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Abstract. Traditional estimation methods for the fundamental matrix rely on
a sparse set of point correspondences that have been established by matching
salient image features between two images. Recovering the fundamental matrix
from dense correspondences has not been extensively researched until now. In
this paper we propose a new variational model that recovers the fundamental
matrix from a pair of uncalibrated stereo images, and simultaneously estimates an
optical flow field that is consistent with the corresponding epipolar geometry. The
model extends the highly accurate optical flow technique of Brox et al. (2004) by
taking the epipolar constraint into account. In experiments we demonstrate that
our approach is able to produce excellent estimates for the fundamental matrix
and that the optical flow computation is on par with the best techniques to date.

1 Introduction

The fundamental matrix is the basic representation of the geometric relation that under-
lies two views of the same scene. This relation is expressed by the so called epipolar
constraint [5, 11], which tells us that corresponding points in the two views are restricted
to lie on specific lines rather than anywhere in the image plane. A reliable estimation of
the fundamental matrix from the epipolar constraint is essential for many computer vi-
sion tasks such as the 3D reconstruction of a scene, structure-from-motion and camera
calibration.

Apart from a limited number of approaches that recover the fundamental matrix
directly from image information [18], most methods are based on the prior determina-
tion of point correspondences. Of the latter type feature-based methods have proven to
be very successful and are by far most frequently used. These methods try to match
characteristic image features in the two views and compute the fundamental matrix by
imposing the epipolar constraint on this sparse set of correspondences. Theoretically
eight perfect point matches are sufficient to compute the fundamental matrix in a linear
way [10]. In practice, however, the establishment of feature correspondences is error
prone because the local nature of most feature-matching algorithms results in localiza-
tion errors and false matches. This has led to the development of a multitude of robust
extensions that can deal with a relatively large amount of outliers. M-estimators [9],
Least Median of Squares [16] and the Random Sample Consensus (RANSAC) [6] num-
ber among such robust techniques.



Recent advances in optical flow computation have proven that variational methods
are a viable alternative to feature-based methods when it comes down to the accuracy of
the correspondences established between two images. In [12] the authors advocate the
use of variational optical flow methods as a basis for the estimation of the fundamental
matrix. The proposed approach offers at least two advantages over feature-based ap-
proaches: (i) Dense optical flow provides a very large number of correspondences and
(ii) the amount of outliers is small due to the combination of a robust data term and a
global smoothness constraint. Because of this inherent robustness no involved statistics
was used in the estimation process and favorable results have been produced by using a
simple least squares fit.

In this paper we propose a novel variational approach that allows for a simultane-
ous estimation of both the optical flow and the fundamental matrix. This is achieved
by minimizing a joint energy functional. Our method extends the method of Brox et
al. [3] by including the epipolar constraint as a soft constraint. In this context it differs
from the two-step method proposed in [12] that concentrates solely on the estimation
of the fundamental matrix from the optical flow. This has the disadvantage that the
found correspondences are not corrected by the recovered epipolar geometry. More-
over, displacement fields that yield a good fundamental matrix are not necessarily good
by optical flow standards. These observations clearly motivate a joint solution of both
unknowns. Our strategy also differs from the work presented in [19], that focuses on the
calculation of the disparity while imposing the epipolar constraint as a hard constraint.
This work gave excellent results for the ortho-parallel camera setup but required the
epipolar geometry to be known in advance.

Our method is related to other recent attempts to pair the epipolar constraint with
other constraints such as the brightness constancy assumption in one joint formulation
[18, 17]. However, these techniques are restricted to the estimation of non-dense cor-
respondences. Close in spirit are also feature-based methods that minimize some type
of reprojection error in which both the fundamental matrix and a new set of correspon-
dences are estimated from an initial set of feature matches [5, 7].

Our paper is organized as follows. In Section 2 we shortly revise the estimation of
the fundamental matrix from a set of correspondences. In Section 3 we introduce our
variational model before discussing the minimization of the energy and the solution of
the resulting equations. A performance evaluation is presented in Section 4, followed
by conclusions and a summary in Section 5.

2 From Epipolar Constraint to Fundamental Matrix

The epipolar constraint between a given point x̃ = (x, y, 1)> in the left image and its
corresponding point x̃′ = (x′, y′, 1)> in the right image can be rewritten as the product
of two 9× 1 vectors [5]:

0 = x̃′ >F x̃ = s>f, (1)

where s = (xx′, yx′, x′, xy′, yy′, y′, x, y, 1)> and f = (f11, f12, f13, f21, f22, f23,

f31, f32, f33)
> . Here fi,j with 1 ≤ i, j ≤ 3 are the unknown entries of the fundamen-

tal matrix F and the tilde superscript indicates that we are using projective coordinates.



To find the entries of F from n > 8 point correspondences we can minimize the energy

E(f) =
n∑

i=1

(s>i f)2 = ‖S f‖2, (2)

where S is an n × 9 matrix of which the rows are made up by the constraint vectors
s>i , 1 ≤ i ≤ n. This is equivalent to finding a least squares solution to the over
determined system S f = 0. Since F is defined up to a scale factor we can avoid the
trivial solution f = 0 by imposing the explicit side constraint on the norm ‖f‖2 = 1.
The solution of the thus obtained total least squares (TLS) problem [10] is known to be
the eigenvector that belongs to the smallest eigenvalue of S>S.

The TLS method can be rendered more robust with respect to outliers by replacing
the quadratic penalization in the energy (2) by another function of the residual:

E(f) =
n∑

i=1

Ψ
(
(s>i f)2

)
. (3)

Here Ψ(s2) is a positive, symmetric and in general convex function in s that grows
sub-quadratically, like for instance the regularized L1 norm. Applying the method of
Lagrange multipliers to the problem of minimizing the energy (3) with the constraint
‖f‖2 = f>f = 1 means that we are looking for critical points of

F(f, λ) =
n∑

i=1

Ψ
(
(s>i f)2

)
+ λ(1− f>f). (4)

Setting the derivatives of F(f, λ) with respect to f and λ to zero finally yields the non-
linear problem

0 =

(
n∑

i=1

Ψ ′ ((s>i f)2
)

sis>i − λI

)
f =

(
S> W (f) S − λI

)
f , (5)

0 = 1− ‖f‖2. (6)

In the above formula W is an n × n diagonal matrix with positive weights wii =
Ψ ′ ((s>i f)2

)
. To solve this nonlinear system we propose a lagged iterative scheme in

which we fix the symmetric positive definite system matrix S>WS for a certain esti-
mate fk. This will result in a similar eigenvalue problem as in the case of the TLS fit,
and by solving it for fk+1 we can successively refine the current estimate.

An important preliminary step aimed at improving the condition number of the
eigenvalue problem is the normalization of the point data in the two images before the
estimation of F . The points x̃ and x̃′ are transformed by the respective affine transfor-
mations T and T ′ such that T x̃ and T ′x̃′ will have on average the projective coordinate
(1, 1, 1)>. The fundamental matrix F̂ , estimated from the transformed points, is then
used to recover the original matrix as F = T ′> F̂ T . Data normalization was strongly
promoted by Hartley in conjunction with simple linear methods [8]. Another issue con-
cerns the rank of F . The estimates obtained by the minimization techniques presented
in this section will in general not satisfy the rank 2 constraint. Therefore, it is common
to enforce the rank of F after estimation by e.g. singular value decomposition [5].



3 The Variational Model

In this section we will adopt the notations that are commonly used in variational op-
tical flow computation. We assume that the two stereo images under consideration are
consecutive frames in an image sequence I(x, y, t) : Ω × [0,∞) → R. We denote
by x = (x, y, t)> a location within the rectangular image domain Ω ∈ R2 at a time
t ≥ 0. Our goal is to estimate the fundamental matrix F together with the optical flow
w = (u, v, 1)> between the left frame I(x, y, t) and the right frame I(x, y, t + 1) of an
uncalibrated pair of stereo images.

3.1 Integrating the Epipolar Constraint

In order to estimate the optical flow and the fundamental matrix jointly, we propose to
extend the 2D variant of the model of Brox et al. [3] with an extra term as follows

E(w, f) =
∫

Ω

Ψd

(
|I(x + w)− I(x)|2 + γ · |∇I(x + w)−∇I(x)|2

)
dxdy

+α

∫
Ω

Ψs

(
|∇w|2

)
dxdy + β

∫
Ω

Ψe

( (
s> f

)2)
dxdy, (7)

while imposing the explicit side constraint ‖f‖2 = 1. Here |∇w|2 := |∇u|2 + |∇v|2
denotes the squared magnitude of the spatial flow gradient with ∇ = (∂x, ∂y)>. The
first term of E(w, f) is the data term. It models the constancy of the image brightness and
the spatial image gradient along the displacement trajectories. These two constraints
combined provide robustness against varying illumination while their formulation in
the original nonlinear form allows for the handling of large displacements. The second
term is the smoothness term and it penalizes deviations of the flow field from piecewise
smoothness. For the functions Ψd(s2) and Ψs(s2) the regularized L1 penalizer Ψ(s2) =√

s2 + ε2 is chosen which equals total variation (TV) regularization in the case of the
smoothness term. While the first two terms in E(w, f) are the same as in the original
model, the newly introduced third term penalizes deviations from the epipolar geometry.
The vectors s and f are defined as in Section 2 but this time s is a function of x and w.
To minimize the influence of outliers in the computation of F we choose Ψe(s2) to
be the regularized L1 penalizer. The weight β determines to what extend the epipolar
constraint will be satisfied in all points. The constraint on the Frobenius norm of F
avoids the trivial solution.

3.2 Minimization

To minimize E(w, f) with respect to u, v and f, subject to the constraint ‖f‖2 = 1, we
use the method of the Lagrange multipliers. We are looking for critical points of

F(w, f, λ) = E(w, f) + λ(1− f>f), (8)

i.e. tuples (u∗, v∗, f∗, λ∗) for which the functional derivatives of the Lagrangian F with
respect to u and v and the derivatives of F with respect to f and λ vanish:

0=
δ

δu
F(w, f, λ), 0=

δ

δv
F(w, f, λ), 0=∇f F(w, f, λ), 0=

∂

∂λ
F(w, f, λ). (9)



Here ∇f stands for the gradient operator
(

∂
∂f11

, · · · , ∂
∂f33

)>
.

The first two equations in equation system (9) are the Euler-Lagrange equations of
the optical flow components u and v. To derive them in more detail we first write the
epipolar constraint as follows:

s>f =

x + u
y + v

1

>

F

x
y
1

 =

u
v
1

>a
b
q

 = a u + b v + q. (10)

This is a scalar product involving the optical flow w where a and b denote the first two
coefficients of the epipolar line F x̃ of a point x̃ = (x, y, 1)> in the left image. The
quantity q = x̃>F x̃ can be interpreted as the distance of x̃ to its own epipolar line up
to the normalization factor 1/

√
a2 + b2. With the help of formula (10) we can easily

derive the contributions of the epipolar term in E(w, f) to the Euler-Lagrange equations.
The partial derivative of its integrand Ψe

(
(s>f)2

)
with respect to u and v are

∂

∂u
Ψe

(
(s>f)2

)
= 2Ψ ′

e

(
(s>f)2

)
(a u + b v + q) a , (11)

∂

∂v
Ψe

(
(s>f)2

)
= 2Ψ ′

e

(
(s>f)2

)
(a u + b v + q) b . (12)

The contributions from the data term and the smoothness term remain unchanged from
the original model. Thus we obtain the final Euler-Lagrange equations of u and v by
adding the right hand sides of equations (11) and (12) to the Euler-Lagrange equations
given in [3]:

0 = Ψ ′
d

(
I2
z + γ

(
I2
xz + I2

yz

))
(IxIz + γ (IxxIxz + IxyIyz)) (13)

− α div
(
Ψ ′

s

(
|∇u|2 + |∇v|2

)
∇u
)

+ β Ψ ′
e

(
(s>f)2

)
(a u + b v + q) a ,

0 = Ψ ′
d

(
I2
z + γ

(
I2
xz + I2

yz

))
(IyIz + γ (IyyIyz + IxyIxz)) (14)

− α div
(
Ψ ′

s

(
|∇u|2 + |∇v|2

)
∇v
)

+ β Ψ ′
e

(
(s>f)2

)
(a u + b v + q) b .

Here we have made use of the same abbreviations for the partial derivatives and the
temporal differences in the data term as in [3]:

Ix = ∂xI(x + w),
Ixx = ∂xxI(x + w),

Iy = ∂yI(x + w),
Ixy = ∂xyI(x + w),

Iz = I(x + w)− I(x),
Iyy = ∂yyI(x + w),

Ixz = ∂xI(x + w)− ∂xI(x), Iyz = ∂yI(x + w)− ∂yI(x).
(15)

To differentiate F with respect to f we only have to consider the newly introduced
epipolar term since neither the data term nor the smoothness term depends on f. The
two last equations of (9) give rise to a similar eigenvalue problem as equation (5):

0 =
(∫

Ω

Ψ ′
e

(
(s>f)2

)
ss> dxdy − λI

)
f = (M − λI) f, (16)

0 = 1− ‖f‖2. (17)



Note that we were able to switch the order of differentiation and integration because f
is a constant over the domain Ω. The system matrix M is symmetric positive definite
and its entries are the integral expressions mij =

∫
Ω

Ψ ′
e

(
(s>f)2

)
sisj dxdy with 1 ≤

i, j ≤ 9 and si the i-th component of s.

3.3 Solution of the System of Equations
To solve the system of equations (9) we opt to iterate between the optical flow computa-
tion and the fundamental matrix estimation. After solving the Euler-Lagrange equations
with a current estimate of the fundamental matrix f, we compose the system matrix M
based on the computed optical flow w. Once M has been retrieved, we solve equation
(16) for f. Due to the constraint (17) the solution will always be of unit norm. The new
estimate of f will in turn be used to solve the Euler-Lagrange equations again for w, and
this process is repeated until convergence. The rank of F is not enforced during this it-
eration process, but it can be enforced on the final estimate. To solve the Euler-Lagrange
equations we adopt the warping strategy proposed in [3]. The flow is incrementally re-
fined on each level of a multiresolution pyramid such that the algorithm does not get
trapped in a local minimum. To calculate the flow increment a multigrid solver is used
to assure fast convergence. Equation (16) is solved as a series of eigenvalue problems
as described in Section 2.

3.4 Integrating Data Normalization
We have found the data normalization discussed in Section 2 indispensable in obtaining
accurate results. Therefore we have taken the effort to integrate it in our model. The
main difficulty in inserting the transformations T and T ′ into the epipolar constraint s>f
is the dependence of T ′ = T ′(w) on the optical flow. This complicates the derivation
of the Euler-Lagrange equations of u and v considerably because the derivative of T ′

with respect to the flow components has to be taken into account. To overcome this
problem we choose T ′ = T . The impact of this simplification is most likely small since
the dense point sets of the left and the right image will have a similar distribution. If we
employ isotropic scaling as suggested in [8] then T will be a constant transformation
only depending on the image domain Ω. As a result substituting F = T>F̂ T in the
energy functional does not change the presented Euler-Lagrange equations (13) and (14)
in the sense that a, b and q are computed from F as before (now via F̂ ). However, re-
placing the original side constraint ‖F‖ = 1 with ‖F̂‖ = 1 and solving equations (16)
and (17) for F̂ yields the desired normalization effect during the total least squares fit.

4 Experiments

We demonstrate the performance of our method by concentrating on the fundamental
matrix estimation and the optical flow computation in two separate experiments. In
order to deal with RGB color images we implemented a multichannel variant of our
model where the 3 color channels are coupled in the data term as follows∫

Ω

Ψd

(
3∑

i=1

|Ii(x + w)− Ii(x)|2 + γ ·
3∑

i=1

|∇Ii(x + w)−∇Ii(x)|2
)

dxdy. (18)
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Fig. 1. The influence of the parameter
β on the progression of dF . The exper-
iments were conducted for 1000 itera-
tion steps but convergence takes place
within the first 200 steps.

We initialize our method with a zero fundamental matrix such that the first iteration
step comes down to the two-step method of recovering the fundamental matrix from
pure optical flow [12]. Additionally we exclude those points from the estimation of the
fundamental matrix that are warped outside the image. The reason for this is that in
these points no data term can be evaluated which has a less reliable flow as result.

In our first experiment we recover the epipolar geometry of a synthetic image pair.
The two frames of size 640 × 480 represent two views of the 3D reconstruction of a
set from a film studio and since they have been generated synthetically the fundamental
matrix is known exactly. As an error measure between our estimate for the fundamen-
tal matrix and the ground truth we use the distance proposed by Faugeras et al. in
[5] which we will denote by dF . For this measure two fundamental matrices are used
to determine the epipolar lines of several thousand randomly chosen points while sys-
tematically switching their roles to assure symmetry. Finally an error measure in pixels
is obtained that describes the discrepancy between two epipolar geometries in terms of
fundamental matrices for a complete scene. Figure 1 shows how dF decreases as a func-
tion of the number of iterations, and eventually converges. All optical flow parameters
have been optimized with respect to the distance error of the first estimated fundamental
matrix. We see that the weight β has mainly an influence on the convergence speed and
to a much lesser extent on the final error. The best results were achieved for β = 25
with a final error of dF = 0.42 after 1000 iterations. This is significantly below one
pixel and a large improvement of the initial error of 6.4 pixels after the first iteration
step. The fact that this value is reached after 200 iterations while remaining virtually
unchanged afterwards shows the stability of our iteration scheme. In Figure 2 we can
observe how an initial estimation of the epipolar line geometry is readjusted during the
iteration process to almost coincide with the ground truth. Additionally the initial and
the final flow fields are displayed together with the mask for the data term.

In a second experiment we provide evidence that a simultaneous recovery of the
epipolar geometry can improve the optical flow estimation substantially. To this end we
use our method to compute the optical flow between frames 8 and 9 of the Yosemite
sequence without clouds. These two 316 × 252 frames actually make up a stereo pair,
since only diverging motion is present due to the camera movement. We evaluate the
estimated optical flow by means of the average angular error (AAE) [2]. In Table 1
we see that we were able to improve the AAE from 1.59◦ to 1.17◦ and are ranked
among the best results published so far for a 2D method. It has to be noted that methods
with spatio-temporal smoothness terms give in general slightly smaller errors. For this
experiment all optical flow parameters have been optimized with respect to the AAE



Fig. 2. Experiments on a synthetic image sequence. The epipolar lines estimated by our method
are depicted as full white lines while the ground truth lines are dotted. (a) Top Left: Estimated
epipolar lines in the left frame after the first iteration. (b) Top Right: Estimated epipolar lines
in the right frame after the first iteration. (c) Middle Left: Estimated epipolar lines in the left
frame after 1000 iterations. (d) Middle Right: Estimated epipolar lines in the right frame after
1000 iterations. (e) Bottom Left: Magnitude plot of the estimated optical flow field after the first
iteration. Brightness encodes magnitude. Pixels that are warped outside the image are colored
black. (f) Bottom Right: Magnitude plot of the estimated optical flow field after 1000 iterations.

of the first estimated optical flow and β has been set to 50. The pixels that are warped
outside the image are included in the computation of the AAE. In Figure 3 we show the
results for the estimated epipolar lines and flow field. The epipolar lines seem to meet
in a common epipole despite the fact that the rank has not been enforced.



Table 1. Results for the Yosemite sequence without clouds compared to other 2D methods.

Method AAE
Brox et al. [3] 1.59◦

Mémin/Pérez [13] 1.58◦

Roth/Black [15] 1.47◦

Bruhn et al. [4] 1.46◦

Method AAE
Amiaz et al. [1] 1.44◦

Nir et al. [14] 1.18◦

Our method 1.17◦

Fig. 3. Results for the Yosemite sequence without clouds. (a) Top Left: Frame 8. (b) Top Middle:
Frame 9. (c) Top Right: Magnitude plot of the ground truth for the optical flow field between
frames 8 and 9. Brightness encodes magnitude. (d) Bottom Left: Estimated epipolar lines in
frame 8 after 15 iterations. (e) Bottom Middle: Estimated epipolar lines in frame 9 after 15
iterations. (f) Bottom Right: Magnitude plot of the estimated optical flow after 15 iterations.
Pixels (apart from the sky region) that are warped outside the image are colored black.

5 Summary

Until now concepts in geometrical and variational computer vision have often been
developed independently. In this paper we have demonstrated that two such concepts,
namely the estimation of the fundamental matrix and the computation of dense optical
flow, can be coupled successfully. To this end we have embedded the epipolar con-
straint together with a data and smoothness penalty in one energy functional and have
proposed an iterative solution method. Experiments not only show the convergence of
our scheme but also that the fundamental matrix and the optical flow can be computed
very accurately. We hope that these findings will stimulate the efforts to bring together
geometrical and variational approaches in computer vision even more.
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