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Abstract

Splines play an important role as solutions of various interpolation
and approximation problems that minimize special functionals in some
smoothness spaces. In this paper, we show in a strictly discrete setting
that splines of degree m — 1 solve also a minimization problem with
quadratic data term and m-th order total variation (TV) regularization
term. In contrast to problems with quadratic regularization terms
involving m-th order derivatives, the spline knots are not known in
advance but depend on the input data and the regularization parameter
A. More precisely, the spline knots are determined by the contact
points of the m—th discrete antiderivative of the solution with the tube
of width 2\ around the m—th discrete antiderivative of the input data.
We point out that the dual formulation of our minimization problem
can be considered as support vector regression problem in the discrete
counterpart of the Sobolev space W3'. From this point of view, the
solution of our minimization problem has a sparse representation in
terms of discrete fundamental splines.

1 Introduction

In this paper, we are interested in the solution of the minimization problem

1 1

5 | W@ = F@) + A @)de —  min 1)
0

and some of its 2D versions involving first and second order partial deriva-

tives. More precisely, we work in a strictly discrete setting which is ap-

propriate for tasks in digital signal processing. For a discrete signal u =
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(u(1),...,u(n))™, we use the m-th forward difference

m
Au(f) = (—1)FFm <Tg>u(j +k), j=1....n—m (2
k=0
as discretization of the m-th derivative. Then, for given input data f € R",
we are looking for the solution of the minimization problem

LS ) - FGP A (A — win ®
= =1

where we refer to the penalty term as m—order TV regularization. Of course,
other discretizations of (1) are possible. In contrast to the solution of the
well examined version of (3) with quadratic penalty term |A™u(j)|?, the
solution of (3) does not linearly depend on the input data. This results in
some advantages over the linear solution as better edge preserving. For two
dimensions and first order derivatives in the penalizer, problem (3) becomes
the classical approach of Rudin, Osher and Fatemi (ROF) [23] which has
many applications in digital image processing. Meanwhile there exist various
solution methods for this problem, see [30] and the references therein. Most
of these methods introduce a small additional smoothing parameter to cope
with the non differentiability of |- |. There are two approaches which avoid
such an additional parameter, namely a wavelet inspired technique [32] and
the Legendre—Fenchel dualization technique, see, e.g., [1, 4] which is also
relevant in the present considerations. We further mention that other cost
functionals than the quadratic one have to come into the play when dealing,
e.g., with denoising of images corrupted with other than white Gaussian
noise. In this context we only refer to recent papers of Nikolova et al. [21, 3]
and the references therein.

In this paper, we are interested in the structure of the solution u even
for m > 1. We show that u is a discrete spline of degree m — 1, where the
spline knots, in contrast to the linear problem with quadratic regularization
term, depend on the input data f and on the regularization parameter .
More precisely, the spline knots are determined by the contact points of the
m th discrete antiderivative of w with the tube of width 2A around the m th
discrete antiderivative of f. We will see that the dual formulation of our
minimization problem can be considered as support vector regression (SVR)
problem in the discrete counterpart of the Sobolev space W5, The SVR
problem can be solved by standard quadratic programming methods. This
provides us with a sparse representation of w in terms of discrete funda-
mental splines. We formally extend the approach to two dimensions. Here
further research has to be involved to see the relation, e.g., to classical radial
basis functions.

This paper is organized as follows: since discrete approaches can be best
described in matrix—vector notation, the next section introduces the basic



difference operators as matrices. Section 3 shows that our minimization
problem (3) is equivalent to a spline contact problem. To this end, we have
to define discrete splines. Based on the dual formulation of our problem,
Section 4 treats the spline contact problem as support vector regression prob-
lem and presents some denoising results. Section 5 gives future prospects to
twodimensional problems. The paper is concluded with Section 6.

2 Difference Matrices

The discrete setting can be best handled using matrix-vector notation. To
this end, we introduce the lower triangular n x n Toeplitz matrix

1 0 00
-1 1 00
D, =
o 0 ...
o 0 ... -1

By straightforward computation we see that the inverse of D), is the addition
matrix

1 0 ...00
1 1 ...00

A, :=D;' = RV : (4)
1 1 ...10
11 11

Remark 2.1 While application of D) is a discrete version of m times dif-
ferentiation, A]' realizes m fold integration, i.e., A" f is a discrete version
of the m-th antiderivative of f. For example, the components of Al f are
given for m=1,2 by

m = m =2

f(1) f(1)

f()+ f(2) 2f(1) + f(2)
)+ f

(2)+73) 3f(1)+2f(2) + f(3)

FO)+£@) ot fn) nf(1)+ (n—1)f(2) + ...+f<n>

and may be considered as discrete version of AL f( fo t)dt and A% f(z) =
fO t) dtdtq, respectively. For general m, the] —th component of AT f is

Z (]Jrémk 1(m 1>f(/€). Here k(M) =1 form =0 and k) .= k(k+1)...(k+

— 1) form > 1 is a discrete equivalent of the m th power function.



Let 0y, denote the matrix consisting of n x m zeros, 1, ,, the matrix
consisting of n x m ones and I,, the n x n identity matrix. Then the m—
th forward difference (2) can be realized by applying the m th forward
difference matriz

Dn,m = (On—m,m|In—m) DZQ

and our minimization problem (3) can be rewritten as
1 .
I = w3+ A Dypuli — min. (5)

The functional in (5) is strictly convex and has therefore a unique minimizer.
The matrix D), ,,, has full rank n —m, i.e., R(Dpm,m) = R*"™™. Moreover,
the range R(Dy, ,,,) of Dy . and the kernel N (D, ) of Dy, are given by

R(Dpm) = {FER":Y 7 f()=0,r=0,...,m—1},
j=1

N(Dpm) = span{(j")j_: 7=0,....,m—1} = Iy,

see, e.g., [7]. The space II,, collects just the discrete polynomials of degree
< m. Then we have the orthogonal decomposition

R"=R(D},,,) ® N(Dym). (6)

Obviously, D, ,, is given by cutting of the first m rows of D};'. The following
relations between D' and D), ,,, are proved in the appendix.

Proposition 2.2 The difference matrices fulfill the properties

) DI, = (~1)"Dr ( Lo )

Omm—m

.. 0
ii) DpmD™ = Dypymom ( n )

i) Dy < g:” > — D™,
Proof.
i) Since Dy, ., f = (A™f(1),...,A™ f(n —m))" we can rewrite Dy, ,,, as
Dyn = Dy i - D
= (On—m,tTn—m)Dn_m-1y - -+ - (On—11[In—1)Dy,

Using that by definition

T _ 1T Ol,nfl _ In,1
n1 = Dn < I, = ~Dn 01p-1

4



ii)

iii)

we obtain for the transposed matrix

Dz,m = Dg,l e 'DZ—(m—l),l

I, 1 I,
= (-1)"D, e Dy .
( ) < 017n_1 > ( 1)71 ( Olrn_m >

Multiplication of fT from the left is again successive application of first
order differences. Equivalently we can apply m—th order finite differ-
ences and cut off all additional components which results in assertion

i).

By definition of D, ,, we have

0 0
Dn+m,2m < I;n’n ) — (On—m,Qm‘In—m) D?Ln_{fm ( I:l,n )
0
= OnmmTnm) (0,|T,) D27, ( O )
n
Since the cutoff of the first m rows and columns of a Toeplitz matrix

results in the same Toeplitz matrix but with m times reduced order
the last equation can be rewritten as

0
Dn+m,2m ( Im,n ) = (On—m,m|1n—m) D%m
n

and finally, by applying again the definition of D,, ,,, as

0
Dn+m,2m ( ITTl,’rL ) = Dn,mDZI
n

Using the definition of D,, ,,, we obtain

0 0
Dy imm ( P > = (0nm|I,) Doy ( I ) =D
n n

This completes the proof. O

3 Spline Contact Problem

In this section, we will see that our higher order TV problem (5) is equivalent
to a discrete spline interpolation problem, where the spline knots are not
known in advance but depend on the input data f and A. For m = 1, the
resulting spline contact problem is well examined and can be solved by the
so—called ’taut string algorithm’, see, e.g., [10].



A necessary and sufficient condition for u to be the minimizer of (5) is
that the zero vector is an element of the functional’s subgradient

0,1 €u—f+A0|Dypul; .

By [22, Theorem 23.9] and since the subgradient of |z| is given by

1 ifz>0,
T
— = -1 if z <0,
] [—1,1] ifz=0,
this can be rewritten as

D, ,u
ef-\D}, —""—,
uelt " Dl

where -/| - | is taken componentwise. These inclusions in their present form

are not very convenient for the computation of w. However, multiplying
with A" and applying Proposition 2.2i) leads to

Dnm
A;”ueA;?f—(—nmA(I”‘m ) mt

|Dn,mu|'

(5 )=arr (gl )= @

with the splitting into the inner vector F'; € R"™™ and the right boundary
vector F'p € R™, the inclusions can be rewritten as

Om,n—m

Setting

D, ,u
U/ € F;—(—-1)m)x—=—2"—"
=) |Dn,mu|

Ur = Fg.

It remains to replace D,, ,,u. By (7) and (4), we see that

f=or () w=nr( ) 0

and further by Proposition 2.2ii) that

0 U
Dn,mu = Dn+m,2m < Im,n > ( U; ) .
n

Introducing an artificial left boundary U, := 0,, 1 and extending our vector
by

U::( Ev ?7UFIF%)T



our inclusions become finally

DnmmU
Ui e I U
Ur = Fp.

Consequently, U is the unique solution of the following spline contact pro-
blem, where we have to explain the spline notation later.

Spline Contact Problem

(C1) Boundary conditions: U, = 0y,,; and U = F'g.

(C2) Tube condition: |[|[F;r—Uglleo < A
U lies in a tube around F'; of width 2.

(C3) Contact condition:
Let Aj:={je{m+1,....n—m}: A™U(j —m) # 0}
If j € Ay, then U(j) contacts the boundary of the tube, where
(=1)mA?MU(j —m) > 0= U(j) = F(j) — A (lower contact),
(—1)mA?™U(j —m) < 0= U(j) = F(j) + A (upper contact).

Remark 3.1 (Continuous and Discrete Natural Splines)
We recall that a natural polynomial spline of degree 2m — 1 with knots
1 < ...< 2z 15 a function s € C?™2 such that

s(zm)(x) = 0, forze(zjzjq),ji=1,...,r—1,
s™M(z) = 0, forz<umz,z>z,.

These splines are the solutions in W™, the Sobolev space of (m — 1) times
continuousely differentialble functions with m-th weak derivative in Lo, of

1
ISR~ min
st. flz;)=v, j=1,...,n

Mangasarian and Schumaker [17, 18] have introduced the discrete natural
polynomial spline of degree 2m — 1 with knots = = {iy,... 4.}, i; < ip
for j < k, as a vector s = (s(1),...,s(N))" which satisfies for j ¢ E the
relations

AMs(j—m) = 0, j=m+1,...,N—m;
AMs(j) = 0, j=1,....i1—Lir+1,...,N—m.

As ils continuous analogue the discrete natural polynomial spline of degree
2m — 1 solves the minimization problem

N —

N—m

> (A™y(j)* — min (9)
j=1

st y(i;) =2, j=1,...,r

7



For relations between continuous and natural spline in the limiting process
N — oo see also [17, 18].

—

Setting N := n + m and using the spline knots = = {1,...,m} UA; U
{n—m+1,...,n}, we can interpret U defined by (C1) - (C3) is a discrete
natural polynomial spline of degree 2m — 1. In contrast to (9), the inner
spline knots A; are only determined by (C3) and not known in advance.
This reflects the nonlinear character of our problem solution.

We extend the discrete spline concept to splines of even degree as follows:

we call s = (s(1),...,s(n))" a discrete spline of degree m—1 with inner knots

A 15 =0, j=1B] 4L T0) ¢ =

Then the discrete interpolation problem

si) =y, Ge=ulL . Zhutn- "5 v

has a unique solution. Thus, for given spline knots A7, we could solve a spline
interpolation problem. Unfortunately, the spline knots depend on the input
data f and A. Therefore, the solution of the spline contact problem in its
present form is only convenient for m = 1, see Remark 3.2. For larger m and
the continuous setting, an attempt to solve the contact problem is contained
in [16]. For our discrete setting, we will see in the following section that the
contact problem can be treated by simply solving a constraint quadratic
minimization problem.

Remark 3.2 (Taut String Algorithm for m = 1)

For m =1, condition (C3) means that the polygon through U is conver at
upper contact points and concave at lower contact points. Thus, the con-
struction of U satisfying (C1) — (C3) is equivalent to the construction of the
uniquely determined taut string within the tube around F of width 2\ fized
at (0,0) and (n, F(n)). In other words, the polygon through U has minimal
lengths within the tube, i.e., it minimizes

|
—_

) 1+ WG +1)—U@E)?)"?,

1
o

subject to the tube and boundary conditions. An example of a taut string
is shown in Figure 1. For solving this problem there exists a very efficient
algorithm of complexity O(n), the so—called taut string algorithm’, which
is based on a convex hull algorithm, see, e.g., [6, 16].
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0 10 20 30 40 50
Figure 1: Solution of the spline contact problem (C1) — (C3) for a signal F
of lengths n + m with n =40 and m = 1.

Interestingly, it was shown in [27, 33] that for m = 1 the spline knots
fulfill a so—called ’tree—property’.

Remark 3.3 (Tree Property of Spline Knots for m = 1)
Let Amax be the smallest reqularization parameter such that Aj = 0. It
is not hard to show that Amax = ||Pfllw,(D,.), where P denotes the or-
thogonal projection of f onto R(Dy 1) and Wi(Dy,1)" is the dual space of
Wi(D,, 1) :=R(Dy, ;) equipped with the norm ||ullw, (D, ,) = |[Dniul1-

If X moves from Apax to 0 and A;(\) denotes the corresponding set of
inner spline knots, then, for \j > Ay,

0= AI(Amax) - A[()\]) - A[()\k) - A](O) = {m +1,....,n— m}

Figure 2 shows a tree of inner spline knots. The tree property does not hold
form > 2.

4 Support Vector Regression with Spline Kernels

In this section we want to show the relation of the discrete spline contact
problem with discrete SVR. We start by a brief introduction to SVR in the
continuous setting, where we emphasize the role of splines in the solution of
the SVR problem in Sobolev spaces. Then we switch to the discrete context
to explain the solution of (5) from the SVR point of view.



In;(ial signal

regularization parameter

o . . . . 0 5 10 15 20
0 5 10 15 20 region center

Figure 2: Original signal f (left), tree of spline knots with increasing regu-
larization parameter X\ from leaves to root (right).

4.1 Support Vector Regression - Continuous Approach

The SVR method searches for approximations of functions in reproducing
kernel Hilbert spaces (RKHS) and plays an important role, e.g., in Learn-
ing Theory. Among the large amount of literature on SVR we refer to [29,
Chapter 11]. SVR can be briefly explained as follows: Let H C Lo(R%)
be a Hilbert space with inner product (-,-)y having the property that
the point evaluation functional is continuous. Then H possesses a so—
called reproducing kernel K € Lo(R? x R?) with reproducing property
(F,K(-,z;))g = F(z;) for all F € H and is called a reproducing kernel
Hilbert space (RKHS). Given some function values F'(z;), j = 1,...,p, the
soft margin SVR problem consists in finding a function U € H which mini-
mizes

p S VA(E ()~ Ueg)) + U1,
j=1

where V)\(z) := max{0, |z| — A} denotes Vapnik’s A-insensitive loss function.
In other words, Vapnik’s cost functional penalizes those U(z;) lying not in
a X neighbourhood of F(z;). If u tends to infinity, then our cost functional
must become zero and we obtain the hard margin SVR problem

1
§I|U||%{ —  min (10)
st [F) — U)o <A j=1....p.

By the Representer Theorem of Kimmeldorf and Wahba [14], the solution
of (10) has the form

U(z) =Y c(k) K (xg, ),

p
k=1

10



i.e., only the given knots x; are involved into the representation. Then (10)
can be rewritten as

1
§CTKC —  min (11)

st.  [F—Kc|loo <A

with F' := (F(a:j))?:l, ¢ = (c(k))j_; and K := (K(%,wk))?’k:l. This is
the usual hard margin SVR formulation.

Based on the Karush — Kuhn — Tucker conditions it follows that c(k) # 0
implies |F(zy) — U(zx)| = A\. Let

A:={ke{l,,...,p}:c(k) #0}.

Then the solution U can be rewritten as

U(z) =Y c(k)K (zp, ). (12)

keA

The functions K(zy,z) with k& € A are called support vectors. Obviousely,
U depends only on these support vectors and has a sparse representation
in terms of the support vectors if |A| is small compared to p. In the image
processing context, SVR regression is mainly applied in high dimensional
function spaces (d > 1), where often the Gaussian is involved as reproducing
kernel.

For our purposes we will consider other well known reproducing kernel
Hilbert spaces, namely the Sobolev spaces H = W3’ of real-valued functions
on R having a weak m~th derivative in Ly [0, 1] and fulfilling F)(0) = 0 for
r=0,...,m— 1 with inner product

1
<R@m%:/pwmmwgmx
’ 0

These RKHS were for example considered in [31, p. 5 14]. The reproducing
kernel in Wﬂ) is

1
K(r.y) = /0 (z— 7 (y — 71/ ((m — 1))t (13)

where (z); := max{0,z}. For fixed y, the functions K(-,y) are splines
fulfilling K (-,y) € C*™~2, K(-,y) € Ila;, 1 in [0,y] and K(-,y) € II,, 1 in
[y, 1].

In this context we mention that another minimization problem having
so—called smoothing splines as solutions was considered the literature, see,
e.g., [31, 28]: find U € W3}, such that

P
> (Flzj) = U@)? + MUlfyy,  — min
j=1

11



Again by the Representer Theorem, this problem has a solution of the form
s
U= >3 c(k) K(-,z). Consequently, U is a continuous spline of degree 2m—1
k=1

with knots xg, k=1,...,p. However, in contrast to the solution (12) of (10),
all coefficients ¢(k) are in general # 0 and we obtain no sparse representation.

4.2 Support Vector Regression - Discrete Approach
To see the relation between our spline contact problem and SVR. methods,

we consider the dual formulation of problem (5).

Proposition 4.1 The solution u of (5) is given by u = f—D;mV], where
V1 is the unique solution of the minimization problem

1 .
SIf DL Vil —  min (14)
s.t. Vil < A

For a proof see, e.g., [25].
By (8) and Proposition 2.2 i) and iii) we obtain that

I£ = Davile = 107 (g )= 0mDr (g )Vl
= |IDnjmm(F — (=1)" V)2,

where V := (07 7,00,1)". Setting U := F — (—1)"V, problem (14)

m,1
can be rewritten as
1 .
SIDuimmUl3 —  min (15)
s.t. ||F[—U[||oo S)\, UR:FR.
The unique solution U of this problem which can be computed by standard

quadratic programming (QP) methods is also the unique solution of our
spline contact problem. Figure 3 illustrates the solution for m = 3.

Remark 4.2 Regarding Remark 3.2, we see that for m = 1 the minimiza-
tion problems

n

S+ UG+ -UE))Y? - min,
j=1

and
n

IDnsiaUl3 =) (UG +1)=U(j))> — min
j=1

subject to the tube and boundary constraints lead to the same solution.

12
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0 10 20 30 40 50
Figure 3: Solution of the spline contact problem (C1) — (C3) for a signal F
of lengths n +m with n =40 and m =3 .

We will see that problem (15) can be considered as a hard margin SVR
problem. To this end, we only have to define the appropriate RKHS. Let
Wiy = {F € R™™ . F(4) =0, j = 1,...,m} equipped with the inner
product

n

(F,G)wy, = Y ATF(HA™G())
=1
= <Dn+m,mFaDn+m,mG>

- (or(my ) oo (E )

Then the minimization term in (15) is just the norm of U in Wy,. Now we
can straightforwardly determine the reproducing kernel in Wy,. Setting

K = ((Dy)"Dy) " = AT(AT)T, (16)
we see that the columns K of
K, := (On,m|K)T e RrHmn

form a special basis of Wy, namely with reproducing property (F', Ky, ﬁw% =
F(j +m). Let us have a closer look at the structure of K. Straightforward
computation shows that the components of our discrete kernel are given by
the discrete counterpart of (13), namely

min(j,k)—1

KGk)y= Y (G- k-n)m D/ ((m 1)),

r=0

13
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Figure 4: Discrete splines K 1, k = 1,5,10,20, for n = 32 and m = 1 (left),
m = 2 (right).

with (m) defined as in Remark 2.1. By Proposition 2.2 ii) and i) we obtain
that

0
Dn—l—m,QmKO = Dn+m,2m< Imﬂ
n

= (_1)m (In—ma On—m,m) .

In other words, we have for j =m +1,...,n — m that

) AT(ATYT D, DI AT (AT

A2mK07k(j—m) = 0, k=1,...,n—m; j#k,
A"Kop(k—m) = (-1)™, k=1,....n—m, (17)
A"Kop(j—m) = 0, k=n—-m+1,...,n

e., Ky is a discrete spline of degree 2m — 1 with one inner knot £ +m for
k=1,...,n—m and a discrete polynomial in Ily,, 1 for k = n—m+1,...,n.
For n = 32 and m = 1,2, some columns of K are depicted in Figure 4.

For every U € Wy, there exists a uniquely determined ¢ € R™ such
that U = Kc and by the reproducing property of K, problem (15) can
be rewritten as

1
5 c'Ke — min (18)
st |[Fr— (Ko)llew <A, (K¢)g = Fg.

This is the usual form (11) of a hard margin SVR problem. Let ¢ be the
solution of (18) and let

={je{m+1,...,n}:¢c(j—m)#0}

so that

U= c(j—m)Koj-m+ Z () Ko, (19)

jEAI Jj=n—m+1

The vectors Ko j_m, J € A; are called (inner) support vectors. By (19) and
property (17) of K they are related to the spline knots as follows:

14
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Figure 5: Discrete splines (A}")%, k = 1,5,10,20, for n = 32 and m =1
(left), m = 2 (right). For m = 1, we have added 0.1, 0.2 and 0.3 to the last
columns to better visualize the discrete step functions.

Proposition 4.3 The support vector indices A; of the solution U in (19)
of the SVR problem are exactly the spline knots Ag, i.e.,

AU —m)#0 <= jeAl;.

If the number of contact points |A;| is small compared to n, then ¢ has
only a small number of nonzero coefficients and (19) provides us with a
sparse representation of U. This can also be seen by noting that our SVR
problem (18) means to find U = K¢ such that the equality constraints are
fulfilled and

1 .
3 | F — UH%/V% + Ale|llt — min.

Compare with [9] in a general SVR context. In contrast to the 2—norm, the
1-norm of ¢ in the penalty term implies for sufficiently large A\ that some of
the coefficients ¢(j) are 0. This implies a sparse representation of U from
another point of view.

Finally, we see by (16) and (8) that

u = DAY (A7) e = (A7) e (20)

is the corresponding sparse representation of our original solution w. By
Proposition 2.2 i) we have that D, ,(A})" = (=1)"(Ipn—m|0n—mm) so
that the first n —m columns of (A]")™ are splines of degree m — 1 with one
inner knot and the last m columns are polynomials in II,, ;. For m =1
and 2 some columuns of (A]")T are illustrated in Figure 5. In the context of
sparse representation, the following observation is interesting: by (20), (8)
and Proposition 2.2 i) and iii), our original problem (5) can be rewritten as

1 " :
5 1F = (A el3 + Al (Tnm|Op—mm) elly  —  min. (21)

15



Remark 4.4 Finally, let us mention that a continuous version of our con-
siderations reads as follows: For a function u := <I>1(L2m) we have that ®, =
k * u, where k is the causal fundamental solution of the 2m—th derivative
operator, i.e., the spline k(x) = xim_l. If w plays the discrete role of u
then our discrete function (U, UfL)T = Aluw = KD)'u plays the role of

U .= Cng) = kxum,

4.3 Denoising Example

In this section, we show the performance of our approach (5) and (15) by
a denoising example. We are mainly interested in the behaviour for various
differentiation orders m. Our aim is to demonstrate the spline interpolation
with variable knots for various m and not to create an optimal denoising
method. To this end, we have used the signal shown in Figure 6 (top,
left) and have added white Gaussian noise. First, we have determined the
optimal parameters A with respect to the maximal signal-to—noise-ratio

(SNR) defined by SNR(g,u) = 1010g10< lgll3 ) with original signal g.

llg—ull3

For the solution of the quadratic problem (15) we have applied the Matlab
quadratic programming routine which is based on an active set method.
Then we compared the quality of the results obtained for various m. The
following table contains the results for A, the SNR and the peak signal to

noise ratio (PSNR) defined by PSNR(g,u) := 10log;, (n”g”g" ), where n

llg—ull3

denotes the number of pixels. The noisy signal in Figure 6 (top,right) has
SNR. 6.94 and PSNR. 10.72.

m A | SNR | PSNR
20.2 | 16.00 | 19.78
57.8 | 1841 | 22.18

275.0 | 17.97 | 21.69

1453.1 | 17.22 | 20.99

=W N

The corresponding signal plots are given in Figure 6. For this signal the
methods with orders m > 2 perform better than the usual method with
m = 1 where the the linear method (m = 2) achieves the best restoration.
In general higher order methods with /1 regularization term neglect the
staircasing effect appearing in the piecewise constant approximation with
m = 1 and preserve on the other hand local singularities better than linear
methods with quadratic regularization term. Various other examples for the
denoising of signals by solving (5) were presented in [26].

5 Generalization to Two Dimensions

In this section, we briefly consider a possible generalization of our concept
to two dimensions. This may be considered as starting point for future
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Figure 6: Denoising results with (5). Top left: original signal. Top right:
noisy signal. Middle left: denoised signal for m = 1. Middle right: denoised
signal for m = 2. Bottom left: denoised signal for m = 3. Bottom right:
denoised signal for m = 4.
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research.
Concerning first order derivatives, we consider the ROF model

% /Q(u(x) @)+ A\Vuldz — min (22)
and the model
5 [0 = @Ml hde — min(23)

treated, e.g., in [12]. Of course the second model is not rotationally invariant.

In the following, we restrict our attention for simplicity to quadratic
n x n images and reshape them columnwise into a vector of length N = n?.
We discretize the first order derivatives as proposed by Chambolle in [1]. To

this end, we introduce the gradient matrix

I, D, : Dy,
D= i ) e RPNV with DY = ( " >
( D, ® I, ) ! 01,

and the Kronecker product ®. The matrix D has rank N — 1 and D™ plays
the role of —div = V*. Further, we have that Ay := D"D is the finite
difference discretization of the Laplace operator with the five point scheme
and Neumann boundary conditions and that

R(DY)

N

R(Ay) = {f RV D f(j) =0}, (24)
j=1

N(D) = N(AN) = {,LL].NJI,U/ER} = Ilp.

Finally, the discrete version of |Vu| = (u2 + ug)l/ 2 reads |Dul, where

1
‘( 52 )’ = (FY)? + (F))) ' = (F o F' + F2 0 F?)/? e RY

and o denotes the componentwise vector product. Now we can discretize
(22) and (23) by

S1F —ull + A Dul s (25)
and )

5 IF = ull + APl (26)
respectively. Then, by the dual approach, see, e.g. [1, 25], we obtain that
u = f — D'V, where V is the solution of

JF-DVIE — min
s.t. V] ]loo <A, in case (25), (27)
s.t. V] <A, in case (26). (28)
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The first minimization problem can be solved for example by using Cham-
bolle’s semi—implicit gradient descent algorithm [1], while the second prob-
lem can be solved by standard QP methods. An example for the solution
of both problems is presented at the bottom of Figure 8. By the absence
of rotation invariance, the solution of the second problem shows harder seg-
mentation effects in x and y directions.

In the following, we assume that f € R(D7T), i.e., f = DTF for some
F € R?N. Otherwise we consider f—mean(f)1x,1. Then, since Du = Dug,
and

1 1 1
I - ull} = oL url|3 + 5”“/\/”%7

where ug is the orthogonal projection onto R(D") and uys the orthogonal
projection onto N (D7), it follows that the minimizer u of (25) and (26) is
also in R(D"). Now U = F — V solves the problem

1

VDU i
s.t. [1F —Ulllsoc <A, in case (25),
s.t. |F—Ulloo <A\, incase (26).

With respect to Remark 3.3 we note that the discrete G-—norm defined for
v € R(DY) by ||v|g = inf |l IV||lso plays the role of the Wi (D 1)
norm. =PV

For higher order derivatives even the choice of an appropriate disretiza-
tion which preserves the basic integral identities satisfied by the contin-
uous differential operators is a nontrivial question, see, e.g., [13]. How-
ever, operators of higher order were considered in image processing, e.g., in

[5, 2, 11, 15, 20, 24, 34, 25]. Here we restrict our attention to

1

— uw(x) — f(z))? u|dez — min.
5 [ (@)~ F@)? + Al

As discretization we choose
1 .
5Hf*ﬂ||§+)\|\ADUII1 —  min (29)

where A p denotes the finite difference discretization of the Laplace operator
with the five point scheme and Dirichlet boundary conditions. Then A, is
invertible. The dual approach to (29) leads with f = ApF and u = ApU
to the contact problem
1
s.t. |1F —U oo <A,

which can be solved by standard QP methods. An example for the solution
of this problem in shown at the top of Figure 8. The solution contains
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Figure 7: Column 528 of Ap? (left) and of A, (right) for n = 32.

some artefacts in form of white points which were also mentioned in [34].
Therefore the approach (29) seems to be not suited for applications in image
processing. Obviously, ABQ is a reproducing kernel in RY equipped with
the norm given by the minimization term and U = A52c and u = Al_)lc
are in general sparse representations. The images corresponding to a central
row of ABQ and ABI are depicted in Figure 7.

With respect to the kernel ABQ let us finally note the following remark.

Remark 5.1 (Thin Plate Splines)

The so-called thin plate spline [8] K (z) := g |z[*In |z is the fundamental
solution of the biharmonical operator A%. For appropriately chosen x; the
solution of

N
1
3 Z(f(:cj) —u(z;))? + )\/Quim + 2u§y + uf/y dz — min
j=1

has the form u(z) = Zjvzl ;K (x —x;) + ap + a1z + agy.
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Figure 8: Top: Original 256 x 256 image (left). Solution of (30) (right). The
image involves artefacts (white points). Bottom: Solution of (27) (left). So-
lution of (28) (right). The right-hand image shows a stronger segmentation
in x and y direction. All problem were solved with A = 10. For problem
(27) we have used the semi-implicit gradient descent algorithm [1]. Prob-
lems (30) and (28) were computed by the ILOG CPLEX Barrier Optimizer
version 7.5. This routine uses a modification of the primal-dual predictor—
corrector interior point algorithm described in [19].
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6 Conclusions

We have shown the equivalence of the following problems in a discrete 1D
setting:

i) minimzation of a functional with quadratic data term and TV regu-
larization term with higher order derivatives,

ii) spline interpolation with variable knots depending on the input data
and the regularization parameter,

iii) hard margin SVR in the discrete counterpart of the Sobolev space

m
W270,

iv) sparse representation in terms of fundamental splines with penalization
the of {1 norm of the coefficients.

Based on (6) a slightly different approach which handles the boundary con-
ditions in advance (as done in 2D) is possible. Moreover, more general spline
concepts as those of exponential splines, see, e.g., [28] and other data terms
incorporating only few knots or related to other than Gaussian white noise
can be considered in a similar way. Finally, the 2D setting deserves stronger
investigation.
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