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Abstract We examine the underlying structure of popularwhich consist in each iteration of subproblems which are
algorithms for variational methods used in image processeasier to solve. Three important ways to do this will ap-
ing. We focus here on operator splittings and Bregman metipear in this paper: operator splitting, Lagrangian and Breg
ods based on a unified approach via fixed point iterationmnan methods. In the minimization problems we consider
and averaged operators. In particular, the recently pexpos here, the objective functions consist of the sum of two terms
alternating split Bregman method can be interpreted frontHence,operator splitting methodshich make use of this
different points of view - as a Bregman, as an augmentedpecial structure are a natural choitagrangian methods
Lagrangian and as a Douglas-Rachford splitting algorithnallow one to consider primal and dual variable at the same
which is a classical operator splitting method. We alsoytudtime via related constrained problems. The ideB@gman
similarities between this method and the forward-backwardnethodson the other hand, is to introduce a term which pe-
splitting method when applied to two frequently used mod-alizes the distance to the last iterate. This also givesois

els for image denoising which employ a Besov-norm and &asier problems in each iteration.

total variation regularization term, respectively. In first In the first part of this paper, we will therefore under-
setting, we show that for a discretization based on Parsevithe the common roots of operator splitting and Bregman
frames the gradient descent reprojection and the alteigati methods from the point of view of fixed point theory. In
split Bregman algorithm are equivalent and turn out to bemany cases, convergence can be guaranteed via the notion
a frame shrinkage method. For the total variation regularef averaged operatorsWe then consider a new Bregman
izer, we also present a numerical comparison with multistegechnique, called thalternating split Bregman algorithm
methods. proposed by Goldstein and Osher for image restoration and
compressed sensing. We illustrate the three different per-
spectives for this method. In fact, in our setting the alter-
nating split Bregman algorithm coincides with thkkernat-

ing direction method of multiplierrhich is a special aug-
mented Lagrangian method and it can also be interpreted as
a classical operator splitting algorithm, namely)auglas-
Rachford splitting algorithmcf. (Esser 2009). This connec-
tion also clarifies the convergence of the alternating Split

. . Bregman algorithm.
Many problems in image restoration can be solved by means . . .
In the second part of this paper, we consider the applica-

of variational methods, i.e., the resulting images are min-. . - : : ST
T g g tlgon to image denoising. First, we consider the following im

imizers of appropriate energy functionals. The success o . . o
these models led to a great number of computational af9¢ restoration model which useslardata-fitting term and

. X . L . . a Besov-norm regularization term, see (DeVore and Lucier
gorithms. A common idea is to derive iterative algorithms

Keywords Douglas-Rachford splittingforward-backward
splitting - Bregman methods augmented Lagrangian
method- alternating split Bregman algorithmimage
denoising
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We present a discrete version of this problem involvingwhereg* and @* are the conjugate functions gfand @,
Parseval frames. Interestingly, the corresponding altern respectively. In this paper we further assume that solation
ing split Bregman algorithm is not only equivalent to the 0 andb of the primal and dual problem, respectively, exist
Douglas-Rachford splitting method but also to another popand that the duality gap is zero, i.€R) and (D) have the
ular operator splitting method: tHerward-backward split- same value.
ting algorithmwhich is for our particular problem simply In other words, we suppose that there is a Qéid)

a gradient descent reprojection algorithreee (Chambolle which satisfies th&arush-Kuhn-Tucker conditionsf., e.g.,
2005). Since our method is based on frame transformatior{onnans and Shapiro 2000)

and soft shrinkage, we also underline the relation to the cla R i

sical wavelet shrinkage scheme which uses orthonormal-wavg €0g(0)+D b’A

let transforms. 0€ —Da+0®"(b), 3)

Finally, we consider the Rudin-Osher-Fatemi model where thesubdifferentialsdg and d®* are defined as fol-

-~ ) : lows: For any convex functiot” : H — RU{+} on a
argminz [[u— f|[f, o) +A /Q DU dx, (2)  Hilbert spaceH the subdifferential is defined as the follow-
ueBv(Q) ing set-valued operator

see (Rudin et al 1992), which uses a total variation regular; _ N o Py
ization term. Note that for the infinite-dimensional segtin 0F (W) ={veH: (wu—0) <.7(u)—F(0), YueH}. (4)
the relation between problems (1) and (2) was studied i%y Fermat's rule G is a solution of(P) if and only if 0 €
connection with so-called near minimizers in (Bechler et aldﬁ‘p(ﬂ) and analogously for the dual problem. We further

2006_; (_Zohen etal 1999)‘_ Solying (2) is a successful imaggqq me in this paper that the following so-called regylarit
denoising method, especially, in terms of the preservation conditions hold true

edges and sharp object boundaries. Here, we first apply our

findings to frame-based discretizations of the absoluteeval 0 € int(Ddomg — dom®), (5)

of the gradient. Similar to the Besov-norm setting, we deriv g ¢ int(domg* + D*doma*), (6)
arelation between the alternating split Bregman methed, th ) o )
forward-backward splitting algorithm and frame shrinkageWhere int denotes the interior of the corresponding sets, se
Second, we compare these algorithms numerically with §Rockafellar 1970; Borwein and Zhu 2006). Note that in the
class of first-order methods that has attracted a lot oféster finite-dimensional setting a weaker condition using the no-

in image processing recently: the so-called multistep methfion of the relative interior of a set can be found in (Rock-
ods. afellar 1970, Theorem 31.1). Now we can write the primal

and dual problem in the equivalent form
Remark 1A shorter version of this paper has been published _
in the Proceedings of the Second International Conferencd”)
on Scale Space Methods and Variational Methods in Coménd
puter Vision 2009, see (Setzer 2009a).

0 € 8.7p(0) = Ag(0) + 3(P o D)(0)

(D) 0€d.n(b)=0(g" o (~D"))(B) + 0" (B).

2 Picard iterationsfor the solution of variational Observe that for both the primal probleif) and the dual

problems problem(D’) one has to solve a problem of the form

Let us start with general minimization problems of the form0 € A(p) + B(p) 7

(P) min { g(u) + ®(Du) }, for set-valued operatofsandB. The main idea of the meth-
ueH;] " ~——_———

ods we want to examine in this paper is to write our prob-

=7 . . . . .
P lems in terms of a fixed point equation, i.e.,

whereH; andH; are Hilbert spacef) : H; — H; is a bounded R . R R
linear operator and both functiogs H; — RU{+w} and O€AP+B(P) < p=T(p) (8)

contiious (5.0, T cbrraaponding dua pranlem nag " 21 PPIOPTELS PETala: H — H. Here = Hsork =
-0 P 9 P Ha, if we solve the primal problenP) or the dual problem

form (D), respectively. Based on (8), we consider the following
(D) — min {g*(—D*b) I (D*(b)} basicPicard iterationsto compute such a fixed poipt ~

beH
’ — Zp(b) pkt) = T (p). 9)




The operatoiT must be chosen according to (8) and such2.2 Proximal point method

that the Picard iterations converge. Recall that an opera-

tor T:H — H on a Hilbert spaced is nonexpansivéf ~ The common structure of the methods discussed in this pa-
[T(u)—T(Vv)| < |lu—v| for all u,v € H andcontractive per is best seen by considering first ttlassical proximal

if || T(u)—T(v)|| < B|lu—V]| forall u,ve H and some con- point algorithm We refer to (Eckstein and Bertsekas 1992)
stantf € (0,1). In contrast to the property of being con- for references and historical background of this method. Ap
tractive, the nonexpansivity of an operator does not guararplied to the primal probleniP), it has the form
tee the convergence of the corresponding Picard iterations ) I K12 L o
Therefore, we use the stronger notion of an averaged opet- = — aﬂgmn{zﬂu— u|"+ Fp(u)}

ator, cf., e.g., (Bauschke and Borwein 1996; Byrne 2004; '

Combettes 2004). By definitiofl, : H — H is averagedif  for a step lengtty > 0. Using our definition from Section
for a nonexpansive operat®and somex € (0,1) we can 2.1 we can write the fixed point operator applied in (11) as
write T as

(11)

T =prox,z, = Jyo.7p-
T=al+(1-a)R

This also explains the name proximal point method.
wherel denotes the identity operator. Note that every con-  Clearly, the fixed points oT are exactly the solutions
tractive operator is averaged but in contrast to contrastio of (P). The main idea of the proximal point method is that,
averaged operators can have more than one fixed point. Fpfstead of solving the (hard) original problem, we solve in
averaged operators we have the following convergence remach step a nicer problem which is constructed by adding
sult: a "cost-to-move” term to the original objective functional
Theorem 1 Let H be a Hilbert space and let TH — H This term penalizes the distance between two iterates. To

be an averaged mapping which has at least one fixed poin?.hOW the convergence of (11) we need the following clas-

Then, for every {9 € H the Picard sequend@) converges sical results from convex analysis, see, e.g., (Ecksteih an
weakly to a fixed point of T Bertsekas 1992) and the references therein:

Since every subdifferential of a proper, convex and I.s.c.
This result has its origins in (Mann 1953; Krasnoselskii3:95 function ismaximal monotoni follows thatd.%p is maxi-
Schafer 1957) and proofs can also be found, e.g., in (Browmal monotone. The resolvent of a maximal operatirisly
der and Petryshyn 1966; Opial 1967, Combettes 2004). nonexpansivevhich means that it is averaged with parame-
ter 1/2. Hence, we can apply Theorem 1 to conclude weak
convergence to a fixed point df, i.e., to a solution ofP).
In the same way, we can define the proximal point algorithm

R(l)r (D)
kt1) argmin{%,”b— b® )2+ Zp(b)}
be

2

2.1 Proximation and the resolvent operator

Let us briefly recap some important elements of convex ana
sis which will appear as building blocks for the fixed point bt
operators presented in the next sections.

Let H be a Hilbert space angF : H — RU {+»} be a = pro&%(b@) — Jya’gD(b(k)) (12)

proper, convex and |.s.c. function. Then, fireximity oper- and the same convergence result holds true. It is well-known

Storproxyg +H —H, introduced in (Moreau 1965),is given that this proximal point algorithm fofD) is equivalent to

y theaugmented Lagrangian methotl(Hestenes 1969; Pow-
prox,(f) == argmin{z—lyﬂu— fl2+.2 ()}, (10) ell 1969), see, e.g, (Rock_afellar 19_76; lusem 199_9; Frick

ueH 2008). To define this algorithm, we first transfo(f) into
wherey > 0. Observe that this minimization problem is equivtn€ constrained minimization problem
: A2 .: o

alent to(P) with g:= 5| - —f||°, @:=F andD:=1.The 4 £, 4) subjectto Du=d, (13)
objective function in (10) is strictly convex and coercive S ueH;,deH,
that for anyf € H the proximum proy.(f) exists and is
unique, cf. (Ekeland and Temam 1976). By Fermat's rule
we have

whereE(u,d) := g(u) + @(d), see also (Wang et al 2008).
The corresponding augmented Lagrangian algorithm is then

L defined as
L R P
U=prox,(f) < 0€ (G- f)+dF(0) W D g6 ) — argmin (E(ud)
& 0= (1+y0.7) (), ’ ucHydeHy
————
Joz +(b®,Du—d) + £ |Du—d|?},

wherel,; 7 is called theesolvenof yd.7. bt = b 4 L (Dulk+t) — d*HD). (14)



The first step of (14) the Lagrangian functional is "augmdhteTo introduce the Douglas-Rachford splitting algorithm, we
by a quadratic penalty term and for the same initial valudirst note that ifB is single-valued we can rewrite the fixed
b©@ the sequence™),cx coincides with the one produced point relation (15) as follows

by the proximal point algorithm applied {®). Moreover, if R R

(b)) converges strongly, then every strong cluster point P € Jna(l =nB)(p)

of (u®)yey is a solution of(P), cf. (lusem 1999). & p+nB(P) € Iya(l —nB)(P) +nB(P) (17)

& P=Jne(Iall —nB)(P) +nB(P)). (18)

- If Bis set-valued the Picard iterations
2.3 Operator splitting methods

(k+1) _ (k) (k)
In the above proximal point method we have to computeD € Jng(Jnall = nB)(p"™) +nB(p™)) (19)

the resolvent of the subdifferential of the complete objec- i ., .,
tive function. However, the objective functions (?) and ~ co'responding to (18) are called the "loose” Douglas-Rach-

(D) have an additive structure. Hence, we can exploit this tdord splitting algorithm, cf. (Eckstein 1989). In generthe

define operator§ whose Picard iterations are easier to com-""lgor'th'ﬁn (19) does not converge to a solution of (7). How-

pute. In this paper, we restrict our attention to the follogyi ever, if we (?hoose the eIement@E(p(k)) n a.spec:lal way
two operator splitting methods: tierward-backward split- W& dlo obtalp a convgrgent algorithm. To this end, gon3|der
ting method (FBS), introduced in (Lions and Mercier 1979;he fixed point equation for the operaQr: H — H given
Passty 1979), and tHaouglas-Rachford splittinglgorithm by
(DRS) whose origins lie in (Douglas and Rachford 1956)_ R o o
and which was first applied to image processing in (Com{ = Q(t) = Jya(2Js(t) —t) — Jps(t) +1.
bettes and Pesquet 2007). R

Note that there exist other method like the Peacemarfor such a fixed poirftwe definep”= Jpe(f) and thust =
Rachford and the backward-backward splitting algorithm{ — p lies in nB(p). With this choicef € nB(p) the element
see (Lions and Mercier 1979; Combettes 2004) and the refd is indeed a solution of (7), cf. (17):
erences therein. They are not treated here because of their . A o
inferior performance for the applications we want to con-P & = Jha(2p—(P+¢&)) =P+ p+¢
sider in this paper. = J,,A(f)—é)+$

To motivate the _forward—backvx_/ard sp!lttmg a_lgonthm = pedsall —nB)(p) < 0e A(p)+B(p).
we rewrite the inclusion (7) as the fixed point relation

This gives rise to the iterative algorithm of Theorem 3. Its

P—nB(P) € p+nA(P) convergence holds true since under suitable conditions on

& pepa(l —nB)(P), forn>0. (15) andB the operatoQ is averaged, see (Lions and Mercier

1979; Combettes 2004), so that we can apply Theorem 1.
The forward-backward splitting algorithm is then just

the corresponding iterations with respect to the opefater  Theorem 3 (Douglas-Rachford Splitting)
Jpa(l = nB). Again it can be shown, see, e.g., (Lions andLet AB: H — 2" be maximal monotone operators and as-
Mercier 1979; Combettes 2004; Combettes and Wajs 20053ume that a solution of7) exists. Then, for any initial ele-
that under the conditions stated in Theorem 2 below the opments t9 and g% and anyn > 0, the followingDouglas-
eratorT is averaged and convergence follows by Theorem 1Rachford splitting algorithrosonverges weakly to an element
A somewhat different approach to the proof of the followingt:
theorem can be found in (Tseng 1991).

tk+1) — JnA(ZD(k) —t®) 400 — p®),
Theorem 2 (Forwar d-Backward Splitting) (k+1) _ JnB(t(kH)).
Let A: H — 2" be a maximal monotone operator and let
BB:H — H be firmly nonexpansive for sonle> 0. Fur-  Furthermore, it holds thap := J,g(f) satisfiesO € A(p) +

thermore, assume that a solution @) exists. Then, for any B(p). If H is finite-dimensional the sequenépm) con-
p@ e H and n € (0,2B) the followingforward-backward L keN
-~ . verges to a solutiom.
splitting algorithm
) ) Observe that in contrast to the forward-backward splitting
p*+Y) = Jpa(l —nB)(p®) (16)  algorithm the operatoB is now allowed to be set-valued
and we make use of its resolvent. Another difference is that

converges weakly to a solution of problén). there are no restrictions on the step length.



2.4 Bregman methods As the Bregman functio the functionE defined in
(13) is chosen. This results in the Bregman distance

In the preceding section we did not apply the resolventofthe
full objective function as in the proximal point algorithm. D|<5p )(u,d,u®,d®) = E(u,d) — E(u®,d®)
Instead, we made use of the additive structure of the prob- _<p&k)7u_ u(k)> o (pék),d _ d(k)>.
lem and worked with the resolvents of the individual terms.
Another approach to modify the proximal point method con-Instead of#p in (22) we use the terng, |Du— d||? so that
sists in generalizing the definition of the resolvent or,iequ the constraint in (13) is satisfied if we have convergence.
alently, of the proximation operator. More precisely, waco The resulting algorithm is given by
sider the following more general distances in the cost-to-
move term of (11)gand (12?. (U, diert) = a:'ggnln {D (u,d,u’,d®)

Let a Gateaux differentiabBregman functior : H — 1 e ; e
RU{+o} with Gateaux derivative — ¢ (v) be given. We +3yllDu—dj } (23)
define theBregman distance p as follows, cf. (Bregman i+l _ p&k) _ lD*(Du“(*l) —d(kH )y, (24)
1967; Censor and Lent 1981):

Dy (U,v) = ¢ (u) — d(v) — (O¢(v),u—v).

Based on this notion of a Bregman distance Breg-

man proximal point algorithnwas introduced in (Censor 0 € E(u*Y dk) - (p&k), pék)) +
and Zenios 1992). We refer to (Eckstein 1993; Censor anfllD* Du(k+d) _ d(k+1))’_:_L(Du(k+1)_d(k+1)))
Zenios 1997; Kiwiel 1997; Frick 2008) for additional con-
ditions necessary to guarantee convergence. Appli¢dito = 0E(U(k+l),d(k+l)) - (p iy ) pdk+1 ),
the Bregman proximal point algorithm is defined as follows
for an initial valueu® and a parametgr> O:

(k+1) _ (SN
! alrjgn'lln{ Do (™) + FelW)}: (20) any elemenb® € H, to obtain a convergent algorithm: If
we define in each iteration

(k+1)

py ™Y = pi + L(DulkHd) — gkt D)), (25)

where it is used that (23) implies

so that(p{’, p{Y) € 9E(UX,d®) for k> 1. As we will see
now we can choosp? := —%,D*b(o) and péo) = %,b“)) for

Note that we use the Bregman distance to the last itef4te
as a cost-to-move term now. The classical proximal pomb (k+1) . K 4 pylktd) _ glk+d)
method for(P) is just a special case of the Bregman proxi-

mal point algorithm forp := 1|\ |%. We can also write (20) it holds by (24)-(25) thapu _ 1D*b andp %/b(k)
in the form for all k > 0. Using thaD is a bounded linear operator, the
ur ) = (M) objective function in (23) can thus be written as
_ 7)1 (k) (K)
(09 +y0.7e) (Dp() G ) udu®.d) 4 Du-d|?

and the fixed points of are exactly the solution of the pri- - 0 400\ L 1K ®)
mal problem. Under certain assumptions, we can drop the™ E(u,d) —E(u™,d™)+ Y/<b ,Du—Du™)
condition of¢ being differentiable, e.g., in finite-dimension- _l<b(k)’d _ d<k)> + 2_1VHDU _ d||2.

al spaces for strictly convex Bregman function with full do-
main, cf. (Kiwiel 1997). The Bregman distance is then de-
fined as

Dé,p)(u,v) =¢(u)—d(v)— (p,u—V),

Hence, Goldstein and Osher (2009) obtainedsthlé Breg-
man method

(u(k+l) , d(k+1)) —

_ _ _ argmin {E(u,d) + % |b" + Du—d|*},
with p € d¢(v) and the corresponding Bregman proximal  ucH;,deH,
point algorithm is given by kD) — pk 4 pylk+d) _ glkt1), (26)
ulrt) = aﬂgg"”{ D¢ )( ul) + Zp(u)}, As already discovered in (Yin et al 2008), see also (Tai and
(ki1) ! (ki 1) Wu 2009), the split Bregman algorithm (26) coincides with
P = ‘9")( ) 22)  the augmented Lagrangian algorithm (14) with the only dif-
see also (Eckstein 1993; Frick 2008; Kiwiel 1997; Osheiference that in (26) the iterate) are scaled by. By Sec-
et al 2005) and the references therein. tion 2.2 it also equivalent the proximal point algorithm for

To solve the constrained optimization problem (13), Gold-(D).
stein and Osher (2009) proposed to use the Bregman proxi- Therefore, we can conclude from Theorem 1 that the se-
mal point algorithm (22) in the following way: quence(%,b(k))keN generated by the split Bregman method
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(26) converges weakly to a solution of the dual problem. TdProof: 1. First, we show that for a proper, convex, l.s.c.
summarize: functionh : H; — RU{+} and a bounded linear opera-
torK : H; — Hy the following relation holds true:

. . Augmented ;
Proximal Point _| Lagrangian |= Split Bregman V= argmm{%HKv—WHz—i— h(v)}
Alg. for (D) Alg. for (P) Alg. for (P) veH;
: = l’](K\?—W) = Jn g(h*o(iK*»(—r’W). (31)

The first equality in (31) is equivalent to

2.5 Alternating split Bregman algorithm . N

0 € nK*(KV—w) + dh(V)
Recall that by definitiofE (u,d) = g(u) + @(d) and the min- < V€ dh* (— nK*(KV—w)).
imization problem in (26) may be hard to solve. Hence, Gold- . o
stein and Osher (2009) proposed the followaltgrnating Applying the operator-nK implies
spthr: Bregm?:l algo(;i(;hnl’(;o soI}[/.e (|13) where they minimize —NK € —nKah* (= nK*(Ki—w))
with respect tas andd alternatingly: . . .

P gy = na(h o (—K")) (n(KI—w)).

(k+1) _ i 11k _d®2
u = argmin{g(u b Du—d , 27 .
ung {9(U) + 5167 + I} @7) We now add-nq on both sides to get
(k+1) _ ; 1 1hk) (k+1) 412 . N R
b+l = p 4 pylk+) — glkt+D), (29)  whichis, by definition of the resolvent, equivalent to the-se

. . i ond equality of (31).
As also pointed out in (Esser 2009) the same idea tg Applying (31) to (27) withh := g, K := D andw =
minimize alternatingly with respect to the variables was-pr (k) _ (k) yields '

sented for the augmented Lagrangian algorithm (14) in (§aba

and Mercier 1976; Glowinski and Marroco 1975). The re-n(b® + Du®+Y —d®) = gpa(n (b® — d®))).

sulting algorithm is called the alternating direction naeth ) ) )

of multipliers (ADMM), cf. (Gabay 1983). It is equivalent Assume that the alternating split Bregman_n_erates are re-
to the alternating split Bregman algorithm since as we havt?t€d to those of the Douglas-Rachford splitting algorithm
seen in the preceding subsection, the augmented Lagrangi¥id the identification (30) up to somec N. Using this in-
algorithm and the split Bregman algorithm coincide in ourduction hypothesis, it follows that

setting. Here, too, we can take a third point of view and inter n(b® 4 pulk)

pretthe algorithm as an operator splitting algorithm, nigme

— K _ gk (K _ (k1)
a Douglas-Rachford splitting algorithm. We thus have: = Jpa(n(b d™)+ !70' , =1 . (32)
2p(kK)—t(k) (k) —p(k)
DRS ADMM Alternating Split
for (D) || for(P) || Bregman Alg. for(P) By definition of bt in (29), we can conclude that
n (b 4 dk+1)y = t(+1) Next we apply (31) to (28) with
For the sake of completeness, we include the next Theorefv= @, K := —1 andw := b¥) -+ Du**1) Together with (32)

4 which shows as it was done in the same way in (Gabaf}is gives

1983; Eckstein 1989) for the ADMM that the alternating U(b(k) + DU+ —d("“))
split Bregman method is indeed a Douglas-Rachford split- ® (ki1) (ki1)
ting algorithm. IfH; andH, are finite-dimensional, this pro- — Jne(n (b +Du ) =P :
vides us with a convergence result for the sequefteé9 (k1)

and(d®),cn. A different proof of convergence of the alter- ) ) e
nating split Bregman algorithm can be found in (Cai et atAgain by the formula (29) fob we obtainnb =
2009). pk+1) which completes the proof.

Finally, we study the convergence propertiegF )iy in

Theorem 4 The alternating split Bregman algorithm coin- 14 case wherkl; andH, are finite-dimensional.

cides with the Douglas-Rachford splitting algorithm ajpli

to (D) with A:=d(g" o (—D")) and B:= d®*, wheren = proposition 1 Assume that iHand H are finite-dimension-

1/yand al Hilbert spaces. Then, every cluster point of the sequence
(u®)en generated by the alternating split Bregman algo-

t® =noY +d¥), p¥=nbk, k>o. (30)  rithm is a solution of the primal problertP).



Proof: We rewrite (27)-(29) in the equivalent form Proof: See Appendix.
0€ag(u®)+1pb™ + 1p*(Dulk ) —d¥),  (33)
0c ad(dkD)) — 1pk _ L pylktl) _ glkt1)y, (34) Remark2Assume the functionay has the formg(u) :=
T (‘|/<+1> ”(k+l> 1||Ku— f||2. Then, Corollary 1 implies that convergence
b = b+ DU —d L (35  holds true if the matrixyK*K + D*D)~L is invertible, or in

We know from Theorem 4 and Theorem 3 that the sequencéiher words, it/ (K*K) n.#(D"D) = {0}. This is clearly
(b®)en and(d®),cyy converge. Leb andd denote the cor- f_qullled for the choiceK = | we will make in the next sec-
responding limits. Furthermore, letbe a cluster point of toN:
(u®) e with convergent subsequenge®)) . Because
the subdifferentials of the functiorgsand @ are maximal
monotone we can pass to the limits with respect to the in
dicesk; in (33) and (34), see, e.g., (Aubin and Frankowsk
2009, Proposition 3.5.6).

This yields the Karush-Kuhn-Tucker conditions

3 Application to image denoising

6\Ne now restrict our attention to the discrete setting and con
sider digital images defined dd,...,n} x {1,...,n} which

are reshaped columnwise into vectdrs RN with N = n?.
0€ dg(b)+ %,D*B, If not stated otherwise, the multiplication of vectors,ithe
square root etc. are meant componentwise. Our goal is to

_ 1§ 0
0¢c Vb+ 9®(DY), (36) apply the algorithms defined in the sections above to the dis-
cf. (3). Thus,u”and%,B solve(P) and(D), respectively. crete denoising problem
Now the natural question arises under which condition Weargmin{ 3|ju— fl|13+ ®(Du)}, (38)
can guarantee th&u™ ).y converges. UeRN

Theorem 5 Assume that Hand H; are finite-dimensional whereD € RMN with M > N and @ is one of the following
Hilbert spaces and leb andd be the limit points arising functions ornRM:
from the alternating split Bregman algorithfd7)-(29). Then, . .
- Iy ) ; i) @u(v) = ||AV]1
a sufficient condition fofu'),cn to converge to a solution with A == diagA)M ,, A; > 0
of (P) is that the problem T Vi=p 2 ="

argmin{g(u) + 4 |b+ Du—dJ|?} (37) i) 20 =4 wl with A= diag, L, 4 2 0 and

ey 2v V= (Vi) forvi = (vi.ua)-g andM = pN.
has a unique solution. The corresponding conjugate functions are given by
Proof: Let us rewrite (33) as i) ®;(v):=ic(v)with

. ) I C:={veRM:|vj|<Aj, j=1,...,M},

-+ * — *
U™ € (y0g+D'D) T (DY(d™ — b)), iy @3 (v) := 15(v) with
Ci={veRM:|vjl2<Aj, j=1,...,N},

Sinceydg+ D*D is maximal monotone as a subdifferential

of a proper, CSF‘V% and l.s.c. function we have that the mapyhere . denotes the indicator function of the &{or C),
ping (ydg+D*D) " is also maximal monotone, cf. (Aubin ; ¢ ;- (y) = 0 forv e C andig(v) = + otherwise. A short

and Frankowska 2009, Ch. 3.5). o calculation shows that for arfye RM we have
Consequently(ydg+ D*D) ! is upper semicontinuous,

see (Borwein and Zhu 2005, Ch. 5.1). In our case whereProXe, (f) = Sa(f),
P*(q(k) — b)) — D*(d - b) ask — o« and(ydg+ D_*D)fl Proxe, (f) = Sx(f),
is single-valued at the limit poinb*(d — b) this implies
that(u®),cy converges to the unique solutiarof (37). By
Proposition 1u'must be a solution ofP).

where S, denotes thesoft shrinkagefunction (also called
soft thresholding) given componentwise by

In many examples the following special case of Theorem Eé f) e 0 if [fj] <Aj, (39)
can be used. (1) fi —Ajsgn(f)) if |fj] > Aj.
Corollary 1 If H; and H are finite-dimensional Hilbert gf\ denotes theoupled shrinkagéunction

spaces and if the primal proble(®) has a unique solution N
then (u),cy, defined by the alternating split Bregman al- & gy {0 it [Ifjll2<Aj,
gorithm, converges to the solution @). )‘J( i) f —;\jfj/”fj”z if ||fj||2>5\j,



compare (Chambolle 2005; Mrazek and Weickert 2003; Welkndu'= f — D*b, see, e.g., (Chambolle 2004). Applying the

et al 2008). Similarly, we obtain forward-backward splitting algorithm (16) to this problem
gives
proxg,: (f) = f —Su(f),
proxg; (f) = f = S5(f). (40) bk = prox e (b<k> +yD(f— D*b<k>)) ,

Consider the alternating split Bregman algorithm (27)}(29
with g(u) z||U— f||2. Theorem 4 and Corollary 1 imply where 0< y < 2/||D*D||2. Using relation (40) we obtain for

the convergence (ﬁ‘u >)k . and (Vb( ))k to a solution =%

N
of the primal and the dual problem, re5|€3ectlvely With theb®*?) ® +yD(f —D*b®) — ( ) +yD(f —D*bk ))
above choice ofj, we have to solve the following quadratic

problem in (27): which can be written as follows:

u+D) = (yi + D*D)" (yf + D (dW - b(k))) Algorithm 11 (FBS Shrinkage)
Initialization: u© := f, b(©
cf. Section 3.3. Applying (39), we see that for= @, the Fork=0,1,... repeat untll a stopping criterion is reached
solution of the proximation problem in (28) is given by gD . S/\( b 4 yDu“()),

d(k+1) _ Sy/\ (b(k) + Du(k+1)) b(k+l) - + yDu(k) _ d(k+l)’
u(k+1) f_ D*b(k+l>.
and similarly for@ = @,. This leads to the following alter-

nating split Bregman shrinkage algorithm: If we use ®,, we have to replace the shrinkage functional
Sy by S;. This algorithm can also be deduced as a simple
Algorithm | (Alternating Split Bregman Shrinkage) gradient descent reprojection algorithas it was done, e.g.,

in (Chambolle 2005). Note that this mot the often cited
Chambolle algorithm of (Chambolle 2004). A relation of
this method to the Bermldez-Moreno algorithm which also
d®D = 5, (b® 4 DU, turns out to be a forward-backward splitting algorithm was
bkt .= pk 4 py® — glk+), shown in (Aujol 2009).

uk+d) - = (| +D*D)~ (yf + D*(d(k+1) _ b(kﬂ))).

Initialization: u© := f, b® := 0
Fork=0,1,... repeat until a stopping criterion is reached

As we will see below, soft shrinkag®, can be used for 3.1 Besov-norm regularization

B} , regularization. In the case whede= @, which is ap-

propriate, e.g., for total variation regularization, werddo  For a sufficiently smooth orthonormal wavelet bagg)ic =

replace it by the coupled shrinkage functiéym. Observe of L»(Q) with wavelets of more than one vanishing moment,

that in order to better compare this method to the other algowve can solve problem (1) in the wavelet domain by finding

rithms in this section, we have changed the order in which. 1 ) _

we computed®3), k1) andu®+D. This is allowed be- 9= 3rgm:|n{§|\d—c||gz+)\ ldller}s ©:= ((f, ¥h))ie= (42)

cause there are no restrictions on the choice of the starting 22

values. Indeed, if we start in (27)-(29) with? := Df and  and definingu= ¥;.= di . In the discrete setting, consider

b(® :=0, we get the same iterates as in Algorithm . theorthogonalmatrixW € RN-N having as rows the filters of
Note that Algorithm | can also be used for the deblurringorthogonal wavelets (and scaling functions) up to a certain

problem which differs from (38) in having a more generallevel. Then, using the notatiofi := Aly, problem (1) has

data-fitting termg(u) := 2||Ku— f||3 with some linear blur  the discrete counterpart

operatoiK, cf. Section 3.3. R
G= rgmln{ u—fl[3+[[AWU|1}

UeRrN

Remark 3Based on the splitting (13), a quadratic penalty
= argng|n{§|\Wu—Wf|\2+ [AWU([1}. (43)
ueR

approachto solve (38) and the corresponding deblurrinig-pro

lem was proposed in (Wang et al 2008).
By the orthogonality ofV we can solve this as in (42): We

The problem (38) can also be solved via its dual problem: compute forc: =W f

B:argmin{%|\f—D*b||§+ ®*(b)}, (41) &:argmin{%|\d—c||§+HAdHl} (44)
beRM deRN



and seu’= W*d. Because of (39), we thus obtairby the  Proposition 2 For D := W, where WW = Iy, andy:=1
known wavelet shrinkage procedue= W*S, (W f) con-  the FBS shrinkage and the alternating split Bregman shrink-
sisting of a wavelet transforiV followed by a soft shrink- age algorithm coincide with the iterated frame shrinkage al
ageS, of the wavelet coefficients and the application of thegorithm.

inverse wavelet transforitv*.

However, for image processing tasks like denoising o
segmentation, ordinary orthonormal wavelets are notduite
due to their lack of translational invariance leading to- vis
ible artifacts. Nevertheless, without the usual subsampli yk+1) — %(f +W*(d<k+1) — b(k+l>)) in Algorithm |
the method becomes translationally invariant and the t®sul ((k+1) — § _\w*pk+1) in Algorithm I1
can be improved. Then, howeve/,e RMN M = pN, forp  (k+1) —\glktd) in Algorithm 111
equal to three times the decomposition level plus one for the
rows belonging to the scaling function filters on the coarsWe now use induction ok. Assume that® = f —W*b(®.
est scale. We still haw&/*W = Iy but of coursaVW* # 1y,  Then, we obtain by definition df“+1) that
i.e., the rows ot form a discretdarseval framenRN but uk+D) — § _wrpktD)
not a basis. For the deggn of such frames see, e.g., (Ron and — Wby L wrdktD
Shen 1997; Daubechies et al 2003; Dong and Shen 2007).
Equality (43) is still true for Parseval frames, but the prob = wrdth,
lem is no longer equivalent to (44). Instead of (44), we haveg that the elemenis**? are the same for the alternating
to solve the constrained problem split Bregman shrinkage algorithm and the iterated frame

d= argrPAin{%Hc— dH%Jr ||/\d||1} shrinkage algorithm. Further, we see
deR

%(f + W (d(k+1) _ b(k+l)))

Proof: We start withu(©@ := f andb(© := 0 in all three algo-
rithms and in the way we have written them, they only differ

in the third step, where we have

subjecttod € Z(W), (45)

_ %(f+W*d(k+1)_W*b(k)_u(k)+W*d(k+1))

whereZ (W) denotes the range &¥. The solution in the
. . o - :W*d(k+1)+1(f —wW'p® _u(k))
image space is then again given by=- Wd. Note that the 2
constraint in (45) is equivalent tdy —WW*)d =d, i.e., =w*dk+D,
d must coincide with its orthogonal projection orsg&(W).
One could also penalize this condition. In the context of in
painting, this was suggested by Cai et al (2008). _ e

We will now show that FBS shrinkage and anemaﬁngLet us restate our result for our special setting in the follo
split Bregman shrinkage with =W, y=1 and® = ¢,  ing diagram:
applied to (43) or, equivalently, to (45) coincide with tiogf

so that the alternating split Bregman shrinkage algoritbm ¢
‘incides with the iterated frame shrinkage algorithm, too.

. . ; : ) Alternatin Iterated
lowing algorithm which underlines the relation to the watel Split Breglmgan _ FBS | Frame

i i i | Shrinkageg —
shrinkage algorithm with orthonormal transforms. Shrinkage Inkag Shrinkage
Algorithm Il (Iterated Frame Shrinkage)
Initialization: u© := f, b := 0. 3.2 Total variation regularization

Fork=0,1,... repeat until a stopping criterion is reached . . .
T P Pping In this section, we apply the algorithms presented so far to

d® = S, (b +wu), the discrete Rudin-Osher-Fatemi denoising method, oe., t
bktD) .= p® Wk — gkt (38) with @ = @, and a special discretization of the absolute
ukHD) - wrg(kHD) (46) value of the gradient:

. o . Lethg := 1[1 1] andhy := 3[1 — 1] be the filters of the

The first step of the algorithm, .l =W*Sy (W f)is  Haar wavelet. For convenience of notation, we use periodic
an ordinary frame shrinkage step which also appears if Wgoundary conditions here, concerning Neumann boundary
disregard the constraint in (45). In the following itera0  congitions, see, e.g., (Chan et al 2008). The corresponding
the algorithm differs from the usual iterated frame shrg&a jrcylant matrices are denoted By € R™ andH; € R
in the summand® we have to add before the shrinkage-rhen, the following matrix fulfillSAV*W = Iy but WW* -
step yieldingd &+, L

Note that in order to use the forward-backward split-
ting algorithm for problem (43)y has to fulfill 0< y < o EO@JEO
2/|W*W/[2. SincéW*W = Iy we have to choosejas (0,2) W= . | = oo

. . . . H1®H0
andy = 1 is an admissible choice. Hi1 ® Hy
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Fig. 1 Comparison of Algorithm IV and the alternating split Bregmmaethod withD := .7%. Stopping criterionjju®*tY) — u®||,, < 0.5. Top
left: Original imageTop right Noisy image (white Gaussian noise with standard devig2BnBottom left Algorithm IV, A = 70, (53 iterations).
Bottom right Difference to alternating split Bregman shrinkage with= 7, (53 iterations).

Mrazek and Weickert (2003) and Welk et al (2008) showed’roposition 2 shows that the alternating split Bregman-algo
that rithm and the forward-backward splitting method wjth=

3 1 coincide for this problem and can be rewritten as:
(((Ho® Hy)u)+ ((Hy @ Hopu)* + ((Hy @ Ha)u)®) P

is a consistent finite difference discretization@é|. Hence, Algorithm IV (lterated Frame Shrinkage for (48))
our discrete version of the Rudin-Osher-Fatemi functionajpitialization: u© := f, b := 0.

(2) reads Fork=0,1,... repeat until a stopping criterion is reached
irl 2 A 5

argming 5||lu— f N |F4u , A=Al 47

rom {Zllu—fI3+ A AU |1} N (47) D W),

If we use the ordinary alternating split Bregman algorithmd{"" := & (b® + (wu®),),
with D = .71 for this problem we have to solve a linear sys- 1) ._ pk) + (W), — (kD)
tem of equations in each iteration. This can be avoided by D o
using that#} is part of the Parseval franW. To this end,  &1) ._ \y+ ( %
we define the proper, convex and I.s.c. functiotiahwhich ' dgk“) ’
differs from @, in that the first part of the input vector is

neglected, i.e., 0 L
~ ~ N 3N with b(()) =0all iteratesbg) remain zero vectors. We also
®2(€) = [IA[cal[la, fore= (co,€1) € R™ x R obtain Algorithm IV if we apply FBS shrinkage directly to
Now we can rewrite (47) as follows (47) withD := s andy := 1.
. ~ We now give a numerical example, where we denoise an
iy £112
a:gg:‘m{ 2llu—fli2+ (DZ(WU)}' (48) image with Algorithm IV and with the usual alternating split

where(Wu)p := s%u and(Wu); := J7u. Note that starting
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Bregman shrinkage algorithm applied to (47) with= #1.  the cosine-Il matrix. A speed-up might be possible by using
Note that the latter requires the solution of a linear systém fast DCT algorithms. Note that if we use periodic boundary
equations in each step. Here, we have used the diagonalizeenditions in the discretization the FFT can be used diectl
tion via the FFT to do this, cf. Section 3.3 for a more detailedAnother possible speed improvement could be achieved by
discussion. approximating the matrix inverse, e.g., via Gaul3-Seigel it
The results are depicted in Fig. 1. We only show the deations as proposed in (Goldstein and Osher 2009).
noised image for Algorithm IV and its difference to the im-  Note that these techniques can also be used in many
age obtained by the alternating split Bregman method witltases for the corresponding deblurring algorithm where we
D := J# here since the difference between the two result isave to invert a matrix of the forigK*K + D*D.
marginal. Note that the two algorithms need nearly the same The two tables in Fig. 3 contain our numerical results.
number of iterations which is also true for other regulariza \We measure the performance of the algorithms in terms of
tion parameterg and other stopping criteria. the values of dual objective function in (41) and the pri-
mal objective function in (38) which are achieved after fixed
running times. More specifically, we consider the logarithm
of the distance between these values and the corresponding
function values of a reference image obtained after many it-

3.3 Comparison with multistep algorithms

Minimizing the dual problem (41) corresponding to the dis-

crete Rudin-Osher-Fatemi model means that we minimize gratlo.ns. o )
Lipschitz continuously differentiable function over a séml With respect to the value of the dual objective function,

and convex set. Recently, there has been a lot of interest € S€€ that FISTA performs best, followed by Nesterov's al-
solving problems of this form vianultistep methodsThe gorithm and the alternating split Bregman shrinkage (ASB).
main idea is to make use of the history of preceding iter- When we consider the primal objective function, how-
ations. Two interesting multistep methods were propose§Ver alternating split Bregman shrinkage performs best an
based on an algorithm of Nesterov (1983): The generalizelfesterov's algorithm is now better than FISTA. Itis impor-
fast iterative shrinkage thresholding algorithm (FISTA) o tant to note that the alternating split Bregman shrinkage is
(Beck and Teboulle 2008, 2009) is a projected version of€Ty Sensitive to the choice of the paramegeHence, in
the algorithm in (Nesterov 1983) and can be seen as an infontrast to Section 3.2, we have optimized it numericalty fo

proved gradient descent reprojection method. The methoch Of the experiments, i.e., for the two error measures and
which is now widely known as Nesterov’s algorithm, cf. the different computation times. For the forward-backward

(Nesterov 2005), is a modification of the algorithm in (Nes-SPlitting algorithm we have chosen the paramegter0.249.
terov 1983) including projections. It is not surprising that the multistep-methods perform
We now compare the performance of these two multistep’€!l compared to the forward-backward splitting method:
methods with those of the alternating split Bregman shrink-€t k denote the number of iterations. It is shown in (Nes-
age (Algorithm 1) and the FBS shrinkage (Algorithm 11), see terov 2005; Beck and Teboulle 2008, 2009) that the (non-
also (Goldstein and Osher 2009; Aujol 2009; Weiss et alogarithmic) error with respect to the dual functional is of
2009) for related numerical Comparisons_ the Orderﬁ(k—lz) Compared tﬁ(%) for the FBS Shrinkage.
Our computations were performed on a dual core deskObserve that these three algorithms are first-order method.
top (2.4 GHz processors, 3 GB memory) using MATLAB  The good performance of the alternating split Bregman
7.6.0. For the sake of comparability, we do not use the frameshrinkage algorithm, especially in terms of the dual vari-
based discretization d presented in Section 3.2 but the able, can be explained by its close relation to the Levenberg
following widely used forward difference discretizatioh o Marquardt method, cf. (Levenberg 1944; Marquardt 1963),

the gradient which is a special Newton method, i.e.second-order me-
thod Note that all the other algorithms considered here are
D:= <| ®Df> , first-order methods. For more details, we refer to (Setzer
Di @l 2009h).
where Observe that recently there is growing interest in im-
-1 10... 000 proving the forward-backward splitting method via dynamic
0-11... 0 0O step length strategies, especially the so-callatrilai-Bor-

wein techniquessee, e.g., (Barzilai and Borwein 1988; Zhu

Dt = e R™. o
! 0 00..-1 10 2008). This is not covered here.
0 00... 0-1 1 Moreover, we want to mention that for the above denois-
0 0 0... 00O

ing problem a special Lagrangian method, granal-dual
Our test image is shown in Fig. 2. Note that we invert thehybrid gradient algorithmwas introduced in (Zhu and Chan
matrix yl + D*D in Algorithm Il via multiplications with  2008), see also (Esser et al 2009).
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Fig. 2 Left: Original image with values ifi0,255. Middle: Noisy version with additive white Gaussian noides@andard deviation 25. Right:
Denoising result using the Rudin-Osher-Fatemi model vafufarization parameter = 25.

Time | ASB | FISTA | Nesterov| FBS Time | ASB | FISTA | Nesterov| FBS
5 4.62 2.73 3.28 7.15 5 6.47 7.02 5.38 8.56
10 2.45 0.10 1.28 5.80 10 4.50 5.14 3.73 7.40
15 133 | -1.01 0.09 5.04 15 3.48 4.25 2.78 6.71
20 0.24 | -2.05 -0.71 4.52 20 2.48 3.32 2.14 6.26
30 -0.92 | -3.35 -1.62 3.93 30 1.27 2.28 1.36 5.73
40 -1.69 | -4.47 -2.32 3.49 40 0.40 1.52 0.73 5.34
60 -3.33 | -5.56 -3.68 2.68 60 | -1.92| 0.79 -0.47 4.61

Fig. 3 Corresponding to the experiment in Fig. 2: Logarithmic emith respect to the dual objective (left) function and thierl objective
function (right) for different running times (in seconds).

4 Conclusions The minimization algorithms we considered here can
be applied to other problems in image processing, e.g., to
In this paper, we described main ideas behind some impothe minimization of nonlocal total variation functionats,,
tant minimization techniques for image restoration, in-par (Gilboa et al 2006; Gilboa and Osher 2008; Kindermann
ticular split Bregman methods. It had previously been obet al 2005). See also (Buades et al 2008) for more on the
served that the Split Bregman method can be interpreteidea of using nonlocal operators in image processing. More-
as a classical proximal point method or, equivalently, as aever, Goldstein et al (2009) used the alternating split Breg
augmented Lagrangian method. Since there is still a harghan method for segmentation and surface reconstruction.
subproblem to solve in each iteration of the split Bregman As pointed outin (Esser 2009), the alternating split Breg-
algorithm, the alternating split Bregman method had beeman method is especially useful for more complicated min-
proposed. This algorithm is equivalent to other well-knownimization problems, e.g., for image deblurring in the pres-
methods, the Douglas-Rachford splitting and the altemgati ence of noise. For Gaussian and impulse noise this was dis-
direction method of minimizers. We also studied the con<ussed in (Goldstein and Osher 2009; Esser 2009). The ap-
vergence properties in more detail, especially for the prim plication to deblurring in the presence of Poisson noise and
variable. multiplicative noise can be found in (Figueiredo and Biaica
As an application, image denoising via two popular modPias 2009; Bioucas-Dias and Figueiredo 2009; Setzer et al
els which applyB} ; and total variation regularizers, respec- 2009). An alternating split Bregman algorithm forimage de-
tively, was considered. It} ; case, alternating split Breg- noising in the presence of multiplicative noise using a non-
man and gradient descent reprojection methods led to tHgc@! total variation term was recently proposed by Steidl
same algorithm in a special setting based on Parseval fram¢¥'d Teuber (2009).
This underlines the common roots of these techniques. A
cerf[ai_n similarity_ cogld also t_>een es_tablished for theItOtaAppendix: Proof of Corollary 1
variation regularization functional. Finally, we have com
pared these methods numerically with multistep algorithmsve will make use of the following lemma.
fora fo_rward difference d'_scretlzatlon of the total Va'[m_'t Lemmal Let.# be al.s.c. and convex function on a finite-dimension-
regularizer. We found that if the step length parameter s opal Hilbert space H. Assume tha% has a unique minimizer, thef is
timized the alternating split Bregman method performs well coercive.

especially with respect to the primal function value. TEBC  proof: Suppose that” is not coercive, i.e., there exists a sequence
be motivated by relating it to a special Newton method.  (u®),cy with [u® || — 40 ask — +o0 and|.Z (U¥)| < C < 4o for
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all k e N. W.l.o.g. assume that = 0 is the unique minimizer of#

and that# (0) = 0 (otherwise use similar arguments as in the proof of

Corollary 1 below). We consider the sequence defined by

K uk
o u®

V(
which is clearly bounded and thus has a cluster paiiihe convexity
of .7 yields fork large enough that

FV) <

< mﬁ(u(k)) —0 fork— o,
Since.Z is |.s.c. we obtainZ (V) < 0 and thusZ (V) = 0. This contra-
dicts the uniqueness of the minimizer because by consbrugfi| = 1.

Proof of Corollary 1: It is sufficient to show thatu®),c is bounded
because we know from Proposition 1 that every cluster peiatuiva-
lent to the unique solution ¢P). Taking (27) into account, we see that
boundedness holds true if the functiofial H; — RU {+} defined
by

F(u)

g(u) + 3Dul® (A1)

is coercive. From Lemma 1 we know thgt+ @ o D is coercive. It
remains to show that this implies the coercivityFof Note that each
elementu € H; has an orthogonal decompositiog- u; + up with u; €
(D), where_# (D) is the null space ob. If .#(D) = {0} we are
done sincey is convex and thuk is coercive. So, let"(D) # {0}. If
for a sequencéu® ),y it holds that

] < Cy <+, VKEN, (A2)

then(u),c is unbounded by convexity af

So, assume that (A.2) holds true. We have to show that there ca

not be an unbounded sequen@d )y with [g(u®)| < C; < 4o
Assume that such a sequence existsMg@r Hy with F (vp) < 400, we
define for anyne N

(k) _ u® —Vo
V' = Vo M m

Then,(vﬁf))keN is a bounded sequence and thus has a cluster pgint
Assumption (A.2) implies thaty, € vp + .4 (D). Convexity ofg yields
for k large enough
k
g0in) < (1 e )9(v0) + e 9(U™)
< (1 m

__m . m
ol ) 90V0) + i 2
N—_——
—1 )

Sinceg is |.s.c. we obtairg(vm) < g(Vo). The sequencég(Vm))men
must be bounded from below because a solutio(Pdfexists. Hence,
we have constructed an unbounded sequéngincn for which both
the corresponding values gfand @ o D are bounded. This yields a
contradiction sincg+ @ o D is coercive by Lemma 1.
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