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Abstract We examine the underlying structure of popular
algorithms for variational methods used in image process-
ing. We focus here on operator splittings and Bregman meth-
ods based on a unified approach via fixed point iterations
and averaged operators. In particular, the recently proposed
alternating split Bregman method can be interpreted from
different points of view - as a Bregman, as an augmented
Lagrangian and as a Douglas-Rachford splitting algorithm
which is a classical operator splitting method. We also study
similarities between this method and the forward-backward
splitting method when applied to two frequently used mod-
els for image denoising which employ a Besov-norm and a
total variation regularization term, respectively. In thefirst
setting, we show that for a discretization based on Parseval
frames the gradient descent reprojection and the alternating
split Bregman algorithm are equivalent and turn out to be
a frame shrinkage method. For the total variation regular-
izer, we also present a numerical comparison with multistep
methods.

Keywords Douglas-Rachford splitting· forward-backward
splitting · Bregman methods· augmented Lagrangian
method· alternating split Bregman algorithm· image
denoising

1 Introduction

Many problems in image restoration can be solved by means
of variational methods, i.e., the resulting images are min-
imizers of appropriate energy functionals. The success of
these models led to a great number of computational al-
gorithms. A common idea is to derive iterative algorithms
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which consist in each iteration of subproblems which are
easier to solve. Three important ways to do this will ap-
pear in this paper: operator splitting, Lagrangian and Breg-
man methods. In the minimization problems we consider
here, the objective functions consist of the sum of two terms.
Hence,operator splitting methodswhich make use of this
special structure are a natural choice.Lagrangian methods
allow one to consider primal and dual variable at the same
time via related constrained problems. The idea ofBregman
methods, on the other hand, is to introduce a term which pe-
nalizes the distance to the last iterate. This also gives rise to
easier problems in each iteration.

In the first part of this paper, we will therefore under-
line the common roots of operator splitting and Bregman
methods from the point of view of fixed point theory. In
many cases, convergence can be guaranteed via the notion
of averaged operators. We then consider a new Bregman
technique, called thealternating split Bregman algorithm,
proposed by Goldstein and Osher for image restoration and
compressed sensing. We illustrate the three different per-
spectives for this method. In fact, in our setting the alter-
nating split Bregman algorithm coincides with thealternat-
ing direction method of multiplierswhich is a special aug-
mented Lagrangian method and it can also be interpreted as
a classical operator splitting algorithm, namely, aDouglas-
Rachford splitting algorithm, cf. (Esser 2009). This connec-
tion also clarifies the convergence of the alternating Split
Bregman algorithm.

In the second part of this paper, we consider the applica-
tion to image denoising. First, we consider the following im-
age restoration model which uses anL2 data-fitting term and
a Besov-norm regularization term, see (DeVore and Lucier
1992),

argmin
u∈B1

1,1(Ω)

{ 1
2‖u− f‖2

L2(Ω) + λ‖u‖B1
1,1(Ω)}. (1)
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We present a discrete version of this problem involving
Parseval frames. Interestingly, the corresponding alternat-
ing split Bregman algorithm is not only equivalent to the
Douglas-Rachford splitting method but also to another pop-
ular operator splitting method: theforward-backward split-
ting algorithmwhich is for our particular problem simply
a gradient descent reprojection algorithm, see (Chambolle
2005). Since our method is based on frame transformations
and soft shrinkage, we also underline the relation to the clas-
sical wavelet shrinkage scheme which uses orthonormal wave-
let transforms.
Finally, we consider the Rudin-Osher-Fatemi model

argmin
u∈BV(Ω)

1
2‖u− f‖2

L2(Ω) + λ
∫

Ω
|∇u(x)|dx, (2)

see (Rudin et al 1992), which uses a total variation regular-
ization term. Note that for the infinite-dimensional setting
the relation between problems (1) and (2) was studied in
connection with so-called near minimizers in (Bechler et al
2006; Cohen et al 1999). Solving (2) is a successful image
denoising method, especially, in terms of the preservationof
edges and sharp object boundaries. Here, we first apply our
findings to frame-based discretizations of the absolute value
of the gradient. Similar to the Besov-norm setting, we derive
a relation between the alternating split Bregman method, the
forward-backward splitting algorithm and frame shrinkage.
Second, we compare these algorithms numerically with a
class of first-order methods that has attracted a lot of interest
in image processing recently: the so-called multistep meth-
ods.

Remark 1A shorter version of this paper has been published
in the Proceedings of the Second International Conference
on Scale Space Methods and Variational Methods in Com-
puter Vision 2009, see (Setzer 2009a).

2 Picard iterations for the solution of variational
problems

Let us start with general minimization problems of the form

(P) min
u∈H1

{
g(u)+ Φ(Du)︸ ︷︷ ︸

:=FP(u)

}
,

whereH1 andH2 are Hilbert spaces,D : H1→H2 is a bounded
linear operator and both functionsg : H1 → R∪{+∞} and
Φ : H2 → R∪ {+∞} are proper, convex and lower semi-
continuous (l.s.c.). The corresponding dual problem has the
form

(D) − min
b∈H2

{
g∗(−D∗b)+ Φ∗(b)︸ ︷︷ ︸

:=FD(b)

}
,

whereg∗ andΦ∗ are the conjugate functions ofg andΦ,
respectively. In this paper we further assume that solutions
û andb̂ of the primal and dual problem, respectively, exist
and that the duality gap is zero, i.e.,(P) and(D) have the
same value.

In other words, we suppose that there is a pair(û, d̂)
which satisfies theKarush-Kuhn-Tucker conditions, cf., e.g.,
(Bonnans and Shapiro 2000)

0∈ ∂g(û)+D∗b̂,

0∈ −Dû+ ∂Φ∗(b̂), (3)

where thesubdifferentials∂g and∂Φ∗ are defined as fol-
lows: For any convex functionF : H → R∪ {+∞} on a
Hilbert spaceH the subdifferential is defined as the follow-
ing set-valued operator

∂F (ũ) = {v∈H : 〈v,u− ũ〉 ≤F (u)−F (ũ), ∀u∈H}. (4)

By Fermat’s rule, û is a solution of(P) if and only if 0∈

∂FP(û), and analogously for the dual problem. We further
assume in this paper that the following so-called regularity
conditions hold true

0∈ int(Ddomg−domΦ), (5)

0∈ int(domg∗ +D∗domΦ∗), (6)

where int denotes the interior of the corresponding sets, see
(Rockafellar 1970; Borwein and Zhu 2006). Note that in the
finite-dimensional setting a weaker condition using the no-
tion of the relative interior of a set can be found in (Rock-
afellar 1970, Theorem 31.1). Now we can write the primal
and dual problem in the equivalent form

(P′) 0∈ ∂FP(û) = ∂g(û)+ ∂ (Φ ◦D)(û)

and

(D′) 0∈ ∂FD(b̂) = ∂ (g∗ ◦ (−D∗))(b̂)+ ∂Φ∗(b̂).

Observe that for both the primal problem(P′) and the dual
problem(D′) one has to solve a problem of the form

0∈ A(p̂)+B(p̂) (7)

for set-valued operatorsA andB. The main idea of the meth-
ods we want to examine in this paper is to write our prob-
lems in terms of a fixed point equation, i.e.,

0∈ A(p̂)+B(p̂) ⇔ p̂ = T(p̂) (8)

for an appropriate operatorT : H →H. Here,H = H1 or H =

H2, if we solve the primal problem(P) or the dual problem
(D), respectively. Based on (8), we consider the following
basicPicard iterationsto compute such a fixed point ˆp:

p(k+1) = T(p(k)). (9)
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The operatorT must be chosen according to (8) and such
that the Picard iterations converge. Recall that an opera-
tor T : H → H on a Hilbert spaceH is nonexpansiveif
‖T(u)− T(v)‖ ≤ ‖u− v‖ for all u,v ∈ H and contractive
if ‖T(u)−T(v)‖ ≤ β‖u−v‖ for all u,v∈ H and some con-
stantβ ∈ (0,1). In contrast to the property of being con-
tractive, the nonexpansivity of an operator does not guaran-
tee the convergence of the corresponding Picard iterations.
Therefore, we use the stronger notion of an averaged oper-
ator, cf., e.g., (Bauschke and Borwein 1996; Byrne 2004;
Combettes 2004). By definition,T : H → H is averagedif
for a nonexpansive operatorR and someα ∈ (0,1) we can
write T as

T = αI +(1−α)R,

whereI denotes the identity operator. Note that every con-
tractive operator is averaged but in contrast to contractions,
averaged operators can have more than one fixed point. For
averaged operators we have the following convergence re-
sult:

Theorem 1 Let H be a Hilbert space and let T: H → H
be an averaged mapping which has at least one fixed point.
Then, for every p(0) ∈ H the Picard sequence(9) converges
weakly to a fixed point of T .

This result has its origins in (Mann 1953; Krasnoselskii 1955;
Schäfer 1957) and proofs can also be found, e.g., in (Brow-
der and Petryshyn 1966; Opial 1967; Combettes 2004).

2.1 Proximation and the resolvent operator

Let us briefly recap some important elements of convex analy-
sis which will appear as building blocks for the fixed point
operators presented in the next sections.

Let H be a Hilbert space andF : H → R∪{+∞} be a
proper, convex and l.s.c. function. Then, theproximity oper-
atorproxγF : H →H, introduced in (Moreau 1965), is given
by

proxγF ( f ) := argmin
u∈H

{ 1
2γ ‖u− f‖2+F (u)}, (10)

whereγ > 0. Observe that this minimization problem is equiv-
alent to(P) with g := 1

2γ ‖ ·− f‖2, Φ := F andD := I . The
objective function in (10) is strictly convex and coercive so
that for any f ∈ H the proximum proxγF ( f ) exists and is
unique, cf. (Ekeland and Temam 1976). By Fermat’s rule,
we have

û = proxγF ( f ) ⇔ 0∈ 1
γ (û− f )+ ∂F (û)

⇔ û = (I + γ∂F )−1

︸ ︷︷ ︸
Jγ∂F

( f ),

whereJγ∂F is called theresolventof γ∂F .

2.2 Proximal point method

The common structure of the methods discussed in this pa-
per is best seen by considering first theclassical proximal
point algorithm. We refer to (Eckstein and Bertsekas 1992)
for references and historical background of this method. Ap-
plied to the primal problem(P), it has the form

u(k+1) = argmin
u∈H1

{ 1
2γ ‖u−u(k)‖2+FP(u)} (11)

for a step lengthγ > 0. Using our definition from Section
2.1 we can write the fixed point operator applied in (11) as

T = proxγFP
= Jγ∂FP

.

This also explains the name proximal point method.
Clearly, the fixed points ofT are exactly the solutions

of (P). The main idea of the proximal point method is that,
instead of solving the (hard) original problem, we solve in
each step a nicer problem which is constructed by adding
a ”cost-to-move” term to the original objective functional.
This term penalizes the distance between two iterates. To
show the convergence of (11) we need the following clas-
sical results from convex analysis, see, e.g., (Eckstein and
Bertsekas 1992) and the references therein:

Since every subdifferential of a proper, convex and l.s.c.
function ismaximal monotoneit follows that∂FP is maxi-
mal monotone. The resolvent of a maximal operator isfirmly
nonexpansivewhich means that it is averaged with parame-
ter 1/2. Hence, we can apply Theorem 1 to conclude weak
convergence to a fixed point ofT, i.e., to a solution of(P).
In the same way, we can define the proximal point algorithm
for (D)

b(k+1) = argmin
b∈H2

{ 1
2γ ‖b−b(k)‖2 +FD(b)

}

= proxγFD
(b(k)) = Jγ∂FD

(b(k)) (12)

and the same convergence result holds true. It is well-known
that this proximal point algorithm for(D) is equivalent to
theaugmented Lagrangian methodof (Hestenes 1969; Pow-
ell 1969), see, e.g., (Rockafellar 1976; Iusem 1999; Frick
2008). To define this algorithm, we first transform(P) into
the constrained minimization problem

min
u∈H1,d∈H2

E(u,d) subject to Du = d, (13)

whereE(u,d) := g(u)+ Φ(d), see also (Wang et al 2008).
The corresponding augmented Lagrangian algorithm is then
defined as

(u(k+1),d(k+1)) = argmin
u∈H1,d∈H2

{
E(u,d)

+〈b(k),Du−d〉+ 1
2γ ‖Du−d‖2},

b(k+1) = b(k) + 1
γ (Du(k+1)−d(k+1)). (14)
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The first step of (14) the Lagrangian functional is ”augmented”
by a quadratic penalty term and for the same initial value
b(0) the sequence(b(k))k∈N coincides with the one produced
by the proximal point algorithm applied to(D). Moreover, if
(b(k))k∈N converges strongly, then every strong cluster point
of (u(k))k∈N is a solution of(P), cf. (Iusem 1999).

2.3 Operator splitting methods

In the above proximal point method we have to compute
the resolvent of the subdifferential of the complete objec-
tive function. However, the objective functions of(P) and
(D) have an additive structure. Hence, we can exploit this to
define operatorsT whose Picard iterations are easier to com-
pute. In this paper, we restrict our attention to the following
two operator splitting methods: theforward-backward split-
ting method (FBS), introduced in (Lions and Mercier 1979;
Passty 1979), and theDouglas-Rachford splittingalgorithm
(DRS) whose origins lie in (Douglas and Rachford 1956)
and which was first applied to image processing in (Com-
bettes and Pesquet 2007).

Note that there exist other method like the Peaceman-
Rachford and the backward-backward splitting algorithm,
see (Lions and Mercier 1979; Combettes 2004) and the ref-
erences therein. They are not treated here because of their
inferior performance for the applications we want to con-
sider in this paper.

To motivate the forward-backward splitting algorithm
we rewrite the inclusion (7) as the fixed point relation

p̂−ηB(p̂) ∈ p̂+ ηA(p̂)

⇔ p̂∈ JηA(I −ηB)(p̂), for η > 0. (15)

The forward-backward splitting algorithm is then just
the corresponding iterations with respect to the operatorT =

JηA(I − ηB). Again it can be shown, see, e.g., (Lions and
Mercier 1979; Combettes 2004; Combettes and Wajs 2005),
that under the conditions stated in Theorem 2 below the op-
eratorT is averaged and convergence follows by Theorem 1.
A somewhat different approach to the proof of the following
theorem can be found in (Tseng 1991).

Theorem 2 (Forward-Backward Splitting)
Let A : H → 2H be a maximal monotone operator and let
βB : H → H be firmly nonexpansive for someβ > 0. Fur-
thermore, assume that a solution of(7) exists. Then, for any
p(0) ∈ H and η ∈ (0,2β ) the followingforward-backward
splitting algorithm

p(k+1) = JηA(I −ηB)(p(k)) (16)

converges weakly to a solution of problem(7).

To introduce the Douglas-Rachford splitting algorithm, we
first note that ifB is single-valued we can rewrite the fixed
point relation (15) as follows

p̂∈ JηA(I −ηB)(p̂)

⇔ p̂+ ηB(p̂) ∈ JηA(I −ηB)(p̂)+ ηB(p̂) (17)

⇔ p̂ = JηB
(
JηA(I −ηB)(p̂)+ ηB(p̂)

)
. (18)

If B is set-valued the Picard iterations

p(k+1) ∈ JηB
(
JηA(I −ηB)(p(k))+ ηB(p(k))

)
(19)

corresponding to (18) are called the ”loose” Douglas-Rach-
ford splitting algorithm, cf. (Eckstein 1989). In general,the
algorithm (19) does not converge to a solution of (7). How-
ever, if we choose the element ofηB(p(k)) in a special way
we do obtain a convergent algorithm. To this end, consider
the fixed point equation for the operatorQ : H → H given
by

t̂ = Q(t̂) = JηA(2JηB(t̂)− t̂)−JηB(t̂)+ t̂.

For such a fixed point̂t we define ˆp := JηB(t̂) and thusξ̂ :=
t̂− p̂ lies in ηB(p̂). With this choiceξ̂ ∈ ηB(p̂) the element
p̂ is indeed a solution of (7), cf. (17):

p̂+ ξ̂ = JηA(2p̂− (p̂+ ξ̂))− p̂+ p̂+ ξ̂

= JηA(p̂− ξ̂)+ ξ̂
⇒ p̂∈ JηA(I −ηB)(p̂) ⇔ 0∈ A(p̂)+B(p̂).

This gives rise to the iterative algorithm of Theorem 3. Its
convergence holds true since under suitable conditions onA
andB the operatorQ is averaged, see (Lions and Mercier
1979; Combettes 2004), so that we can apply Theorem 1.

Theorem 3 (Douglas-Rachford Splitting)
Let A,B : H → 2H be maximal monotone operators and as-
sume that a solution of(7) exists. Then, for any initial ele-
ments t(0) and p(0) and anyη > 0, the followingDouglas-
Rachford splitting algorithmconverges weakly to an element
t̂:

t(k+1) = JηA(2p(k)− t(k))+ t(k)− p(k),

p(k+1) = JηB(t(k+1)).

Furthermore, it holds that̂p := JηB(t̂) satisfies0∈ A(p̂)+

B(p̂). If H is finite-dimensional the sequence
(

p(k)
)

k∈N

con-

verges to a solution̂p.

Observe that in contrast to the forward-backward splitting
algorithm the operatorB is now allowed to be set-valued
and we make use of its resolvent. Another difference is that
there are no restrictions on the step length.
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2.4 Bregman methods

In the preceding section we did not apply the resolvent of the
full objective function as in the proximal point algorithm.
Instead, we made use of the additive structure of the prob-
lem and worked with the resolvents of the individual terms.
Another approach to modify the proximal point method con-
sists in generalizing the definition of the resolvent or, equiv-
alently, of the proximation operator. More precisely, we con-
sider the following more general distances in the cost-to-
move term of (11) and (12).

Let a Gâteaux differentiableBregman functionϕ : H →

R∪{+∞} with Gâteaux derivativev 7→ ∇ϕ(v) be given. We
define theBregman distance Dϕ as follows, cf. (Bregman
1967; Censor and Lent 1981):

Dϕ(u,v) = ϕ(u)−ϕ(v)−〈∇ϕ(v),u−v〉.

Based on this notion of a Bregman distance theBreg-
man proximal point algorithmwas introduced in (Censor
and Zenios 1992). We refer to (Eckstein 1993; Censor and
Zenios 1997; Kiwiel 1997; Frick 2008) for additional con-
ditions necessary to guarantee convergence. Applied to(P),
the Bregman proximal point algorithm is defined as follows
for an initial valueu(0) and a parameterγ > 0:

u(k+1) = argmin
u∈H1

{ 1
γ Dϕ (u,u(k))+FP(u)}. (20)

Note that we use the Bregman distance to the last iterateu(k)

as a cost-to-move term now. The classical proximal point
method for(P) is just a special case of the Bregman proxi-
mal point algorithm forϕ := 1

2‖ ·‖
2. We can also write (20)

in the form

u(k+1) = T(u(k))

= (∇ϕ + γ∂FP)−1(∇ϕ(u(k))
)

(21)

and the fixed points ofT are exactly the solution of the pri-
mal problem. Under certain assumptions, we can drop the
condition ofϕ being differentiable, e.g., in finite-dimension-
al spaces for strictly convex Bregman function with full do-
main, cf. (Kiwiel 1997). The Bregman distance is then de-
fined as

D(p)
ϕ (u,v) = ϕ(u)−ϕ(v)−〈p,u−v〉,

with p ∈ ∂ϕ(v) and the corresponding Bregman proximal
point algorithm is given by

u(k+1) = argmin
u∈H1

{ 1
γ D(p(k))

ϕ (u,u(k))+FP(u)},

p(k+1) ∈ ∂ϕ(u(k+1)), (22)

see also (Eckstein 1993; Frick 2008; Kiwiel 1997; Osher
et al 2005) and the references therein.
To solve the constrained optimization problem (13), Gold-
stein and Osher (2009) proposed to use the Bregman proxi-
mal point algorithm (22) in the following way:

As the Bregman functionϕ the functionE defined in
(13) is chosen. This results in the Bregman distance

D(p(k))
E (u,d,u(k),d(k)) = E(u,d)−E(u(k),d(k))

−〈p(k)
u ,u−u(k)〉− 〈p(k)

d ,d−d(k)〉.

Instead ofFP in (22) we use the term1
2γ ‖Du−d‖2 so that

the constraint in (13) is satisfied if we have convergence.
The resulting algorithm is given by

(u(k+1),d(k+1)) = argmin
u∈H1,d∈H2

{
D(p(k))

E (u,d,u(k),d(k))

+ 1
2γ ‖Du−d‖2}, (23)

p(k+1)
u = p(k)

u − 1
γ D∗(Du(k+1)−d(k+1)), (24)

p(k+1)
d = p(k)

d + 1
γ (Du(k+1)−d(k+1)), (25)

where it is used that (23) implies

0∈ ∂E(u(k+1),d(k+1))−
(
p(k)

u , p(k)
d

)
+

(
1
γ D∗(Du(k+1)−d(k+1)),− 1

γ (Du(k+1)−d(k+1))
)

= ∂E(u(k+1),d(k+1))−
(
p(k+1)

u , p(k+1)
d

)
,

so that
(
p(k)

u , p(k)
d

)
∈ ∂E(u(k),d(k)) for k≥ 1. As we will see

now we can choosep(0)
u := − 1

γ D∗b(0) andp(0)
d := 1

γ b(0) for

any elementb(0) ∈ H2 to obtain a convergent algorithm: If
we define in each iteration

b(k+1) := b(k) +Du(k+1)−d(k+1)

it holds by (24)-(25) thatp(k)
u = − 1

γ D∗b(k) andp(k)
d = 1

γ b(k)

for all k ≥ 0. Using thatD is a bounded linear operator, the
objective function in (23) can thus be written as

D(p(k))
E (u,d,u(k),d(k))+ 1

2γ ‖Du−d‖2

= E(u,d)−E(u(k),d(k))+ 1
γ 〈b

(k),Du−Du(k)〉

− 1
γ 〈b

(k),d−d(k)〉+ 1
2γ ‖Du−d‖2.

Hence, Goldstein and Osher (2009) obtained thesplit Breg-
man method

(u(k+1),d(k+1)) =

argmin
u∈H1,d∈H2

{
E(u,d)+ 1

2γ ‖b(k) +Du−d‖2},

b(k+1) = b(k) +Du(k+1)−d(k+1). (26)

As already discovered in (Yin et al 2008), see also (Tai and
Wu 2009), the split Bregman algorithm (26) coincides with
the augmented Lagrangian algorithm (14) with the only dif-
ference that in (26) the iteratesb(k) are scaled byγ. By Sec-
tion 2.2 it also equivalent the proximal point algorithm for
(D).

Therefore, we can conclude from Theorem 1 that the se-
quence(1

γ b(k))k∈N generated by the split Bregman method
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(26) converges weakly to a solution of the dual problem. To
summarize:

Proximal Point
Alg. for (D)

=

Augmented
Lagrangian
Alg. for (P)

=
Split Bregman

Alg. for (P)

2.5 Alternating split Bregman algorithm

Recall that by definitionE(u,d) = g(u)+Φ(d) and the min-
imization problem in (26) may be hard to solve. Hence, Gold-
stein and Osher (2009) proposed the followingalternating
split Bregman algorithmto solve (13) where they minimize
with respect tou andd alternatingly:

u(k+1) = argmin
u∈H1

{
g(u)+ 1

2γ ‖b(k) +Du−d(k)‖2}, (27)

d(k+1) = argmin
d∈H2

{
Φ(d)+ 1

2γ ‖b(k) +Du(k+1)−d‖2}, (28)

b(k+1) = b(k) +Du(k+1)−d(k+1). (29)

As also pointed out in (Esser 2009) the same idea to
minimize alternatingly with respect to the variables was pre-
sented for the augmented Lagrangian algorithm (14) in (Gabay
and Mercier 1976; Glowinski and Marroco 1975). The re-
sulting algorithm is called the alternating direction method
of multipliers (ADMM), cf. (Gabay 1983). It is equivalent
to the alternating split Bregman algorithm since as we have
seen in the preceding subsection, the augmented Lagrangian
algorithm and the split Bregman algorithm coincide in our
setting. Here, too, we can take a third point of view and inter-
pret the algorithm as an operator splitting algorithm, namely,
a Douglas-Rachford splitting algorithm. We thus have:

DRS
for (D)

=
ADMM
for (P)

=
Alternating Split

Bregman Alg. for(P)

For the sake of completeness, we include the next Theorem
4 which shows as it was done in the same way in (Gabay
1983; Eckstein 1989) for the ADMM that the alternating
split Bregman method is indeed a Douglas-Rachford split-
ting algorithm. IfH1 andH2 are finite-dimensional, this pro-
vides us with a convergence result for the sequences(b(k))k∈N

and(d(k))k∈N. A different proof of convergence of the alter-
nating split Bregman algorithm can be found in (Cai et al
2009).

Theorem 4 The alternating split Bregman algorithm coin-
cides with the Douglas-Rachford splitting algorithm applied
to (D) with A := ∂ (g∗ ◦ (−D∗)) and B:= ∂Φ∗, whereη =

1/γ and

t(k) = η(b(k) +d(k)), p(k) = ηb(k), k≥ 0. (30)

Proof: 1. First, we show that for a proper, convex, l.s.c.
function h : H1 → R∪ {+∞} and a bounded linear opera-
tor K : H1 → H2 the following relation holds true:

v̂ = argmin
v∈H1

{η
2‖Kv−w‖2+h(v)

}

⇒ η(Kv̂−w) = Jη ∂ (h∗◦(−K∗))(−ηw). (31)

The first equality in (31) is equivalent to

0∈ ηK∗(Kv̂−w)+ ∂h(v̂)

⇔ v̂∈ ∂h∗
(
−ηK∗(Kv̂−w)

)
.

Applying the operator−ηK implies

−ηKv̂ ∈ −ηK∂h∗
(
−ηK∗(Kv̂−w)

)

= η ∂
(
h∗ ◦ (−K∗)

)(
η(Kv̂−w)

)
.

We now add−ηq on both sides to get

−ηw∈
(
I + η ∂ (h∗ ◦ (−K∗))

)(
η(Kv̂−w)

)
,

which is, by definition of the resolvent, equivalent to the sec-
ond equality of (31).
2. Applying (31) to (27) withh := g, K := D and w :=
d(k)−b(k) yields

η(b(k) +Du(k+1)−d(k)) = JηA(η(b(k) −d(k))).

Assume that the alternating split Bregman iterates are re-
lated to those of the Douglas-Rachford splitting algorithm
via the identification (30) up to somek ∈ N. Using this in-
duction hypothesis, it follows that

η(b(k) +Du(k+1))

= JηA(η(b(k)−d(k))︸ ︷︷ ︸
2p(k)−t(k)

)+ ηd(k)

︸ ︷︷ ︸
t(k)−p(k)

= t(k+1). (32)

By definition of b(k+1) in (29), we can conclude that
η(b(k+1) +d(k+1)) = t(k+1). Next we apply (31) to (28) with
h := Φ, K :=−I andw := b(k) +Du(k+1) Together with (32)
this gives

η(b(k) +Du(k+1)−d(k+1))

= JηB(η(b(k) +Du(k+1))︸ ︷︷ ︸
t(k+1)

) = p(k+1).

Again by the formula (29) forb(k+1) we obtainηb(k+1) =

p(k+1) which completes the proof.

Finally, we study the convergence properties of(u(k))k∈N in
the case whereH1 andH2 are finite-dimensional.

Proposition 1 Assume that H1 and H2 are finite-dimension-
al Hilbert spaces. Then, every cluster point of the sequence
(u(k))k∈N generated by the alternating split Bregman algo-
rithm is a solution of the primal problem(P).
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Proof: We rewrite (27)-(29) in the equivalent form

0∈ ∂g(u(k+1))+ 1
γ D∗b(k) + 1

γ D∗(Du(k+1)−d(k)), (33)

0∈ ∂Φ(d(k+1))− 1
γ b(k) − 1

γ (Du(k+1)−d(k+1)), (34)

b(k+1) = b(k) +Du(k+1)−d(k+1). (35)

We know from Theorem 4 and Theorem 3 that the sequences
(b(k))k∈N and(d(k))k∈N converge. Let̂bandd̂ denote the cor-
responding limits. Furthermore, let ˆu be a cluster point of
(u(k))k∈N with convergent subsequence(u(kl ))l∈N. Because
the subdifferentials of the functionsg andΦ are maximal
monotone we can pass to the limits with respect to the in-
diceskl in (33) and (34), see, e.g., (Aubin and Frankowska
2009, Proposition 3.5.6).

This yields the Karush-Kuhn-Tucker conditions

0 ∈ ∂g(û)+ 1
γ D∗b̂,

0 ∈ − 1
γ b̂+ ∂Φ(Dû), (36)

cf. (3). Thus, ˆu and 1
γ b̂ solve(P) and(D), respectively.

Now the natural question arises under which condition we
can guarantee that(u(k))k∈N converges.

Theorem 5 Assume that H1 and H2 are finite-dimensional
Hilbert spaces and let̂b andd̂ be the limit points arising
from the alternating split Bregman algorithm(27)-(29). Then,
a sufficient condition for(u(k))k∈N to converge to a solution
of (P) is that the problem

argmin
u∈H1

{
g(u)+ 1

2γ ‖b̂+Du− d̂‖2} (37)

has a unique solution.

Proof: Let us rewrite (33) as

u(k+1) ∈ (γ∂g+D∗D)−1(D∗(d(k) −b(k))).

Sinceγ∂g+D∗D is maximal monotone as a subdifferential
of a proper, convex and l.s.c. function we have that the map-
ping (γ∂g+D∗D)−1 is also maximal monotone, cf. (Aubin
and Frankowska 2009, Ch. 3.5).

Consequently,(γ∂g+D∗D)−1 is upper semicontinuous,
see (Borwein and Zhu 2005, Ch. 5.1). In our case where
D∗(d(k) −b(k)) → D∗(d̂− b̂) ask → ∞ and(γ∂g+ D∗D)−1

is single-valued at the limit pointD∗(d̂ − b̂) this implies
that(u(k))k∈N converges to the unique solution ˆu of (37). By
Proposition 1, ˆu must be a solution of(P).

In many examples the following special case of Theorem 5
can be used.

Corollary 1 If H1 and H2 are finite-dimensional Hilbert
spaces and if the primal problem(P) has a unique solution
then(u(k))k∈N, defined by the alternating split Bregman al-
gorithm, converges to the solution of(P).

Proof: See Appendix.

Remark 2Assume the functionalg has the formg(u) :=
1
2‖Ku− f‖2. Then, Corollary 1 implies that convergence
holds true if the matrix(γK∗K +D∗D)−1 is invertible, or in
other words, ifN (K∗K)∩N (D∗D) = {0}. This is clearly
fulfilled for the choiceK = I we will make in the next sec-
tion.

3 Application to image denoising

We now restrict our attention to the discrete setting and con-
sider digital images defined on{1, . . . ,n}×{1, . . . ,n} which
are reshaped columnwise into vectorsf ∈ R

N with N = n2.
If not stated otherwise, the multiplication of vectors, their
square root etc. are meant componentwise. Our goal is to
apply the algorithms defined in the sections above to the dis-
crete denoising problem

argmin
u∈RN

{1
2‖u− f‖2

2+ Φ(Du)
}
, (38)

whereD ∈ R
M,N with M ≥ N andΦ is one of the following

functions onRM:

i) Φ1(v) := ‖Λv‖1

with Λ := diag(λ j)
M
j=1, λ j ≥ 0,

ii) Φ2(v) := ‖Λ̃ |v|‖1 with Λ̃ := diag(λ̃ j)
N
j=1, λ̃ j ≥ 0 and

|v| :=
(
‖v j‖2

)N

j=1
for v j := (v j+kN)p−1

k=0 andM = pN.

The corresponding conjugate functions are given by

i) Φ∗
1(v) := ιC(v) with

C := {v∈ R
M : |v j | ≤ λ j , j = 1, . . . ,M},

ii) Φ∗
2(v) := ιC̃(v) with

C̃ := {v∈ R
M : ‖v j‖2 ≤ λ̃ j , j = 1, . . . ,N},

whereιC denotes the indicator function of the setC (or C̃),
i.e., ιC(v) = 0 for v∈C andιC(v) = +∞ otherwise. A short
calculation shows that for anyf ∈ R

M we have

proxΦ1
( f ) = SΛ ( f ),

proxΦ2
( f ) = S̃Λ̃ ( f ),

whereSΛ denotes thesoft shrinkagefunction (also called
soft thresholding) given componentwise by

Sλ j
( f j ) :=

{
0 if | f j | ≤ λ j ,

f j −λ j sgn( f j ) if | f j | > λ j .
(39)

S̃Λ̃ denotes thecoupled shrinkagefunction

S̃λ̃ j
(f j) :=

{
0 if ‖f j‖2 ≤ λ̃ j ,

f j − λ̃ j f j/‖f j‖2 if ‖f j‖2 > λ̃ j ,
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compare (Chambolle 2005; Mrázek and Weickert 2003; Welk
et al 2008). Similarly, we obtain

proxΦ∗
1
( f ) = f −SΛ ( f ),

proxΦ∗
2
( f ) = f − S̃Λ̃ ( f ). (40)

Consider the alternating split Bregman algorithm (27)-(29)
with g(u) := 1

2‖u− f‖2
2. Theorem 4 and Corollary 1 imply

the convergence of
(

u(k)
)

k∈N

and
(

1
γ b(k)

)
k∈N

to a solution

of the primal and the dual problem, respectively. With the
above choice ofg, we have to solve the following quadratic
problem in (27):

u(k+1) = (γI +D∗D)−1(γ f +D∗(d(k) −b(k))
)
,

cf. Section 3.3. Applying (39), we see that forΦ = Φ1 the
solution of the proximation problem in (28) is given by

d(k+1) = SγΛ (b(k) +Du(k+1))

and similarly forΦ = Φ2. This leads to the following alter-
nating split Bregman shrinkage algorithm:

Algorithm I (Alternating Split Bregman Shrinkage)

Initialization: u(0) := f , b(0) := 0.
Fork = 0,1, . . . repeat until a stopping criterion is reached

d(k+1) := SγΛ (b(k) +Du(k)),

b(k+1) := b(k) +Du(k)−d(k+1),

u(k+1) := (γI +D∗D)−1(γ f +D∗(d(k+1)−b(k+1))
)
.

As we will see below, soft shrinkageSγΛ can be used for
B1

1,1 regularization. In the case whereΦ = Φ2 which is ap-
propriate, e.g., for total variation regularization, we have to
replace it by the coupled shrinkage functionS̃γΛ̃ . Observe
that in order to better compare this method to the other algo-
rithms in this section, we have changed the order in which
we computed(k+1), b(k+1) andu(k+1). This is allowed be-
cause there are no restrictions on the choice of the starting
values. Indeed, if we start in (27)-(29) withd(0) := D f and
b(0) := 0, we get the same iterates as in Algorithm I.

Note that Algorithm I can also be used for the deblurring
problem which differs from (38) in having a more general
data-fitting termg(u) := 1

2‖Ku− f‖2
2 with some linear blur

operatorK, cf. Section 3.3.

Remark 3Based on the splitting (13), a quadratic penalty
approach to solve (38) and the corresponding deblurring prob-
lem was proposed in (Wang et al 2008).

The problem (38) can also be solved via its dual problem:

b̂ = argmin
b∈RM

{ 1
2‖ f −D∗b‖2

2 + Φ∗(b)}, (41)

andû = f −D∗b̂, see, e.g., (Chambolle 2004). Applying the
forward-backward splitting algorithm (16) to this problem
gives

b(k+1) = proxγΦ∗

(
b(k) + γD( f −D∗b(k))

)
,

where 0< γ < 2/‖D∗D‖2. Using relation (40) we obtain for
Φ = Φ1:

b(k+1) = b(k) + γD( f −D∗b(k))−SΛ
(
b(k) + γD( f −D∗b(k))

)
,

which can be written as follows:

Algorithm II (FBS Shrinkage)

Initialization: u(0) := f , b(0) := 0
Fork = 0,1, . . . repeat until a stopping criterion is reached

d(k+1) := SΛ
(
b(k) + γDu(k)),

b(k+1) := b(k) + γDu(k)−d(k+1),

u(k+1) := f −D∗b(k+1).

If we useΦ2, we have to replace the shrinkage functional
SΛ by S̃Λ̃ . This algorithm can also be deduced as a simple
gradient descent reprojection algorithmas it was done, e.g.,
in (Chambolle 2005). Note that this isnot the often cited
Chambolle algorithm of (Chambolle 2004). A relation of
this method to the Bermúdez-Moreno algorithm which also
turns out to be a forward-backward splitting algorithm was
shown in (Aujol 2009).

3.1 Besov-norm regularization

For a sufficiently smooth orthonormal wavelet basis(ψi)i∈Ξ
of L2(Ω) with wavelets of more than one vanishing moment,
we can solve problem (1) in the wavelet domain by finding

d̂ = argmin
d∈ℓ2(Ξ )

{1
2‖d−c‖2

ℓ2
+ λ‖d‖ℓ1

}
, c := (〈 f ,ψi〉)i∈Ξ (42)

and defining ˆu = ∑i∈Ξ d̂iψi . In the discrete setting, consider
theorthogonalmatrixW ∈R

N,N having as rows the filters of
orthogonal wavelets (and scaling functions) up to a certain
level. Then, using the notationΛ := λ IN, problem (1) has
the discrete counterpart

û = argmin
u∈RN

{ 1
2‖u− f‖2

2+‖ΛWu‖1
}

= argmin
u∈RN

{
1
2‖Wu−W f‖2

2 +‖ΛWu‖1
}
. (43)

By the orthogonality ofW we can solve this as in (42): We
compute forc := W f

d̂ = argmin
d∈RN

{1
2‖d−c‖2

2+‖Λd‖1
}

(44)
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and set ˆu = W∗d̂. Because of (39), we thus obtain ˆu by the
known wavelet shrinkage procedurêu = W∗SΛ (W f) con-
sisting of a wavelet transformW followed by a soft shrink-
ageSΛ of the wavelet coefficients and the application of the
inverse wavelet transformW∗.

However, for image processing tasks like denoising or
segmentation, ordinary orthonormal wavelets are not suited
due to their lack of translational invariance leading to vis-
ible artifacts. Nevertheless, without the usual subsampling,
the method becomes translationally invariant and the results
can be improved. Then, however,W ∈ R

M,N, M = pN, for p
equal to three times the decomposition level plus one for the
rows belonging to the scaling function filters on the coars-
est scale. We still haveW∗W = IN but of courseWW∗ 6= IM,
i.e., the rows ofW form a discreteParseval frameonR

N but
not a basis. For the design of such frames see, e.g., (Ron and
Shen 1997; Daubechies et al 2003; Dong and Shen 2007).
Equality (43) is still true for Parseval frames, but the prob-
lem is no longer equivalent to (44). Instead of (44), we have
to solve the constrained problem

d̂ = argmin
d∈RM

{1
2‖c−d‖2

2+‖Λd‖1
}

subject tod ∈ R(W), (45)

whereR(W) denotes the range ofW. The solution in the
image space is then again given by ˆu = Wd̂. Note that the
constraint in (45) is equivalent to(IM −WW∗)d = d, i.e.,
d must coincide with its orthogonal projection ontoR(W).
One could also penalize this condition. In the context of in-
painting, this was suggested by Cai et al (2008).

We will now show that FBS shrinkage and alternating
split Bregman shrinkage withD = W, γ = 1 andΦ = Φ1

applied to (43) or, equivalently, to (45) coincide with the fol-
lowing algorithm which underlines the relation to the wavelet
shrinkage algorithm with orthonormal transforms.

Algorithm III (Iterated Frame Shrinkage)

Initialization: u(0) := f , b(0) := 0.

Fork = 0,1, . . . repeat until a stopping criterion is reached

d(k+1) := SΛ (b(k) +Wu(k)),

b(k+1) := b(k) +Wu(k)−d(k+1),

u(k+1) := W∗d(k+1). (46)

The first step of the algorithm, i.e.,u(1) = W∗SΛ (W f) is
an ordinary frame shrinkage step which also appears if we
disregard the constraint in (45). In the following iterations,
the algorithm differs from the usual iterated frame shrinkage
in the summandb(k) we have to add before the shrinkage
step yieldingd(k+1).

Note that in order to use the forward-backward split-
ting algorithm for problem (43),γ has to fulfill 0< γ <

2/‖W∗W‖2. SinceW∗W = IN we have to choose aγ ∈ (0,2)

andγ = 1 is an admissible choice.

Proposition 2 For D := W, where W∗W = IN, andγ := 1
the FBS shrinkage and the alternating split Bregman shrink-
age algorithm coincide with the iterated frame shrinkage al-
gorithm.

Proof: We start withu(0) := f andb(0) := 0 in all three algo-
rithms and in the way we have written them, they only differ
in the third step, where we have

u(k+1) = 1
2

(
f +W∗(d(k+1)−b(k+1))

)
in Algorithm I

u(k+1) = f −W∗b(k+1) in Algorithm II
u(k+1) = W∗d(k+1) in Algorithm III

We now use induction onk. Assume thatu(k) = f −W∗b(k).
Then, we obtain by definition ofb(k+1) that

u(k+1) = f −W∗b(k+1)

= f −W∗b(k) −u(k) +W∗d(k+1)

= W∗d(k+1),

so that the elementsu(k+1) are the same for the alternating
split Bregman shrinkage algorithm and the iterated frame
shrinkage algorithm. Further, we see

1
2

(
f +W∗(d(k+1)−b(k+1))

)

= 1
2

(
f+W∗d(k+1)−W∗b(k)−u(k)+W∗d(k+1)

)

= W∗d(k+1) + 1
2

(
f −W∗b(k)−u(k))

= W∗d(k+1),

so that the alternating split Bregman shrinkage algorithm co-
incides with the iterated frame shrinkage algorithm, too.

Let us restate our result for our special setting in the follow-
ing diagram:

Alternating
Split Bregman

Shrinkage
=

FBS
Shrinkage =

Iterated
Frame

Shrinkage

3.2 Total variation regularization

In this section, we apply the algorithms presented so far to
the discrete Rudin-Osher-Fatemi denoising method, i.e., to
(38) withΦ = Φ2 and a special discretization of the absolute
value of the gradient:

Let h0 := 1
2[1 1] andh1 := 1

2[1 −1] be the filters of the
Haar wavelet. For convenience of notation, we use periodic
boundary conditions here, concerning Neumann boundary
conditions, see, e.g., (Chan et al 2008). The corresponding
circulant matrices are denoted byH0 ∈ R

n,n andH1 ∈ R
n,n.

Then, the following matrix fulfillsW∗W = IN but WW∗ 6=
I4N:

W =




H0

H1


 :=




H0⊗H0
H0⊗H1
H1⊗H0
H1⊗H1


 .
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Fig. 1 Comparison of Algorithm IV and the alternating split Bregman method withD := H1. Stopping criterion:‖u(k+1) − u(k)‖∞ < 0.5. Top
left: Original image.Top right: Noisy image (white Gaussian noise with standard deviation25).Bottom left: Algorithm IV, λ = 70, (53 iterations).
Bottom right: Difference to alternating split Bregman shrinkage withD := H1, (53 iterations).

Mrázek and Weickert (2003) and Welk et al (2008) showed
that
((

(H0⊗H1)u
)2

+
(
(H1⊗H0)u

)2
+
(
(H1⊗H1)u

)2
) 1

2

is a consistent finite difference discretization of|∇u|. Hence,
our discrete version of the Rudin-Osher-Fatemi functional
(2) reads

argmin
u∈RN

{
1
2‖u− f‖2

2+‖Λ̃ |H1u|‖1
}
, Λ̃ := λ IN. (47)

If we use the ordinary alternating split Bregman algorithm
with D = H1 for this problem we have to solve a linear sys-
tem of equations in each iteration. This can be avoided by
using thatH1 is part of the Parseval frameW. To this end,
we define the proper, convex and l.s.c. functionalΦ̃2 which
differs from Φ2 in that the first part of the input vector is
neglected, i.e.,

Φ̃2(c) = ‖Λ̃ |c1|‖1, for c = (c0,c1) ∈ R
N ×R

3N.

Now we can rewrite (47) as follows

argmin
u∈RN

{1
2‖u− f‖2

2+ Φ̃2(Wu)
}
. (48)

Proposition 2 shows that the alternating split Bregman algo-
rithm and the forward-backward splitting method withγ :=
1 coincide for this problem and can be rewritten as:

Algorithm IV (Iterated Frame Shrinkage for (48))

Initialization: u(0) := f , b(0) := 0.
Fork = 0,1, . . . repeat until a stopping criterion is reached

d(k+1)
0 := (Wu(k))0,

d(k+1)
1 := S̃Λ̃

(
b(k) +(Wu(k))1

)
,

b(k+1) := b(k) +(Wu(k))1−d(k+1)
1 ,

u(k+1) := W∗

(
d(k+1)

0

d(k+1)
1

)
,

where(Wu)0 := H0u and(Wu)1 := H1u. Note that starting

with b(0)
0 := 0 all iteratesb(k)

0 remain zero vectors. We also
obtain Algorithm IV if we apply FBS shrinkage directly to
(47) withD := H1 andγ := 1.
We now give a numerical example, where we denoise an
image with Algorithm IV and with the usual alternating split
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Bregman shrinkage algorithm applied to (47) withD := H1.
Note that the latter requires the solution of a linear systemof
equations in each step. Here, we have used the diagonaliza-
tion via the FFT to do this, cf. Section 3.3 for a more detailed
discussion.

The results are depicted in Fig. 1. We only show the de-
noised image for Algorithm IV and its difference to the im-
age obtained by the alternating split Bregman method with
D := H1 here since the difference between the two result is
marginal. Note that the two algorithms need nearly the same
number of iterations which is also true for other regulariza-
tion parametersλ and other stopping criteria.

3.3 Comparison with multistep algorithms

Minimizing the dual problem (41) corresponding to the dis-
crete Rudin-Osher-Fatemi model means that we minimize a
Lipschitz continuously differentiable function over a closed
and convex set. Recently, there has been a lot of interest in
solving problems of this form viamultistep methods. The
main idea is to make use of the history of preceding iter-
ations. Two interesting multistep methods were proposed
based on an algorithm of Nesterov (1983): The generalized
fast iterative shrinkage thresholding algorithm (FISTA) of
(Beck and Teboulle 2008, 2009) is a projected version of
the algorithm in (Nesterov 1983) and can be seen as an im-
proved gradient descent reprojection method. The method
which is now widely known as Nesterov’s algorithm, cf.,
(Nesterov 2005), is a modification of the algorithm in (Nes-
terov 1983) including projections.

We now compare the performance of these two multistep
methods with those of the alternating split Bregman shrink-
age (Algorithm I) and the FBS shrinkage (Algorithm II), see
also (Goldstein and Osher 2009; Aujol 2009; Weiss et al
2009) for related numerical comparisons.

Our computations were performed on a dual core desk-
top (2.4 GHz processors, 3 GB memory) using MATLAB
7.6.0. For the sake of comparability, we do not use the frame-
based discretization ofD presented in Section 3.2 but the
following widely used forward difference discretization of
the gradient

D :=

(
I ⊗D f

D f ⊗ I

)
,

where

D f :=




−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

...
. ..

. ..
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0




∈ R
n,n.

Our test image is shown in Fig. 2. Note that we invert the
matrix γI + D∗D in Algorithm II via multiplications with

the cosine-II matrix. A speed-up might be possible by using
fast DCT algorithms. Note that if we use periodic boundary
conditions in the discretization the FFT can be used directly.
Another possible speed improvement could be achieved by
approximating the matrix inverse, e.g., via Gauß-Seidel iter-
ations as proposed in (Goldstein and Osher 2009).

Note that these techniques can also be used in many
cases for the corresponding deblurring algorithm where we
have to invert a matrix of the formγK∗K +D∗D.

The two tables in Fig. 3 contain our numerical results.
We measure the performance of the algorithms in terms of
the values of dual objective function in (41) and the pri-
mal objective function in (38) which are achieved after fixed
running times. More specifically, we consider the logarithm
of the distance between these values and the corresponding
function values of a reference image obtained after many it-
erations.

With respect to the value of the dual objective function,
we see that FISTA performs best, followed by Nesterov’s al-
gorithm and the alternating split Bregman shrinkage (ASB).

When we consider the primal objective function, how-
ever, alternating split Bregman shrinkage performs best and
Nesterov’s algorithm is now better than FISTA. It is impor-
tant to note that the alternating split Bregman shrinkage is
very sensitive to the choice of the parameterγ. Hence, in
contrast to Section 3.2, we have optimized it numerically for
each of the experiments, i.e., for the two error measures and
the different computation times. For the forward-backward
splitting algorithm we have chosen the parameterγ = 0.249.

It is not surprising that the multistep-methods perform
well compared to the forward-backward splitting method:
Let k denote the number of iterations. It is shown in (Nes-
terov 2005; Beck and Teboulle 2008, 2009) that the (non-
logarithmic) error with respect to the dual functional is of
the orderO

( 1
k2

)
compared toO

(1
k

)
for the FBS shrinkage.

Observe that these three algorithms are first-order method.
The good performance of the alternating split Bregman

shrinkage algorithm, especially in terms of the dual vari-
able, can be explained by its close relation to the Levenberg-
Marquardt method, cf. (Levenberg 1944; Marquardt 1963),
which is a special Newton method, i.e., asecond-order me-
thod. Note that all the other algorithms considered here are
first-order methods. For more details, we refer to (Setzer
2009b).

Observe that recently there is growing interest in im-
proving the forward-backward splitting method via dynamic
step length strategies, especially the so-calledBarzilai-Bor-
wein techniques, see, e.g., (Barzilai and Borwein 1988; Zhu
2008). This is not covered here.

Moreover, we want to mention that for the above denois-
ing problem a special Lagrangian method, theprimal-dual
hybrid gradient algorithm, was introduced in (Zhu and Chan
2008), see also (Esser et al 2009).
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Fig. 2 Left: Original image with values in[0,255]. Middle: Noisy version with additive white Gaussian noise of standard deviation 25. Right:
Denoising result using the Rudin-Osher-Fatemi model with regularization parameterλ = 25.

Time ASB FISTA Nesterov FBS
5 4.62 2.73 3.28 7.15
10 2.45 0.10 1.28 5.80
15 1.33 -1.01 0.09 5.04
20 0.24 -2.05 -0.71 4.52
30 -0.92 -3.35 -1.62 3.93
40 -1.69 -4.47 -2.32 3.49
60 -3.33 -5.56 -3.68 2.68

Time ASB FISTA Nesterov FBS
5 6.47 7.02 5.38 8.56
10 4.50 5.14 3.73 7.40
15 3.48 4.25 2.78 6.71
20 2.48 3.32 2.14 6.26
30 1.27 2.28 1.36 5.73
40 0.40 1.52 0.73 5.34
60 -1.92 0.79 -0.47 4.61

Fig. 3 Corresponding to the experiment in Fig. 2: Logarithmic error with respect to the dual objective (left) function and the primal objective
function (right) for different running times (in seconds).

4 Conclusions

In this paper, we described main ideas behind some impor-
tant minimization techniques for image restoration, in par-
ticular split Bregman methods. It had previously been ob-
served that the Split Bregman method can be interpreted
as a classical proximal point method or, equivalently, as an
augmented Lagrangian method. Since there is still a hard
subproblem to solve in each iteration of the split Bregman
algorithm, the alternating split Bregman method had been
proposed. This algorithm is equivalent to other well-known
methods, the Douglas-Rachford splitting and the alternating
direction method of minimizers. We also studied the con-
vergence properties in more detail, especially for the primal
variable.

As an application, image denoising via two popular mod-
els which applyB1

1,1 and total variation regularizers, respec-
tively, was considered. In theB1

1,1 case, alternating split Breg-
man and gradient descent reprojection methods led to the
same algorithm in a special setting based on Parseval frames.
This underlines the common roots of these techniques. A
certain similarity could also been established for the total
variation regularization functional. Finally, we have com-
pared these methods numerically with multistep algorithms
for a forward difference discretization of the total variation
regularizer. We found that if the step length parameter is op-
timized the alternating split Bregman method performs well,
especially with respect to the primal function value. This can
be motivated by relating it to a special Newton method.

The minimization algorithms we considered here can
be applied to other problems in image processing, e.g., to
the minimization of nonlocal total variation functionals,cf.,
(Gilboa et al 2006; Gilboa and Osher 2008; Kindermann
et al 2005). See also (Buades et al 2008) for more on the
idea of using nonlocal operators in image processing. More-
over, Goldstein et al (2009) used the alternating split Breg-
man method for segmentation and surface reconstruction.

As pointed out in (Esser 2009), the alternating split Breg-
man method is especially useful for more complicated min-
imization problems, e.g., for image deblurring in the pres-
ence of noise. For Gaussian and impulse noise this was dis-
cussed in (Goldstein and Osher 2009; Esser 2009). The ap-
plication to deblurring in the presence of Poisson noise and
multiplicative noise can be found in (Figueiredo and Bioucas-
Dias 2009; Bioucas-Dias and Figueiredo 2009; Setzer et al
2009). An alternating split Bregman algorithm for image de-
noising in the presence of multiplicative noise using a non-
local total variation term was recently proposed by Steidl
and Teuber (2009).

Appendix: Proof of Corollary 1

We will make use of the following lemma.

Lemma 1 LetF be a l.s.c. and convex function on a finite-dimension-
al Hilbert space H. Assume thatF has a unique minimizer, thenF is
coercive.

Proof: Suppose thatF is not coercive, i.e., there exists a sequence
(u(k))k∈N with ‖u(k)‖ → +∞ ask→ +∞ and|F (u(k))| ≤C < +∞ for
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all k ∈ N. W.l.o.g. assume that ˆu = 0 is the unique minimizer ofF
and thatF (0) = 0 (otherwise use similar arguments as in the proof of
Corollary 1 below). We consider the sequence defined by

v(k) = u(k)

‖u(k)‖
,

which is clearly bounded and thus has a cluster point ˆv. The convexity
of F yields fork large enough that

F (v(k)) ≤ 1
‖u(k)‖

F (u(k)) → 0 for k→ ∞.

SinceF is l.s.c. we obtainF (v̂) ≤ 0 and thusF (v̂) = 0. This contra-
dicts the uniqueness of the minimizer because by construction‖v̂‖= 1.

Proof of Corollary 1: It is sufficient to show that(u(k))k∈N is bounded
because we know from Proposition 1 that every cluster point is equiva-
lent to the unique solution of(P). Taking (27) into account, we see that
boundedness holds true if the functionalF : H1 → R∪{+∞} defined
by

F(u) = g(u)+ 1
2‖Du‖2 (A.1)

is coercive. From Lemma 1 we know thatg+ Φ ◦D is coercive. It
remains to show that this implies the coercivity ofF . Note that each
elementu∈H1 has an orthogonal decompositionu= u1+u2 with u1 ∈
N (D), whereN (D) is the null space ofD. If N (D) = {0} we are
done sinceg is convex and thusF is coercive. So, letN (D) 6= {0}. If
for a sequence(u(k))k∈N it holds that

‖u(k)
2 ‖ ≤C1 < +∞, ∀k∈ N, (A.2)

then(u(k))k∈N is unbounded by convexity ofg.
So, assume that (A.2) holds true. We have to show that there can-

not be an unbounded sequence(u(k))k∈N with |g(u(k))| ≤ C2 < +∞.
Assume that such a sequence exists. Forv0 ∈ H1 with F(v0) < +∞, we
define for anym∈ N

v(k)
m = v0 +m u(k)−v0

‖u(k)−v0‖
.

Then,(v(k)
m )k∈N is a bounded sequence and thus has a cluster pointvm.

Assumption (A.2) implies thatvm ∈ v0 +N (D). Convexity ofg yields
for k large enough

g(v(k)
m ) ≤

(
1− m

‖u(k)−v0‖

)
g(v0)+ m

‖u(k)−v0‖
g(u(k))

≤
(

1− m
‖u(k)−v0‖︸ ︷︷ ︸
→1

)
g(v0)+ m

‖u(k)−v0‖︸ ︷︷ ︸
→0

C2.

Sinceg is l.s.c. we obtaing(vm) ≤ g(v0). The sequence(g(vm))m∈N

must be bounded from below because a solution of(P) exists. Hence,
we have constructed an unbounded sequence(vm)m∈N for which both
the corresponding values ofg and Φ ◦D are bounded. This yields a
contradiction sinceg+Φ ◦D is coercive by Lemma 1.
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