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Abstract

The aim of this paper is to gain more insight into vector and matrix medians and to
investigate algorithms to compute them. We prove relations between vector and matrix
means and medians, particularly regarding the classical structure tensor. Moreover, we
examine matrix medians corresponding to different unitarily invariant matrix norms for
the case of symmetric 2 × 2 matrices which frequently arise in image processing. Our
findings are explained and illustrated by numerical examples. To solve the correspond-
ing minimization problems we propose different algorithms. Weiszfeld’s algorithm was
developed for the ℓ2 vector median computation and semi-definite programming, in par-
ticular second order cone programming, was used for the matrix median computation in
the literature. We show that also two splitting methods, the alternating direction method
of multipliers and the parallel proximal algorithm, can be applied for generalized vector
and matrix median computations. Furthermore, we adapt Weiszfeld’s algorithm for our
setting. We compare these algorithms numerically and apply them within local median
filters.

1 Introduction

While medians of one-dimensional data are well known in image processing, vector or matrix
medians are not that common. The reason is that the generalization of the one-dimensional
median to higher dimensions is not straightforward and, in contrast to the one-dimensional
case, there exists in general no analytical expression. Instead, these medians have to be
computed as solutions of certain minimization problems. Literature on this topic can for ex-
ample be found in [2, 21, 32, 34] and the references therein. Moreover, theoretical connections
between vector median filters, morphology and PDEs are given in [7]. There exist various
applications of multidimensional medians. Indeed, our interest in this topic comes from a
dithering algorithm in [33] where a generalized vector median in R

2 has to be computed in
an intermediate step of the algorithm. We use the notation ’generalized’ because, in contrast
to the usual median, there appears an additional squared ℓ2 term in the functional to be
minimized.
In [42], a concept for matrix median computation was proposed and further extended in [44].
The authors suggest to apply semi-definite programming and second order cone program-
ming (SOCP) to find the sought minimizers. Matrix medians of special rank-1 matrices are
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of interest in connection with the so-called structure tensor of Förstner and Gülch [17] which
can be used to approximate directions of constant gray values in images like edges. Recently,
SL(2) invariant shape medians were considered in [4].

In this paper, we present a collection of theoretical results on vector and matrix medians. In
particular, we investigate matrix medians for different unitarily invariant matrix norms for
the case of symmetric 2 × 2 matrices and show relations between certain vector and matrix
problems. The findings are illustrated by numerical examples and compared to the results of
the classical structure tensor.
Beyond that, we propose different algorithms to solve the involved minimization problems.
As a first approach, we consider the alternating direction methods of multipliers (ADMM) for
the generalized vector as well as matrix median computation. We introduce the algorithms
for both problems systematically starting with the vector median computation and use for
the matrix median computation a relation between the proximum with respect to a unitarily
invariant matrix norm and the proximum with respect to its related gauge function. Next,
we apply a relative of the ADMM algorithm, namely the parallel proximal algorithm (PPXA)
from [9] which appears to be indeed slightly faster than ADMM. Besides, we briefly intro-
duce second order cone programming (SOCP) and Weiszfeld’s algorithm for our generalized
ℓ2 vector median problem. Next, we give a comparison of the computation times required by
the different algorithms. Although ADMM and PPXA are slower than Weiszfeld’s algorithm
it should be noted that ADMM and PPXA can be parallelized to a high degree so that we
expect a significant speed-up for a parallel implementation, e.g., on a GPU.

The paper is organized as follows: In Section 2, we recall special proximation problems with
vector norms and unitarily invariant matrix norms which we need for our median computa-
tions. Then, Section 3 deals with vector median computations. After collecting a number
of theoretical results we propose the above mentioned algorithms for the ℓp vector median
computation, namely ADMM and PPXA. Furthermore, SOCP and Weiszfeld’s algorithm are
applied for the ℓ2 vector norm. The proof of the convergence of Weiszfeld’s algorithm for our
slightly more general setting is given in the appendix. In Section 4, we are interested in matrix
median computations with respect to different unitarily invariant matrix norms. In particular,
we deduce the ADMM algorithm and PPXA for matrix median computations in Subsection
4.1. Then, in Subsection 4.2, we prove several relations for the matrix mean/medians of
2 × 2 rank-1 matrices Pi = pip

T
i and show connections to special vector mean/medians ap-

pearing from the vectors pi. Numerical experiments are reported in Section 5. In Subsection
5.1, ADMM, PPXA and Weiszfeld’s algorithm are compared with respect to their computa-
tion time. It appears that SOCP implemented in the optimization toolbox MOSEK cannot
compare to these algorithms for our settings. Subsection 5.2 illustrates the behavior of the
matrix/vector mean and medians within local filters and illuminates the results obtained in
Subsection 4.2. The paper ends with conclusions in Section 6.
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2 Proximation with Vector and Matrix Norms

In this section, we recall some special proximation problems which we need for our median
computations. First, we are interested in

x̂ = argmin
x∈Rd

{1
2
‖f − x‖22 + λ‖x‖p}, 1 ≤ p ≤ ∞ (1)

for a given data vector f ∈ R
d. The Fenchel conjugates of the ℓp-norms in R

d are given by

‖x‖∗p := sup
y∈Rd

{〈y, x〉 − ‖y‖p} =

{
∞ if ‖x‖q > 1,
0 if ‖x‖q ≤ 1,

(2)

where 1
p
+ 1

q
= 1 and as usual p = 1 corresponds to q = ∞ and conversely. Now the minimizer

can be found by x̂ = f − v̂, where v̂ is the solution of the dual problem

v̂ = argmin
v∈Rd

{1
2
‖f − v‖22 + λ‖v/λ‖∗p}.

By (2) this can be rewritten as the constrained problem

‖f − v‖2 → min
v

subject to ‖v‖q ≤ λ.

Hence, v̂ = ΠBq,λ
(f) is the orthogonal projection of f onto the ℓq–ball Bq,λ with radius λ and

center 0 and
x̂ = f −ΠBq,λ

(f).

For p = 1, 2,∞ the orthogonal projections onto Bq,λ are given by

p = 1 : ΠB∞,λ
(f) = (Pλ(fi))

d
i=1 and x̂ = (Sλ(fi))

d
i=1, where

Pλ(fi) :=

{
fi if |fi| ≤ λ,

λ sgn(fi) if |fi| > λ,
and Sλ(fi) =

{
0 if |fi| ≤ λ,

fi − λ sgn(fi) if |fi| > λ.

The function Sλ is known as soft-shrinkage, see [12].

p = 2 :

ΠB2,λ
(f) =

{

f if ‖f‖2 ≤ λ,

λ f
‖f‖2 if ‖f‖2 > λ

and x̂ =

{

0 if ‖f‖2 ≤ λ,

f(1− λ
‖f‖2 ) if ‖f‖2 > λ.

The function which produces x̂ is sometimes called coupled shrinkage, see [30, 43, 38]. Or-
thogonal projections onto the ℓ1-ball were fewer used in the literature so that we give an
explanation of the following formula in Remark 2.1.

p = ∞ :

ΠB1,λ
(f) =

{
f if ‖f‖1 ≤ λ,

(Sµ(fi))
d
i=1 if ‖f‖1 > λ

and x̂ =

{
0 if ‖f‖1 ≤ λ,

f − (Sµ(fi))
d
i=1 if ‖f‖1 > λ
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with µ :=
|fπ(1)|+...+|fπ(m)|−λ

m
, where |fπ(1)| ≥ . . . ≥ |fπ(d)| ≥ 0 are the sorted absolute values

of the components of f and m ≤ d is the largest index such that |fπ(m)| > 0 and

|fπ(1)|+ . . .+ |fπ(m)| − λ

m
≤ |fπ(m)|.

The computation of ΠB1,λ
(f) requires O(d log d) operations due to the sorting procedure.

Note that

fi − Sµ(fi) =

{
fi if |fi| ≤ µ,
µ sgn(fi) if |fi| > µ.

Remark 2.1. (Projection onto the ℓ1-ball)
We briefly explain orthogonal projections onto the ℓ1-ball from a geometrical point of view.
For d = 2 see Fig. 1 for an illustration. Let f have n ≤ d nonzero components ordered by π
as above and let ‖f‖1 = |fπ(1)| + . . . + |fπ(n)| > λ. Further, we denote by f |s the orthogonal
projection of f onto span{eπ(j) : j = 1, . . . , s}, i.e., f |s has components fπ(j) for j ≤ s and
zero components elsewhere. For the sake of brevity, we write v := ΠB1,λ

(f) which clearly
implies that ‖v‖1 = λ. Obviously, sgn(fi) = sgn(vi) or vi = 0 for all i = 1, . . . , n. First,
we consider the case sgn(v) = sgn(f). Since in this case sgn(f) is a multiple of the normal
vector to B1,λ at the point v, cf., Fig. 1, we see that

sgn(v) = sgn(f) ⇔ ∃µn > 0 : v = f − µn sgn(f) and |fπ(n)| > µn. (3)

Thus, we can conclude from

λ = ‖v‖1 = sgn(v)Tv = sgn(f)T (f − µn sgn(f))

that

µn =
‖f‖1 − λ

n
.

It follows from (3) that

sgn(v) = sgn(f) ⇔ µn =
‖f‖1 − λ

n
< |fπ(n)| (4)

and in this case we can set v = f − µn sgn(f). Assume the right-hand side of (4) does not
hold true. Then, it follows that vπ(n) = 0 and we apply the same arguments as above to f |n−1.
If

µn−1 :=
‖f |n−1‖1 − λ

n− 1
< |fπ(n−1)|

we can set v = f |n−1 − µn−1 sgn(f |n−1). Otherwise we have to continue with f |n−2 and so
on. Note that µi > |fπ(i)| implies µi−1 > |fπ(i)| so that µi−1 > 0 and ‖f |i−1‖1 > λ. Moreover,
µi−1 > |fπ(i)| implies further µi−1 > µi. This leads finally to the above ℓ1-ball projection.
For another deduction of the projection we refer to [10]. After finishing this paper we became
aware of the paper [13] on this topic.

Next we deal with proximation problems involving matrix norms. For F ∈ R
m,n, we are

looking for

X̂ = argmin
X∈Rm,n

{1
2
‖F −X‖2F + λ‖X‖•}, (5)
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Figure 1: Illustration of orthogonal projections onto B1,λ in two dimensions.

where ‖ · ‖• is a unitarily invariant matrix norm, i.e., ‖X‖• = ‖UXV T ‖• for all unitary
matrices U ∈ R

m,m, V ∈ R
n,n. Von Neumann (1937) has characterized the unitarily invariant

matrix norms as those matrix norms which can be written in the form ‖X‖• = g•(σ(X)),
where σ(X) is the vector of singular values of X and g is a symmetric gauge function, see [39].
An analogous result was given by Davis [11] for symmetric matrices, where V T is replaced
by UT, the singular values by the eigenvalues and gauge functions by symmetric, convex
functions.
We are interested in the Schatten-p norms for p = 1, 2,∞ which are defined for X ∈ R

m,n

and t := min{m,n} by

‖X‖∗ :=
t∑

i=1

σi(X) = g∗(σ(X)) = ‖σ(X)‖1, (Nuclear norm)

‖X‖F := (
m∑

i=1

n∑

j=1

x2ij)
1
2 = (

t∑

i=1

σi(X)2)
1
2 = gF (σ(X)) = ‖σ(X)‖2, (Frobenius norm)

‖X‖2 := max
i=1,...,t

σi(X) = g2(σ(X)) = ‖σ(X)‖∞, (Spectral norm).

The following proposition describes the solution of (5). Another proof for the special case of
the nuclear norm can be found in [6].

Proposition 2.2. Let F = UFΣFV
T

F be the singular value decomposition of F . Then the

minimizer of (5) is given by X̂ = UFΣX̂
V T

F , where the singular values σ(X̂) in Σ
X̂

are
determined by

σ(X̂) := argmin
σ∈Rt

{1
2
‖σ(F ) − σ‖22 + λg•(σ)} (6)

with the symmetric gauge function g• corresponding to ‖ · ‖•.
Proof: By Fermat’s rule we know that the solution X̂ of (5) is determined by

0 ∈ X̂ − F + λ∂‖X̂‖• (7)
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and from [39] that

∂‖X‖• = conv{UDV T : X = UΣV T, D = diag(d), d ∈ ∂g•(σ(X))}. (8)

We now construct the solution X̂ of (7) which is unique since (5) is strictly convex. Let
σ̂ be the unique solution of (6). By Fermat’s rule σ̂ satisfies 0 ∈ σ̂ − σ(F ) + λ∂g•(σ̂) and
consequently there exists d ∈ ∂g•(σ̂) such that

0 = UF

(
diag(σ̂)− ΣF + λdiag(d)

)
V T
F ⇔ 0 = UF diag(σ̂)V T

F − F + λUF diag(d)V T
F .

By (8) we see that X̂ := UF diag(σ̂)V T
F is a solution of (7). This completes the proof. �

For our special matrix norms this means that the minimizer of (5) is given by X̂ = UFΣX̂
V T
F

with

• = ∗ : σ
X̂

:= σF −ΠB∞,λ
(σF ),

• = F : σ
X̂

:= σF −ΠB2,λ
(σF ),

• = 2 : σ
X̂

:= σF −ΠB1,λ
(σF ).

In case of the Frobenius norm it is straightforward that the minimizer can also be obtained
without singular value decomposition of F by

X̂ :=

{

0 if ‖F‖F ≤ λ,

(1− λ
‖F‖F )F if ‖F‖F > λ.

3 Vector Median Computation

For given pairwise different points P := {pi ∈ R
d : i = 1, ...,M}, positive weights wi,

i = 1, ...,M , f ∈ R
d̃ and a linear operator K ∈ R

d̃,d, we are interested in minimizing

Ev(x) :=
λ

2
‖Kx− f‖22 +

M∑

i=1

wi‖x− pi‖p, λ ≥ 0 (9)

for p = 1, 2,∞.

3.1 Theoretical Results

Let us briefly recall the one-dimensional setting d = 1.

Proposition 3.1. (Analytical solution in 1D)
Let p1 ≤ . . . ≤ pM be ordered real numbers and wi, i = 1, . . . ,M positive weights. Then the
minimizer x̂ of

λ

2
(x− f)2 +

M∑

i=1

wi|x− pi|

is given for λ = 0 by

x̂ =







pk if 0 ∈
( M∑

i=k+1

wi −
k∑

i=1
wi,

M∑

i=k

wi −
k−1∑

i=1
wi

)
,

[pk, pk+1] if
k∑

i=1
wi =

M∑

i=k+1

wi
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and for λ > 0 by
x̂ = median(p1, . . . , pM , a0, . . . , aM ), (10)

where

a0 := f +
1

λ

M∑

i=1

wi, ak := f +
1

λ

(
M∑

i=k+1

wi −
k∑

i=1

wi

)

, k = 1, . . . ,M.

The proof can be found in [27]. Note that a0 ≥ . . . ≥ aM and that the above median (10) can
be computed for ordered pi with O(M) operations, see [27]. Of course, the ordering of the pi
requires O(M log(M)) operations.

Let us turn to higher dimensions d ≥ 2. In some special cases, the computation can be
reduced to the one-dimensional setting: For p = 1 and K = I, the functional (9) can be
minimized componentwise using Proposition 3.1, i.e.,

x̂k = argmin
xk∈R

{

λ

2
(xk − fk)

2 +

M∑

i=1

wi|xk − pi,k|
}

, k = 1, . . . , d. (11)

Let p = ∞, K = I and d = 2. For x ∈ R
2 we have that ‖x‖∞ = 1√

2
‖y‖1, where y = Qx and

Q = 1√
2

(
1 1
1 −1

)

. Note that, conversely, x = Qy. Then we obtain

λ

2
‖x− f‖22 +

M∑

i=1

wi‖x− pi‖∞ =
λ

2
‖y −Qf‖22 +

M∑

i=1

wi√
2
‖y −Qpi‖1.

Now the minimizer ŷ of the functional on the right-hand side can be computed componentwise
using Proposition 3.1.

For general p the following property was observed in [44]. We add the simple proof.

Proposition 3.2. Let λ = 0. Then, x̂ ∈ argminEv implies that x̂ ∈ argmin Ẽv, where Ẽv

denotes the functional (9) with respect to the points p̃i := x̂+αi(pi− x̂), αi > 0, i = 1, . . . ,M .

Proof: From Fermat’s rule we obtain

x̂ ∈ argminEv ⇔ 0 ∈ ∂Ev(x̂) =
M∑

i=1

wi∂‖ · ‖(x̂− pi).

Since we have for arbitrary norms in R
d (more generally for homogeneous functions) and

α > 0 that

∂‖ · ‖(αx0) = {z : ‖αx0‖+ 〈z, y − αx0〉 ≤ ‖y‖ ∀y ∈ R
d} = ∂‖ · ‖(x0)

this yields

0 ∈
M∑

i=1

wi∂‖ · ‖(αi(x̂− pi)) = ∂Ẽv(x̂).

Using Fermat’s rule again we see that x̂ is also a minimizer of Ẽv. �

7



Results for ℓ2 Median Computation

The case p = 2, i.e.,

Ev(x) :=
λ

2
‖Kx− f‖22 +

M∑

i=1

wi‖x− pi‖2, λ ≥ 0 (12)

is of special interest.

Remark 3.3. For λ = 0 and weights wi = 1, i = 1, . . . ,M , problem (12) is known as spatial
median problem. It has several names including Steiner problem, generalized Weber problem
or general Fermat problem. In two dimensions (d = 2) the explicit solutions for three or four
input points are well-known: For M = 3 points spanning a triangle with angles smaller than
120◦ the median is the Steiner point from which the given points can be seen under an angle
of 120◦. If one angle of the triangle is larger than 120◦, the median is just this point. For
M = 4 points spanning a convex quadrangle the median is the intersection of its diagonals.
If their convex hull is a triangle, the median is the inner point.
In general the median does not necessarily coincide with one of the vectors pi. In contrast,
the coincidence with one of the given vectors is a key requirement of diverse modified spatial
vector median definitions as the ’(extended) vector median filter’ in [2], the ’(generalized)
vector directional filter’ and the ’directional distance filter’ in [21, 34].

The functional (12) has a unique minimizer if one of the following assumptions is fulfilled:

• the points pi are not aligned,

• the points are aligned and
k∑

i=1
wi 6=

M∑

i=k+1

wi, k = 1, . . . ,M − 1,

• λ 6= 0 and K is invertible.

For convenience we prove the first assertion for λ = 0. If the points lie on a line, the assertion
follows from Proposition 3.1.

Proposition 3.4. If the points pi, i = 1, ...,M are not collinear, then functional (12) with
λ = 0 is strictly convex.

Proof: For z1 6= z2 and z := λz1 + (1− λ)z2, λ ∈ (0, 1), we have

Ev(z) =
M∑

i=1

wi‖λ(z1 − pi) + (1− λ)(z2 − pi)‖2

≤
M∑

i=1

λwi‖z1 − pi‖2 + (1− λ)wi‖z2 − pi‖2

= λEv(z1) + (1− λ)Ev(z2).

Equality holds true if and only if z1 − pi and z2 − pi are parallel vectors for all i = 1, ...,M ,
i.e., if all points pi lie on a line. Otherwise, the functional is strictly convex. �

By the separation theorem for convex sets one can prove the following proposition, see [44].

Proposition 3.5. For λ = 0, any minimizer of (12) is in the convex hull of {p1, . . . , pM}.
For λ > 0 and an orthogonal matrix K any minimizer of (12) is in the convex hull of
{KTf, p1, . . . , pM}.
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3.2 Algorithms

A general algorithm to solve (9) is the alternating direction method of multipliers (ADMM)
which we will introduce in the following. The ADMM can be used to solve constrained
minimization problems of the form

min
x∈Rd,v∈RD

{G1(x) +G2(v)} subject to Ax = v, (13)

where Gi, i = 1, 2 are proper closed convex functions and A ∈ R
D,d is a linear operator, as

follows:

ADMM Algorithm:
Initialization: v(0) ∈ R

D, b(0) ∈ R
D and γ > 0.

For r = 0, 1, ... repeat until a convergence criterion is reached

x(r+1) = argmin
x∈Rd

{
G1(x) +

1

2γ
‖b(r) +Ax− v(r)‖22

}
,

v(r+1) = argmin
v∈RD

{
G2(v) +

1

2γ
‖b(r) +Ax(r+1) − v‖22

}
,

b(r+1) = b(r) +Ax(r+1) − v(r+1).

For the above problem, the ADMM coincides with the alternating split Bregman method [20]
and with the Douglas-Rachford splitting method applied to the dual problem of (13), see
[14, 15, 18, 31]. The convergence of the algorithm is ensured by the following theorem, see,
e.g., [31].

Theorem 3.6. Let Gi, i = 1, 2 be proper closed convex functions and A ∈ R
D,d a linear

operator. Then, for any starting values and any γ > 0, the ADMM sequences {b(r)} and
{v(r)} converge to some b̂ and v̂, respectively. The sequence {x(r)} converges to a solution of
(13) if one of the following conditions is fulfilled:
i) The problem has a unique solution.
ii) The problem argminx∈Rd{G1(x) +

1
γ
‖b̂+Ax− v̂‖22} has a unique solution.

Note that 1
γ
b̂ is a solution of the dual problem argmin

p∈RD

{G∗
1(−A∗p) +G∗

2(p)}.

To solve our generalized median problem (9), we apply the algorithm to the equivalent con-
strained problem

min
x∈Rd,v∈RMd

{

λ

2
‖Kx− f‖22 +

M∑

i=1

wi‖vi − pi‖p
}

subject to x = vi, i = 1, . . . ,M,

i.e., we set G1(x) := λ
2‖Kx − f‖2, G2(x) :=

M∑

i=1
wi‖vi − pi‖p and A := 1M ⊗ I, where 1M

denotes the vector consisting of M entries 1 and A ⊗ B represents the Kronecker product of
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A and B. Then the ADMM steps read as follows:

x(r+1) = argmin
x∈Rd

{λ

2
‖Kx− f‖22 +

1

2γ
‖b(r) +Ax− v(r)‖22

}
,

v(r+1) = argmin
v∈RD

{
M∑

i=1

wi‖vi − pi‖p +
1

2γ
‖b(r) +Ax(r+1) − v‖22

}
,

b(r+1) = b(r) +Ax(r+1) − v(r+1).

The minimizer in the first step is the solution of

(λγKTK +MI)x(r+1) = λγKTf +

M∑

i=1

(v
(r)
i − b

(r)
i ). (14)

Note that the matrix λγKTK + MI is symmetric and positive definite. The minimizer in
the second step can be computed componentwise by solving for i = 1, . . . ,M the proximation
problems

y
(r)
i := argmin

yi

{wi‖yi‖p +
1

2γ
‖si − yi‖22}, with si := b

(r)
i + x(r+1) − pi

via orthogonal projection of si onto Bq,γwi as described in Section 2 and setting v
(r)
i := y

(r)
i +pi.

Note that in some applications, especially if (14) is hard to solve, the primal-dual hybrid
gradient method (PDHG) might be useful, cf., [8, 16, 45] and the references therein. It is a
version of ADMM which usually needs more iterations but works without the matrix inversion
in (14).
As we have mentioned above, ADMM can be interpreted as a Douglas-Rachford splitting algo-
rithm. Alternatively, we can also apply another derivative of the Douglas-Rachford splitting
algorithm, the parallel proximal algorithm (PPXA) proposed in [9]. To deduce this algorithm,
we consider the general problem

argmin
x∈Rd

{g1(x) + · · ·+ gN (x)}, (15)

where gi, i = 1, . . . , N are proper, closed and convex functions. We write D := dN . Then,
PPXA has the following form:

PPXA Algorithm:

Initialization: y(0) ∈ R
D, σi > 0 with

∑N
i=1 σi = 1, x(0) =

∑N
i=1 σiy

(0)
i , γ > 0 and µ ∈ (0, 2).

For r = 0, 1, ... repeat until a convergence criterion is reached

v
(r+1)
i = argmin

vi∈RD

{ γ

σi
gi(vi) +

1

2
‖vi − y

(r)
i ‖22}, i = 1, . . . , N, (16)

z(r+1) =

N∑

i=1

σiv
(r+1)
i ,

y
(r+1)
i = y

(r)
i + µ(2z(r+1) − x(r) − v

(r+1)
i ), i = 1, . . . , N,

x(r+1) = x(r) + µ(z(r+1) − x(r)).

The following convergence result was proved in [9].
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Theorem 3.7. Let gi, i = 1, . . . , N , be proper closed convex functions such that a solution
of (15) exists. Furthermore, suppose that σi > 0 with

∑N
i=1 σi = 1, γ > 0 and µ ∈ (0, 1).

Then, for any starting value y(0) ∈ R
D , the sequence {x(r)} generated by PPXA converges to

a solution of problem (15).

For our vector median problem we set gi(x) := wi‖x − pi‖p, i = 1, . . . ,M and gM+1(x) =
λ
2‖Kx− f‖22. Then the subproblems of (16) are again proximal problems which can be solved
similarly as those in the second step of the ADMM algorithm.

Further Algorithms for ℓ2 Median Computation

In the case p = 2 at least two other methods were applied to minimize (12) with λ = 0,
namely

• Second Order Cone Programming (SOCP) [3, 41, 44],

• Weiszfeld’s algorithm [22, 23, 25, 26, 40].

In the following, we briefly explain these methods for our slightly more general setting with
λ > 0. In Subsection 5.1 we will compare the methods numerically.

SOCP is a special case of semi-definite programming which can be implemented efficiently
due to special constraints. More precisely, SOCP [28] amounts to minimize a linear objective
function subject to the constraints that several affine functions of the variables have to lie in
a second-order cone Cn+1 ⊂ R

n+1 defined by the convex set

Cn+1 =

{(
x

x̄n+1

)

= (x1, . . . , xn, x̄n+1)
T : ‖x‖2 ≤ x̄n+1

}

.

With this notation, the general form of a SOCP is given by

inf
x∈Rn

aTx subject to

(
Aix+ bi
cTi x+ di

)

∈ Cn+1 , i = 1, . . . , r. (17)

Alternatively, one can also use the rotated version of the standard cone:

Kn+2 :=
{(

x, x̄n+1, x̄n+2

)T ∈ R
n+2 : ‖x‖22 ≤ 2 x̄n+1x̄n+2

}

,

which allows us to incorporate quadratic constraints. There are efficient, large scale solvers
for (17) available [1, 28, 29]. Generally preconditioned Newton steps are applied within a
primal-dual interior point program. In our numerical examples we use the software package
MOSEK for SOCP computations.
SOCP for ℓ2 median computation (12) reads:

min
s∈R,t∈RM

〈(
λ
w

)

,

(
s
t

)〉

subject to Kx− f = x̄, x− pi = yi, i = 1, . . . ,M,

‖x̄‖22 ≤ 2s, ‖yi‖2 ≤ ti i = 1, . . . ,M.

11



Finally, let us explain Weiszfeld’s algorithm. If x̂ 6∈ P , then Ev is differentiable at x̂ and

0 = ∇Ev(x̂) = λKTKx̂−KTf +
M∑

i=1

wi
x̂− pi

‖x̂− pi‖2
,

x̂ = (λKTK +

M∑

i=1

wi
1

‖x̂− pi‖2
I)−1

(

KTf +

M∑

i=1

wi
pi

‖x̂− pi‖2

)

. (18)

In this case, Weiszfeld’s algorithm can be considered in the more general context of quadratic
(Taylor) approximation of a twice differentiable functional, see [37].
By Fermat’s rule x̂ ∈ argminxEv(x) if and only if 0 ∈ ∂Ev(x̂), i.e., if and only if either x̂ 6∈ P
and

0 = λKT(Kx̂− f) +
M∑

i=1

wi
x̂− pi

‖x̂− pi‖2
(19)

or x̂ = pk ∈ P and

0 ∈ λKT(Kpk − f) +

M∑

i=1
i6=k

wi
pk − pi

‖pk − pi‖2
+B2,wk

(0). (20)

The last inclusion is fulfilled if and only if ‖Gk‖2 ≤ wk, where

Gk := λKT(Kpk − f) +
M∑

i=1
i6=k

wi
pk − pi

‖pk − pi‖2
.

Suppose that M ≥ 2 or λ 6= 0 and K is invertible. We define

G(x) :=







λKT(Kx− f) +
M∑

i=1
wi

x−pi
‖x−pi‖2 if x 6∈ P,

0 if x = pk ∈ P, ‖Gk‖2 ≤ wk,

Gk − wk
Gk

‖Gk‖2 if x = pk ∈ P, ‖Gk‖2 > wk

and

S(x) :=







λKTK +
M∑

i=1

wi
‖x−pi‖2 I if x 6∈ P,

λKTK +
M∑

i=1
i6=k

wi
‖pk−pi‖2 I if x = pk ∈ P.

Note that S(x) is symmetric and positive definite. Now the generalized Weiszfeld algorithm
is defined as follows:

Weiszfeld’s Algorithm:
Initialization: x(0) ∈ R

d, cr ∈ [1, 2).
For r = 0, 1, ... repeat until a convergence criterion is reached

x(r+1) = Tcr(x
(r)) := x(r) − crS(x

(r))−1G(x(r)).

12



Note that in the case cr = 1 and x(r) 6∈ P for all r = 0, 1, . . . Weiszfeld’s algorithm is just the
Picard iteration of (18).

Remark 3.8. The above algorithm is based on the assumption that P contains only distinct
points pi. In case that some points are equal the algorithm can be adapted as follows:
Suppose that λ 6= 0 and K is invertible or there exist at least two points pi, pj such that
pi 6= pj. Let Ik := {i ∈ {1, . . . ,M} : pk = pi}. Then, we simply set

Gk := λKT(Kpk − f) +
M∑

i=1
i/∈Ik

wi
pk − pi

‖pk − pi‖2
,

G(x) :=







λKT(Kx− f) +
M∑

i=1
wi

x−pi
‖x−pi‖2 if x 6∈ P,

0 if x = pk ∈ P, ‖Gk‖2 ≤
∑

i∈Ik
wi,

Gk −
∑

i∈Ik
wi

Gk
‖Gk‖2 if x = pk ∈ P, ‖Gk‖2 >

∑

i∈Ik
wi

and

S(x) :=







λKTK +
M∑

i=1

wi
‖x−pi‖2 I if x 6∈ P,

λKTK +
M∑

i=1
i/∈Ik

wi
‖pk−pi‖2 I if x = pk ∈ P.

Remark 3.9. Weiszfeld’s algorithm with cr = 1 and starting vector x(0) = 0 (K = I, M = 1
and p1 = 0) applied to the proximation problem (1) with p = 2 terminates after one step
which computes the coupled shrinkage of f .

Theorem 3.10. Let Ev have a unique minimizer. For 1 ≤ cr < 2, the sequence {x(r)}r∈N
generated by the Weiszfeld algorithm converges for any x(0) to the minimizer of Ev.

The proof which follows mainly the lines of [26], where the case λ = 0 was considered, is given
in the appendix. Indeed local linear convergence of the algorithm can be shown.

4 Matrix Median Computation

For given pairwise different matrices Pi ∈ R
m,n, i = 1, ...,M , positive weights wi, i = 1, ...,M

and a matrix F ∈ R
m,n we are interested in minimizing

Em(X) :=
λ

2
‖X − F‖2F +

M∑

i=1

wi‖X − Pi‖•, λ ≥ 0, (21)

where • ∈ {∗,F , 2}.
The Frobenius norm plays a special role here: If • = F , a columnwise reordering of the matrix
components into corresponding vectors leads to the vector median problem (12). Then we
know by Proposition 3.5 that X̂ = argminX Em(X) is in the convex hull of {F,P1, . . . , PM}.
Therefore, if F,P1, . . . , PM are symmetric, positive semi-definite matrices, then noting that
the symmetric, positive semi-definite matrices form a convex cone, X̂ is also symmetric and
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positive semi-definite. Furthermore, we can use the algorithms from Subsection 3.2 to compute
the minimizer of (21) with respect to the Frobenius norm.
In the general case we can again apply the ADMM algorithm and its ’relatives’ as described
in the following subsection.

4.1 Algorithms

An ADMM can be deduced using the same ideas as for the generalized vector median problem
(21) which leads to the following algorithm:

ADMM for Matrix Median Computation:
Initialization: V (0) ∈ R

Mm,n, B(0) ∈ R
Mm,n and γ > 0.

For r = 0, 1, ... repeat until a convergence criterion is reached

X(r+1) = argmin
X∈Rm,n

{λ

2
‖X − F‖2F +

1

2γ
‖B(r) + 1M ⊗X − V (r)‖2F

}
,

V (r+1) = argmin
V ∈RMm,n

{
M∑

i=1

wi‖Vi − Pi‖• +
1

2γ
‖B(r) + 1M ⊗X(r+1) − V ‖2F

}
,

B(r+1) = B(r) + 1M ⊗X(r+1) − V (r+1).

Here, V = (V T
1 , . . . , V T

n )T with Vi ∈ R
m,n.

Again, the second step can be computed separately for each Vi, resp., Yi = Vi−Pi, where the
proximation problems

Y
(r)
i := argmin

Yi∈Rm,n
{wi‖Yi‖• +

1

2γ
‖Si − Yi‖2F}, with Si := B

(r)
i +X(r+1) − Pi

can be solved as shown in Section 2. Similarly, we obtain a corresponding PPXA method for
the matrix median problem:

PPXA for Matrix Median Computation:

Initialization: Y (0) ∈ RMm,n, σi > 0 with
∑M+1

i=1 σi = 1, X(0) =
∑M+1

i=1 σiY
(0)
i , γ > 0 and

µ ∈ (0, 2).
For r = 0, 1, ... repeat until a convergence criterion is reached

V
(r+1)
i = argmin

Vi∈Rm,n
{ γ

σi
wi‖Vi − Pi‖• +

1

2
‖Vi − Y

(r)
i ‖2F}, i = 1, . . . ,M,

V
(r+1)
M+1 = (1 +

γλ

σM+1
)−1(F + Y

(r)
M+1),

Z(r+1) =

M+1∑

i=1

σiV
(r+1)
i ,

Y
(r+1)
i = Y

(r)
i + µ(2Z(r+1) −X(r) − V

(r+1)
i ), i = 1, . . . ,M + 1,

X(r+1) = X(r) + µ(Z(r+1) −X(r)).

If F,P1, . . . , PM are symmetric with m = n and if we start with symmetric matrices, then
the both ADMM and PPXA produce in each step again a symmetric matrix X(r) so that we
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end up with a symmetric matrix as the minimizer of (21). In the following, we denote by
Symn(R) the space of symmetric n× n matrices with real components.
Finally we note that it is also possible to solve (21) by semi-definite programming as it was
proposed in [3, 41, 44].

4.2 Median Computation for Symmetric 2× 2 Matrices

The weighted medians of symmetric 2× 2 matrices have interesting properties which we will
consider in this subsection. In image processing medians of this type are of interest, since
they are closely related to structure tensors of images. To motivate our interest in this topic
let us briefly recall the definition of the classical structure tensor of Förstner and Gülch [17].

Remark 4.1. (Classical structure tensor)
Assume that a given image u : Ω → R, Ω ⊂ R

2, has nearly constant values along a single
direction v with ‖v‖2 = 1 in a neighborhood Bρ̃(x0) ⊂ Ω of x0. Then 0 ≈ ∂

∂vu(x) = vT∇u(x)
for x ∈ Bρ̃(x0) and we obtain for a nonnegative weight function w : Ω → R with support in
Bρ̃(0) that

0 ≈
∫

Ω

w(y − x0)(v
T∇u(y))2 dy = vT

∫

Ω

w(y − x0)∇u(y)∇u(y)T dy

︸ ︷︷ ︸

J (x0)

v.

Hence, the direction v of constant gray values can be obtained by computing the eigenvector of
the smallest eigenvalue of the matrix J (x0). The usual choice for w is a truncated Gaussian
w = Kρ with mean 0, standard deviation ρ and support in B⌊3ρ⌋(0). If we apply this idea for
every image point x ∈ Ω we end up with a tensor field

Jρ(x) := (Kρ ∗ ∇u∇uT)(x), x ∈ Ω (22)

which is called structure tensor of u. Often u is first pre-smoothed by convolving it with
another Gaussian of small standard deviation σ before computing the gradients ∇uσ. If the
eigenvalues of Jρ(x0) fulfill λ1 ≫ λ2 we can assume that x0 is in a region with homogenous
gradient directions, e.g. in the neighborhood of an edge and the corresponding eigenvectors
v1 = v = v⊥ and v2 = v approximate the gradient direction and the isophote direction,
respectively.
To get a discrete version of the structure tensor, we consider Ω := {1, . . . , n}×{1, . . . , n} and
an image u = (ui,j)(i,j)∈Ω. Set

Pi,j := ∇ui,j∇uT

i,j, (i, j) ∈ Ω, (23)

where ∇ is a discrete version of the gradient now. Let N (i0, j0) ⊂ Ω be the neighborhood of
x0 = (i0, j0) and let (wi,j/

∑
wi,j)i,j denote the sampled and normalized truncated Gaussian

with mean 0 and standard deviation ρ. Then, we see that (22) corresponds to

Jρ(i0, j0) =

∑

(i,j)∈N (i0,j0)

wi0−i,j0−jPi,j

∑

(i,j)∈N (i0,j0)

wi0−i,j0−j
(24)

= argmin
X∈R2,2

∑

(i,j)∈N (i0,j0)

wi0−i,j0−j‖X − Pi,j‖2F . (25)
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Hence, the discrete structure tensor at (i0, j0) is the solution of the weighted least squares
problem (25), i.e., the weighted mean of the matrices Pi,j in the neighborhood of (i0, j0). It
has nearly the form of (21) with λ = 0 except that the Frobenius norm is squared now. To
find gradients in images with similar orientations one is in the discrete setting, too, interested
in the eigenvectors of Jρ.

For the subsequent considerations it is useful to consider the common mapping T : Sym2(R) →
R
3 given by

T (X) :=
1√
2
(x1,1 − x2,2, 2x1,2, x1,1 + x2,2)

T = (x, y, z)T. (26)

This mapping is an isometry from Sym2(R) equipped with the Frobenius norm onto R
3 with

the ℓ2-norm. In particular we have that

T−1 ((x, y, z)T) =
1√
2

(
x+ z y
y z − x

)

.

Note that the set of positive semi-definite matrices forms a convex cone in Sym2(R) which
can be illustrated using the mapping T as in Fig. 2.

−2
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1

2

−2
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Figure 2: Cone T (Sym2(R)) of symmetric, positive semi-definite matrices in Sym2(R) visual-
ized in R

3 via (26).

The eigenvalues λ1 ≥ λ2 of X are given by

λ1 =
1

2
(x1,1 + x2,2 +

√

(x1,1 − x2,2)2 + 4x21,2) =
1√
2
(z + ‖(x, y)T‖2), (27)

λ2 =
1

2
(x1,1 + x2,2 −

√

(x1,1 − x2,2)2 + 4x21,2) =
1√
2
(z − ‖(x, y)T‖2), (28)

so that, conversely, ‖(x, y)T‖2 = 1√
2
(λ1 − λ2) and z = 1√

2
(λ1 + λ2). If λ1 > λ2, a short

calculation shows that the eigenspace of λ1 is spanned by

v =

(
x+ ‖(x, y)T‖2

y

)

which is independent of z.
Finally, our three matrix norms can be rewritten as

‖X‖∗ =
√
2max{‖(x, y)T‖2, |z|}, ‖X‖F = ‖(x, y, z)T‖2, ‖X‖2 =

1√
2
(‖(x, y)T‖2 + |z|) .

(29)
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This immediately implies the following proposition. In particular, the proposition shows that
the matrix median of 2× 2 matrices with respect to the spectral norm can be computed via
vector medians, see also [44].

Proposition 4.2. Let T (X̂) := (x̂, ŷ, ẑ)T, T (F ) := (xF , yF , zF )
T and T (Pi) := (xi, yi, zi)

T.

i) The matrix X̂ is the minimizer of
M∑

i=1
wi‖X − Pi‖2F , i.e., X̂ =

M∑

i=1
wi Pi/

M∑

i=1
wi if and

only if

• ẑ is the minimizer of
M∑

i=1
wi(z − zi)

2 and

• (x̂, ŷ)T is the minimizer of
M∑

i=1
wi‖(x, y)T − (xi, yi)

T‖22.

ii) The matrix X̂ is a minimizer of (21) with the spectral norm • = 2 if and only if

• ẑ is a minimizer of λ
2 (z − zF )

2 + 1√
2

M∑

i=1
wi |z − zi| and

• (x̂, ŷ)T is a minimizer of

λ

2
‖(x, y)T − (xF , yF )

T‖22 +
1√
2

M∑

i=1

wi‖(x, y)T − (xi, yi)
T‖2. (30)

If tr(F ) = tr(Pi) for all i = 1, . . . ,M , by the following proposition the minimizers of (21)
coincide if λ is substituted by

√
2λ and λ/

√
2 for the nuclear and spectral norm, respectively.

In particular, we have that the traces of rank-1 matrices Pi = pip
T
i as those in (23) are equal

if we use normalized directions ‖pi‖2 = 1 for all i = 1, . . . ,M .

Proposition 4.3. i) Suppose that tr(X) = 0, then ‖X‖F = 1√
2
‖X‖∗ =

√
2‖X‖2 = ‖(x, y)T‖2.

ii) Suppose that tr(F ) = tr(Pi) for all i = 1, . . . ,M . Let wF ,i = wi, w∗,i = 1√
2
wi, = w2,i =√

2wi. Then, the minima

min
X

{λ

2
‖X − F‖2F +

M∑

i=1

w•,i‖X − Pi‖•
}

(31)

are the same for all • ∈ {∗,F , 2} and there exists a common minimizer X̂.

Proof: Part i) follows directly from (29) and the definition z = tr(X).
To prove ii) we set T (F ) := (xF , yF , zF )

T and T (Pi) := (xi, yi, zi)
T. Since tr(F ) = tr(Pi),

i = 1, . . . ,M , we obtain by i) that

min
X∈R2,2

{λ

2
‖X − F‖2F +

M∑

i=1

w•,i‖X − Pi‖•
}

≤ min
tr(X)=tr(F )

{λ

2
‖X − F‖2F +

M∑

i=1

w•,i‖X − Pi‖•
}

= min
x,y

{λ

2
‖(x− xF , y − yF )

T‖22 +
M∑

i=1

wi‖(x− xi, y − yi)
T‖2
}
. (32)
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On the other hand we have by (29) that

min
X∈R2,2

{λ

2
‖X − F‖2F +

M∑

i=1

w•,i‖X − Pi‖•
}

≥ min
x,y

λ

2

{
‖(x− xF , y − yF )

T‖22 +
M∑

i=1

wi‖(x− xi, y − yi)
T‖2
}
.

Hence, (32) is the minimum of (31) for all • ∈ {∗,F , 2}. A common minimizer is given by X̂
with T (X̂) = (x̂, ŷ, 1√

2
tr(F ))T, where (x̂, ŷ)T is the unique minimizer of (32), cf. Subsection

3.1. �

Finally, we will deal again with rank-1 matrices Pi = pip
T
i as those used in the computation of

the structure tensor, where ‖pi‖2 may vary for i = 1, . . . ,M now. Then, the natural question
arises if the eigenvectors v = v(X̂) belonging to the largest eigenvalue of

X̂ := argmin
X∈R2,2

{
M∑

i=1

wi‖X − Pi‖2F
}

(33)

are related to the vector

p̂ := argmin
p∈R2

{
M∑

i=1

wi‖p − g(pi)‖22
}

(34)

for an appropriate function g. Of course we cannot expect a relation for g(pi) := pi, since
Pi does not take the orientation of pi into account, i.e., Pi = (−pi)(−pi)

T. However, we can
define an appropriate function g which is invariant to a sign change. To this end, let us first

write pi in the form pi = ‖pi‖2(cosαi, sinαi)
T and let R(α) :=

(
cosα − sinα
sinα cosα

)

denote

the rotation matrix by some angle α. Now observe that R(αi)pi = R(αi + 180◦)(−pi) and
−pi = ‖pi‖2(cos(αi + 180◦), sin(αi + 180◦))T. We will see that

g(p) :=
‖p‖2√

2
R(αp)p, (35)

where p = ‖p‖2(cosαp, sinαp)
T, is a good choice.

The following proposition shows the desired relation for the above squared Frobenius norm
and for the spectral median.

Proposition 4.4. Let F := ffT, Pi := pip
T

i and pi = ‖pi‖2(cosαi, sinαi)
T, i = 1, . . . ,M .

i) Assume the eigenvalues of the minimizer X̂ of (33) satisfy λ1 6= λ2. If v is the eigenvector
belonging to the largest eigenvalue, then

v = const · R
(

−αp̂

2

)

p̂, (36)

where p̂ is the minimizer of (34) with g as defined in (35). We have p̂ = 0 if and only if the
eigenvalues of X̂ are equal. Furthermore, it holds that ‖p̂‖2 = 1√

2
(λ1 − λ2).

ii) Let X̂ be a minimizer of (21) with the spectral norm • = 2. If the eigenvalues of X̂ are
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not equal, then the eigenvectors v belonging to the largest eigenvalue are given by (36), where
p̂ is a minimizer of

λ

2
‖p− f‖22 +

1√
2

M∑

i=1

wi‖p − g(pi)‖2. (37)

If p̂ = 0, then there exists a minimizer X̂ of (21) with equal eigenvalues. Morover, ‖p̂‖2 =
1√
2
(λ1 − λ2).

Note that we have seen in Subsection 3.1 that (37) has in general a unique minimizer.

Proof: i) Let X̂ be the minimizer of (33) and let T (X̂) = (x̂, ŷ, ẑ)T and
(x̂, ŷ)T = ‖(x̂, ŷ)T‖2(cosα, sinα)T. Then we know that the eigenspace of the largest eigenvalue
of X̂ is spanned by

v =

(
x̂+ ‖(x̂, ŷ)T‖2

ŷ

)

= ‖(x̂, ŷ)T‖2
(
cosα+ 1
sinα

)

= 2‖(x̂, ŷ)T‖2 cos
α

2

(
cos α

2
sin α

2

)

= const ·R
(

−α

2

)(x̂
ŷ

)

. (38)

By definition of Pi, we obtain that T (Pi) = (p2i,1 − p2i,2, 2pi,1pi,2, p
2
i,1 + p2i,2)

T/
√
2 and

(
p2i,1 − p2i,2
2pi,1pi,2

)

= ‖pi‖2
(
cos2 αi − sin2 αi

2 cosαi sinαi

)

= ‖pi‖2
(
cos(2αi)
sin(2αi)

)

= ‖pi‖R(αi)pi.

Hence by Proposition 4.2 i) we conclude that (x̂, ŷ)T is the minimizer of (34) with ‖(x̂, ŷ)T‖2 =
1√
2
(λ1 − λ2). By (38) this implies (36). Furthermore we have that p̂ = 0 ⇔ (x̂, ŷ)T = 0 ⇔

λ1 = λ2.
ii) The proof of ii) follows the same line as i), where we finally use Proposition 4.2 ii). �

This proposition shows that instead of computing the eigenvectors to the largest eigenvalue of
the structure tensor, we can take the vectors pi, rotate them by their own angle, scale them by
1/
√
2 times their length and compute the weighted vector mean of these vectors. The result

must then be rotated back by half of its angle to obtain the orientation of the eigenvectors.
The length of the weighted vector mean can be used as a measure for the dominance of the
found orientation. Similarly, instead of computing the eigenvectors of the spectral matrix
median (21), we can apply the same procedure and solve the vector median problem (37).

5 Numerical Experiments

The purpose of this section is twofold. In the next subsection, we compare the different
algorithms proposed in Subsection 3.2 for the ℓ2 vector median computation with respect
to their efficiency if sequential programming is used. In Subsection 5.2, we compute locally
matrix means (= structure tensors) and matrix medians for noisy images and compare the
directions of their eigenvectors. Moreover, we show their relation to special vector medians
considered in Subsection 4.2. Depending on the kind of noise in the images and, consequently,
in the image gradients, we will see that matrix means and medians with respect to different
norms show a different behavior.
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5.1 Comparison of Algorithms for ℓ2 Vector Median Computation

In this subsection, we compare the computation time of Weiszfeld’s algorithm, ADMM and
PPXA introduced in Subsection 3.2 for the solution of the two-dimensional ℓ2 vector median
problem

argmin
x∈R2

{
M∑

i=1

wi‖x− pi‖2}, (39)

with given points pi ∈ R
2 and weights wi > 0, i = 1, . . . ,M . We also solved (39) via SOCP

using the commercial software MOSEK 6.0. The reason for not showing the corresponding
running times here is that they turn out to be much higher than for the other three algorithms.
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Figure 3: Performance of Weiszfeld’s algorithm, ADMM and PPXA for problem (39) applied
to random points on the unit circle and unit weights. Average number of iterations (left) and
average computation time (right) in dependence on the number of points.

In the first experiment, the points pi, i = 1, . . . ,M are chosen randomly on the unit circle
and we use unit weights. This is repeated 10, 000 times for any number M = 4, . . . , 64 of
points. Fig. 3 shows the average number of iterations and the average computation time in
dependence on the number M of data points. As stopping criterion, we use that the maxi-
mal difference of each component of x(r) with respect to a reference solution obtained after
sufficiently many iterations must be smaller than 0.001. Note that we have determined the
optimal parameters for the different algorithms by hand. The best parameters of Weiszfeld’s
algorithm and of ADMM turn out to be the same for all M , namely cr = 1.8 and γ = 1.1,
respectively. For the PPXA, we use σi = 1/M . The parameter µ can be set to 1.8 but for
optimal performance it is necessary to increase the parameter γ from 9.0 to 64.0 as the num-
ber of data points increases from 4 to 64. Concerning the initial values, we set in Weiszfeld’s

algorithm x(0) = 0, in ADMM b
(0)
i = −pi, v

(0) = 0 and in PPXA x(0) = 0, y
(0)
i = 0.

Interestingly, in this experiment all three algorithms become faster as the number of data
points increases. The reason for this might be that for our data both median and mean tend
to zero as the number of points goes to infinity. Moreover, we see that Weiszfeld’s algorithm
performs best, followed by PPXA and ADMM. It is important to note, however, that in
contrast to Weiszfeld’s algorithm, ADMM and PPXA can be parallelized to a high degree so
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that a significant speed-up of a parallel implementation, e.g., on a GPU, can be expected for
these two algorithms.
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Figure 4: Comparison of Weiszfeld’s algorithm, ADMM and PPXA for problem (39) applied
to the gradients of the noisy image on the left-hand side of Fig. 7 and Gaussian weights. Top:
average number of iterations and average computation time for each pixel in dependence on ρ,
the standard deviation of the Gaussian weights. Bottom: standard deviation in the number
of iterations per pixel.

In our second experiment, we show the computation time for (39) applied to the noisy
image on the left-hand side of Fig. 7. More precisely, for each pixel our data points are
now the gradients of neighboring pixels which result from a central difference discretization.
The weights wi are given by a sampled Gaussian and we vary the corresponding standard
deviation ρ in steps of 0.5 from 1 to 5 with M = (2⌊3ρ⌋ + 3)2 data points. The stopping
criterion is the same as in the first experiment, i.e., the maximal error in each component of
x(r) must be smaller than 0.001. Note that, in contrast to the first experiment, the norm of
the data points can vary substantially because of the impulse noise. The optimal parameter
for Weiszfeld’s algorithm is again cr = 1.8. The parameters µ and σi in PPXA is set to 1.8
and 1/M , respectively, for all ρ. However, for both ADMM and PPXA we have to adapt the
parameters γ as ρ runs from 1.5 to 5: The parameter γ in ADMM and PPXA is increased
from 540 to 6, 000 and from 36, 000 to 4, 400, 000, respectively. We use the same initial values
as described in the first experiment.
The results are shown in Fig. 4. Weiszfeld’s algorithm again needs the fewest number of
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iterations with the exception of relatively large ρ where PPXA comes in first. ADMM needs
the most iterations for all ρ. In contrast to the first experiment, the computation time now
increases for all three algorithms as ρ increases. Furthermore, it is interesting to see that
there is a high standard deviation of the number of iterations, especially for ADMM and to a
lesser degree for PPXA. For all three algorithms the standard deviation is larger for small ρ.

5.2 Eigenvectors of Structure Tensors and Matrix Medians and Vector

Means and Medians

In this section, we investigate the properties of

• eigenvectors of structure tensors (= matrix means) and corresponding vector means,

• eigenvectors of matrix medians for different matrix norms and corresponding ℓ2 vector
medians.

In particular, we want to demonstrate consequences of the results of Subsection 4.2 in image
processing.
For this purpose, we apply our medians as local filters to the image gradients in the neigh-
borhood of image pixels. Thus, M = M(i0, j0) is the number of pixels in the neighborhood
of (i0, j0). If not stated otherwise, we use the input matrices

Pi,j = ∇ui,j∇uT
i,j = pi,jp

T
i,j

for the structure tensor and the matrix medians and the vectors pi,j, resp., g̃(pi,j) = R(αij)∇uij
with pij = ‖pij‖2(cosαi,j , sinαi,j)

T for vector mean and median computations. Note that in
contrast to Proposition 4.4 we do not apply a scaling for the modified vectors g̃(pi,j) since the
results do not show visual differences. For the modified vectors g̃(pi,j) we finally rotate the
result v̂ back by half of its angle as described in Proposition 4.4. The gradients are discretized
by central differences. Moreover, we set λ = 0 and the weights wij to be a sampled Gaus-
sian centered at the center of the neighborhood for given standard deviation ρ. In general,
no presmoothing of the corrupted image is used. In those cases, where we presmoothed the
image by convolving it with a Gaussian, the standard deviation σ of the Gaussian is specified.

The results of our matrix/vector median filters are compared to those of the structure tensor
and the corresponding local weighted vector means. To visualize the results, we plot the
angles of the solutions of the vector filters as well as the angles of the eigenvectors to the
largest eigenvalue of the results of the matrix filters. To have a consistent coloring of the
angles, all angles are displayed modulus 180◦.

First Example. Our first example in Fig. 5 shows a test image with sharp edges and
regions with constant gradients, which is corrupted by additive Gaussian noise. In Fig. 6
the results of the structure tensor are compared to our matrix median filter with the spectral
norm as a representative for all median filters. Here, we can see that the structure tensor is
especially well-suited to restore the gradient orientations at the edges of the objects. After
a slight presmoothing, it is also able to restore the gradients within the objects to a certain
degree. For this noisy image the results of our matrix median filter are slightly worse, since all
gradients are corrupted by the noise. As one may expect, the results are completely different
if the image is corrupted by impulse noise instead of Gaussian noise.
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Figure 5: Top: Test image of size 256 × 256 (left) and the angles of the gradients (right).
Bottom: Image corrupted by additive Gaussian noise of standard deviation 10 (left) and
smoothed image by a Gaussian kernel of standard deviation σ = 1 (right).

Second Example. Now the initial image in Fig. 5 (top) has been corrupted by 20%
impulse noise as it is displayed in Fig. 7. The results in Fig. 8 show that all median filters
(second and third row) give much better results than the mean filters with pi,j and g̃(pi,j)
and the structure tensor in the first row. The best results are obtained by the spectral matrix
median and its relatives in the second row. Especially the gradient angles at regions where
the original image has constant gradients are much better restored. The mean filter as well as
the structure tensor have quite big difficulties with these regions. As indicated by Proposition
4.4 the results for the modified vector mean and the structure tensor, resp., for the modified
vector median and the spectral matrix median are nearly the same. The fact that we did not
scale g̃(pij) hardly plays a role for the results.
With our matrix median filters the angles of the eigenvectors are almost the same with the
nuclear norm and the spectral norm. Only for the Frobenius norm the result is worse. To
show also an example with normalized gradients we include Fig. 8 (i). This result was gener-
ated by the matrix median with the spectral norm. However, by Proposition 4.3 ii) it follows
that the minimizers with the nuclear, the Frobenius and the spectral norm are the same in
this case. Compared to the results by the matrix median filters without normalized gradients
it is significantly worse than the one with the spectral and nuclear norm, but better than the
result with the Frobenius norm.

To investigate the similar eigenvectors of the matrix median filters with the nuclear and
spectral norm, we include Fig. 9. By Proposition 4.2 we know that if we set T (Pi) =
(xi, yi, zi)

T and T (X̂) = (x̂, ŷ, ẑ)T, the vector (x̂, ŷ)T and thus the eigenvectors of a minimizer
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(a) gradient angles of the noisy
image of Fig. 5

 

 

0

20

40

60

80

100

120

140

160

180

(b) result by the structure tensor
(σ = 0, ρ = 2)
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(c) result by the spectral matrix
median filter (σ = 0, ρ = 2)
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(d) gradients of the presmoothed
image of Fig. 5 (σ = 1)
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(e) result by the structure tensor
(σ = 1, ρ = 2.5)
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(f) result by the spectral matrix
median filter (σ = 1, ρ = 2.5)

Figure 6: Results for the Gaussian noise corrupted and presmoothed image of Fig. 5.

X̂ of the matrix median filter with the spectral norm can be obtained by

min
(x,y)T

1√
2

M∑

i=1

wi‖(x, y)T − (xi, yi)
T‖2.

On the other hand, a minimizer X̂ of the matrix median filter with the nuclear norm is given
by





x̂
ŷ
ẑ



 = argmin
(x,y,z)T

1√
2

M∑

i=1

wimax{‖(x, y)T − (xi, yi)
T‖2, |z − zi|}.

Hence, if X̂ fulfills ‖(x̂, ŷ)T − (xi, yi)
T‖2 ≥ |ẑ − zi| for all i = 1, . . . ,M , the eigenvectors of

the solutions of both problems coincide. This is the case for the patch shown in Fig. 9 where
only small differences appear, cf. the difference image shown Fig. 9 (b). Note that we have
for the eigenvalues λ1 and λ2 of X̂ − Pi that

‖(x, y)T − (xi, yi)
T‖2 =

1√
2
(λ1 − λ2) and |z − zi| =

1√
2
|λ1 + λ2|.

Third Example. Our last example in Figs. 10 and 11 shows the results for a second noisy
test image. In this image the gradient angles change steadily. As we can see, this time all
results of our median filters look quite similar. Only the ordinary vector median filter is
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Figure 7: Original image of Fig. 5 corrupted by 20% impulse noise (left) and corresponding
gradient directions (right).

different at pixels where the sign of the gradients changes in the noise-free image. Moreover,
the result with the Frobenius norm differs at some of the pixels where the original image was
constant.

6 Conclusions

In this paper, we have applied various algorithms for the computation of generalized vec-
tor and matrix medians. We have shown how these algorithms look like for our problems
and compared their efficiency numerically. Furthermore, we have investigated the relations
between means and medians of symmetric 2 × 2 matrices arising in image processing. A
connection between the eigenvectors of these matrices and corresponding vector means and
medians have been established. The application of these algorithms in local median filters
leads to the smoothing of directions. However, the purpose of this paper was to understand
the differences between the matrix mean and the matrix medians with respect to the nuclear
norm, Frobenius norm and spectral norm and not the smoothing of directions itself as for
example done in [19, 24, 35, 36]. Other applications such as colorization or topics like tensor
median computation are also subjects of future research.

A Appendix

We prove the convergence of the generalized Weiszfeld algorithm. Throughout the appendix
the norm ‖ · ‖ denotes the Euclidean norm.

Lemma A.1. Let 0 < cr ≤ 2. Then we have that x(r) ∈ argminEv if and only if x(r+1) = x(r).
For x(r) 6∈ argminEv it holds Ev(x

(r+1)) < Ev(x
(r)) if 0 < cr < 2 or if cr = 2 and there exist

d+ 1 affine independent points in P .

Proof: 1. For x(r) ∈ argminEv we have by (19) and (20) that G(x(r)) = 0 and consequently
that x(r+1) = x(r). Conversely, if x(r+1) = x(r), then G(x(r)) = 0 which is by (19) and (20)
only possible if x(r) ∈ argminEv.
2. Assume that x(r) 6∈ argminEv so that G(x(r)) 6= 0. Since S(x(r)) is symmetric and positive
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definite, we obtain

x(r+1) − x(r) = −crS(x
(r))−1G(x(r))

〈x(r+1) − x(r), G(x(r))〉 = −cr〈S(x(r))−1G(x(r)), G(x(r))〉 < 0.

Hence it follows for cr ≤ 2 that

0 ≥ (2− cr)〈x(r+1) − x(r), G(x(r))〉
= 〈x(r+1) − x(r), 2G(x(r))− crG(x(r))〉
= 〈x(r+1) − x(r), 2G(x(r)) + S(x(r))(x(r+1) − x(r))〉. (40)

Case 1: If x(r) 6∈ P , we get by definition of G and S that

0 ≥ 〈x(r+1) − x(r), 2λKTKx(r) − 2λKTf + 2
M∑

i=1

wi
x(r) − pi

‖x(r) − pi‖

+ λKTK(x(r+1) − x(r)) +

M∑

i=1

wi
1

‖x(r) − pi‖
(x(r+1) − x(r))〉

= λ〈x(r+1) − x(r),KTK(x(r+1) − x(r))〉+ 2λ〈x(r+1) − x(r),KTKx(r) −KTf〉

+

M∑

i=1

wi
‖x(r+1)‖2 − ‖x(r)‖2 − 2〈x(r+1), pi〉+ 2〈x(r), pi〉

‖x(r) − pi‖

and since the first two summands add to λ‖Kx(r+1) − f‖2 − λ‖Kx(r) − f‖2 we further have

0 ≥ λ‖Kx(r+1) − f‖2 − λ‖Kx(r) − f‖2 +
M∑

i=1

wi
‖x(r+1) − pi‖2 − ‖x(r) − pi‖2

‖x(r) − pi‖
. (41)

By definition of Ev this implies

Ev(x
(r)) ≥ λ‖Kx(r+1) − f‖2 − λ

2
‖Kx(r) − f‖2 +

M∑

i=1

wi
‖x(r+1) − pi‖2
‖x(r) − pi‖

,

2Ev(x
(r)) ≥ 2Ev(x

(r+1)) +
M∑

i=1

wi
(‖x(r+1) − pi‖ − ‖x(r) − pi‖)2

‖x(r) − pi‖
,

Ev(x
(r))− Ev(x

(r+1)) ≥ 1

2

M∑

i=1

wi
(‖x(r+1) − pi‖ − ‖x(r) − pi‖)2

‖x(r) − pi‖
≥ 0. (42)

The left-hand side is positive if cr < 2. If cr = 2 and there exist d + 1 points in P which
are affine independent, then there exits a unique point having the same distance from these
points, [5, p. 127]. Therefore the left-hand side is also positive in this case.
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Case 2: If x(r) = pk ∈ P , we can rewrite (40) by definition of G and S as follows:

0 ≥ λ‖K(x(r+1) − pk)‖2 + 2λ〈K(x(r+1) − pk),Kpk − f〉 − 2wk〈x(r+1) − pk,
Gk

‖Gk‖
〉

+

M∑

i=1
i6=k

wi

‖pk − pi‖
(

2〈x(r+1) − pk, pk − pi〉+ 〈x(r+1) − pk, x
(r+1) − pk〉

)

= λ
(

‖Kx(r+1) − f‖2 − ‖Kpk − f‖2
)

− 2wk〈x(r+1) − pk,
Gk

‖Gk‖
〉

+

M∑

i=1
i6=k

wi

‖pk − pi‖
(

‖x(r+1) − pi‖2 − ‖pk − pi‖2
)

.

Since

x(r+1) − pk = −crS(pk)
−1G(pk) = −crS(pk)

−1(‖Gk‖ − wk)
Gk

‖Gk‖
and

S(pk)(x
(r+1) − pk) = −cr(‖Gk‖ −wk)

Gk

‖Gk‖
we obtain with ‖Gk‖ − wk > 0 and cr > 0 that ‖S(pk)(x(r+1) − pk)‖ = cr(‖Gk‖ − wk) and
consequently

〈x(r+1) − pk,
Gk

‖Gk‖
〉 = −〈x(r+1) − pk, S(pk)(x

(r+1) − pk)〉
‖S(pk)(x(r+1) − pk)‖

. (43)

Adding Ev(pk) on both sides of (41) and using (43) yields

Ev(pk) ≥ λ‖Kx(r+1) − f‖2 − λ

2
‖Kpk − f‖2 + 2wk

〈x(r+1) − pk, S(pk)(x
(r+1) − pk)〉

‖S(pk)(x(r+1) − pk)‖

+

M∑

i=1
i6=k

wi
((‖x(r+1) − pi‖ − ‖pk − pi‖) + ‖pk − pi‖)2

‖pk − pi‖
,

2Ev(pk) > 2Ev(x
(r+1)) +

M∑

i=1
i6=k

wi
(‖x(r+1) − pi‖ − ‖pk − pi‖)2

‖pk − pi‖
,

where the last inequality takes into account that S(pk) is symmetric and positive definite and
x(r) = pk 6= x(r+1). �

Lemma A.2. Let pk 6∈ argminEv and cr ≥ 1. Then there exists ǫk > 0 such that

lim
x→pk

‖Tcr(x)− pk‖
‖x− pk‖

≥ 1 + ǫk.

In particular, {Tcr(x
(r))}r∈N cannot converge to pk.

Proof: For x 6= pk, we obtain

Tcr(x) = (1− cr)x+ crS(x)
−1

(

λKTf +

M∑

i=1

wipi
‖x− pi‖

)
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and further

Tcr(x)− pk = (1− cr)(x− pk) + crS(x)
−1G̃(x),

= (1− cr)(x− pk) + cr‖x− pk‖(‖x− pk‖S(x))−1G̃(x)

where

G̃(x) := λKT(f −Kpk) +
M∑

i=1
i6=k

wi(pi − pk)

‖x− pi‖
.

Since G̃(x) = −Gk and ‖x − pk‖S(x) = ‖x − pk‖
(
λKTK +

M∑

i=1
i6=k

wi
‖x−pi‖I

)
+ wkI we conclude

that

lim
x→pk

‖Tcr(x)− pk‖
‖x− pk‖

≥
∣
∣
∣
∣
|1− cr| − cr

‖Gk‖
wk

∣
∣
∣
∣

Since pk 6∈ argminEv there exists ǫk > 0 such that ‖Gk‖
wk

≥ 1 + ǫk ≥ 1 + ǫk
cr
, cf. (20). Using

cr ≥ 1, this implies

lim
x→pk

‖Tcr(x)− pk‖
‖x− pk‖

≥ 1 + cr(
‖Gk‖
wk

− 1) = 1 + ǫk

and we are done. �

Theorem A.3. Let Ev have a unique minimizer x̂. Then, for 1 ≤ cr < 2 and any x(0) ∈ R
d,

the sequence {Tcr(x
(r))}r∈N converges to x̂.

Proof: If x(r) = x̂ for some r we are done by Lemma A.1. Assume now that {x(r)} is an
infinite sequence. By Lemma A.1 and since Ev is coercive we know that {x(r)} is bounded.
Hence there exists a convergent subsequence {x(rj )} of {x(r)}. Let limj→∞ x(rj) = x̃. It
remains to show that x̃ = x̂. Since {Ev(x

(r))} is monotone decreasing and bounded, it is
convergent, say

lim
r→∞

Ev(x
(r)) = M.

Thus,
M = lim

j→∞
Ev(x

(rj)) = lim
j→∞

Ev(x
(rj+1)) = lim

j→∞
Ev(Tcr(x

(rj))).

If x̃ 6∈ P , the Tcr is continuous at x̃, i.e. lim
j→∞

Tcr(x
(rj)) = Tcr(x̃). By continuity of Ev we

obtain M = Ev(x̃) = Ev(Tcr(x̃)). By Lemma A.1 this is only possible if x̃ = x̂.

If x̃ = pk ∈ P and x̃ 6= x̂. By Lemma A.2, the whole sequence {x(r)} cannot converge to
pk. Therefore, there exist (one or more) subsequences converging to some point pj 6= pk.
(Convergence of subsequences to points not contained in P is not possible since by the above
considerations the only other cluster point could be x̂, but Ev(x̂) < Ev(pk) which contradicts
Lemma A.1.) Thus, for a small enough constant ε > 0, all but a finite number of points lie
within ε-balls around some points pj ∈ P . Here, we choose ε < mini 6=j ‖pi − pj‖/3 which
implies that there is an index n(ε) ∈ N such that all x(r), r ≥ n(ε), lie within these balls. Then,
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there exits an infinite number of indices s ≥ n(ε) with ‖x(s)−pk‖ > 2ε and ‖x(s+1)−pk‖ < ε.
By (42) in the proof of Lemma A.1 we have that

Ev(x
(s))− Ev(x

(s+1)) >
wk

2

(‖x(s+1) − pk‖ − ‖x(s) − pk‖)2
‖x(s) − pk‖

≥ wk

2

ε2

2ε
.

This is a contradiction to the convergence of Ev(x
(s)). �
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(b) vector mean with modified
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(c) structure tensor (ρ = 2.5)
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(d) vector median with pi,j (ρ =
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(e) vector median with modified
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(f) spectral matrix median (ρ =
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(g) Frobenius matrix median
(ρ = 2.5)
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(h) nuclear matrix median (ρ =
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(i) spectral matrix median with
normalized gradients (ρ =
2.5)

Figure 8: Results for the impulse noise corrupted image of Fig. 7.
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(b) |λ1+λ2|−(λ1−λ2) for X̂−Pi,j

Figure 9: Details of the matrix median filter with the nuclear norm for the filtering of pixel
(45, 45) of Fig. 7: The figure shows that for all Pi,j the eigenvalues λ1, λ2 of X̂ − Pi,j fulfill
λ1 − λ2 > |λ1 + λ2| or λ1 − λ2 ≈ |λ1 + λ2|.
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Figure 10: Top: Test image of size 128×128 (left) and the angles of the gradients (right). Bot-
tom: Test image corrupted by 20% impulse noise (left) and corresponding gradient directions
(right). In constant areas the gradient angle is set to 0.
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(a) vector median (ρ = 2.5)
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(b) structure tensor (ρ = 2.5)
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(c) Frobenius matrix median
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(f) spectral matrix median with
normalized gradients (ρ =
2.5)

Figure 11: Results for the impulse noise corrupted image of Fig. 10 (bottom).
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