+ β [Ψ′
E]

k
i,j [E11]i,j , (5.45)

[M22]
k
i,j = [Ψ′

D]
k
i,j [J22]i,j + α

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

+ β [Ψ′
E]

k
i,j [E22]i,j , (5.46)

[M12]
k
i,j = [Ψ′

D]
k
i,j [J12]i,j + β [Ψ′

E]
k
i,j [E12]i,j , (5.47)

and the right hand side by

[r1]
k
i,j = − [Ψ′

D]
k
i,j [J13]i,j − β [Ψ′

E]
k
i,j [E13]i,j

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N−
l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ du ]k+1

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N+

l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ du ]k

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ u ]̃i,j̃ − [ u ]i,j

)
, (5.48)

[r2]
k
i,j = − [Ψ′

D]
k
i,j [J23]i,j − β [Ψ′

E]
k
i,j [E23]i,j

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N−
l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ dv ]k+1

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈N+

l
(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2
[ dv ]k

ĩ,j̃

+ α
∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S]
k
ĩ,j̃

+ [Ψ′
S]

k
i,j

)

2h2

(
[ v ]̃i,j̃ − [ v ]i,j

)
, (5.49)
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where N−(i, j) is the set of neighbours of pixel (i, j) in the direction of the l-axis that
have already been updated andN+(i, j) the set of neighbours that still need to be updated.
Since the flow increments are assumed to be small, they are initialised by zero.

5.1.3 A Joint Model with Data Normalisation

Normalisation of the correspondence data, as proposed by Hartley [Har97], dramatically
improves the condition number of the eigenvalue problem (5.32) – (5.33) and is essen-
tial for obtaining an accurate estimate of the fundamental matrix. It generally consists
of replacing each point xh = (x, y, 1)⊤ in the left image and its corresponding point
x′
h = (x + u, y + v, 1)⊤ in the right image by the transformed points T x̃ and T ′x̃′. The

normalisation transformations T and T ′ are typically composed of a translation and a ro-
tation and are chosen such that the normalised projective coordinates become (1, 1, 1)⊤ on
average. We refer back to Sec. 4.1.3 for a more detailed description.
To obtain a closed model formulation, it is highly desirable that this normalisation step

can be integrated into our prototypical energy (5.2). With the help of the epipolar con-
straint for normalised correspondence data (4.34), we can easily express the epipolar term
in function of the normalised fundamental matrix f̂ . This leads then to a joint variational
model with data normalisation

E(w, f̂ ) =

∫

Ω

(
Ψ
(
|gr(x+w)− gl(x)|2 + γ|∇gr(x+w)−∇gl(x)|2

)

+ αΨ
(
|∇w|2

)
+ β Ψ

(
(ŝ⊤ f̂ )2

))
dx dy . (5.50)

Choosing the Normalisation Transformations. By imposing the constraint ‖f̂‖2 = 1
and by applying the method of the Lagrange multipliers to find a minimiser f̂ of (5.50),
we obtain an eigenvalue problem that is similar to that of Eq. (5.32) – (5.33). To minimise
E(w, f̂ ) with respect to the optical flow w, however, we have to take into consideration
that the epipolar line coefficients a′, b′ and q′ now not only depend on the fundamental
matrix entries, but also on the normalisation transformations T and T ′. In the approach
of Hartley, both normalisation transformations depend in turn on the set of points to be
normalised. The correspondences in the left image consists of all pixels in the rectangular
image domain Ω, so the transformation T is a constant mapping that only depends on
the image size. The transformation T ′, on the other hand, normalises the warped pixel
coordinates and thus depends on the optical floww. To avoid derivatives of T ′ with respect
to u and v in the Euler-Lagrange equations, we have to replace it by a constant mapping.
This way, the Euler-Lagrange equations of u and v do not change under the normalisation
step and remain equal to those presented in Eq. (5.28) - (5.29). For simplicity, we further
assume that the normalising transformations for the left and right image are similar, such
that we can choose T ′ = T . Experiments have shown that this approximation has only a
minor influence on the results compared with the original approach of Hartley.

The solution of the resulting system of equations is done iteratively: As for the joint
model without data normalisation, the eigenvalue problem is first solved for f̂ . After the
fundamental matrix is denormalised via F =T⊤F̂ T (see Sec. 4.1.3), it is used to solve the
Euler-Lagrange equations forw. This process is repeated until convergence.
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5.2 Evaluation of the Joint Variational Method

In this experimental section we assess the performance of our joint variational method by
separately evaluating the accuracy of the fundamental matrix estimation and the optical
flow computation. For the recovery of the epipolar geometry, we use the same image
pairs as for the evaluation of our optical flow based method in Sec. 4.3. Equivalently, we
compare our results with those of the sparse estimation techniques F1 and F2. For the
optical flow evaluation, we use stereo pairs from the Middlebury optical flow training data
base with publicly available ground truth. For both types of experiments we present results
for a set of optimised parameters and results for the default settings of α = 20.0, γ = 20.0
and σ = 0.9. For the quality of the fundamental matrix estimation, we will use the error
measure dF of Sec. 4.3, which represents the deviation of the estimated epipolar geometry
from ground truth in pixels units. The estimated optical flow will be assessed by means of
the classical average angular error (AAE), which is defined as [BFB94]

AAE (we,wg) =
1

|Ω|

∫

Ω

arccos

(
ueug + vevg + 1

(u2
e + v2e + 1)1/2(u2

g + v2g + 1)1/2

)
dx , (5.51)

with |Ω| =
∫
Ω
dx the size of the image domain,we = (ue, ve) the estimated flow field and

wg = (ug, vg) the ground truth flow field. We additionally evaluate the average endpoint
error (AEE) of the estimated optical flow to include an error measure that is computed in
pixel units. It is defined as [BSL+09]

AEE (we,wg) =
1

|Ω|

∫

Ω

(
(ue − ug)

2 + (ve − vg)
2
)1/2

dx . (5.52)

5.2.1 Fundamental Matrix

The experiments for assessing the fundamental matrix estimation are divided into two
parts. In a first part we investigate the convergence behaviour of our alternating minimi-
sation strategy. In a second part we evaluate the scalability of our results under increasing
image sizes and discuss run time issues.

5.2.1.1 Convergence of the Alternating Minimisation Strategy

We first demonstrate the convergence behaviour of our alternating minimisation strategy.
To this end we recover the epipolar geometry of the Herz-Jesu-P25 and City-Hall image
pairs with our joint estimation method for the default parameter settings. The first column
of Fig. 5.2 and Fig. 5.3 shows the estimated epipolar lines after the first iteration step. We
remind that this step comes down to an estimation of the fundamental matrix from pure
optical flow and that these geometries correspond to the error dF listed before in Table 4.4
for the respective image pairs (under the default settings for RTLS). The second column of
these figures shows how these initial estimates are readjusted over 30 iterations to almost
coincide with the ground truth. These geometries correspond to the default errors that
can be found in Table 5.1. We additionally observe that the simultaneous recovery of the
optical flow and the epipolar geometry has led to a visual improvement of both flow fields.
This is most apparent in the occluding side of the building in the City-Hall sequence.
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Tab. 5.1: Overview of the error dF for 30 iterations of our joint variational method and
for the feature based method classes F1 and F2 over 100 test runs. The best results are
highlighted.

Our Method F1 F2
Image Pair

default (opt) mean (min) mean (min)

DinoRing 1.175 (0.374) 4.398 (0.422) 3.928 (0.451)
Entry-P10 0.645 (0.476) 3.530 (1.058) 4.611 (0.945)
TempleRing 0.274 (0.168) 0.810 (0.089) 0.881 (0.371)
Fountain-P11 0.737 (0.280) 0.682 (0.373) 0.888 (0.312)
Herz-Jesu-P25 0.502 (0.396) 1.139 (0.725) 3.021 (0.446)
City-Hall 1.002 (0.870) 1.236 (0.910) 1.159 (0.524)

We found empirically that the value of the weight β has mainly an influence on the
convergence speed and to a much lesser extend on the final error. Fig. 5.4 shows how dF
decreases as a function of the number of iterations, and eventually converges for different
choices of β. In combination with the default settings, we choose β = 40, for which
we obtained convergence within 10 iteration steps for all image pairs. If we compare the
results of Table 5.1 with those of Table 4.4 for the default settings, we see that our joint
estimation method has improved the accuracy substantially for all outdoor sequences. At
the same time our method performs better on average than both feature based methods for
all but the Fountain-P11 image pair. For 4 out of 6 data sets our results are within sub-
pixel precision. Table 5.1 also lists the error for optimised parameters, including β. All
results are within sub-pixel precision for the tested image pairs and for 4 out of 6 data sets
we outperform both feature based methods. From the small deviation in error between
the default and the optimised parameters, we conclude that our joint estimation method
exhibits a lower sensitivity with respect to the parameter settings.
We make the remark here that our joint method converges towards an optical flow that

is most consistent with the estimated fundamental matrix. While this will generally result
in a more accurate epipolar geometry than the purely optical flow based estimates of the
previous chapter, a comparison of the errors for the DinoRing and TempleRing sequence
in Table 4.4 and Table 5.1, for instance, illustrate that this is not always guaranteed.

5.2.1.2 Scalability and Run Times

To demonstrate the scalability of our results, we computed the error dF for the full (3072×
2048) and half (1536×1024) resolution images of the Strecha data base. These are shown
in Table 5.2, together with the outcome for the quarter size (640 × 427) versions. Due
to the large run times of our joint method for larger image data, we did not search for
optimised parameters and only list results for the default settings. Consequently, we only
compare with the average results achieved by the feature based methods, for which we
chose the same settings as in Table 4.3. We see that the errors for the full resolution
images scale well for our method. For the half resolution versions we even obtain sub-
pixel precision. For the feature based methods, the inlier ratios of the different sequences
stayed roughly the same for all image sizes. The absolute number of inliers for Entry-P10
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Fig. 5.2: Results for Herz-Jesu-P25 Left Column: (a) The optical flow between frames 5
and 6 after 1 iteration step (default settings). (c) + (e) The corresponding estimated epipo-
lar geometry for frames 5 and 6. The points are depicted as red crosses, the corresponding
estimated epipolar lines as full white lines and the corresponding ground truth lines as dot-
ted lines. Right Column: (b) The optical flow between frames 5 and 6 after 30 iteration
steps. (d) + (f) The corresponding epipolar geometry.

and Herz-Jesu-P25 (≈ 3270 and ≈ 1520 respectively for full resolution) did, however,
not scale with the image size. The good results of F1 for the full resolution Herz-Jesu-
P25 sequence can therefore mainly be attributed to an increased precision of the feature
locations. For the half resolution images of the City-Hall sequence, the absolute inlier
count scaled significantly with the image size (≈ 4304) and this helped to achieve a lower
feature based error.
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Fig. 5.3: Results for City-Hall. Left Column: (a) The optical flow between frames 1 and
2 after 1 iteration step (default settings). (c) + (e) The corresponding epipolar geometry.
Right Column: (b) The optical flow between frames 1 and 2 after 30 iteration steps. (d)
+ (f) The corresponding epipolar geometry.

Table 5.2 additionally lists run time information for our joint method. These values refer
to an implementation in standard ANSI C on a machine with a 1862MHz Intel Core2 CPU.
For the quarter size images, one iteration of our alternating minimisation requires about
30 s, which is almost exclusively spent on the optical flow computation. For the half size
images this grows to approximately 170 s per iteration. The total run time of the feature
based methods with adaptive RANSAC ranges from less than 10 s for the quarter size
images to more than 150 s for the half size images, depending on the amount of features
and the distance measure being minimised. Here the run time is mostly dominated by
feature extraction and matching.
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Tab. 5.2: Overview of the error dF for the quarter (640× 427), half (1536× 1024) and full
(3072 × 2048) resolution versions of the outdoor image pairs for 30 iteration steps of our
joint variational method and for 100 test runs of the feature based methods F1 and F2. The
best results are highlighted in bold face. The corresponding run time (in seconds) of our
method on a machine with a 1862MHz Intel Core2 CPU is given in the last column.

Image Our Run
Size

Image Pair
Method

F1 F2
Time

Entry-P10 0.645 3.530 4.611
Fountain-P11 0.737 0.682 0.888

quarter
Herz-Jesu-P25 0.502 1.139 3.021

880 s

City-Hall 1.002 1.236 1.159
Entry-P10 0.400 7.062 10.094
Fountain-P11 0.445 0.490 0.948

half
Herz-Jesu-P25 0.977 1.940 4.393

5190 s

City-Hall 0.657 0.591 0.600
Entry-P10 1.957 10.142 19.165
Fountain-P11 1.250 1.499 1.488

full
Herz-Jesu-P25 2.404 2.149 7.997

> 8 h

City-Hall 1.305 2.011 2.102
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Fig. 5.4: Influence of the parameter β on the pro-
gression of dF . The graph only shows the first 200
iterations of the 1000 that were carried out in total.

Tab. 5.3: Results for the Yosemite
sequence without clouds com-
pared with other 2D methods.

Method AAE

Brox et al. [BBPW04] 1.59◦

Mémin and Pérez [MP02] 1.58◦

Roth and Black [RB05] 1.47◦

Bruhn et al. [BWS05] 1.46◦

Amiaz et al. [ALK07] 1.44◦

Nir et al. [NBK08] 1.15◦

Our method 1.15◦

In order to speed up the run time of our method, several options exist. First of all, we
require significantly less than 30 iterations to converge to an accurate solution. This al-
lows us to reduce the number of iterations for practical applications. Secondly, variational
optical flow computation can be parallelised efficiently on recent graphical hardware. Ac-
cording to Gwosdek et al. [GZG+10], the run time for a GPU implementation of the
advanced optical flow method of [ZBW+09] is less than 1s for quarter size images and
less than 2.5s for images of half size. If we assume convergence within 10 iterations, the
total run time of a parallel implementation of our baseline method would thus be around
10s and 30s, respectively. For the full size images, run times are prohibitively large and
memory requirements make the execution on current GPUs infeasible.
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5.2.2 Optical Flow

In a second set of experiments we provide evidence that the concept of simultaneously
recovering the correspondences and the epipolar geometry can improve the optical flow
computation. First we use our joint estimationmethod to compute the optical flow between
frames 8 and 9 of the Yosemite sequence 1 without clouds. This classical sequence of size
316×252 actually depicts a static scene captured by a moving camera and therefore forms
a stereo pair. Table 5.3 shows that we are able to improve the AAE from 1.59◦ for standard
optical flow to 1.15◦. This ranks us among the best methods with spatial regularisation
published so far 2. For this experiment all parameters have been optimised with respect to
the AAE of the optical flow in the first iteration step and β has been set to 50. The sky
region has not been excluded from the computation, and pixels that are warped outside the
image are included in the evaluation of the AAE. Our result is similar to the one presented
by [NBK08], which is not surprising since a rigid motion model enters the functional of
both methods. It has to be noted that methods with spatio-temporal smoothness terms may
give lower errors. In Fig. 5.5 we show the results for the estimated optical flow and the
corresponding epipolar geometry for 15 iteration steps.
In a final experiment we evaluate our methodology on four image pairs of the Middle-

bury optical flow benchmark ([BRS+07]). Frames 10 and 11 of the synthetic Urban2, Ur-
ban3, Grove2 and Grove3 3 training set deal with rigid stereo motion for which the ground
truth is publicly available. In Table 5.4 we show the influence of including the epipolar
constraint in pure optical flow by collecting the AAE and the AEE of the estimated flow
fields. The first column shows the errors for the optical flow method of [BBPW04], while
the second column lists the errors for our joint model that adds the epipolar term to the
functional. The results for both methods are obtained for the default settings with β = 40.
Our joint method outperforms pure optical flow for all tested image pairs, even for Urban2
where the motion of a small car does not fulfil the epipolar constraint. To illustrate that
our idea can even improve the performance of more recent state of the art optical flow
techniques, we additionally provide results for the method of Zimmer et al. [ZBW11]
without and with our additional epipolar term. The original method without epipolar term
is currently one of the top ranking methods in the Middlebury benchmark and has been
briefly sketched at the end of Sec. 3.1.3. For fixed settings (α = 400.0, γ = 20.0, σ = 0.5
and β = 5.0), the joint variant of Zimmer et al. improves the AAE and AEE over pure
optical flow for all four sequences, leading to some of the best results published so far.
The corresponding estimated flow fields and epipolar lines are shown in Fig. 5.6.

5.2.3 Automatic Reconstruction

To conclude, we present reconstruction results for the outdoor image pairs that we used
in our experiments and for image pairs that we recorded ourselves. To perform a dense
reconstruction of the depicted scene, we extract the left and right camera projection ma-
trices P and P ′ from the estimated fundamental matrix F and use them to triangulate the

1. available at http://www.cs.brown.edu/people/black/images.html

2. Better results are reported in the technical report [BRN+09] which did not yet undergo the process of
peer reviewing.

3. all available at http://vision.middlebury.edu/flow/data/
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Fig. 5.5: Results for the Yosemite sequence without clouds. Top Row: (a) Frame 8. (b)
Frame 9. (c) Ground truth optical flow. Bottom Row: (c) Estimated eipolar lines in frame
8. (d) Estimated eipolar lines in frame 9. (f) Estimated optical flow (settings: α = 19.1,
γ = 2.1, σ = 0.9 and β = 50.0). Pixels (apart from the sky region) that are warped outside
the image are coloured black.

Tab. 5.4: Influence of including the epipolar term (+ET) in optical flow for the four stereo
image pairs of the Middlebury optical flow training set. The results in the first two columns
correspond to the baseline method of Brox et al. [BBPW04] and are presented for default
settings (α = 20.0, γ = 20.0, σ = 0.9 and β = 40.0). The results in the last two columns
correspond to the method of Zimmer et al. [ZBW11] and are presented for the fixed
settings given in the corresponding paper (α = 400.0, γ = 20.0, σ = 0.5 and β = 5.0).

Brox et al. Brox et al. + ET Zimmer et al. Zimmer et al. + ET
Image Pair

AAE / AEE AAE / AEE AAE / AEE AAE / AEE

Grove2 2.67 / 0.19 2.53 / 0.17 2.19 / 0.16 2.13 / 0.14
Grove3 6.78 / 0.69 5.89 / 0.64 5.84 / 0.59 5.61 / 0.57
Urban2 2.66 / 0.32 2.20 / 0.29 2.46 / 0.26 2.15 / 0.24
Urban3 5.26 / 0.61 4.96 / 0.56 3.40 / 0.44 3.11 / 0.39

back-projected rays for each pixel correspondence. While doing so, we assume that the
internal camera parameters, such as the focal length and the principal point, are known.
As explained in Sec. 2.4, this is valid assumption in practice and allows us to extract the
essential matrix E from F to determine the relative pose and orientation of the second
camera with respect to the first one. The resulting reconstruction is then up to scale.
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Fig. 5.6: The flow fields between frames 10 and 11 of the Middlebury training sequences.
The estimated epipolar lines for frame 10 have been overlaid. Top Left: (a) Grove2. Top
Right: (b) Grove3. Bottom Left: (c) Urban2. Bottom Right: (d) Urban3.

5.2.3.1 Simultaneous Recovery of Camera Motion and Scene Structure

By simultaneously solving for the dense optical flow and the epipolar geometry of two
images, we can associate with each pixel of the left image a 3D pointX in space. As seen
in Sec. 2.4.3.3, this can be easily achieved by solving the triangulation equations

{
P (F )Xh = xh

P ′(F )Xh = (x+w)h
, (5.53)

in a total least squares sense [HZ00]. Unlike 3D reconstruction in a calibrated (or recti-
fied) setting, the camera matrices P and P ′ are not given, but are estimated together with
the optical flow in the form of the fundamental matrix. In this sense, our joint variational
method fuses the two steps of traditional projective reconstruction by simultaneously solv-

ing for the camera motion and scene structure in a single optimisation framework.
Contrary to multiview stereo, we do not obtain a complete representation of the depicted

scene. Instead, our reconstruction is viewpoint specific and only contains points that are
visible in the first image. Such a reconstruction is often referred to as a range image. Be-
cause an assessment of the reconstruction quality encompasses an evaluation of the recon-
struction accuracy together with the reconstruction completeness against ground truth, it is
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difficult to compare a range image in a multiview ranking such as [SCD+06, SvHV+08].
We will therefore restrict ourselves here to a visual assessment of the results. Neverthe-
less, the methodology presented in this chapter could form the basis for an uncalibrated
multiview system that integrates range images from multiple stereo pairs [ZPB07b].

5.2.3.2 Reconstruction Results

In Fig. 5.7 we present 3D reconstructions from frames 1 and 0 of the Entry-P10 data set,
frames 1 and 2 of the Fountain-P11 data set and frames 5 and 6 of the Herz-Jesu-P25 data
set. These reconstructions have been obtained by our baseline joint estimation method.
For all image pairs we used the 1536×1024 versions of the original images, which comes
down to more than 1.5 million reconstructed points. The settings for our method were the
default ones, which corresponds to an accuracy of the epipolar geometry listed in Table 5.2
for the half resolution images. To obtain a reconstruction up to scale, we used the internal
camera parameters that are provided with the images. The reconstructions are displayed
in OpenGL [WND99] as an untextured mesh of triangles connecting the 3D points. The
ground part of the results is left out for visualisation purposes. As one can observe, many
details are visible and discontinuities in the depth are accurately recovered. The same
is true for the reconstruction from frames 1 and 2 of the City-Hall sequence shown in
Fig. 5.8. Here, we do not display points that are warped outside the image by the optical
flow. The close-ups in Fig. 5.8 (b) and (c) show a detailed view of the middle section of
the building with and without texture. Fine details can be clearly distinguished and the
statues in the close-up are easily recognisable in the untextured surface.

In a final experiment we reconstruct a human face from a stereo pair that we have
recorded ourselves with two Point Grey 4 Flea cameras. The images are shown in Fig. 5.9
(a) and (b) and are of size 280 × 430. We do not perform an internal calibration of the
cameras, but instead use the provided focal length and approximate the principal point
by the image centre. To demonstrate the flexibility of our approach in different problem
settings, we replace the TV-regularisation of our baseline method with a smoothing strat-
egy that allows a stronger smoothing between flow discontinuities and at the same time
preserves meaningful features by not smoothing across them. This will result in a natu-
rally smooth reconstruction while preserving a realistic facial expression. To achieve this,
we opt for the PDE based anisotropic flow-driven strategy discussed in Sec. 3.1.2.2. This
type of smoothing is easily obtained by replacing the scalar valued TV-diffusivity in the
Euler-Lagrange equations by the diffusion tensor (3.24). For the function Ψ′ we choose
the Perona-Malik diffusivity (3.26) with a contrast parameter of c = 0.1. This diffusivity
is known to make backward diffusion possible and thereby enhance edges even more. The
remaining model parameters where optimised individually. The resulting reconstruction is
shown in Fig. 5.9 (c)–(e). We see that the facial expression is captured very well with only
a slight degeneration of the reconstruction near specularities on the nose and the eyes. For
this example the background was excluded from the fundamental matrix estimation.

4. http://www.ptgrey.com/
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Fig. 5.7: Untextured reconstruction results for the Entry-P10 data set (Top ), the Fountain-
P11 data set (Middle) and the Herz-Jesu-P25 data set (Bottom).
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Fig. 5.8: Reconstruction result for the City-Hall data set. Top: (a) Untextured reconstruc-
tion. Bottom Left: (b) Untextured close-up. Bottom Right: (c) Textured close-up.

5.2.4 Limitations of Variational Methods

While the previous chapter showed that the estimation of the fundamental matrix from
pure optical flowwas promising, particularly in challenging cases with low-texture or near-
degenerate configurations, we have demonstrated in this chapter that an intricate coupling
of both unknowns can improve results even further.
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Fig. 5.9: Face reconstruction from 2 frames using anisotropic smoothing. Top Left: (a)

Left image. Top Middle: (b) Right image. Top Right: (c) Untextured frontal view.
Bottom Left: (d) Untextured side view. Bottom Right: (e) Textured side view.

From the experiments, such as City-Hall, however, it is clear that large changes in view
point can pose a problem to dense matching algorithms due to the large displacements
and induced occlusions. While some of these effects are counterbalanced by the cou-
pling between the optical flow and the fundamental matrix, sparse feature based methods
still offer advantages for very wide baseline image pairs. Recently, however, optical flow
methods have been proposed to overcome this limitation by either integrating feature
matches [BBM09] or by applying a more global search [SPC09b]. As demonstrated, such
methods could be extended by an epipolar term as well to improve accuracy in wide base-
line scenarios. Also motion parallax induced by sudden and large changes in depth, forms
a problem for traditional optical flow, since large jumps in the displacement field are diffi-
cult to capture in a global framework. Feature matching, in contrast, does not suffer from
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parallax because it is essentially a local process that does not enforce spatial consistency.
Occlusions can form a second challenge. They are usually present in dense flow fields,

but hardly pose a problem in feature matching where disappearing interest points will
generally not be matched in the next frame. For our joint method we experienced that
small occlusions only have a very limited influence because they are down weighted by
the robust epipolar term. Additionally these regions are filled in by the smoothness term in
accordance with the estimated stereo geometry. In wide baseline scenarios, occlusions will
have a larger impact such that their explicit detection should be considered in combination
with the afore mentioned techniques for large displacement optical flow. A strategy for
occlusion handling for large displacements will be proposed in the next chapter.
In contrast to wide baseline images and occlusions, illumination changes are less prob-

lematic for dense estimation methods. While the SIFT descriptor is invariant under mul-
tiplicative and additive illumination changes by using normalised gradient information,
similar concepts can be used by optical flow methods, e.g. by using photometric invari-
ants ([MBW07]) or normalised cross correlation ([SPC09a, WPB10]).
Since our joint variational model relies on image sequences that allow a stable estima-

tion of the fundamental matrix, the application is of course restricted to rigid scenes which
are not dominated by moving objects.

5.3 Summary

In this chapter we have proposed a variational method for establishing image correspon-
dences between two uncalibrated stereo images. In contrast to the large corpus of existing
methods that make use of the given epipolar geometry in a calibrated stereo setting, we
estimate the optical flow together with the unknown fundamental matrix. To this end, we
introduced a novel joint energy formulation that allows us to estimate the fundamental ma-
trix and the optical flow simultaneously, thereby ensuring that the set of recovered image
correspondences is most consistent with the estimated stereo geometry, and vice versa.
Concretely, we added an extra term to a classical optical flow functional which imposes
the epipolar constraint in two directions: In one way it forces the optical flow to lie in ac-
cordance to the estimated epipolar lines and in the other way it fits the fundamental matrix
to the current set of image correspondences. To minimise this joint energy, we proposed
an alternating solution strategy that exhibits convergence in practice.
In our experiments we demonstrated that our joint model yields better optical flow re-

sults than approaches that do not estimate the epipolar geometry in the process. At the
same time, a coupled solution of the fundamental matrix and the optical flow further im-
proved the fundamental matrix estimation of the two-step method proposed in the previous
chapter. Besides yielding a higher overall accuracy, a joint estimation of the fundamental
matrix and the optical flow further exhibits a better parameter stability than their separate
computation. From a conceptual point of view, we fuse the two steps of classical projec-
tive reconstruction in a single variational framework by simultaneously solving for both
the camera motion and the scene structure. This was demonstrated by providing results
for the 3D reconstruction of the depicted scene. We ended the chapter with a discussion of
the limitations of variational stereo methods that are based on optical flow computation.
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Until now we have extensively studied variational methods for computing the optical flow
and the epipolar geometry from two stereo images, i.e. approaches that recover the scene
structure and the camera motion at a certain time instance. For many tasks in computer
vision, however, it is essential to not only recover the three-dimensional structure of a
scene, but also its three-dimensional displacement field, the so called scene flow. Scene
flow represents the real, possibly non-rigid, 3D motion of objects in the scene, while
optical flow only describes the projection of this motion on the 2D image plane. Since
time varying depth information is necessary to determine 3D motion, the estimation of
scene flow requires a stereo sequence that provides two views per time instance.

In this chapter we design a variational scene flow method for uncalibrated stereo se-
quences. We do this by integrating the spatial and temporal information from two stereo
pairs in a global energy functional while jointly estimating the unknown stereo geometry
at consecutive time steps. To this end, we extend the two-frame models for pure optical
flow and uncalibrated stereo correspondence from Chapters 3 and 5 to a four-frame model
that simultaneously solves for the scene flow and the scene structure.

Apart from this novel generalised model, that will be presented in Sec. 6.1, we make sev-
eral additional contributions: First, we propose a regularisation strategy that penalises dis-
continuities in the different displacement fields separately. This makes sense, since motion
and depth continuities do not necessarily coincide. Secondly, within the multi-resolution
framework required to handle large displacements, we introduce a multi-dimensional ten-
sor based notation for linearised constraints in Sec. 6.2. This notation allows to normalise
the data and epipolar constraints such that deviations from model assumptions can be in-
terpreted as geometrical distances. In case of the epipolar constraint, we show that this
approach is equivalent to the minimisation of the epipolar distance or the Sampson error,
two distance measures that have so far only been encountered in the context of feature
based methods. Finally, we tackle some of the limitations of variational methods that
were mentioned at the end of the previous chapter. By explicitly detecting occlusions we
can exclude regions from the estimation process where the constancy assumptions do not
hold, while the initialisation of the stereo correspondences with a dedicated method for
large displacements renders our method applicable in large baseline scenarios. After dis-
cussing the minimisation of our functional in Sec. 6.3, we conclude this chapter with the
experimental section 6.4 where we clearly demonstrate the benefits of our contributions.
We show the favourable performance of our method in comparison with recent techniques
for the rectified case and present several real-world examples.

109
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6.1 A Scene Flow Model for Uncalibrated Stereo

To compute the scene flow, we consider the classical four-frame case depicted in Fig. 6.1.
It consists of two consecutive image pairs of a synchronised stereo sequence: the left im-
age g1l(x) and the right image g1r(x) at time t and the left image g2l(x) and the right
image g2r(x) at time t + 1. Here x = (x, y)⊤ denotes the location in a rectangular image
domain Ω ⊂ R

2 that is assumed to be the same for all images. In the following we assume
that the sequence has been recorded by a single fixed stereo rig, i.e. there exists a single
fundamental matrix F that describes the epipolar geometry of the stereo pairs at time t
and t+1. Although the assumption of a common fundamental matrix for both stereo pairs
is not a prerequisite for our method, it makes the subsequent modelling easier and more
clear. Permitting a time-variant fundamental matrix would lead to a more general model
and allows to extend the scene flow computation to arbitrarily moving unconstrained cam-
eras.

x+wf x+wf +wst +wd

time t+ 1
second stereo flow

wst +wd, F

g2l g2r

left optical flow
wf

right optical flow
wf +wd

x
x+wst

g1l g1r

time t first stereo flow
wst, F

left right

Fig. 6.1: The correspondences between the four frames of a binocular stereo sequence.

Parameterisation of Scene Flow, Scene Structure and Camera Geometry. In con-
trast to existing variational scene flow methods that start out from a rectified stereo se-
quence [HD07,WRV+08], our approach assumes a general stereo geometry with unknown
fundamental matrix. As a consequence, the stereo correspondences do not take on the form
of a scalar valued disparity, but of a 2-dimensional displacement. To distinguish this dis-
placement field from the unconstrained optical flow in temporal direction, we will refer
to it from now on as stereo flow. All together, we consider four types of correspondences
in our model: two optical flows between consecutive frames of the same camera (left and
right camera) and two stereo flows between the left and right frame at the same time in-
stance (time t and t + 1). Exploiting the dependencies that exist between the images in
Fig. 6.1, these correspondences can be parameterised by six unknown functions with re-
spect to the reference image g1l: the first stereo flowwst = (ust, vst)

⊤, the left optical flow
wf = (uf , vf)

⊤ and the difference flow wd = (ud, vd)
⊤. This is a result of the fact that

there are two different paths from the first frame g1l to the fourth frame g2r: One goes over
g1r via the first stereo flow and the right optical flow and the other goes over g2l via the left
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optical flow and the second stereo flow. This redundancy becomes clear if we write down
the corresponding image location in the fourth frame and simply reorder the terms as

x + wst︸︷︷︸
first

stereo flow

+ (wf +wd)︸ ︷︷ ︸
right

optical flow

= x + wf︸︷︷︸
left

optical flow

+ wst +wd︸ ︷︷ ︸
second

stereo flow

. (6.1)

The difference flow can thus be interpreted as either a change in optical flow or as a
change in stereo flow, depending on whether one regards it as a correction in temporal or
spatial direction. In our model we have furthermore seven degrees of freedom from the
unknown fundamental matrix F , which restricts points in the left and right images to lie on
corresponding epipolar lines, as shown in Fig. 6.1. These seven extra degrees of freedom
arise from the fact that F is a 3× 3 matrix of rank 2 that is defined up to a scale factor.
To demonstrate that the above parameterisation indeed forms a complete description

of the three-dimensional scene flow, we recall that knowing the fundamental matrix is
sufficient to recover a pair of camera projection matrices (P, P ′) for the left and the right
image sequence (see Chapter 2). Together with the stereo flowwst at time t, these matrices
allow us to reconstruct an image point from the reference frame as:

{
P (F )Xh(t) = xh

P ′(F )Xh(t) = (x+wst)h
. (6.2)

To obtain the same reconstruction at time t + 1, and thus the scene flow relative to the
cameras, the left optical flowwf and the flow changewd have to be known additionally:

{
P (F )Xh(t+ 1) = (x+wf)h

P ′(F )Xh(t+ 1) = (x+wf +wst +wd)h
. (6.3)

Both systems above are easily solved in a total least squares sense [HZ00] and the scene
flow can then be recovered as the difference in 3D location

V (X, t) = X(t + 1)−X(t) . (6.4)

In this chapter we moreover assume that the intrinsic camera parameters are given, such
that the scene reconstruction and the scene flow can be recovered up to a scale in the first
camera coordinate system via the essential matrix. In such case, the scene flow is not only
a result of movement in the scene, but of the ego-motion of the camera system as well.

Energy Formulation. Since we are interested in a joint computation of the 3D motion,
structure and geometry, that are parameterised by (wf ,wst,wd)

⊤ and F , we propose to
minimise a global energy functional that combines the spatial and temporal information
of the different views while imposing geometric consistency. This functional has the form

E(wf ,wst,wd, F ) =
∫

Ω

(ED(wf ,wst,wd) + ES(∇wf ,∇wst,∇wd) + EE(wf ,wst,wd, F )) dx , (6.5)

where ED is the data term that models the assumption that certain image features remain
constant between the four frames, EE is the epipolar term that relates the stereo views by
the unknown epipolar geometry, and ES is the smoothness term that assumes the solution
to be piecewise smooth. In the following we will detail on the different terms.
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6.1.1 The Data Constraints

Let us now derive the data constraints that model the relations between the four input
images w.r.t. the reference image. The different connections that can be exploited between
the four input frames are depicted in Fig. 6.2. They have been numbered according to the
four main spatial and temporal directions, and the two transversal directions between the
left and right images at different time steps.

1

3

4

g1l

g2l

2

g1r

g2r

5 6

Fig. 6.2: The relations between the four frames of a binocular stereo sequence.

For simplicity, let us assume for now that the brightness of corresponding image points
remains constant between the four frames [HS81]. Following the enumeration of the con-
straints in Fig. 6.2, we obtain the following expressions for the data constancy

ED1(wf) = Ψ
(
|g2l(x+wf)− g1l(x)|2

)
, (6.6)

ED2(wf ,wst,wd) = Ψ
(
|g2r(x+wf +wst +wd)− g1r(x+wst)|2

)
, (6.7)

ED3(wst) = Ψ
(
|g1r(x+wst)− g1l(x)|2

)
, (6.8)

ED4(wf ,wst,wd) = Ψ
(
|g2r(x+wf +wst +wd)− g2l(x+wf)|2

)
, (6.9)

ED5(wf ,wst,wd) = Ψ
(
|g2r(x+wf +wst +wd)− g1l(x)|2

)
, (6.10)

ED6(wf ,wst) = Ψ
(
|g2l(x+wf)− g1r(x+wst)|2

)
. (6.11)

The first two terms correspond to an optical flow constraint between two time instances,
while the third and fourth term arise from a stereo correspondence at consecutive time
steps. The last two terms express the brightness constancy for a mixture of optical flow
and stereo flow. We choose to penalise all constraints separately since outliers for optical
flow and stereo do not necessarily occur in the same location. As penalty a function Ψ we
choose the regularised L1 norm Ψ(s2) =

√
s2 + ǫ2, with ǫ = 0.001 as proposed e.g. in

[BBPW04, PBB+06]. In our final model we include the gradient constancy assumption to
cope with varying illumination and extend the expressions above to RGB colour images.
With these extensions, the second term (6.7), for example, becomes

ED2 = Ψ

(
3∑

i=1

(
|g2r i(x+wf +wst +wd)− g1r i(x+wst)|2

+ γ |∇g2r i(x+wf +wst +wd)−∇g1r i(x+wst)|2
))

, (6.12)
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where γ ≥ 0 is a weighting factor and g1, g2, and g3 represent the three RGB colour
channels. The constraints ED1, ED3, ED4, ED5 and ED6 are extended in the same way.
It is clear that the six constraints listed above are redundant, since only three of them are

required to compute the three unknown flows. Adding extra constraints, on the other hand,
might render the estimation of the scene flow more robust. As in [ZK01, HD07, MS06],
we exploit in our baseline method the first four image relations that correspond to the main
correspondence directions. This gives rise to the data term

ED = ED1 + ED2 + ED3 + ED4 . (6.13)

Adding or dropping constraints from this data term is straightforward and will not influ-
ence the modelling steps that are subsequently explained. Although the evaluation of our
scene flow method will be based on the four-constraint data term ED, different combina-
tions for the data constraints could be considered as well.

6.1.2 Occlusion Handling

The explicit detection of occluded regions should be an integral part of any state-of-the-art
flow-based method and its effect on the estimation quality has already been the topic of
discussion in the previous chapter. Occlusion handling will generally play a more impor-
tant role in stereo methods than in optical flow methods because of the possibility of large
displacements (wide baseline). At this stage we wish to take occlusions into account by
detecting those points in the flow field for which there exists no correspondence in the
other images, and thereby excluding them from the matching process.
In order to handle situations where parts of the scene become occluded due to mo-

tion or a change of camera viewpoint, we introduce occlusions scores. For instance, the
score o1r(x) : Ω → {0, 1} takes on the value 1 for points in the reference image g1l that
are visible in g1r, and 0 otherwise. One of the most established techniques for comput-
ing occlusions scores between two images is a comparison of the forward and backward
correspondences [Sha93, PPV94, ADPS02, BAS07]. The disadvantage of this approach,
however, is that it is computationally expensive since it requires the double amount of
unknown flow fields to be computed, namely an extra set of backward optical flows in
addition to the three forward optical flows. Instead we will follow a more 3D centred
approach and make direct use of the reconstructed scene. This is possible, since once the
fundamental matrix has been estimated, the left and right camera matrices (P, P ′) can be
recovered and each point in the reference frame can be reconstructed in 3D space.

Basic Idea. Making use of the reconstructed surface, we can label the values of o1r by
reprojecting all 3D points at time t back on the image g1r using P ′: Of all the 3D points
that project onto the same image location, only the point closest to the camera centre of P ′

will then be marked as visible. The corresponding entry in o1r is set to 1. The 3D points
that lie on the same optical ray, but are covered by the point closest to the camera centre,
will then be marked as occluded. To recover the camera centre from a camera matrix,
we can make use of formula (2.12). The occlusion scores o2l(x) and o2r(x) for the two
remaining images are determined analogously by reprojecting all reconstructed 3D points
at time t + 1 on g2l and g2r using P and P ′, respectively. Note that the occlusion score
o1l(x) of g1l is 1 everywhere since all 3D points are visible in the first camera.
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occlusion score o2l occlusion score o2r

g2l g2r

change in viewpoint

motion,

deformation X1

X2

occlusion score o1r

g1l g1r
x1

x2

X1
X2

x′
1 = x′

2

o1r(x1) = 0, o1r(x2) = 1

o2l(x1) = 1, o2l(x2) = 0 o2r(x1) = 0, o2r(x2) = 0

Fig. 6.3: The computation of the occlusion scores via Z-buffering.

The technique described here is also known as Z-buffering and its basic idea is illustrated
in Fig. 6.3. Depicted are the projections of two reconstructed surface points on the four
images. Regions that receive multiple projections are indicated in red. We can see that
the reconstructed points X1 and X2 are projected to the same location in the image g1r.
Since X2 lies closest to the right camera centre, the occlusion score o1r(x2) is set to 1
and o1r(x1) is set to 0. The pointX1 is thus occluded by the change in camera viewpoint.
Due to object motion and surface deformation, the point X2 becomes covered at time
t + 1 and invisible to both cameras. This is depicted in the figure by a double folding of
the surface. The occlusion scores o2l(x2) and o2r(x2) will therefore be 0. The point X1

remains occluded in g2r by the change in camera viewpoint. All summed up, occlusions
in g1r will be due to a change in viewpoint, occlusions in g2l due to scene motion, while
occlusions in can g2r arise from a combination of both. Note that there are no multiple
projections in g1l because the first image serves as the reference for the 3D reconstruction.
We also make the remark that the regions depicted in red are not the actual occlusion scores
o1r, o2l and o2r, but the scores warped on g1r, g2l and g2r via the reconstructed surface.

A Data Term with Occlusion Scores. To incorporate occlusion handling in our model,
the data terms (6.13) are multiplied by the occlusion scores to switch them off where the
constancy assumptions can not be fulfilled. This yields the final data term

ED = o2l ED1 + o1r o2r ED2 + o1r ED3 + o2l o2r ED4 . (6.14)

We point out that each term has to be multiplied by the occlusion scores of the images
that appear in the according data constraint. This is required since the reappearance of a
point in g2r that is occluded in g1r or g2l goes unnoticed by the reference image. The same
reasoning also applies to the data terms ED5 and ED6.
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6.1.3 The Smoothness Constraints

Next we detail on the design of the smoothness term in our model. The task of the smooth-
ness term is to regularise the problem in locations where the remaining terms do not guar-
antee a unique solution (the aperture problem) or to fill in information in the presence
of outliers, such as noise and occlusions. Because in practical situations there often ex-
ists an overlap between the discontinuities of the three flow fields wf , wst and wd, some
authors [HD07, WRV+08] suggest a joint piecewise smoothness assumption on all flow
variables. With our method, however, we want to cover the general scenario where flow
and stereo discontinuities do not necessarily coincide. This can be the case for example
when in-plane motions occur, such as a the cracking of a smooth surface. Therefore we
propose a separate penalisation of the flow gradients:

ES1(∇wf)=Ψ
(
|∇wf |2

)
, ES2(∇wst)=Ψ

(
|∇wst|2

)
, ES3(∇wd)=Ψ

(
|∇wd|2

)
, (6.15)

The penalisation via the subquadratic functionΨ, as defined before, equals a total variation
(TV) regularisation. Combining the above terms gives rise to the smoothness term

ES = α1 ES1 + α2 ES2 + α3 ES3 , (6.16)

where α1, α2, α3 are positive weights that balance the smoothness assumptions for the
three displacement fields. Although ES will serve as the smoothness term for our baseline
scene flow algorithm, other choices for the regulariser exist. Since our method is based on
variational optical flow, ES1, ES2 and ES3 can be replaced by any regulariser from Tab. 3.1.

6.1.4 The Epipolar Constraints

Let us finally model the geometric relation between the left and right images of the stereo
pairs (g1l, g1r) and (g2l, g2r). To this end we introduce two terms that relate the unknown
flows and the fundamental matrix F via the respective epipolar constraints:

EE1(wst, F ) = Ψ
((

(x+wst)
⊤
h F xh

)2)
, (6.17)

EE2(wf ,wst,wd, F ) = Ψ
((

(x+wf +wst +wd)
⊤
h F (x+wf)h

)2)
. (6.18)

Both terms EE1 and EE2 are soft constraints that penalise deviations of a point from its
epipolar line. The use of the regularised L1 normΨ increases the robustness of the estima-
tion of F with respect to outliers. While the first epipolar term can be modelled completely
in accordance with the soft constraint introduced in Sec. 5.1.1, the second epipolar con-
straint is much more complicated: Although it is linear inwst andwd, it is quadratic with
respect to the left optical flow wf . This leads to higher order terms in the corresponding
energy that make the minimisation difficult and raise questions about the convexity of the
problem. To nevertheless obtain a linear expression in all flows, we propose to introduce
an auxiliary flow variablewa = (ua, va)

⊤, which is assumed to be close to wf , and split
up the second epipolar constraint such that wf and wa take on symmetric roles. In this
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way we can approximate the second term (6.18) by the expression

EE2(wf ,wst,wd,wa, F ) = Ψ
(

1
2

(
(x+wf +wst +wd)

⊤
h F (x+wa)h

)2

+ 1
2

(
(x+wa +wst +wd)

⊤
h F (x+wf)h

)2)

+µ
(
|wf −wa|2

)
, (6.19)

where µ is the weight of the additional similarity term that is required to couplewa andwf .
Introducing the weights β1 and β2 we obtain the final epipolar term

EE = β1 EE1 + β2 EE2 . (6.20)

As we did previously in connection with the soft epipolar constraint, we avoid the trivial
solution by additionally imposing the constraint ‖F‖2Frob = 1 on the Frobenius norm of
the fundamental matrix F . In practice, we will mostly choose β1 = β2, which gives an
equal weight to both contributions in the epipolar term.

6.2 Linearisation and Constraint Normalisation

Substituting all data, epipolar and smoothness terms in the total energy (6.5), we obtain
a functional that is rather complicated. Moreover, it is non-convex, since the unknown
flows appear implicitly in the arguments of the data term. To resolve this problem, it is
common to perform an incremental computation of the unknowns within a coarse-to-fine
multi-scale approach. As for all methods in this thesis, this is done by a series of energies
that approximate the original model on every resolution level. In the following we discuss
how the corresponding energy for each level can be derived. Assuming that solutionswf ,
wst, wd and wa are available from a coarser scale, we aim at expressing the total energy
in terms of the increments dwf = (duf , dvf), dwst = (dust, dvst), dwd = (dud, dvd), and
dwa = (dua, dva). This allows us to introduce a tensor notation in the data and epipolar
terms which offers two advantages: (i) The convexity of the resulting energy functional in
the flow increments becomes explicit, and (ii) a normalisation strategy can be applied that
makes deviations from the model assumptions interpretable in a geometric way.

6.2.1 Linearisation in the Data Term

Let us discuss the differential form of the data term starting from the simplified data con-
straint of expression (6.7). Using a first order Taylor expansion to linearise this expression
with respect to all flow increments we obtain the approximation

g2r(x+wf + dwf +wst + dwst +wd + dwd)− g1r(x+wst + dwst)

≈ g2r + ∂xg2r · (duf + dust + dud) + ∂yg2r · (dvf + dvst + dvd)

− g1r − ∂xg1r · (dust)− ∂yg1r · (dvst) . (6.21)
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Rearranging the terms and using the following abbreviations

g2z = g2r(x+wf +wst +wd)− g1r(x+wst) , (6.22)

g2rx = ∂xg2r(x+wf +wst +wd) , g2xz = ∂xg2z , (6.23)

g2ry = ∂yg2r(x+wf +wst +wd) , g2yz = ∂yg2z , (6.24)

we can rewrite the linearised brightness difference in (6.21) as inner product

j⊤
2 dh = g2rxduf + g2rydvf + g2xzdust + g2yzdvst + g2rxdud + g2rydvd + g2z , (6.25)

where the homogeneous motion increment and the extended gradient are defined as

dh := (duf , dvf , dust, dvst, dud, dvd, 1)
⊤ (6.26)

j2 := (g2rx, g2ry, g2xz, g2yz, g2rx, g2ry, g2z)
⊤ (6.27)

The equation j⊤2 dh = 0 can be seen as a multi-dimensional extension of the classical opti-
cal flow constraint (OFC) (3.30) and expresses that the point (duf , dvf , dust, dvst, dud, dvd)
has to lie on the hyperplane represented by j2. As in the case of two-dimensional optical
flow, the multi-dimensional OFC does not suffice to determine the flows uniquely and im-
posing a constancy on the gradient, as in expression (6.12), can provide extra constraints
to disambiguate the solution. By introducing the additional abbreviations

g2rxx = ∂xxg2r(x+wf +wst +wd) , g2xxz = ∂xxg2z , (6.28)

g2rxy = ∂xyg2r(x+wf +wst +wd) , g2xyz = ∂xyg2z , (6.29)

g2ryy = ∂yyg2r(x+wf +wst +wd) , g2yyz = ∂yyg2z , (6.30)

and defining the vectors

j2x := ∂x j2 = (g2rxx, g2rxy, g2xxz, g2xyz, g2rxx, g2rxy, g2xz)
⊤, (6.31)

j2y := ∂y j2 = (g2rxy, g2ryy, g2xyz, g2yyz, g2rxy, g2ryy, g2zy)
⊤ , (6.32)

the two gradient component differences can also be approximated by inner products as

∂xg2r(x+wf+dwf+wst+dwst+wd+dwd)− ∂xg1r(x+wst+dwst) ≈ j⊤2xdh, (6.33)

∂yg2r(x+wf+dwf+wst+dwst+wd+dwd)− ∂xg1r(x+wst+dwst) ≈ j⊤2ydh. (6.34)

The linearised gradient constancy assumption can thus be expressed by the two linear
equations j⊤2xdh = 0 and j⊤2ydh = 0.
Inserting the three linearised constraints as squared arguments into the penaliser Ψ of

expression (6.12), yields the robustified quadratic form

ED2(dwf , dwst, dwd) = Ψ
(
( j⊤2 dh )

2 + γ (j⊤2x dh )
2 + γ (j⊤2y dh )

2
)
, (6.35)

= Ψ
(
d⊤
h J2 dh

)
, (6.36)
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with a 7× 7 matrix that provides coupling between all increments

J2 := j2 j
⊤
2 + γ j2x j

⊤
2x + γ j2y j

⊤
2y , (6.37)

By analogy to the motion tensor notation in optical flow estimation, we denote by J2 the
scene flow tensor. The linearisation of the three remaining data constraints is carried out
accordingly, and results in the 7×7 scene flow tensors J1, J3 and J4. Missing dependencies
between the variables give rise to zero tensor entries. Including the RGB colour channels
is straightforward and leads to a weighted sum of the corresponding tensors.

Overcoming the Aperture Problem. As for the motion tensor in optical flow, the rank
of the scene flow tensor will determine the type and the uniqueness of the solution. In the
light of the higher dimensionality of the scene flow problem, however, a combination of
the brightness and the gradient constancy will not as easily provide a full tensor rank as in
the case of optical flow. Contrary to optical flow, on the other hand, scene flow estimation
can exploit the constancy of image features between more than two frames. This results in
a number of independent scene flow tensors, each one containing the data constraints that
belong to the corresponding image pair. To overcome the aperture problem for scene flow,
we can thus not only rely on the combined effects of the different constancy assumptions,
but also on the integration of information from multiple scene flow tensor.

6.2.2 Treatment of the Epipolar Term

As pointed out in the previous chapter in relation to correspondence methods for uncali-
brated stereo, the argument of the first epipolar term (x + wst + dwst)

⊤
h Fxh is already

linear in the increment dwst. We can thus define the vector d1h = (dust, dvst, 1)
⊤ and

write the argument of the first epipolar term (6.17) as a quadratic form

EE1(dwst, F ) = Ψ
(
d⊤
1hE1 d1h

)
. (6.38)

The corresponding epipolar tensor E1 of size 3 × 3 is defined as in Eq. (5.24) and has
entries that are related to the epipolar line F xh in the first right image g1r.
Although the treatment of the first epipolar term proceeds along a familiar line, care has

to be taken with respect to symmetry when introducing the flow increments in the second
epipolar term (6.19). Introducing the flow increments on both sides of the fundamental
matrix will lead to mixed multiplicative terms that jeopardise the convexity of the energy
and cause difficulties for the constraint normalisation in the next section. As a remedy, we
apply an expansion of the argument such that the differential variant reads

1
4

(
(x+wf + dwf +wst + dwst +wd + dwd)

⊤
h F (x+wa)h

)2

+1
4

(
(x+wa + dwa)

⊤
h F⊤ (x+wf +wst +wd)h

)2

+1
4

(
(x+wa + dwa +wst + dwst +wd + dwd)

⊤
h F (x+wf)h

)2

+1
4

(
(x+wf + dwf)

⊤
h F⊤ (x+wa +wst +wd)h

)2
. (6.39)

Here we added the second and the fourth term with the transposed fundamental matrix to
ensure a symmetrical treatment of the left and right flow increments. This is required since,
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as opposed to the first epipolar constraint, variations can occur in both the left and the right
image position. Since all terms of expression (6.39) are now linear in the increments, the
second epipolar term can be written as

EE2(dwf , dwst, dwd,dwa, F ) =

Ψ
(
1
4
d⊤
2hE2 d2h +

1
4
d⊤
3hE3 d3h +

1
4
d⊤
4hE4 d4h +

1
4
d⊤
5hE5 d5h

)

+ µ (|wf + dwf −wa − dwa|)2 , (6.40)

where we have defined the following homogeneous vectors:

d2h = (duf + dust + dud, dvf + dvst + dvd, 1)
⊤ , d3h = (dua, dva, 1)

⊤ , (6.41)

d4h = (dua + dust + dud, dva + dvst + dvd, 1)
⊤ , d5h = (duf , dvf , 1)

⊤ . (6.42)

As in the case of the first epipolar tensor, the entries of the four other epipolar tensors Ei,
for 2 ≤ i ≤ 5, are related to the corresponding epipolar lines. The second epipolar tensor,
for example, can be written as

E2 = (a′, b′, q̃′)⊤(a′, b′, q̃′) , (6.43)

where a′ and b′ are the coefficients of the epipolar line l′ = F (x+wa)h in the second
right image g2r, and

q̃′ = a′ (uf + ust + ud) + b′ (vf + vst + vd) + q′ , (6.44)

is the argument of the epipolar term in the warped image location x+wf+wst+wd. We
further recall that q′ is the scaled distance (5.9) of the point x+wa to the line l′. The third
epipolar tensor, on the other hand, can be written as

E3 = (a, b, q̃)⊤(a, b, q̃) , (6.45)

where a and b are the coefficients of the epipolar line l = F⊤ (x+wf +wst +wd)h in
the second left image g2l, and

q̃ = a ua + b va + q , (6.46)

with q the scaled distance of x+wf+wst+wd to l. The tensors E4 and E5 are defined
identical to E2 and E3, but with the roles ofwf and wa switched.

A Different Expansion in the Second Epipolar term. It is possible to expand the ar-
gument of the second epipolar term (6.19) in an alternative way. Although we will not
consider this expansion for our final scene flow model, it will be of theoretical interest in
the next section where we apply a normalisation to the epipolar constraint. This different
expansion reads as follows

1
2

(
1
2
(x+wf + dwf +wst + dwst +wd + dwd)

⊤
h F (x+wa)h

+ 1
2
(x+wa + dwa)

⊤
h F⊤ (x+wf +wst +wd)h

)2

+1
2

(
1
2
(x+wa + dwa +wst + dwst +wd + dwd)

⊤
h F (x+wf)h

+ 1
2
(x+wf + dwf)

⊤
h F⊤ (x+wa +wst +wd)h

)2
, (6.47)
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where we have introduced the transposed terms under the squares this time. Since all terms
are linear in the increments, the second epipolar term can now be written as

EE2(dwf , dwst, dwd, dwa, F ) = Ψ
(
1
8
d⊤
6hE6 d6h +

1
8
d⊤
7hE7 d7h

)

+µ (|wf + dwf −wa − dwa|)2 , (6.48)

where we have defined the following homogeneous vectors:

d6h = (duf + dust + dud, dvf + dvst + dvd, dua, dva, 1)
⊤ , (6.49)

d7h = (dua + dust + dud, dva + dvst + dvd, duf , dvf , 1)
⊤ . (6.50)

The epipolar tensors E6 and E7 are now of size 5 × 5 and introduce an extra coupling
between the unknowns. As before, the entries of these two tensors are related to the
corresponding epipolar lines and E6 can, for example, be written as

E6 = (a′, b′, a, b, q̃′ + q̃)⊤(a′, b′, a, b, q̃′ + q̃) , (6.51)

where a, b, q, a′, b′ and q′ have the same meaning as before. The tensor E7 is defined
identical to E6, but with the roles ofwf and wa exchanged.

6.2.3 Constraint Normalisation

In [SAH91, LV98, ZBW+09] it is demonstrated that the linearised brightness constancy
assumption for optical flow can be interpreted geometrically as a weighted distance of the
estimated flow to the line described by the OFC. Here we will extend this notion to scene
flow and propose a normalisation of the constancy constraints that results in the minimisa-
tion of the actual geometrical distance. With the help of the tensor notation in the epipolar
term, we apply the same normalisation strategy to the epipolar constraints and show the
equivalence to two widely known geometrical error measures from computer vision.

6.2.3.1 Constraint Normalisation in the Data Term

Analogously to the OFC for optical flow, the multi-dimensional brightness constancy con-
straint (6.25) can be considered as a weighted distance of the scene flow to the hyperplane
described by j⊤2 dh = 0. To see this, we rewrite j⊤2 dh in terms of the scene flow incre-
ment d = (dwf , dwst, dwd)

⊤ and the hyperplane normal n, which is given by the first six
components of j2, i.e. n = (g2rx, g2ry, g2xz, g2yz, g2rx, g2ry)

⊤. We then obtain

j⊤2 dh = n⊤d+ g2z (6.52)

= n⊤

(
d+ g2z

n

‖n‖2
)

(6.53)

= ‖n‖ n⊤

‖n‖
(
d− d⊥

)

︸ ︷︷ ︸
d

. (6.54)

The term d⊥ = −g2zn/‖n‖2 is called the normal flow and constitutes the scene flow
component parallel to n, i.e. normal to the hyperplane j2. For n 6= 06, the normal flow
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Fig. 6.4: The geometrical interpretation of the distance d for (a) the data constraint, (b) the
Sampson error (c) the epipolar distance.

is the only scene flow component that can be determined from the brightness constancy
constraint 1. The value d is defined as the difference between the estimated scene flow d

and the normal flow d⊥ in the direction of n. In a geometrical sense, d can be interpreted
as the distance of d to the hyperplane j2. This is depicted in Fig. 6.4 (a).

To penalise the actual distance to the hyperplane, we have to normalise the brightness
constancy constraint by dividing it by the magnitude of the hyperplane normal. Now it
becomes explicit why it is desirable to penalise the actual distance to the hyperplane:
Unlike the original constraint, the distance d does not scale with the magnitude of the
derivatives contained in j2. This prevents overweighting at unreliable structures such
as noise or occlusions that typically manifest themselves in large image gradients. The
same reasoning also applies to the linearised gradient constancy constraints (6.33) – (6.34),
where we obtain a geometrically meaningful measure by normalising the constraints with
the magnitudes of the hyperplane normals nx and ny of j2x and j2y. The corresponding
normalised quadratic form for the second data term ED2 is now given by

1

‖n‖2+ζ2
(j⊤2 dh)

2 +
γ

‖nx‖2+ζ2
(j⊤2x dh)

2 +
γ

‖ny‖2+ζ2
(j⊤2y dh)

2 = d⊤
h Ĵ2 dh , (6.55)

where ζ = 0.1 is a constant that avoids division by zero, and Ĵ2 denotes the normalised
version of J2. We apply the same normalisation strategy to the remaining data terms to
produce the normalised scene flow tensors Ĵ1, Ĵ3 and Ĵ4. The extension to colour images
is straightforward and is done in accordance to [ZBW+09, ZBW11].

1. The normal flow for scene flow is an extension of the normal flow for optical flow, which is defined as
the least squares solution of the OFC [LK81, BWS05].
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6.2.3.2 Constraint Normalisation in the Epipolar Term

Our normalisation idea is, however, not restricted to the scene flow tensors only. Anal-
ogously to (6.55), we can derive normalisation factors for the epipolar tensors as well.
Since each epipolar tensor only contains a single line constraint, the normalisation factors
correspond to the two first terms of the tensor trace

1

||ni||2 + ζ2
d⊤
ihEi dih =

1∑2
j=1 (Ei)jj + ζ2

d⊤
ihEi dih = d⊤

ihÊi dih , (6.56)

where Êi, for 1 ≤ i ≤ 5 are the normalised epipolar tensors. More precisely, we can
choose ζ = 0 because the epipolar line coefficients, and thus the diagonal entries of the
epipolar tensors, can not be zero at the same time. By normalising the quadratic forms
in the epipolar terms this way, we obtain a widely used geometrical error measure from
computer vision: the distance to the epipolar lines. This will be made clear next.

Equivalence to the Epipolar Distance. Writing out the normalised epipolar tensors Ê2

and Ê3, the first part of the second epipolar term reads (omitting the constants 1/4)

d⊤
2hÊ2 d2h + d⊤

3hÊ3 d3h =
1

a′ 2 + b′ 2
d⊤
2hE2 d2h

︸ ︷︷ ︸
d′2

+
1

a2 + b2
d⊤
3hE3 d3h

︸ ︷︷ ︸
d2

. (6.57)

By normalising the epipolar tensor E2, we thus effectively penalise the orthogonal dis-
tance of the flow estimate d2 to the line in the right image that is described by (a′, b′, q̃′)
and has as normal vector (a′, b′). This is illustrated in Fig. 6.4 (c), where d⊥

2 denotes the
normal flow orthogonal to (a′, b′, q̃′) and d′ denotes the distance in the direction (a′, b′).
Normalisation of the tensor entries in E3, results in the similar minimisation of the orthog-
onal distance of the flow estimate d3 to the line described by (a, b, q̃) in the left image. Its
geometrical representation is given by the distance d on the left side of Fig. 6.4 (c).
If we now assume that the flow increments are infinitesimally small, the quadratic forms

d⊤
2hE2 d2h and d⊤

3hE3 d3h will be equal and we can single out the normalisation factor

1

a2 + b2
+

1

a′ 2 + b′ 2
. (6.58)

This factor acts as a weighing of the original epipolar constraint and is equivalent to the
squared weight (4.45) defined in the context of the feature based estimation method F1.
With respect to the fundamental matrix, we are thus minimising the classical distance to
the epipolar lines, which has been discussed at length in Sec. 4.2.3.1. The advantage of
using the epipolar distance as an error measure, is that it is invariant to a scaling of the
fundamental matrix and that it is independent of the actual image location.
By switching the roles ofwf andwa, the same weighing can also be applied to the part

of the second epipolar term involving the tensors E4 and E5. As opposed to the second
epipolar term, normalisation in the first epipolar term leads to a non-symmetric variant of
the epipolar distance, since only variations in the right image position occur.
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Equivalence to the Sampson Error. If we adopt the alternative expansion of the second
epipolar constraint (6.47), we end up with two 5 × 5 epipolar tensors that can be norma-
lised by the four first terms of their respective trace. The quadratic form involving the
normalised epipolar tensor Ê6 then reads

d⊤
6hÊ6 d6h =

1

a′ 2 + b′ 2 + a2 + b2
d⊤
6hE6 d6h

︸ ︷︷ ︸
d2

. (6.59)

Geometrically, the normalisation of the epipolar tensor E6 is equivalent to minimising
the orthogonal distance of the flow estimate d6 to the hyperplane described by the vector
(a′, b′, a, b, q̃′ + q̃). This distance d is sketched in Fig. 6.4 (b), where (a′, b′, a, b) denotes
the hyperplane normal and d⊥

6 the normal flow.
In the above equation, the original quadratic constraint is weighed by the factor

1

a2 + b2 + a′ 2 + b′ 2
. (6.60)

This factor is equivalent to the squared weight (4.57) of the Sampson error. The Samp-
son error is derived as a first order approximation to the geometric distance measure that
is minimised by the feature based estimation method F2 discussed in Sec. 4.2.3.2. By
applying this type of constraint normalisation in the epipolar term, we are thus able to
linearly approximate the reprojection error, which has been shown to be optimal in a sta-
tistical sense [WAH93]. The advantages of the Sampson error are the same as those of the
epipolar distance, but unlike the epipolar distance, it does not represent an actual distance
measure in the image plane. Additionally, the minimisation of the Sampson error leads to
an update of the complete 4D vector d6, whereas the increments in d2 and d3 are corrected
separately in the left and the right image in case of the epipolar distance. The same nor-
malisation strategy as discussed here can also be applied to the epipolar tensor E7. This
results in an identical weight as (6.60), but computed with a changed order ofwf andwa.

6.3 Minimisation and Numerical Solution

By combining all terms derived in Sec. 6.2, we obtain the following differential form of
our energy that has to be minimised at each level of the coarse-to-fine approach:

E(dwf ,dwst, dwd, dwa, F ) =
∫

Ω

(
o2lΨ

(
d⊤
h Ĵ1 dh

)
+ o1r o2rΨ

(
d⊤
h Ĵ2 dh

)
+ o1rΨ

(
d⊤
h Ĵ3 dh

)
+ o2l o2r Ψ

(
d⊤
h Ĵ4 dh

)

+α1Ψ
(
|∇(wf + dwf)|2

)
+ α2Ψ

(
|∇(wst + dwst)|2

)
+ α3Ψ

(
|∇(wd + dwd)|2

)

+β1Ψ
(
d⊤
1hÊ1 d1h

)
+ β2Ψ

(
1
4

(
d⊤
2hÊ2 d2h + d⊤

3hÊ3 d3h + d⊤
4hÊ4 d4h + d⊤

5hÊ5 d5h

))

+β2 µ
(
|wf + dwf −wa − dwa|2

))
dx . (6.61)
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Note that this energy is convex in the flow increments dwf , dwst, dwd and the auxiliary
variable dwa, since only squared arguments and convex penaliser functions are used. In
order to minimise it under the given constraint ‖F‖2Frob = 1, we follow an approach
that was already adopted in the previous chapter and use the method of the Lagrange
multipliers. We thus obtain the Lagrangian

L(dwf , dwst, dwd, dwa, f , λ) = E(dwf , dwst, dwd, dwa, f) + λ(1− f⊤f ) , (6.62)

where λ is the Lagrangian multiplier and f the 9 × 1 vector that parameterises F via its
entries in a row-major ordering. This formulation suggests an alternating minimisation
with respect to the scene flow and the fundamental matrix in two steps:

(I) Solving for the Scene Flow. Minimising the Lagrangian with respect to the flow
increments leads to the corresponding Euler-Lagrange equations. By discretising them via
finite difference approximations, one ends up with a nonlinear system of equations due to
the robust function Ψ. To ensure fast convergence, we solve this system in a bidirectional
multigrid framework based on a nonlinear point coupled Gauß-Seidel solver. In the coarse-
to-fine pyramid we use a downsampling factor of η = 0.9, while the images are warped
onto the reference image using Coons patches based on bicubic interpolation [Coo67].

(II) Solving for the Fundamental Matrix. Differentiation of the Lagrangian with re-
spect to the fundamental matrix results in an eigenvalue problem that is nonlinear due
to the robust function Ψ and the normalisation weights (6.56). To solve this eigenvalue
problem, we apply a reweighted total least squares method in which the weights and the
arguments of Ψ are fixed iteratively. We point out that this step of the minimisation deter-
mines the fundamental matrix from the dense correspondences of two stereo pairs. This
has the potential to improve the estimation from a single stereo pair even further, since a
larger amount of correspondence information is utilised.

The alternating computation of the flow increments and the fundamental matrix works
as follows: The Euler-Lagrange equations are solved with a current estimate of the funda-
mental matrix. Using the newly computed flows, the fundamental matrix is then updated
by solving the eigenvalue problem. We extract a pair of camera matrices and perform a
dense scene reconstruction at times t and t + 1 by triangulation according to Eq. (6.2) –
(6.3). After recomputing the occlusion scores for all images, the Euler-Lagrange equations
are solved again, this time with the updated fundamental matrix. This iterative process is
repeated until convergence of the solutions. We initialise the occlusion scores with 1 and
the fundamental matrix with the zero matrix. The latter initialisation comes down to com-
puting the scene flow in the first iteration with disabled epipolar constraints.

After this general overview of the solution strategy, we will now focus in more detail on
the two steps of the alternating minimisation.
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6.3.1 Solving for the Scene Flow

Minimising the energy E with respect to the scene flow and the fundamental matrix under
the constraint ‖F‖2Frob = 1, means that we are looking for critical points of the Lagrangian
L. Critical points are formed by the tuples (du∗

f , dv
∗
f , du

∗
st, dv

∗
st, du

∗
d, dv

∗
d, du

∗
a, dv

∗
a, f

∗, λ∗)⊤

for which the functional derivatives of L with respect to duf , dvf , dust, dvst, dud, dvd, dua

and dva and the derivatives of L with respect to f and λ vanish. The Euler-Lagrange
equations of the flow increments are obtained by setting

∂

∂ dup

L(dwf , dwst, dwd, dwa, f , λ) = 0, (6.63)

∂

∂ dvp
L(dwf , dwst, dwd, dwa, f , λ) = 0 , (6.64)

where the subscript p stands for either f, st, d or a. The above functional derivatives form
a system of coupled differential equations that has to be solved for all flow increments on
each resolution level of the coarse-to-fine pyramid. In the following we will discuss the
aspects of their derivation, discretisation and numerical solution in more depth.

6.3.1.1 The Euler-Lagrange Equations

As an example and in order to prevent overloading our presentation, we will restrict our-
selves to providing the Euler-Lagrange equations for the left optical flow increments duf

and dvf only. The Euler-Lagrange equations for the remaining six flow increments dust,
dvst, dud, dvd, dua and dva are derived in a similar fashion and can be found for complete-
ness as Eq. (A.3) - (A.8) in Appendix A.
For duf and dvf the Euler-Lagrange equations are given by

0 = o2l ∂duf
ED1 + o1r o2r ∂duf

ED2 + o2l o2r ∂duf
ED4

−α1

(
∂x (∂dufx

ES1) + ∂y (∂dufy
ES1)

)
− β2 ∂duf

EE2, (6.65)

0 = o2l ∂dvf ED1 + o1r o2r ∂dvf ED2 + o2l o2r ∂dvf ED4

−α1

(
∂x (∂dvfx ES1) + ∂y (∂dvfy ES1)

)
− β2 ∂dvf EE2 , (6.66)

where we only consider those terms in the energy E that depend on (duf , dvf). After
expanding the different terms, we can write the Euler-Lagrange equations as

0 = Ψ′
D1 ·

(
Ĵ111 duf + Ĵ112 dvf + Ĵ113 dust + Ĵ114 dvst + Ĵ115 dud + Ĵ116 dvd + Ĵ117

)

+ Ψ′
D2 ·

(
Ĵ211 duf + Ĵ212 dvf + Ĵ213 dust + Ĵ214 dvst + Ĵ215 dud + Ĵ216 dvd + Ĵ217

)

+ Ψ′
D4 ·

(
Ĵ411 duf + Ĵ412 dvf + Ĵ413 dust + Ĵ414 dvst + Ĵ415 dud + Ĵ416 dvd + Ĵ417

)

− α1 div
(
Ψ′

S1 · ∇(uf + duf)
)

+ β2Ψ
′
E2 ·

(
Ê211 (duf + dust + dud) + Ê212 (dvf + dvst + dvd) + Ê213

)
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+ β2Ψ
′
E2 ·

(
Ê511 duf + Ê512 dvf + Ê513

)

+ µ (uf + duf − ua − dua), (6.67)

0 = Ψ′
D1 ·

(
Ĵ112 duf + Ĵ122 dvf + Ĵ123 dust + Ĵ124 dvst + Ĵ125 dud + Ĵ126 dvd + Ĵ127

)

+ Ψ′
D2 ·

(
Ĵ212 duf + Ĵ222 dvf + Ĵ223 dust + Ĵ224 dvst + Ĵ225 dud + Ĵ226 dvd + Ĵ227

)

+ Ψ′
D4 ·

(
Ĵ412 duf + Ĵ422 dvf + Ĵ423 dust + Ĵ424 dvst + Ĵ425 dud + Ĵ426 dvd + Ĵ427

)

− α1 div
(
Ψ′

S1 · ∇(vf + dvf)
)

+ β2Ψ
′
E2 ·

(
Ê212 (duf + dust + dud) + Ê222 (dvf + dvst + dvd) + Ê223

)

+ β2Ψ
′
E2 ·

(
Ê512 duf + Ê522 dvf + Ê523

)

+ µ (vf + dvf − va − dva) , (6.68)

where Ĵ1kl, Ĵ2kl and Ĵ4kl, for k, l ∈ {1, 2, . . . , 7}, denote the kl-th entry of the scene
flow tensors Ĵ1, Ĵ2 and Ĵ4 and Ê2kl and Ê5kl, for k, l ∈ {1, 2, 3}, denote the kl-th entry
of the epipolar tensors Ê2 and Ê5. The same notation is used for the scene flow tensor
Ĵ3 and epipolar tensors Ê1, Ê3 and Ê4 that appear in the Euler-Lagrange equations of
the remaining flow increments in Appendix A. The sign · further indicates the standard
multiplication operator, while the abbreviations

Ψ′
D1 = o2l Ψ′

(
d⊤
h Ĵ1 dh

)
, Ψ′

S1 = Ψ′
(
|∇(wf + dwf)|2

)
, (6.69)

Ψ′
D2 = o1r o2rΨ

′
(
d⊤
h Ĵ2 dh

)
, Ψ′

S2 = Ψ′
(
|∇(wst + dwst)|2

)
, (6.70)

Ψ′
D3 = o1r Ψ′

(
d⊤
h Ĵ3 dh

)
, Ψ′

S3 = Ψ′
(
|∇(wd + dwd)|2

)
, (6.71)

Ψ′
D4 = o2l o2r Ψ

′
(
d⊤
h Ĵ4 dh

)
, Ψ′

E1 = Ψ′
(
d⊤
1hÊ1 d1h

)
, (6.72)

Ψ′
E2 = Ψ′

(
1
4

(
d⊤
2hÊ2 d2h + d⊤

3hÊ3 d3h + d⊤
4hÊ4 d4h + d⊤

5hÊ5 d5h

))
, (6.73)

allow for a more compact notation in all equations. For notational convenience we also
assume that the factor 1

4
, that arises from deriving the argument of the second epipolar term

EE2 with respect to each flow increment, is absorbed by the epipolar weight β2. For the
same reason we assume that the weight µ has already been scaled by β2, such that it can
be regarded as the sole weighting factor of the similarity term. The values of the weights
β2 and µ that are given in the experimental section will with this respect refer to those of
the Euler-Lagrange equations presented here and not to those of the original energy.
In interpreting the Euler-Lagrange equations, one has to keep in mind that some of the

scene flow tensor entries might be zero. This is for instance the case for the entries 13, 14,
15 and 16 of the tensor Ĵ1 in the equation of the optical flow increment duf . These zero
entries imply that there exists no coupling between the increment duf and the increments
dust, dvst, dud and dvd via the first scene flow tensor. Since the (absence of) coupling
between the unknowns is reciprocal, the entries of Ĵ1 will consequently not appear in the
Euler-Lagrange equations of dust, dvst, dud and dvd.
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It is important to note that the Euler-Lagrange equations (6.67) - (6.68) are non-linear
in the unknowns duf and dvf due to the derivative of the non-quadratic penaliser Ψ in the
expressions Ψ′

D1, Ψ
′
D2, Ψ

′
D4, Ψ

′
S1 and Ψ′

E2. These equations nevertheless have a unique
solution because of the strict convexity of Ψ and can therefore be solved by any globally
convergent algorithm. Before arriving at a suitable choice for the solver, however, we must
first discuss the properties of the discrete equation system.

6.3.1.2 The Discrete Euler-Lagrange Equations

After deriving the set of continuous Euler-Lagrange equations for all flow increments, we
now turn to the discretisation of the resulting system.

Point-Based Notation. Before writing out the discrete Euler-Lagrange equations in a
point-based form, we will first agree on the following notational conventions. Let the
subscript p stand for either f, st, d or a. Then we can denote by [ dup ]i,j and [ dvp ]i,j
the approximations of the flow increments dup and dvp at the pixel location (i, j), with
i = 1, . . . , nx and j = 1, . . . , ny. We further represent by [d ]i,j and [dm ]i,j , for m =
1, 2, . . . , 5, the discrete versions of the vectors d and dm. It thus holds for instance that

[d ]i,j = ([ duf ]i,j, [ dvf ]i,j, [ dust ]i,j, [ dvst ]i,j, [ dud ]i,j, [ dvd ]i,j)
⊤ , (6.74)

while [dm ]i,j are defined on an equivalent basis.
We are now in a position to define the approximations of the non-linear expressions

(6.69) - (6.73) in the pixel location (i, j). These are given by the following abbreviations

[Ψ′
Dm]i,j =

[ om ]i,j

2
√(

[d ]⊤i,j, 1
)
[Ĵm ]i,j

(
[d ]⊤i,j, 1

)⊤
+ ǫ2

(6.75)

form = 1, 2, 3, 4 and





[ o1 ]i,j := [ o2l ]i,j

[ o2 ]i,j := [ o1r ]i,j [ o2r ]i,j

[ o3 ]i,j := [ o1r ]i,j

[ o4 ]i,j := [ o2l ]i,j[ o2r ]i,j

,

[Ψ′
Sm]i,j =

1

2
√∣∣D2

(
[ up ]i,j + [ dup ]i,j

)∣∣2 +
∣∣D2
(
[ vp ]i,j + [ dvp ]i,j

)∣∣2 + ǫ2
(6.76)

for (m, p) ∈ {(1, f), (2, st), (3, d)},

[Ψ′
E1]i,j =

1

2
√(

[d1 ]⊤i,j , 1
)
[Ê1 ]i,j

(
[d1 ]⊤i,j , 1

)⊤
+ ǫ2

, (6.77)

[Ψ′
E2]i,j =

1

2
√

1
4

∑5
m=2

(
[dm ]⊤i,j, 1

)
[Êm ]i,j

(
[dm ]⊤i,j, 1

)⊤
+ ǫ2

, (6.78)

for Ψ′ the TV diffusivity (3.25). Additionally, [Ĵm ]i,j , [Ê1 ]i,j and [Êm ]i,j stand for the

discrete approximation of the tensors Ĵm, Ê1 and Êm, for m the enumeration index of
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the corresponding definition above. The discrete gradient magnitude operator
∣∣D2

(
[z]i,j

)∣∣
is defined as in Table 3.2. Using these abbreviations, the point-based Euler-Lagrange
equations for [ duf ]i,j and [ dvf ]i,j read

0 =
∑

m∈{1,2,4}

(
[Ψ′

Dm]i,j [Ĵm11]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm12]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm13]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm14]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm15]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm16]i,j [ dvd ]i,j

)

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ duf ]̃i,j̃ − [ duf ]i,j

)

h2

+
∑

m∈{2,5}

(
β2 [Ψ

′
E2]i,j [Êm11]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvf ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvd ]i,j

+ µ [ duf ]i,j − µ [ dua ]i,j

+
∑

m∈{1,2,4}

[Ψ′
Dm]i,j [Jm17]i,j +

∑

m∈{2,5}

β2 [Ψ
′
E2]i,j [Êm13]i,j

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ uf ]̃i,j̃ − [ uf ]i,j

)

h2

+ µ [ uf ]i,j − µ [ ua ]i,j , (6.79)

0 =
∑

m∈{1,2,4}

(
[Ψ′

Dm]i,j [Ĵm12]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm22]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm23]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm24]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm25]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm26]i,j [ dvd ]i,j

)

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ dvf ]̃i,j̃ − [ dvf ]i,j

)

h2

+
∑

m∈{2,5}

(
β2 [Ψ

′
E2]i,j [Êm12]i,j [ duf ]i,j + β2 [Ψ
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)
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E2]i,j [Ê222]i,j [ dvst ]i,j
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′
E2]i,j [Ê222]i,j [ dvd ]i,j

+ µ [ dvf ]i,j − µ [ dva ]i,j

+
∑

m∈{1,2,4}

[Ψ′
Dm]i,j [Jm27]i,j +

∑

m∈{2,5}

β2 [Ψ
′
E2]i,j [Êm23]i,j

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ vf ]̃i,j̃ − [ vf ]i,j

)

h2
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+ µ [ vf ]i,j − µ [ va ]i,j , (6.80)

for i = 1, . . . , nx and j = 1, . . . , ny and Nl(i, j) the set of the two neighbours of the
pixel (i, j) in the axial direction l ∈ {x, y}. The discrete equations for [ dust ]i,j , [ dvst ]i,j ,
[ dud ]i,j , [ dvd ]i,j ,[ dua ]i,j , and [ dva ]i,j can be found in Appendix A. In all these equa-
tions we have collected the terms that depend directly on the flow increments and those
terms that do not depend on them, or only implicitly via the expressions (6.75) - (6.78).
This ordering will make it easier to visualise the structure of the discrete system and the
interdependencies between the unknowns, which will be highlighted next.

General Structure. Extending the compact notations of Sec. 3.2.2.3 to scene flow, we
arrange the unknowns via a row-major ordering in eight n× 1 vectors

dup :=
(
[ dup ]1,1, . . . , [ dup ]nx,ny

)⊤
for p ∈ {f, st, d, a}, (6.81)

dvp :=
(
[ dvp ]1,1, . . . , [ dvp ]nx,ny

)⊤
for p ∈ {f, st, d, a} . (6.82)

We will reserve the 6n× 1 vector d for collecting all scene flow components, i.e.

d :=
(
du⊤

f ,dv
⊤
f ,du

⊤
st,dv

⊤
st,du

⊤
d ,dv

⊤
d

)⊤
, (6.83)

and the 8n × 1 parameter vector p := (d⊤,du⊤
a ,dv

⊤
a )

⊤ for collecting all unknown flow
increments. We also introduce the following short forms

up :=
(
[ u ]1,1, . . . , [ u ]nx,ny

)⊤
for p ∈ {f, st, d, a}, (6.84)

vp :=
(
[ v ]1,1, . . . , [ v ]nx,ny

)⊤
for p ∈ {f, st, d, a}, (6.85)

ĵmkl :=
(
[Ĵmkl]1,1, . . . , [ Ĵmkl ]nx,ny

)⊤
for

{
m ∈ {1, 2, 3, 4}
k, l ∈ {1, 2, . . . , 7} , (6.86)

êmkl :=
(
[Êmkl]1,1, . . . , [ Êmkl ]nx,ny

)⊤
for

{
m ∈ {1, 2}
k, l ∈ {1, 2, 3} , (6.87)

Ĵmkl := diag
(
[Ĵmkl]1,1, . . . , [ Ĵmkl ]nx,ny

)
for

{
m ∈ {1, 2, 3, 4}
k, l ∈ {1, 2, . . . , 7} , (6.88)

Êmkl := diag
(
[Êmkl]1,1, . . . , [ Êmkl ]nx,ny

)
for

{
m ∈ {1, 2}
k, l ∈ {1, 2, 3} , (6.89)

Ψ′
Dm(d) := diag

(
[Ψ′

Dm]1,1, . . . , [Ψ
′
Dm]nx,ny

)
form ∈ {1, 2, 3, 4} (6.90)

Ψ′
Em(p) := diag

(
[Ψ′

Em]1,1, . . . , [Ψ
′
Em]nx,ny

)
form ∈ {1, 2} . (6.91)
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This allows us now to write the discrete Euler-Lagrange equations as a non-linear homo-
geneous system, given by

A(p)p+ c(p) = 08n . (6.92)

For this system, the partitioned 8n × 8n matrix A(p) and 8n × 1 vector c(p) are written
out in full in Eq. (6.93) and Eq. (6.94) on pages 131 and 132.
Despite its larger size and the greater number of unknowns, this system is very rem-

iniscent of the discrete Euler-Lagrange equations that we have already encountered for
pure optical flow in Chapter 3 and for our joint estimation method in Chapter 5. The
part of the matrix A that arises from the data terms is by construction symmetric positive
semidefinite, because the robust weights and the diagonal entries of the scene flow ten-
sors are per definition positive. The same reasoning can be applied to the parts of A that
derive from the epipolar terms and the epipolar tensors. As defined before, L(dup,dvp),
for p ∈ {f, st, d}, is the discrete variant of the differential operator of the divergence ex-
pression and takes on the form of a sparse pentadiagonal n × n matrix for isotropic TV
regularisation. Since this matrix is symmetric negative semidefinite, the overall system
matrix A is a sparse symmetric positive semidefinite matrix as well. As for optical flow,
one can even show that for non-constant images A turns out to be positive definite, which
means that it is invertible and that a unique solution exists [Bru06, SBK10].
When taking a closer look at the dependencies between the different unknowns, we

can distinguish a point-wise coupling between the different unknowns dup and dvp via
the off-diagonal blocks in A. This type of coupling stems from the data terms and the
epipolar terms in our model. A second type of dependency is formed by the neighbourhood
coupling within the vectors dup and dvp, which is induced by the differential operator
L(dup,dvp). Finally, all unknowns are also linked implicitly in a point-wise manner via
the joint arguments of the non-linear expressions in Ψ′

Dm(d), Ψ
′
Em(p) and L(dup,dvp).

This discussion makes it clear that for the solution of the Euler-Lagrange system we can
fall back on the block relaxation techniques that we have been using so far in the context
of optical flow computation. By doing so we will make full use of the coupling between
the unknowns and at the same time allow for the extension on a multigrid platform. The
choice and implementation of the concrete solver will be discussed next.
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Ê

m
2
2

Ψ
′ E
2
(p

)
Ê
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Ê

m
2
2

Σ
{
2
,4
}Ψ

′ E
2
(p

)
Ê
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Ê

m
1
2

Σ
{
3
,4
}Ψ

′ E
2
(p

)
Ê
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6.3.1.3 Solution by Coupled Point Gauß-Seidel Relaxation

Our solution will be based on a coupled point Gauß-Seidel relaxation with frozen coef-
ficients. Hereby, we fix in a first step the entries of the matrix A and the vector c by
evaluating all arguments of the diffusivity Ψ for an already known solution. By doing so,
the non-linear system (6.92) will turn into a linear one. In a second step we traverse the
pixels in a row-major ordering and update all flow increments simultaneously in a block-
wise fashion. In essence this comes down to solving a scaled down 8 × 8 version of the
system (6.92) in each pixel: The fixed entries of A will provide the components of the
system matrix, while the entries of c will end up in the right hand side. The corresponding
update instruction then reads in pixel-based notation




[ duf ]
k+1
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...
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[ dva ]
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, (6.95)

for i = 1, . . . , nx and j = 1, . . . , ny, with matrix entries

[M11]
k
i,j =

∑

m∈{1,2,4}
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Dm]

k
i,j [Ĵm11]i,j + α
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S1]
k
ĩ,j̃
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S1]

k
i,j

)

2h2

+ β2

∑
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E2]

k
i,j [Êm11]i,j + µ, (6.96)
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k
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...
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k
i,j =− µ, (6.100)
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i,j = 0, (6.101)

...

and right hand side
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...

where N−(i, j) is the set of neighbours of pixel (i, j) in the direction of the l-axis that
have already been updated andN+(i, j) the set of neighbours that still need to be updated.
While not all expressions have been written out in full, the remaining entries of the system
matrix and the right hand side are derived in a comparable way.

6.3.2 Solving for the Fundamental Matrix

To minimise the energy E with respect to the fundamental matrix, we look for critical
points of the Lagrangian L where the derivatives with respect to f and λ vanish, i.e.

∇f L(dwf , dwst, dwd, dwa, f , λ) = 0, (6.103)

∂

∂λ
L(dwf , dwst, dwd, dwa, f , λ) = 0 . (6.104)

For these derivatives only the two epipolar terms in E have to be taken into consideration,
because none of the data terms and none of the smoothness terms depend on f . In the
subsequent derivation we will narrow the Lagrangian down to the first part of the second
epipolar constraint to make the modus operandi clear. With respect to the second epipolar
term EE2, we can set the first part of the argument

d⊤
2hÊ2 d2h + d⊤

3hÊ3 d3h = w2(f) (s⊤f)2 , (6.105)

where s is the 9 × 1 constraint vector (4.3) that depends on wf , wst, wd, wa and their
increments, and the factor w2(f ) is the squared weight defined in Eq. (6.58). If we further
stick to the definition of Ψ′

E2 given in Eq. (6.73), the above derivatives for the first part of
the second epipolar term give rise to the eigenvalue problem

(∫

Ω

Ψ′
E2 · w2(f) ss⊤ dx dy − λI

)
f =: (M − λI)f = 09 (6.106)

1− ‖f‖2 = 0 . (6.107)

The system matrixM is a symmetric positive definite matrix with entries

mi,j =

∫

Ω

Ψ′
E2 · w2(f) sisj dx dy , (6.108)

for 1 ≤ i, j ≤ 9 and si being the i-th component of s. In much the same way, the first
epipolar term and the second part of the second epipolar term involving the tensors Ê4
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and Ê5 will both give rise to a similar eigenvalue problem. To find a common fundamental
matrix, the three system matrices have to be combined in a final set of eigenvalue equa-
tions, which can be solved in the familiar total least squares setting. Since the use of the
epipolar distance requires a reasonable estimate for the fundamental matrix, we bootstrap
the estimation by means of the standard 8-point algorithm with data normalisation.
As we did before in the context of the optical flow based computation of the fundamental

matrix, we exclude points from the estimation process that are warped outside the image.
Since we now have additional information about occluded regions within the image, we
can do the same for points that have an occlusion score of 0. The occlusion scores might
even be added explicitly to the epipolar terms in our global energy.

Relation to theMethod F1. As already pointed out before and nowmade explicit via the
above derivation, our minimisation with respect to the fundamental matrix is equivalent
to solving the eigenvalue problem (4.47) of the feature based technique F1. The differ-
ence between the two approaches lies in the use of the robust weighing of the epipolar
distance: Outliers are down weighed via the statistical tri-weight function in F1, while the
regularised L1 penaliser is applied in our method. There is, however, a more fundamental
difference between F1 and our approach. Contrary to F1, our method exploits the dense set
of image correspondences provided by the displacement fields between the stereo pairs.
Moreover, it exploits a feedback that couples the correspondence search to the epipolar
geometry computation and, as a consequence, it benefits from the same advantages as the
joint optical flow and fundamental matrix estimation of Chapter 5.

6.4 Experiments

In this section we evaluate the performance of our scene flow method on synthetic stereo
sequences with ground truth and on real-world stereo sequences. For both types of evalu-
ation we use image data that is available online, as well as material that we have generated
and recorded ourselves. To assess the quality of the scene flow estimation with respect
to ground truth, we compute the root mean square error (RMSE) of the motion compo-
nent of the scene flow (uf , vf , ud, vd), of the left optical flow (uf , vf) and of the first stereo
flow (ust, vst). The RMSE between an estimated flow field we = (ue, ve) and a ground
truth flow field wg = (ug, vg) is defined as

RMSE (we,wg) =

(
1

|Ω|

∫

Ω

(
(ue − ug)

2 + (ve − vg)
2) dx

)1/2

, (6.109)

with |Ω| =
∫
Ω
dx the size of the image domain. The RMSE is extended accordingly ifwe

and wg have more than 2 components. In addition we will compute the absolute angular
error AbAE of the left optical flow, which is used as a quality measure in [HD07] and
[WRV+08]. It is defined as

AbAE (we,wg) =
1

|Ω|

∫

Ω

arctan

(
uevg − ugve
ueug + vevg

)
dx . (6.110)
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Tab. 6.1: Evaluation of different scene flow methods on the rectified sphere sequence.

RMSE AbAE
Method

(uf , vf , ud, vd) (uf , vf) (ust, vst) (uf , vf)

Our method initialised with [FH06] 1.76 0.63 3.8 1.17
Our method 1.78 0.63 5.5 1.16

Wedel et al. [WRV+08] with ground truth 2.40 0.65 − 1.40
Wedel et al. [WRV+08] (87%) 2.45 0.66 2.9 1.50
Huguet and Devernay [HD07] 2.51 0.69 3.8 1.75
Wedel et al. [WRV+08] (100%) 2.55 0.77 10.9 2.76

The AbAE should not be confused with the average angular error AAE of Sec. 5.2, as
it does not take into account the temporal flow component and solely measures the angle
between the estimated and ground truth flow in the image plane. The reason for adopting
this quality measure instead of the AAE, is that it enables us to compare our results with
those of previously published methods. As a quality measure for the fundamental matrix
we use anew the error dF , which has been introduced in Sec. 4.3 and describes the devia-
tion of the estimated epipolar geometry from ground truth in pixel units. All results have
been obtained for five iteration steps of our alternating minimisation.

6.4.1 Synthetic Sequences

Rectified Stereo Sequence. In a first experiment we consider the synthetic sphere se-
quence of Huguet and Devernay [HD07] 2, which is composed of four 512 × 512 images
of a textured sphere with rotating hemispheres. The left images at time t and t+1 and the
scene set-up are shown in Fig. 6.5. Despite the fact that this sequence is rectified, and thus
constitutes the special stereo case with vanishing vertical components of the stereo flow, it
is a good benchmark for comparison against existing techniques.
Additionally, this sequence requires the estimation of large stereo displacements, which

poses a challenge to variational methods in general. In this context we follow the idea
of [HD07] and initialise (ust, vst) with a dedicated method for large displacements. As
a standard initialisation, we use a variant of the recent optical flow technique of Brox et

al. [BBM09] with constraint normalisation and SIFT feature matches as a prior. For
consistency, we additionally include results for initialisation with the belief propagation
algorithm of Felzenszwalb and Huttenlocher [FH06], as used by Huguet and Devernay.
We wish to emphasise that the latter technique is only applicable for rectified stereo se-
quences, while our standard initialisation can be applied in all stereo settings. In practice
we down sample the initialised stereo flow to a fixed intermediate resolution level in the
coarse-to-fine pyramid, where we also compute the left and the right optical flow. Both
flows are determined by only keeping those terms in our energy that depend on the left
optical flow and solving the resulting optical flow problem for the left and right image se-
quences separately. At the same resolution level, the difference flow (ud, vd) is initialised

2. available at http://devernay.free.fr/vision/varsceneflow/
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Fig. 6.5: Results for the ortho-parallel sphere sequence. Top Row: (a) Left frame at first
time step. (b) + (c) + (d)Ground truth of left optical flow, first stereo flow and flow change.
Colour encodes the direction and brightness the magnitude. Occlusions are coloured pink.
Middle Row: (e) Left frame at second time step. (f) + (g) + (h) Estimated left optical
flow, first stereo flow and flow change. Bottom Row: (i) The motion of the sphere (taken
from [HD07]). (j) + (k) Estimated occlusion scores o1r and o2r. (l) Estimated scene flow
(run time ≈ 420 s, settings: α1=2.0, α2=1.5, α3=0.3, β1=β2=0.1, γ=0.1, µ=1.0).

by warping the right optical flow on the left image using (ust, vst) and subtracting the re-
sult from the left optical flow. Setting out from the initial value for (uf , vf , ust, vst, ud, vd),
we now start the joint computation of all flow components by solving the Euler-Lagrange
equations of Sec. 6.3.1.1 on all remaining pyramid levels.

Table 6.1 compares our results with those of the variational methods of Huguet and
Devernay [HD07] and Wedel et al. [WRV+08] and lists the errors computed within the
region of the sphere. With a substantial improvement in the RMSE for (uf , vf , ud, vd) and
in the AbAE for (uf , vf), we consistently outperform the other approaches for the scene
flow, although these methods are specifically tailored to the rectified stereo case. The
lower RMSE of the method of Wedel et al. for (ust, vst) is due to the fact that it uses
sparse stereo correspondences that do not provide results in occluded regions and that
the error is not evaluated in these regions. The accuracy of their estimated scene flow is
nevertheless significantly lower than ours. This even holds if they use ground truth for
the stereo correspondences. The good performance of our method is also reflected in the
accurate estimation of the stereo geometry: We reach a subpixel precision of dF = 0.019.
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Fig. 6.6: Results for the general (converging) sphere sequence. Top Row: (a) Left frame
at first time step. (b) + (c) + (d) Ground truth of left optical flow, first stereo flow and flow
change. Colour encodes the direction, brightness the magnitude. Occlusions are coloured
pink. Middle Row: (e) Left frame at second time step. (f) + (g) + (h) Estimated left
optical flow, first stereo flow and flow change. Bottom Row: (i) + (j) Estimated occlusion
scores o1r and o2r. (k) Estimated scene reconstruction. (l) Estimated scene flow (run time
≈ 420 s, settings: α1=1.5, α2=2.0, α3=0.8, β1=β2=0.03, γ=0.1, µ=1.0).

The results for the scene flow components that are obtained by initialisingwith [BBM09]
are shown in Fig. 6.5. The depicted flow fields are the estimated left optical flow, the first
stereo flow and the difference flow, as well as their ground truths. For the colour coding of
the flow vectors we refer to the colour circle of Fig. 4.5 (a). In addition to the flow fields
we also show the estimated occlusion scores that result from the scene motion and the
change in viewpoint between the cameras. Finally, the scene flow on the sphere surface is
presented as a 3D vector plot in the colour code of the left optical flow. It can be observed
that the cracking of the surface is captured very well due to the separate regularisation of
the optical flow and the stereo flow.

Converging Stereo Sequence. In a second experiment we evaluate the performance of
our method for a general stereo geometry. Due to a lack of ground truth scene flow data
for general stereo settings, we generated a synthetic sequence of four 512 × 512 frames
with ground truth ourselves 3. The sequence is similar to the one of the previous exper-
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Tab. 6.2: Evaluation of different variants of our method on the general sphere sequence.

RMSE
Method

(uf , vf , ud, vd) (uf , vf) (ust, vst)

joint regularisation 0.67 0.64 2.08
joint regularisation + normalisation 0.63 0.59 1.86
separate regularisation + normalisation 0.61 0.59 1.61

iment: A textured sphere with rotating hemispheres is positioned against a plane in the
background as shown in Fig. 6.6. Contrary to the rectified sphere sequence, the plane is
not infinitely far and thus induces a parallax with occlusions in the background as a re-
sult. To demonstrate the benefits of the different design steps in our scene flow model
we start from a variant that performs a joint regularisation of the flows as in [HD07] and
does not include the constraint normalisation. We then refine the model by subsequently
adding the normalisation and the separate regularisation of the flows. In all cases we ini-
tialised the stereo flow with the large displacement optical flow technique of Brox et al.

[BBM09]. Table 6.2 lists the progressively improving results for this test. This time the
errors are computed in the non-occluded regions of the whole image domain. The AbAE
of the optical flow is not listed because it is not defined for the zero displacement in the
background. In Fig. 6.6, the computed flow fields are shown together with the obtained
occlusion scores, the 3D reconstruction and the scene flow. As one can see, the estimated
displacements resemble the ground truth very well. Again, this is confirmed by a subpixel
precision of dF = 0.021 for the stereo geometry.

6.4.2 Real-World Sequences

In our last experiments we will compute the scene flow for several real-world stereo se-
quences. First we take a look back at the DinoRing and the TempleRing image sets from
the Middlebury multiview data base that we have used in our stereo experiments of the
previous chapters. These images have been acquired by multiple cameras that are posi-
tioned equidistantly on a spherical gantry surrounding the object [SCD+06]. Each image
pair captured by two neighbouring cameras therefore forms a pair of stereo images that
is related by a constant fundamental matrix, such that the set-up is equivalent to that of
a fixed stereo rig encircling the object. Frames 24 and 25 of the DinoRing set thus form
a stereo sequence with frames 25 and 26 as shown in the top row of Fig. 6.7. For vi-
sualisation purposes we only show a cropped square section of the original 640 × 480
images in the figure. The reconstruction and the scene flow computed from these four
images by our method are shown in the bottom row of Fig. 6.7. As before, we have omit-
ted the homogeneous background from the fundamental matrix estimation and only show
the reconstruction within the object silhouette. For the reconstruction and the occlusion
handling we used the provided internal camera parameters. In the colouring scheme of the
scene flow vectors small displacements are indicated by green arrows and larger displace-
ments by red arrows. It can be observed that the recovered 3D displacement field is in

3. available at http://www.mia.uni-saarland.de/valgaerts/eccv10/sceneflow
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Fig. 6.9: Results for two real-world sequences. Top Row: (a) + (b) + (c) + (d) Smiling, left
and right image at time t and left and right image at time t+1. Middle Row: (e) + (f) + (g)

+ (h) Closing Mouth, left and right image at time t and left and right image at time t + 1.
Bottom Row: (i) Reconstruction with the scene flow overlaid for Smiling. Increasing
magnitude from green to red. (j) Close-up Smiling. (k) Close-up Closing Mouth. (run
time: ≈ 260 s, settings: α1=15.0, α2=20.0, α3=15.0, β1=β2=0.5, γ=30.0, µ=1.0)
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Fig. 6.10: Results for Surprised. TopRow: (a) + (b) + (c) + (d) Left and right image at time
t and left and right image at time t + 1. Bottom Row: (e) Scene flow. (f) Reconstruction
with the scene flow overlaid. Increasing magnitude from green to red. (g) Close-up (run
time: ≈ 260 s, settings: α1=8.0, α2=9.1, α3=5.3, β1=β2=0.5, γ=7.0, µ=1.0).

accordance with the motion of the stereo rig and that the dinosaur model seems to rotate
around its axis relative to the camera. Similar results have been obtained for frames 13,
14 and 15 of the TempleRing data set, depicted in Fig. 6.8. For non-optimised parameters,
the high accuracy of the fundamental matrix estimation is demonstrated by an error of
dF = 0.646 and dF = 0.260 for DinoRing and TempleRing respectively.

Although the Middlebury data sets form a valid test case for scene flow estimation,
the relative scene motion induced by the changing camera position is rigid and does not
present the most interesting application of our method. Of greater significance are mo-
tion types that include independently moving objects and surface deformation. To test the
performance of our method for more general scene motion we recorded several uncali-
brated real-world sequences depicting changing expressions of different faces. Two such
sequences, Smiling and Closing Mouth, are shown in the two first rows of Fig. 6.9. The
resolution of all images is 340× 470. As one can verify, the 3D structure and the motion
of the face, shown in the bottom row of the figure, are captured well and look very realistic
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Fig. 6.11: Results for Opening Eyes. Top Row: (a) + (b) + (c) + (d) Left and right image
at time t and left and right image at time t + 1. Bottom Row: (e) Scene flow. (f) Recon-
struction with scene flow overlaid. Increasing magnitude from green to red. (g) Close-up
(run time: ≈ 260 s, settings: α1=8.0, α2=9.1, α3=5.3, β1=β2=0.5, γ=7.0, µ=1.0).

for both sequences. The colouring scheme is the same as before with small displacements
indicated by green arrows and larger displacements by red arrows. We emphasise that
these two results are obtained from the depicted four frames only. We do not perform a
full calibration of the stereo rig but only use the focal length and an approximation of the
principal point as internal camera parameters. For these experiments the homogeneous
background is not excluded from the fundamental matrix estimation. Both Smiling and
Closing Mouth are part of a longer stereo sequence of approximately 30 frames. By pro-
cessing the complete sequence in separate chunks of four frames, an animated vector plot
has been generated which can be viewed on our homepage 4. We additionally recorded a
stereo sequence of approximately 70 frames, of which two excerpts of each four images
can be found in Fig. 6.10 and Fig. 6.11. It can be observed that we recover the lifting eye
brows for Surprised and that we even capture the small motion of the eye pupils as the

4. http://www.mia.uni-saarland.de/valgaerts/eccv10/sceneflow
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eyes change their focus. For Opening Eyes the movement of the eye lids is detected with
equal precision. If some displacement vectors seem to be missing on the reconstructions
with the scene flow overlaid, it is simply due to the fact that they point inward into the
reconstructed surface and are therefore hidden out of sight. An animated vector plot for
the complete sequence can be found on our website 4.

6.5 Summary

In this chapter we have presented a general approach for the dense estimation of scene
flow, scene structure and stereo geometry from uncalibrated stereo sequences. Our con-
tributions were fivefold: (i) First we generalised the classical four-frame case to arbitrary
stereo setups by embedding the epipolar constraint into a joint energy functional with data
and smoothness terms. (ii) We then introduced a tensor notation which allowed us to nor-
malise the data and stereo constraints such that they become geometrically interpretable.
(iii) Furthermore, we showed the equivalence of the normalised epipolar constraints to
two widely-used distance measures, namely the epipolar distance and the Sampson error.
(iv) In addition, we presented a separate robustification of all the flow gradients in the
smoothness terms to handle scenarios where flow discontinuities do not coincide. (iv) As
a final contribution, we explicitly detected occlusions due to scene motion and changes in
camera viewpoint and excluded them from the estimation process.
Our evaluation has demonstrated that the proposed approach is not only more general

than existing methods but also more accurate: Even without explicit knowledge about the
stereo geometry, we outperform recent techniques that have been specifically designed for
the rectified case. Moreover, the stereo geometry is estimated with sub-pixel precision
and reconstructions for real-world data show that both the scene structure and the scene
motion are determined with high quality. This clearly demonstrates the benefit of a joint
approach for the computation of flow, structure and geometry.
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7 Summary and Outlook

7.1 Summary

The goal of this thesis was to investigate the benefits of dense optical flow for the recov-
ery of the stereo geometry, the 3D scene structure and the 3D scene motion from stereo
image pairs and stereo image sequences. The focus hereby was on a systematic modelling
in a variational framework and on the simultaneous and consistent computation of all un-
knowns as a joint optimisation problem. We achieved these goals in three main steps:

I. Estimation of the Fundamental Matrix from Dense Optical Flow

In Chapter 4 we introduced a new application for optical flow: the dense estimation of
the fundamental matrix from a stereo image pair. To this end, we proposed a two-step
method that first establishes a set of dense image correspondences by means of an accurate
variational optical flowmethod and then estimates the fundamental matrix by imposing the
epipolar constraint in each pixel. For the estimation of the optical flow, we based ourselves
on the prototypical approach of Brox et al. [BBPW04], while for the estimation of the
fundamental matrix we designed a robust version of the 8-point algorithm of Longuet-
Higgins [Lon81]. Our approach makes successful use of two main advantages of dense

optical flow: (i) the large amount of correspondences that is available from the filling-
in effect of the smoothness term and (ii) the absence of gross outliers resulting from the
combination of robust data constraints and global smoothness assumptions.
In an extensive experimental section, we presented a systematic juxtaposition of our

dense method with widely-used sparse feature based estimation techniques. In order to
represent most of the current state-of-the-art, we compared our results with twelve differ-

ent variants of feature based methods. These were obtained by considering two feature
matching algorithms (KLT [ST94] and SIFT [Low04]), three random sampling algorithms
(LMedS [RL87], LORANSAC [CMO04] and DEGENSAC [CWM05]), and two different
distance measures (the epipolar distance [FLP01] and the reprojection error [HZ00]). By
comparing the best results for the dense and the sparse techniques, we demonstrated that
modern optical flow methods can serve as novel approaches for estimating the stereo geo-
metry with competitive quality. In our experiments, we additionally identified scenarios
in which dense techniques should be preferred over sparse ones.

II. Joint Estimation of the Fundamental Matrix and the Optical Flow

In Chapter 5 we demonstrated that not only the stereo geometry can be accurately esti-
mated from dense optical flow, but that the computation of the optical flow can at the same
time benefit from knowledge about the stereo geometry. To this end we fed information
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about the computed fundamental matrix back into the optical flow estimation, thereby re-
placing the traditionally unconstrained estimation of the optical flow by one that takes into
account the stereo geometry and the rigidity of the relative scene motion. In contrast to
existing stereo methods that make explicit use of a given precomputed stereo geometry,
we estimated the optical flow and the fundamental matrix simultaneously. This resulted in
an approach that is more flexible in practice and applicable for uncalibrated stereo images.

From a modelling point of view, we achieved this goal by incorporating the epipolar
constraint as a soft constraint into the optical flow functional. This allowed for the opti-
cal flow and the fundamental matrix to correct each other in an alternating optimisation
process, that exhibits convergence in practice. Besides yielding better optical flow results
than approaches that do not estimate the epipolar geometry in the process, our experiments
showed that a joint estimation of the optical flow and the fundamental matrix further im-
proved the two-step method of Chapter 4. Since our modelling was done in a general
variational framework, our strategy could be easily extended to more recent optical flow
methods. This was demonstrated by replacing the prototypical approach of Brox et al.

[BBPW04] by the more advanced method of Zimmer et al. [ZBW11]. Furthermore, we
showed how our joint method fuses the two steps of classical projective reconstruction:
By solving for both the camera motion and the scene structure in a single optimisation
step, we obtained a dense reconstruction of the depicted scene. We concluded the chapter
with a discussion of the advantages and shortcomings of our joint variational method.

III. Joint Estimation of the Geometry, the Scene Structure and the Scene Motion

In our final Chapter 6 we proposed a variational method for the computation of the scene
flow from uncalibrated stereo sequences. We achieved this by integrating spatial and tem-
poral information from two consecutive stereo pairs in a global energy functional that
allowed us to simultaneously compute all optical flows and the fundamental matrix. By
assuming that only the internal camera parameters were known, our method was able to
recover the dense 3D scene structure and the dense 3D scene motion up to a scale factor.

Apart from this novel generalised model for uncalibrated scene flow, we made four ad-
ditional contributions: (i) Within the multi-resolution framework required to handle large
displacements, we introduced a compact notation for the linearised data constraints and
epipolar constraints. This notation allowed us to normalise these constraints such that devi-
ations from model assumptions can be interpreted as geometrical distances. (ii) Secondly,
we showed the equivalence of the normalised epipolar constraints to two widely-used

distance measures that had been encountered in the context of feature based methods in
Chapter 4: the epipolar distance [FLP01] and the Sampson error [WHA89]. (iii) Thirdly,
we proposed a regularisation strategy that penalises discontinuities in the different dis-
placement fields separately. This made sense, since motion and depth continuities do not
necessarily coincide. (iv) As a final contribution, we explicitly detected occlusions due to
scene motion and changes in camera viewpoint and excluded them from the estimation
process. Experiments on synthetic calibrated and uncalibrated data and on real-world se-
quences demonstrated that our approach is not only more general than existing methods
but also more accurate: Even without explicitly knowing the stereo geometry, we outper-
formed recent techniques that make explicit use of a given stereo geometry. These results
clearly demonstrate the benefit of a joint computation of flow, structure and geometry.
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7.2 Future Work

This thesis does not represent the end of the road for optical flow based 3D reconstruction
and 3D motion estimation. In the following we give several ideas for future research:

1. Efficient Numerics and Parallelisation. An important property of any algorithm
is its run time. The implementations of the methods evaluated in this thesis were
optimised for accuracy rather than for real-time performance. As already mentioned
in Chapter 5, however, there is plenty of room for run time improvements in prac-
tical applications. Despite their well-known efficiency, multigrid methods still do
not achieve near-real-time performance for larger images. Instead, a speed-up of
several orders of magnitude should be sought in parallelisation strategies on modern
graphical hardware [GZG+10, SBK10]. Since multigrid methods are in general dif-
ficult to parallelise, progress in this area mostly goes together with novel numerical
schemes. One such recent scheme that lends itself to easy parallelisation is Fast Ex-
plicit Diffusion (FED) [GWB10], an explicit scheme that allows the use of varying,
possibly large, time step sizes . Another type of efficient algorithms that can easily
be parallelised on a GPU are so-called primal-dual approaches [ZPB07a, WTP+09].
These techniques do not minimise the energy in an Euler-Lagrange framework, but
decouple the minimisation with respect to the data and smoothness term.

2. Extensions in Spatial Direction. An extension of our methods to multiple images
is something that comes immediately to mind. The most straightforward of such
extensions would be to use three uncalibrated stereo images instead of two. In such
case we could estimate the optical flows between the central frame and the two other
frames together with the so-called trifocal tensor [HZ00, FLP01], a 3 × 3 × 3 ten-
sor which plays a similar role in three-view geometry as the fundamental matrix
in two-view geometry. Such tensor generalisations also exist for more than three
views, but the chance of finding the same point correspondence in all images de-
creases with the number of views. An alternative way of including multiple images
is therefore to decompose the problem into two-view sub-problems and to merge the
resulting reconstructions [ZPB07b, BBH08]. The most challenging task for such a
system would be the simultaneous calibration of all cameras with respect to a fixed
reference frame. Finally, one could also think of parameterising the whole problem
in 3D space, thereby bypassing the explicit computation of the optical flow. Two
methods that work along this line have been proposed recently for calibrated stereo
reconstruction and scene flow estimation in [SGC10] and [BMK10] respectively.

3. Extensions in Temporal Direction. Especially with respect to variational scene flow
computation, one could think of including extra frames from previous and later time
instances. Such additional temporal information would likely stabilise and improve
the computation of all the optical flows and the fundamental matrix. A first realisa-
tion of this idea could be to apply spatio-temporal optical flow regularisers instead
of the purely spatial ones used in this thesis. Although many strategies have been
proposed that smooth along the temporal axis [MB87, WS01b, BBW06, ZBW11],
this assumption hardly holds in the presence of larger displacements since moving
objects change their location from one time instance to the other. It therefore makes
more sense to penalise the flow derivatives in the direction of the flow itself. Such
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a smoothness constraint would smooth along the motion trajectories of moving ob-
jects and involves the computation of multiple flows over time. Optical flow ideas
of this type have been presented in [BA91, CM95, SS07, WTP+09]. None of these
works, however, efficiently solve for all the flow fields without registering them onto
the current time instance. Ideally one would like to avoid this cumbersome registra-
tion step, such that the reconstructions over time are temporally coherent. First ideas
in this direction have recently been proposed by us for optical flow in [VBVZ11].

At least as challenging from a modelling point of view, is the extension of our scene
flow method to temporally varying epipolar geometries. While our current model
allows the estimation of different fundamental matrices at different time instances,
the 3D reconstruction for internally calibrated cameras becomes more complicated.
As in the case of a single fundamental matrix, there will be a scale ambiguity which
now not only arises by nature of the reconstruction process but also from possible
camera motion (i.e. a scaling in the baseline). Prior knowledge about the scene
or the camera position might therefore be necessary to solve this ambiguity. An-
other interesting idea with respect to a time varying stereo system would be the
assumption of temporal regularity on the epipolar geometry. Such regularity could
for instance be imposed on the epipolar lines or on the fundamental matrix entries.

4. Hybrid methods. Finally, there are many possibilities of combining the methods
presented in this thesis with existing techniques. Instead of juxtaposing them, one
could, for instance, try to integrate dense variational methods and sparse featured
based techniques to combine the best of both worlds. Such strategies would allow us
to compute the optical flow in the presence of large displacements [BBM09, XJM10]
and to estimate the fundamental matrix in large baseline scenarios [XS03]. Another
hybrid method could combine our results with range image information that can be
obtained directly from special devices, such as time-of-flight cameras [CSC+10] or
structured light cameras like the Microsoft Kinect motion controller 1. Finally, illu-
mination and shading information could be integrated as well to refine the obtained
reconstructions. This would be especially interesting for capturing detailed facial
expressions from low resolution imagery; see e.g. [WWMT11].

1. http://www.xbox.com/en-US/kinect
https://github.com/OpenKinect/
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Here we present the full set of Euler-Lagrange equations corresponding to energy (6.61).

0
duf= Ψ′

D1 ·
(
Ĵ111 duf + Ĵ112 dvf + Ĵ113 dust + Ĵ114 dvst + Ĵ115 dud + Ĵ116 dvd + Ĵ117

)

+ Ψ′
D2 ·

(
Ĵ211 duf + Ĵ212 dvf + Ĵ213 dust + Ĵ214 dvst + Ĵ215 dud + Ĵ216 dvd + Ĵ217

)

+ Ψ′
D4 ·

(
Ĵ411 duf + Ĵ412 dvf + Ĵ413 dust + Ĵ414 dvst + Ĵ415 dud + Ĵ416 dvd + Ĵ417

)

− α1 div
(
Ψ′

S1 · ∇(uf + duf)
)

+ β2Ψ
′
E2 ·

(
Ê211 (duf + dust + dud) + Ê212 (dvf + dvst + dvd) + Ê213

)

+ β2Ψ
′
E2 ·

(
Ê511 duf + Ê512 dvf + Ê513

)

+ µ (uf + duf − ua − dua), (A.1)

0
dvf= Ψ′

D1 ·
(
Ĵ112 duf + Ĵ122 dvf + Ĵ123 dust + Ĵ124 dvst + Ĵ125 dud + Ĵ126 dvd + Ĵ127

)

+ Ψ′
D2 ·

(
Ĵ212 duf + Ĵ222 dvf + Ĵ223 dust + Ĵ224 dvst + Ĵ225 dud + Ĵ226 dvd + Ĵ227

)

+ Ψ′
D4 ·

(
Ĵ412 duf + Ĵ422 dvf + Ĵ423 dust + Ĵ424 dvst + Ĵ425 dud + Ĵ426 dvd + Ĵ427

)

− α1 div
(
Ψ′

S1 · ∇(vf + dvf)
)

+ β2Ψ
′
E2 ·

(
Ê212 (duf + dust + dud) + Ê222 (dvf + dvst + dvd) + Ê223

)

+ β2Ψ
′
E2 ·

(
Ê512 duf + Ê522 dvf + Ê523

)

+ µ (vf + dvf − va − dva), (A.2)

0
dust= Ψ′

D2 ·
(
Ĵ213 duf + Ĵ223 dvf + Ĵ233 dust + Ĵ234 dvst + Ĵ235 dud + Ĵ236 dvd + Ĵ237

)

+ Ψ′
D3 ·

(
Ĵ313 duf + Ĵ323 dvf + Ĵ333 dust + Ĵ334 dvst + Ĵ335 dud + Ĵ336 dvd + Ĵ337

)

+ Ψ′
D4 ·

(
Ĵ413 duf + Ĵ423 dvf + Ĵ433 dust + Ĵ434 dvst + Ĵ435 dud + Ĵ436 dvd + Ĵ437

)

− α2 div
(
Ψ′

S2 · ∇(ust + dust)
)

+ β1Ψ
′
E1 ·

(
Ê111 dust + Ê112 dvst + Ê113

)

+ β2Ψ
′
E2 ·

(
Ê211 (duf + dust + dud) + Ê212 (dvf + dvst + dvd) + Ê213

)

+ β2Ψ
′
E2 ·

(
Ê411 (dua + dust + dud) + Ê412 (dva + dvst + dvd) + Ê513

)
, (A.3)
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0
dvst= Ψ′

D2 ·
(
Ĵ214 duf + Ĵ224 dvf + Ĵ234 dust + Ĵ244 dvst + Ĵ245 dud + Ĵ246 dvd + Ĵ247

)

+ Ψ′
D3 ·

(
Ĵ314 duf + Ĵ324 dvf + Ĵ334 dust + Ĵ344 dvst + Ĵ345 dud + Ĵ346 dvd + Ĵ347

)

+ Ψ′
D4 ·

(
Ĵ414 duf + Ĵ424 dvf + Ĵ434 dust + Ĵ444 dvst + Ĵ445 dud + Ĵ446 dvd + Ĵ447

)

− α2 div
(
Ψ′

S2 · ∇(vst + dvst)
)

+ β1Ψ
′
E1 ·

(
Ê112 dust + Ê122 dvst + Ê123

)

+ β2Ψ
′
E2 ·

(
Ê212 (duf + dust + dud) + Ê222 (dvf + dvst + dvd) + Ê223

)

+ β2Ψ
′
E2 ·

(
Ê412 (dua + dust + dud) + Ê422 (dva + dvst + dvd) + Ê423

)
, (A.4)

0
dud= Ψ′

D2 ·
(
Ĵ215 duf + Ĵ225 dvf + Ĵ235 dust + Ĵ245 dvst + Ĵ255 dud + Ĵ256 dvd + Ĵ257

)

+ Ψ′
D4 ·

(
Ĵ415 duf + Ĵ425 dvf + Ĵ435 dust + Ĵ445 dvst + Ĵ455 dud + Ĵ456 dvd + Ĵ457

)

− α3 div
(
Ψ′

S3 · ∇(ud + dud)
)

+ β2Ψ
′
E2 ·

(
Ê211 (duf + dust + dud) + Ê212 (dvf + dvst + dvd) + Ê213

)

+ β2Ψ
′
E2 ·

(
Ê411 (dua + dust + dud) + Ê412 (dva + dvst + dvd) + Ê413

)
, (A.5)

0
dvd= Ψ′

D2 ·
(
Ĵ216 duf + Ĵ226 dvf + Ĵ236 dust + Ĵ246 dvst + Ĵ256 dud + Ĵ266 dvd + Ĵ267

)

+ Ψ′
D4 ·

(
Ĵ416 duf + Ĵ426 dvf + Ĵ436 dust + Ĵ446 dvst + Ĵ456 dud + Ĵ466 dvd + Ĵ467

)

− α3 div
(
Ψ′

S3 · ∇(vd + dvd)
)

+ β2Ψ
′
E2 ·

(
Ê212 (duf + dust + dud) + Ê222 (dvf + dvst + dvd) + Ê223

)

+ β2Ψ
′
E2 ·

(
Ê412 (dua + dust + dud) + Ê422 (dva + dvst + dvd) + Ê423

)
, (A.6)

0
dua= β2Ψ

′
E2 ·

(
Ê311 dua + Ê312 dva + Ê313

)

+ β2Ψ
′
E2 ·

(
Ê411 (dua + dust + dud) + Ê412 (dva + dvst + dvd) + Ê413

)

− µ (uf + duf − ua − dua), (A.7)

0
dva= β2Ψ

′
E2 ·

(
Ê312 dua + Ê322 dva + Ê323

)

+ β2Ψ
′
E2 ·

(
Ê412 (dua + dust + dud) + Ê422 (dva + dvst + dvd) + Ê423

)

− µ (vf + dvf − va − dva) . (A.8)
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Here we present the discrete Euler-Lagrange equations corresponding to energy (6.61).

0
[ duf ]i,j
=

∑

m∈{1,2,4}

(
[Ψ′

Dm]i,j [Ĵm11]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm12]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm13]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm14]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm15]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm16]i,j [ dvd ]i,j

)

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ duf ]̃i,j̃ − [ duf ]i,j

)

h2

+
∑

m∈{2,5}

(
β2 [Ψ

′
E2]i,j [Êm11]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvf ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvd ]i,j

+ µ [ duf ]i,j − µ [ dua ]i,j

+
∑

m∈{1,2,4}

[Ψ′
Dm]i,j [Jm17]i,j +

∑

m∈{2,5}

β2 [Ψ
′
E2]i,j [Êm13]i,j

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ uf ]̃i,j̃ − [ uf ]i,j

)

h2

+ µ [ uf ]i,j − µ [ ua ]i,j , (A.9)

0
[ dvf ]i,j
=

∑

m∈{1,2,4}

(
[Ψ′

Dm]i,j [Ĵm12]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm22]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm23]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm24]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm25]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm26]i,j [ dvd ]i,j

)

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ dvf ]̃i,j̃ − [ dvf ]i,j

)

h2

+
∑

m∈{2,5}

(
β2 [Ψ

′
E2]i,j [Êm12]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvf ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê212]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Ê222]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Ê212]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Ê222]i,j [ dvd ]i,j

+ µ [ dvf ]i,j − µ [ dva ]i,j

+
∑

m∈{1,2,4}

[Ψ′
Dm]i,j [Jm27]i,j +

∑

m∈{2,5}

β2 [Ψ
′
E2]i,j [Êm23]i,j

− α1

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S1]̃i,j̃ + [Ψ′
S1]i,j

)

2

(
[ vf ]̃i,j̃ − [ vf ]i,j

)

h2

+ µ [ vf ]i,j − µ [ va ]i,j (A.10)
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0
[ dust ]i,j
=

∑

m∈{2,3,4}

(
[Ψ′

Dm]i,j [Ĵm13]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm23]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm33]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm34]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm35]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm36]i,j [ dvd ]i,j

)

− α2

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S2 ]̃i,j̃ + [Ψ′
S2]i,j

)

2

(
[ dust ]̃i,j̃ − [ dust ]i,j

)

h2

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvf ]i,j

+ β1 [Ψ
′
E1]i,j [Ê111]i,j [ dust ]i,j + β1 [Ψ

′
E1]i,j [Ê112]i,j [ dvst ]i,j

+
∑

m∈{2,4}

(
β2 [Ψ

′
E2]i,j [Êm11]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Êm11]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvd ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê411]i,j [ dua ]i,j + β2 [Ψ

′
E2]i,j [Ê412]i,j [ dva ]i,j

+
∑

m∈{2,3,4}

[Ψ′
Dm]i,j [Jm37]i,j + β1 [Ψ

′
E1]i,j [Ê113]i,j +

∑

m∈{2,4}

β2 [Ψ
′
E2]i,j [Êm13]i,j

− α2

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S2 ]̃i,j̃ + [Ψ′
S2]i,j

)

2

(
[ ust ]̃i,j̃ − [ ust ]i,j

)

h2
, (A.11)

0
[ dvst ]i,j
=

∑

m∈{2,3,4}

(
[Ψ′

Dm]i,j [Ĵm14]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm24]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm34]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm44]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm45]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm46]i,j [ dvd ]i,j

)

− α2

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S2 ]̃i,j̃ + [Ψ′
S2]i,j

)

2

(
[ dvst ]̃i,j̃ − [ dvst ]i,j

)

h2

+ β2 [Ψ
′
E2]i,j [Ê212]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Ê222]i,j [ dvf ]i,j

+ β1 [Ψ
′
E1]i,j [Ê112]i,j [ dust ]i,j + β1 [Ψ

′
E1]i,j [Ê122]i,j [ dvst ]i,j

+
∑

m∈{2,4}

(
β2 [Ψ

′
E2]i,j [Êm12]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Êm12]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvd ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê412]i,j [ dua ]i,j + β2 [Ψ

′
E2]i,j [Ê422]i,j [ dva ]i,j

+
∑

m∈{2,3,4}

[Ψ′
Dm]i,j [Jm47]i,j + β1 [Ψ

′
E1]i,j [Ê123]i,j +

∑

m∈{2,4}

β2 [Ψ
′
E2]i,j [Êm23]i,j

− α2

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S2 ]̃i,j̃ + [Ψ′
S2]i,j

)

2

(
[ vst ]̃i,j̃ − [ vst ]i,j

)

h2
, (A.12)
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0
[ dud ]i,j
=

∑

m∈{2,4}

(
[Ψ′

Dm]i,j [Ĵm15]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm25]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm35]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm45]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm55]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm56]i,j [ dvd ]i,j

)

− α3

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S3]̃i,j̃ + [Ψ′
S3]i,j

)

2

(
[ dud ]̃i,j̃ − [ dud ]i,j

)

h2

+ β2 [Ψ
′
E2]i,j [Ê211]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Ê212]i,j [ dvf ]i,j

+
∑

m∈{2,4}

(
β2 [Ψ

′
E2]i,j [Êm11]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Êm11]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dvd ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê411]i,j [ dua ]i,j + β2 [Ψ

′
E2]i,j [Ê412]i,j [ dva ]i,j

+
∑

m∈{2,3,4}

[Ψ′
Dm]i,j [Jm57]i,j +

∑

m∈{2,4}

β2 [Ψ
′
E2]i,j [Êm13]i,j

− α3

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S3]̃i,j̃ + [Ψ′
S3]i,j

)

2

(
[ ud ]̃i,j̃ − [ ud ]i,j

)

h2
, (A.13)

0
[ dvd ]i,j
=

∑

m∈{2,4}

(
[Ψ′

Dm]i,j [Ĵm16]i,j [ duf ]i,j + [Ψ′
Dm]i,j [Ĵm26]i,j [ dvf ]i,j

+ [Ψ′
Dm]i,j [Ĵm36]i,j [ dust ]i,j + [Ψ′

Dm]i,j [Ĵm46]i,j [ dvst ]i,j

+ [Ψ′
Dm]i,j [Ĵm56]i,j [ dud ]i,j + [Ψ′

Dm]i,j [Ĵm66]i,j [ dvd ]i,j

)

− α3

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S3]̃i,j̃ + [Ψ′
S3]i,j

)

2

(
[ dvd ]̃i,j̃ − [ dvd ]i,j

)

h2

+ β2 [Ψ
′
E2]i,j [Ê212]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Ê222]i,j [ dvf ]i,j

+
∑

m∈{2,4}

(
β2 [Ψ

′
E2]i,j [Êm12]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Êm12]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvd ]i,j

)

+ β2 [Ψ
′
E2]i,j [Ê412]i,j [ dua ]i,j + β2 [Ψ

′
E2]i,j [Ê422]i,j [ dva ]i,j

+
∑

m∈{2,3,4}

[Ψ′
Dm]i,j [Jm67]i,j +

∑

m∈{2,4}

β2 [Ψ
′
E2]i,j [Êm23]i,j

− α3

∑

l∈{x,y}

∑

(̃i,j̃)∈Nl(i,j)

(
[Ψ′

S3]̃i,j̃ + [Ψ′
S3]i,j

)

2

(
[ vd ]̃i,j̃ − [ vd ]i,j

)

h2
, (A.14)
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0
[ dua ]i,j
= β2 [Ψ

′
E2]i,j [Ê411]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Ê412]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Ê411]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Ê412]i,j [ dvd ]i,j

+
∑

m∈{3,4}

(
β2 [Ψ

′
E2]i,j [Êm11]i,j [ dua ]i,j + β2 [Ψ

′
E2]i,j [Êm12]i,j [ dva ]i,j

)

− µ [ duf ]i,j + µ [ dua ]i,j

+
∑

m∈{3,4}

β2 [Ψ
′
E2]i,j [Êm13]i,j

− µ [ uf ]i,j − µ [ ua ]i,j , (A.15)

0
[ dva ]i,j
= β2 [Ψ

′
E2]i,j [Ê412]i,j [ dust ]i,j + β2 [Ψ

′
E2]i,j [Ê422]i,j [ dvst ]i,j

+ β2 [Ψ
′
E2]i,j [Ê412]i,j [ dud ]i,j + β2 [Ψ

′
E2]i,j [Ê422]i,j [ dvd ]i,j

+
∑

m∈{3,4}

(
β2 [Ψ

′
E2]i,j [Êm12]i,j [ duf ]i,j + β2 [Ψ

′
E2]i,j [Êm22]i,j [ dvf ]i,j

)

− µ [ dvf ]i,j + µ [ dva ]i,j

+
∑

m∈{3,4}

β2 [Ψ
′
E2]i,j [Êm23]i,j

− µ [ vf ]i,j − µ [ va ]i,j . (A.16)



B Notation

σ standard deviation for presmoothing

Kσ gaussian kernel with standard deviation σ

σr robust standard deviation

σi singular values

µi Eigenvalues

λ Lagrange multiplier

L Lagrangian

ǫ small regularisation parameter

η downsampling factor in the interval (0, 1)

h grid cell size

d geometrical distance

a a vector

an vector of size n× 1

ai i-th component of vector a

‖a‖ L2 norm of vector a

|a| magnitude of vector a (sometimes used instead of the notation ‖a‖)
diag(a) diagonal matrix with entries of vector a as main diagonal

â normalised version of vector a

p parameter vector of unknowns

b right hand side

d vector of flow increments

vi eigenvectors of an n× n matrix
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A a matrix

A(p) nonlinear operator - system matrix

P camera projection matrix

F fundamental matrix

E essential matrix – epipolar tensor

J motion tensor – scene flow tensor

(A,B) n×m matrix composed of a n× k matrix A and a n× (m− k) matrix B

An squared matrix of size n× n

Aij ij-th entry of a matrix A

det(A) determinant of matrix A

‖A‖Frob Frobenius norm of matrix A

A+ pseudo-inverse of matrix A

Â normalised version of matrix A

g grey value image

(g1, ..., gm)⊤ multi-channel image

x, y spatial coordinates in an image or image sequence

t temporal coordinate in an image sequence

x coordinate of the vector x = (x, y)⊤

xh homogeneous coordinate of the vector x = (x, y)⊤, i.e. (x, y, 1)⊤

[xh]× skew-symmetric matrix whose left and right null-space are xh

(x,x′) corresponding point pair in the left and right image

(l, l′) corresponding pair of epipolar lines in the left and right image

Ω rectangular image domain

∂x abbreviation for ∂
∂x

ax abbreviation for ∂a
∂x
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axy abbreviation for ∂2a
∂x∂y

∇a spatial gradient of a, i.e., (∂xa, ∂ya)⊤

div(a) divergence of a, i.e. ∂xa1 + ∂ya2

u, v optical flow components in x and y direction

w = (u, v)⊤ optical flow vector

E energy (integral expression)

ED data term (expression under the integral sign)

ES smoothness term (expression under the integral sign)

EE epipolar term (expression under the integral sign)

α weight of the smoothness term

β weight of the epipolar term

γ weight of the gradient constancy assumption

Ψ(s2) nonquadratic penaliser

Ψ′(s2) diffusivity function

nl number of pixels in direction of dimension l

[ a ]i,j approximation/discrete version of expression a in pixel (i, j)

L discrete differential operator

N (i, j) set of neighbours of pixel (i, j)

|N (i, j)| number of neighbours of pixel (i, j)

Nl(i, j) set of neighbours of pixel (i, j) in direction of dimension l

N−
l (i, j) set of neighbours of pixel (i, j) in direction of dimension l that have still

to be processed

N+
l (i, j) set of neighbours of pixel (i, j) in direction of dimension l that have al-

ready been processed
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Conference Papers
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