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Abstract. We study the connection between higher order total variation
(TV) regularization and support vector regression (SVR) with spline
kernels in a one-dimensional discrete setting. We prove that the contact
problem arising in the tube formulation of the TV minimization problem
is equivalent to the SVR problem. Since the SVR problem can be solved
by standard quadratic programming methods this provides us with an
algorithm for the solution of the contact problem even for higher order
derivatives. Our numerical experiments illustrate the approach for va-
rious orders of derivatives and show its close relation to corresponding
nonlinear diffusion and diffusion–reaction equations.

1 Introduction

In this paper, we are interested in constructing a function u that minimizes the
functional ∫ 1

0
(u(x) − f(x))2 + 2λ|u(m)(x)| dx. (1)

More precisely, we are concerned with a discrete version of (1), where the func-
tions are only considered at equispaced points.

For m = 1 and arbitrary space dimensions, we are in the classical Rudin–
Osher–Fatemi setting [16] applied in image denoising and segmentation. Sev-
eral numerical solution algorithms were proposed, see, e.g., [24] and references
therein. A quite interesting method uses the tube formulation of (1). In one space
dimension, the tube approach is known as a non–parametric regression model in
statistics [10]. A generalization to the two-dimensional setting was proposed in
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[7]. The heart of the tube method consists in the solution of a contact problem
within a tube of width depending on the regularization parameter λ > 0. For
m = 1, this contact problem can be solved efficiently by the so–called ’taut string
algorithm’ [4] in one dimension, but becomes harder in higher dimensions [7].

In recent years, there has been a growing interest in higher order variational
methods [13, 17, 3, 26, 9, 8]. In particular, a tube approach for m ≥ 2 was ad-
dressed for one dimension in [10] and for higher dimensions based on Meyer’s
G–norm [12] in [14].

In this paper, we will see that the contact problem can be tackled by solv-
ing a simple quadratic optimization problem, namely a so–called support vec-
tor regression (SVR) problem. SVR methods became very popular in machine
learning during the last years, see [23]. The SVR approach also approximates
a given function within a tube, but by minimizing a different cost functional.
The SVR solution is always contained in a previously determined reproducing
kernel Hilbert space. We will prove that in our discrete setting the solution of
the contact problem corresponding to (1) coincides with the SVR solution in an
appropriately chosen reproducing kernel Hilbert space. This space is a discrete
variant of the Sobolev space Wm

0 which has a reproducing kernel determined
by splines of degree 2m − 1. We remark that similar results can be obtained by
applying the dual approach of Chambolle [2] to our setting. This is discussed in
[20]. In this paper, we want to emphasize the spline point of view.

Our paper is organized as follows. We start by developing the tube formu-
lation and SVR with spline kernels in a discrete setting in Sections 2 and 3,
respectively. In Section 4, we prove the equivalence of the SVR problem and the
key part of the tube algorithm, the contact problem. To prepare a numerical com-
parison, a discretization of corresponding partial differential equations (PDEs)
is provided in Section 5. Our denoising experiments in Section 6 demonstrate
properties of our method for various orders of derivatives and show the relation
of the variational approach to the numerical solution of corresponding diffusion
and diffusion–reaction equations. The paper is concluded with Section 7.

2 Tube Characterization of TV Regularization
Functionals with Higher Order Derivatives

In the following, we are concerned with discrete functions defined on some subsets
of the integers. As a discrete version of the m–th derivative we choose the m–th
finite difference

Dmu(j) :=
m∑

k=0

(−1)k+m

(
m

k

)
u
(
j −

⌊m

2

⌋
+ k
)

, (2)

where �x� denotes the largest integer ≤ x. Given the values f(j), j = 1, . . . , n,
we are interested in finding a discrete function u that minimizes the functional

J(u) :=
n∑

j=1

(u(j) − f(j))2 + 2λ

n∑
j=1

|Dmu(j)|, (3)
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where we suppose the boundary conditions

Dmu(j) := 0, j = −
⌊

m − 1
2

⌋
, . . . ,

⌊m

2

⌋
; n−

⌊
m − 1

2

⌋
, . . . , n+

⌊m

2

⌋
. (4)

The boundary conditions for j = 1, . . . ,
⌊

m
2

⌋
; n − ⌊m−1

2

⌋
, . . . , n imply that the

second sum in (3) runs indeed only from
⌊

m
2

⌋
+ 1 to n − ⌊

m+1
2

⌋
. The other

boundary conditions are imposed to keep the summation index in the following
derivation simple. We remark that these boundary conditions are equivalent to
Dku(0) = Dku(n) = 0, k = m, . . . , 2m − 1.

Since the functional J is strictly convex, our problem has a unique solution.
A necessary and sufficient condition for u to be the minimizer of (3) is that the
zero vector is an element of the subgradient ∂J(u), i.e., for j = 1, . . . , n, the
following inclusions must be fulfilled:

0 ∈ u(j) − f(j) + λ
m∑

k=0

(−1)k

(
m

k

)
Dmu(j − ⌊m+1

2

⌋
+ k)

|Dmu(j − ⌊m+1
2

⌋
+ k)| , (5)

where y/|y| := [−1, 1] if y = 0, and where the same quotient Dmu(·)/|Dmu(·)|
in different inclusions denotes the same numbers in [−1, 1]. Moreover, the sum-
mands corresponding to our boundary conditions (4) are zero.

We want to find linear combinations of the right–hand sides of (5) such
that most of the terms in the sum vanish. For this, we introduce a discrete
equivalent to the m–th power function by k(m) := 1 for m = 0 and k(m) :=
k(k + 1) . . . (k + m − 1) for m ≥ 1 and a discrete version of the m–th anti-
derivative of a function f by

Ff (j) :=
j∑

k=1

(j + 1 − k)(m−1)

(m − 1)!
f(k), j = 1, . . . , n. (6)

Then we obtain the following proposition which can be considered as a discrete
counterpart of a result in [10].

Proposition 1 (Tube Characterization of TV Minimization).
The function u is a solution of (3) if and only if Fu fulfills the conditions

Fu(j) ∈ Ff (j) − (−1)mλ
Dmu(j +

⌊
m
2

⌋
)

|Dmu(j +
⌊

m
2

⌋
)| , j = 1, . . . , n − m (7)

and Fu(n − j) = Ff (n − j), j = 0, . . . , m − 1.

The basic idea of the proof is the following: For j ∈ {1, . . . , n} and k =
1, . . . , j, we multiply the k–th inclusion in (5) by (j + 1 − k)(m−1)/(m − 1)!, add
the corresponding j expressions and transfer Fu(j) to the opposite side. By (6)
and setting Fu(j) := 0, j = −(m − 1), . . . , 0, we obtain u from given Fu by

u(j) =
m∑

k=0

(−1)k

(
m

k

)
Fu(j − k), j = 1, . . . , n. (8)
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Then, by (2), the finite differences appearing in (7) can be written as

Dmu
(
j +

⌊m

2

⌋)
= D2mFu(j), j = 1, . . . , n − m.

Together with Proposition 1 this implies that the function Fu corresponding to
the minimizer u of (3) is uniquely determined by the following contact problem:

(T1) Fu(j) = 0 for j = −(m − 1), . . . , 0,
(T2) Fu(n − j) = Ff (n − j) for j = 0, . . . , m − 1.
(T3) Fu lies in a tube around Ff of width 2λ, i.e.,

|Ff (j) − Fu(j)| ≤ λ for j = 1, . . . , n − m.
(T4) Let Λ := {j ∈ {1, . . . , n} : D2mFu(j) �= 0}.

If j ∈ Λ, then Fu(j) contacts the boundary of the tube, where
D2mFu(j) > 0 =⇒ Fu(j) = Ff (j) − (−1)mλ,
D2mFu(j) < 0 =⇒ Fu(j) = Ff (j) + (−1)mλ.

Then the usual tube method for solving (3) consists of the three steps
1. compute Ff from given f by (6),
2. solve the contact problem (T1) – (T4) to obtain Fu,
3. compute u by (8),

where the second step requires further explanation.
For the classical setting m = 1, it is well-known, see, e.g., [4], that (T1) –

(T4) is equivalent to the construction of the uniquely determined taut string
within the tube around Ff of width 2λ fixed at (0, 0) and (n, Ff (n)), i.e., to the
solution Fu of the following optimization problem:

n−1∑
j=0

(
1 + (Fu(j + 1) − Fu(j))2

)1/2 → min, (9)

subject to |Fu(j)−Ff (j)| ≤ λ, j = 1, . . . , n−1 and Fu(0) = 0, Fu(n) = Ff (n). For
solving this problem there exists a very efficient algorithm of complexity O(n),
the so–called ’taut string algorithm’, which is based on a convex hull algorithm.

For m ≥ 2, the computation of Fu is more complicated. An iterative method
based on an exchange of contact knots of conjectured complexity O(n2) was,
e.g., proposed in [10].

Finally, we remark that discrete functions F fulfilling the property D2mF (j) =
0 for all j �∈ Λ and some boundary conditions were introduced as discrete splines
of degree 2m − 1 with spline knots Λ by Mangasarian and Schumaker [11].

3 Support Vector Regression with Spline Kernels

The SVR method searches for approximations of functions in reproducing ker-
nel Hilbert spaces. Among the large amount of literature on SVR we refer to
[23–Chapter 11]. Well–known examples of reproducing kernel Hilbert spaces are
the Sobolev spaces Wm

0 of real–valued functions having a weak m–th derivative
in L2 [0, 1] and fulfilling F (j)(0) = 0 for j = 0, . . . , m − 1 with inner product
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〈F, G〉W m
0

:=
∫ 1
0 F (m)(x)G(m)(x) dx. These spaces have the positive definite re-

producing kernels K(x, y) :=
∫ 1
0 (x − t)m−1

+ (y − t)m−1
+ /((m − 1)!)2 dt, where

(x)+ := max{0, x}; see [25–p. 5–14].
For our purposes, we introduce discrete versions of Wm

0 by the Hilbert spaces
Wm

0 of real–valued functions defined on {−(m−1), . . . , n} and fulfilling F (j) = 0
for j = −(m − 1), . . . , 0 with inner products

〈F, G〉Wm
0

:=
n−�m+1

2 �∑
j=−�m−1

2 �
DmF (j)DmG(j). (10)

We can prove that Wm
0 has the reproducing kernel

K(i, j) :=
min(i,j)−1∑

k=0

(i − k)(m−1)

(m − 1)!
(j − k)(m−1)

(m − 1)!
,

i.e., 〈F, K(i, ·)〉Wm
0

= F (i). Moreover, K(i, ·) fulfills for fixed i ∈ {1, . . . , n} the
properties D2mK(i, i) �= 0 and

D2mK(i, j) = 0, j = 1, . . . , n; j �= i, (11)
K(i, j) = 0, j = −(m − 1), . . . , 0. (12)

Let K := (K(i, j))n
i,j=1 and F := (F (1), . . . , F (n))′ be given. Then we are looking

for a function

U(j) :=
n∑

i=1

ciK(i, j) (13)

with coefficient vector c := (c1, . . . , cn)′ that solves the following constrained
quadratic optimization problem:

c′Kc → min,

subject to F − Kc ≤ λe,
−F + Kc ≤ λe,∑n

i=1 ciK(i, n − j) = F (n − j) j = 0, . . . , m − 1.

(14)

Here e denotes the vector consisting of n components one and the inequalities are
taken componentwise. This problem without the equality constraints is known
as SVR problem. Since K is positive definite, it has a unique solution which can
be computed by standard quadratic programming methods. Obviously, by (13),
the inequality constraints in (14) can be rewritten as |F (j)−U(j)| ≤ λ while the
equality constraints read F (n−j) = U(n−j), j = 0, . . . , m−1. Further, the kernel
property (12) implies together with (13) that U(j) = 0 for j = −(m − 1), . . . , 0.
Based on the Karush–Kuhn–Tucker conditions and the dual formulation of (14),
see [6], one can further show that ci �= 0 implies |F (i) − U(i)| = λ. The points
i ∈ {1, . . . , n} with ci �= 0 are called support vectors. Clearly, the function U only
depends on the support vectors. If Λ̃ denotes the set of support vectors, then

U(j) =
∑
i∈Λ̃

ciK(i, j), (15)
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so that by (11), the support vectors j can be also characterized by D2mU(j) �= 0.
We summarize the properties of the SVR solution:

(S1) U(j) = 0 for j = −(m − 1), . . . , 0,
(S2) U(n − j) = F (n − j) for j = 0, . . . , m − 1,
(S3) U lies in a tube around F of width 2λ, i.e.,

|F (j) − U(j)| ≤ λ for j = 1, . . . , n − m.
(S4) Let Λ̃ := {j ∈ {1, . . . , n} : D2mU(j) �= 0}.

If j ∈ Λ̃, then U(j) contacts the boundary of the tube,
where j are the support vectors obtained by solving (14).

Comparing these properties with (T1) – (T4), we see that for F = Ff only the
fourth condition differs.

Finally, we remark that the SVR solution U can be considered as sparse
approximation of F . In particular, by [6], U (without the last m equality con-
straints) is also the solution of the unconstrained minimization problem

‖F − U‖2
Wm

0
+ 2λ‖c‖�1 → min .

4 Equivalence of Tube and SVR Solution

In the following, we set F := Ff in (14) and show that the solution U of (14)
coincides with the solution of the contact problem (T1) – (T4). Since by the
reproducing kernel property c′Kc = ‖U‖2

Wm
0

, we can use (10) to rewrite (14) as

E(U) :=
n−�m+1

2 �∑
j=−�m−1

2 �
(DmU(j))2 → min, (16)

subject to |U(j) − Ff (j)| ≤ λ, j = 1, . . . , n − m,
U(n − j) = Ff (n − j), j = 0, . . . , m − 1.

In particular, for m = 1, we minimize just the sum of the squared lengths

n−1∑
j=0

(U(j + 1) − U(j))2 → min,

instead of the lengths in (9). However, by the following proposition both problems
are equivalent.

Proposition 2 (Equivalence of Contact and SVR Problem).
The solution of the contact problem (T1) – (T4) coincides with the solution of
the SVR problem (16).

Proof. Let U be the solution of (16). Assume that j ∈ Λ̃ is an upper contact
point that does not fulfill (T4), i.e., (−1)mD2mU(j) > 0. (Similar arguments
can be used for lower contact points.) By (2), this means that
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Fig. 1. Property (T4) of U computed by (16) for m = 2 (left) and m = 3 (right). Top:
U (solid line) with tube (dashed line) and contact points. Bottom: Sign of D2mU

U(j) > W (j) := −(−1)m
2m∑
k=0
k �=m

(
2m

k

)
(−1)kU(j − m + k)/

(
2m

m

)
.

By definition W (j) lies on the discrete spline of degree 2m−1 through U(j ±k),
k = 1, . . . , m. Now we define a function V which is equal to U except at j, where

V (j) :=
{

W (j), if W (j) > U(j) − 2 λ,
U(j) − 2 λ otherwise.

Obviously, V fulfills the constraints of (16) and

U(j) > V (j) ≥ W (j). (17)

We show that E(V ) < E(U). This contradicts the choice of U as minimizer of
(16) and we are done. Replacing Dm in E by (2) and regarding that V (i) = U(i)
for i �= j, we obtain after some technical computations that

E(U) − E(V ) =
(

2m

m

)(
U(j) − V (j)

) (
U(j) + V (j) − 2 W (j)

)
.

Now we have by (17) that E(U) − E(V ) > 0. This completes the proof. �

Fig. 1 demonstrates property (T4) for the solution U of (16).

5 Parabolic PDEs with Higher Order Derivatives

Regularization methods are closely related to parabolic PDEs by the Euler–
Lagrange equation, see, e.g.,[19]. To allow for a comparison of our tube–SVR
method with PDE approaches we shortly describe their relations. For this, we
consider the slightly modified version of (1) suggested in [1, 3]



522 G. Steidl, S. Didas, and J. Neumann

∫ 1

0
(u(x) − f(x))2 + 2λ ϕ

(
(u(m))2

)
dx

with ϕ(s2) :=
(
ε2 + s2

) 1
2 . A minimizer u of this functional necessarily satisfies

the Euler–Lagrange equation

u − f

λ
= (−1)m+1 ∂m

∂xm

(
2 ϕ′

(
(u(m))2

)
u(m)

)
(18)

with natural boundary conditions u(k)(0) = u(k)(1) = 0, k = m, . . . , 2m − 1, see
[5]. These boundary conditions are in agreement with our boundary conditions
(4). Introducing an additional time variable t, the left–hand side of equation (18)
can be understood as fully implicit time discretization of the diffusion equation

∂u

∂t
= (−1)m+1 ∂m

∂xm

(
u(m)√

(u(m))2 + ε2

)
(19)

with natural boundary conditions, initial value f and stopping time λ. To solve
(19) we use finite differences for the derivatives in space and an explicit Euler
scheme in time. This leads to the following iterative scheme:

u0(j) := f(j),

vk(j) :=
Dmuk(j)√

(Dmuk(j))2 + ε2
,

uk+1(j) := uk(j) − τ

m∑
l=0

(−1)l

(
m

l

)
vk

(
j −

⌊
m + 1

2

⌋
+ l

)
,

where we set Dmuk(j) := 0 for j = 0, . . . , �m
2 �; n − �m−1

2 �, . . . , n. This scheme
satisfies stability in the Euclidean norm if the time step size τ is chosen suffi-
ciently small, namely τ ≤ ε

22m−1 . In comparisons with regularization methods we
use the regularization parameter λ as stopping time, i.e., we iterate until k = λ

τ .
Alternatively, we can also approximate a solution of (18) by solving the

diffusion–reaction equation

∂u

∂t
=

u − f

λ
+ (−1)m ∂m

∂xm

(
2 ϕ′

(
(u(m))2

)
u(m)

)
. (20)

A discretization of this equation can be obtained in a similar way to the one for
the diffusion equation. It should be noted that the steady state of (20) for t → ∞
yields a solution of (18) while the diffusion approach (19) leads in general only
to an approximation of the solution. Only for the classical setting m = 1 without
additional ε–regularization, it was shown in [21, 15] that the analytical solution
of the space discrete diffusion equation (19) is equivalent to the solution of the
optimization problem (1). For a space continuous version we refer to [22]. Even
for first order derivatives this is a very special property of the TV regularization
function ϕ.



Relations Between Higher Order TV Regularization and SVR 523

6 Denoising Experiments

In this section, we show by denoising experiments that our tube–SVR approach
works well even in comparison with corresponding PDE methods and demon-
strate the influence of higher order derivatives.

As examples we have used the signals shown in Fig. 2. The first signal is piece-
wise polynomial, and Gaussian noise with standard deviation 10 was added. The
other one consists of piecewise sine signals and the noise standard deviation is 1.
First, we have determined the optimal parameters λ for our tube–SVR denois-
ing method with respect to the maximal signal–to–noise–ratio (SNR) defined
by SNR(g, u) := 10 log10

( ‖g‖2
2

‖g−u‖2
2

)
with original signal g. We have applied the

tube–SVR method described at the end of Section 2, where the contact prob-
lem was solved by applying the Matlab quadratic programming routine to (16).
This routine is based on an active set method. The results are contained in
Tab. 1.

Then we compared the quality of the results obtained by our tube–SVR
approach and by the PDE methods for various orders of derivatives m. In
our PDE experiments we have used a regularization parameter ε = 10−4 and
for each order the maximal time step size. One should be aware of the in-
fluence of the parameter ε for both PDE methods and the number of iter-
ations for the diffusion–reaction method. For smaller values of ε one could
even obtain better results at the cost of a higher number of iterations. Figs. 3
and 4 show the denoising results. Since one can visually not distinguish be-
tween the tube–SVR and the diffusion–reaction results we have only plotted
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Fig. 2. Test signals. Left: Piecewise polynomial signal, 256 pixels, SNR 14.74dB. Right:
Piecewise sine signal, 512 pixels, SNR 10.25dB

Table 1. Optimal parameters λ and SNR values for tube–SVR denoising

Polynomial signal Sine signal
Order m λ SNR (dB) λ SNR (dB)

1 15 21.34 3 20.03
2 5 18.45 16 21.96
3 2 17.59 174 21.91
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Fig. 3. Denoising results for the piecewise polynomial signal with λ = 15. Left: Tube–
SVR method. Right: Diffusion method. Top: First order. Middle: Second order. Bottom:
Third order

Table 2. Difference between tube–SVR method and diffusion/diffusion–reaction ap-
proach

Polynomial signal Sine signal
Order m Diffusion–reaction Diffusion Diffusion–reaction Diffusion

Iterations l∞–norm l∞–norm Iterations l∞–norm l∞–norm
1 107 6.2 · 10−4 1.2 · 10−2 107 9.0 · 10−4 8.5 · 10−3

2 108 8.2 · 10−4 7.2 108 1.3 · 10−2 1.9 · 10−1

3 108 6.0 · 10−4 5.1 5 · 108 1.1 · 10−1 1.0 · 10−1

the diffusion results in the PDE part. However, the diffusion results look also
very similar except for slight smoothing effects for m = 2. To affirm this im-
pression numerically, Tab. 2 shows the maximal absolute differences between
the results of our tube–SVR method and the diffusion/diffusion–reaction
methods.
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Fig. 4. Denoising results for the piecewise sine signal. Left: Tube–SVR method. Right:
Diffusion method. Top: First order, λ = 3. Middle: Second order, λ = 16. Bottom: Third
order, λ = 174

7 Conclusions

We have proved that the contact problem arising in the tube formulation of the
minimization problem with �2 data term and TV regularization term with higher
order derivatives can be formulated as SVR problem with discrete spline kernels.
Therefore the problem is closely related to spline interpolation with variable
knots. The results can also be considered from a different point of view, namely
by applying Chambolle’s dual approach to our setting, see [20]. This will be
the basis for handling higher space dimensions. In our denoising experiments we
have also incorporated corresponding nonlinear diffusion and diffusion–reaction
equations with higher order derivatives which lead to similar results.
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