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Abstract In recent years, convex optimization methods were successfully applied
for various image processing tasks and a large number of first-order methods were
designed to minimize the corresponding functionals. Interestingly, it was shown re-
cently in [25] that the simple idea of so-called “superstep cycles” leads to very effi-
cient schemes for time-dependent (parabolic) image enhancement problems as well
as for steady state (elliptic) image compression tasks. The“superstep cycles” ap-
proach is similar to the nonstationary (cyclic) Richardsonmethod which has been
around for over sixty years.
In this paper, we investigate the incorporation of superstep cycles into the projected
gradient method. We show for two problems in compressive sensing and image pro-
cessing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the
resulting simplecyclic projected gradient algorithm can numerically compare with
various state-of-the-art first-order algorithms. However, due to the nonlinear projec-
tion within the algorithm convergence proofs even under restrictive assumptions on
the linear operators appear to be hard. We demonstrate the difficulties by studying
the simplest case of a two-cycle algorithm inR2 with projections onto the Euclidean
ball.
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1 Introduction

Many sparse recovery problems as well as image processing tasks such as denoising,
deblurring, inpainting and image segmentation can be formulated as convex opti-
mization problems. To minimize the corresponding functionals, first-order methods,
i.e., methods which only use gradient information of the functional were extensively
exploited in recent years. The most popular ones are projected gradient methods in-
troduced in [24,28], see [7] for further references, and their variants such as FISTA
[31,5], Barzilai-Borwein techniques [3,17] and primal-dual methods [16,41].
On the other hand, the idea of so-called “super-time stepping” was recently revi-
talized from another point of view withinfast explicit diffusion(FED) schemes in
[25]. More precisely, the authors provided very efficient schemes for time-dependent
(parabolic) image enhancement problems as well as for steady state (elliptic) image
compression. In the latter case, FED schemes were speeded upby embedding them
in a cascadic coarse-to-fine approach. Indeed the idea of “super-time stepping” pro-
posed by Gentzsch et al. [22,23] for the explicit solution ofparabolic partial differen-
tial equations is very similar to those of the nonstationary(cyclic) Richardson method
[2,12,21]: zeros of Tschebyscheff polynomials were used asvarying acceleration pa-
rameters in the algorithm in a cyclic way. Although these nonstationary acceleration
parameters violate the convergence restrictions on an iterative algorithm in 50 percent
of all cases, the overall cycle is still in agreement with these restrictions. Hence the
theoretical convergence of the algorithm is ensured. However, practical implementa-
tion of these cyclic methods require a proper ordering of theacceleration parameters
to avoid the accumulation of round-off errors in case of larger cycles.
In this paper, we are interested in incorporating cyclic supersteps in projected gradient
algorithms. Indeed our numerical experiments show that this simple idea can speed up
the fixed step length version of the algorithm significantly and can even compare with
various state-of-the-art first-order algorithms. However, due to the nonlinear projec-
tion operator involved in the algorithm it seems to be hard toprovide any convergence
analysis as a simple case study underlines. One way to guarantee convergence is to
use a line search strategy.
The rest of the paper is organized as follows. In Section 2, wereview the basic idea
of the method of “super-time stepping” and of the nonstationary (cyclic) Richardson
method. In Section 3 we incorporate cyclic supersteps within the projected gradient
method and call the resulting approach the cyclic projectedgradient method. Then,
we examine the convergenceof the method in a simple case study and show how a line
search strategy can be employed to guarantee convergence. Section 4 compares our
cyclic projected gradient method with various first-order algorithms for two sparse
recovery and image processing tasks, namely for the LASSO problem and the Rudin-
Osher-Fatemi approach. While the first one requires projections onto theℓ∞-ball, the
second method involves projections onto the (mixed)ℓ1-ball.
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2 Modified Cyclic Richardson Method

In this section we briefly explain the idea of so-called “super-time stepping” [22,23]
which is closely related to the nonstationary (cyclic) Richardson method [2,12,21] so
that we call the first one a modified cyclic Richardson method.Consider the standard
example of the heat equation

ut =△u= uxx+uyy (1)

on [0,1]2 with Neumann boundary conditions and initial conditionu(x,y,0) = f (x,y).
A simple explicit scheme to approximate the solution of (1) on the spatial-temporal
grid with spatial mesh sizeδx= 1

N and time step sizeδ t is given by

u(0) = f ,

u(k+1) =
(
I − δ t

(δx)2 L
)

u(k), k= 0,1, . . . , (2)

whereu(k) is the column vector obtained by columnwise reshaping(u(k)i, j )
N−1
i, j=0, and

u(k)i, j ≈ u((i + 1
2)δx,( j + 1

2)δx,kδ t). The matrixL results from the approximation of
the derivatives in the Laplacian by symmetric finite differences. More precisely, we

have thatL = ∇T∇, where∇ is the discrete gradient operator∇ : u 7→
(

ux

uy

)

given by

∇ :=

(
I ⊗D
D⊗ I

)

with D :=










−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
0 0 0 . . . −1 1
0 0 0 . . . 0 0










∈R
N,N. (3)

Here,⊗ denotes the Kronecker product. Clearly, the matrixL is a symmetric, positive
semi-definite matrix and it is well-known that its eigenvalues are given byλi, j =
4
(
sin(iπ/(2N))2+ sin( jπ/(2N))2

)
, i, j = 0, . . . ,N−1 so that 0≤ λi, j < 8. We denote

by λmax(L) = ‖L‖2 the largest eigenvalue ofL. Then the above scheme converges if
and only if the eigenvalues ofI − δ t

(δx)2
L given by 1− δ t

(δx)2
λi, j are within the interval

(−1,1] which is the case if and only ifδ t
(δx)2

≤ 1
4. Note that in this caseu(k) converges

to a constant vector whose entries are equal to the mean valueof f . In [22,23] the
authors suggested to speed up the algorithm by incorporating “superstep cycles”. To
understand the basic idea we provide the following proposition.

Proposition 2.1. Let ci := cos
(

π(2i+1)
2(2n+1)

)

and τi := 1/c2
i , i = 0, . . . ,n−1. Then we

have for a symmetric matrix A with eigenvalues in[0,1] that

A :=
n−1

∏
i=0

(I − τiA)

has eigenvalues in(−1,1].
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Proof First note that{0,±ci : i = 0, . . . ,n− 1} are the zeros of the Tschebyscheff
polynomial of first kindT2n+1. Using Vieta’s theorem, we see that

n−1

∏
i=0

c2
i = 2−2n(2n+1).

Let

Pn(x
2) := 22n

n−1

∏
i=0

(x2− c2
i ) = T2n+1(x)/x.

Then, we have that

max
y∈[0,1]

(−1)n 1
2n+1

Pn(y) = (−1)n 1
2n+1

Pn(0) = 1, (4)

min
y∈[0,1]

(−1)n 1
2n+1

Pn(y) > −1. (5)

Next, we rewriteA as

A = (−1)n
n−1

∏
l=0

τl

n−1

∏
i=0

(A− c2
i I)

= (−1)n 22n

2n+1

n−1

∏
i=0

(A− c2
i I) = (−1)n 1

2n+1
Pn(A).

By (4) and (5) this yields the assertion. �

In [22,23] the following algorithm was proposed.

u(0) = f ,

u(sn+i+1) = (I − τi

8
L)u(sn+i), i = 0,1, . . . ,n−1, s= 0,1, . . . . (6)

This iteration scheme has an inner cycle of lengthn whose iteration matrices can have
eigenvalues with absolute values much larger than 1. However, by Proposition 2.1 the
overall iteration matrix of the inner cycle has again eigenvalues in(−1,1] so that the
convergence of the whole algorithm is assured in exact arithmetic. In the ordinary

explicit scheme (2), we arrive afternSsteps of maximal lengthδ t = (δx)2

4 at nS(δx)2

4 .
Since

n−1

∑
i=0

τi =
2
3

n(n+1),

we have afternSsteps in (6) the time length23n(n+1)S(δx)2

8 which is a larger time
interval forn≥ 3.
The recursion (6) is closely related to the following nonstationary (cyclic) Richardson
algorithm [12,21,37] which solves the linear system of equationsAu= b by

u(sn+i+1) = u(sn+i)+νi(b−Au(sn+i))

= (I −νiA)u
(sn+i)+νib, i = 0,1, . . . ,n−1, s= 0,1, . . . .
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Here,A is assumed to be a symmetric, positive definite matrix with eigenvalues in
[d1,d2], 0 < d1 < d2 and νi are the reciprocals of the zeros of the Tschebyscheff
polynomialsTn on [d1,d2], i.e.,

νi =
2

d2+d1− (d2−d1)cos
(

π(2i+1)
2n

) .

Although Richardson’s original method was a stationary onewith fixed νi = ν he
always observed that better convergence can be obtained forvaryingνi . In subsequent
papers, numerical properties of the nonstationary Richardson methods and various
applications were discussed. For an overview see the preprint [2].
Note that ford1 = 0 andd2 = 1 which was our setting in Proposition 2.1, we obtain

that νi = 1/sin2
(

π(2i+1)
4n

)

. Of course, assumingd1 = 0 neglects thatA has to be

positive definite. We call the following algorithm the modified cyclic Richardson
method.

Algorithm (Modified Cyclic Richardson Method)

1: Initialization u(0), A symmetric,b, α ≥ ‖A‖2

2: for s= 0,1, . . . until a convergence criterion is reacheddo
3: for i = 0, . . . ,n−1 do
4: u(sn+i+1) = u(sn+i)+ τi

α (b−Au(sn+i))

All the above algorithms converge in exact arithmetic whichis of course not provided
by a computer. In practice, round-off errors can accumulatethroughout the cycles
and cause numerical instabilities for largern. This is in particular the case if we
apply the acceleration parameters within the algorithm in ascending or descending
order. Indeed, the success of the cyclic algorithms dependson the proper ordering of
the acceleration parametersτi , resp.νi , see [1]. The so-called “Lebedev-Finogenov
ordering” of νi which makes the cyclic Richardson iteration computationally stable
was first proposed by Lebedev-Finogenov [27] and a stabilityanalysis for cycles of
lengthsn which are powers of two was given in [38].
In [22,23], the following heuristic procedure was suggested to order the valuesτi .
Let 1< κ < n be an integer having no common divisors withn. Then, we permute
the order of theτi by τπ(i) with

π(i) := i ·κ modn, i = 0, . . . ,n−1. (7)

Up to now it is not clear which values ofκ lead to the best stability results.

3 Cyclic Projected Gradient Method

3.1 Supersteps in the Projected Gradient Method

Recently, projected gradient algorithms were applied in various image processing
tasks, in particular when minimizing functionals containing the Rudin-Osher-Fatemi
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regularization term [15,33] or in sparse approximation andcompressed sensing. To
improve the convergence of the projected gradient algorithm various first-order algo-
rithms as Nesterov’s algorithm [32] and the related FISTA [31,5], Barzilai-Borwein
techniques [3,17] or primal-dual methods [16,41] were developed. Here, we propose
a very simple speed up by incorporating supersteps into the projected gradient algo-
rithm. In Section 4, we will see that the resulting algorithmcan compete with the
other state-of-the-art algorithms.
We are interested in minimizers of the convex functional

argmin
u∈RM

{
1
2
‖Bu− f‖2

2+ ιC(u)
}

, (8)

where f ∈R
N, B∈ R

N,M, C is a closed, convex set andιC is the indicator function of
the setC defined byιC(u) := 0 for u∈C andιC(u) :=+∞ for u 6∈C.
Note that without the termιC the solutions of (8) are given by the solutions ofBTBu=
BT f which can be computed by the cyclic Richardson method withA := BTB andb :=
BT f . Denoting byPC the orthogonal projection ontoC, our cyclic projected gradient
method reads as follows:

Algorithm (C-PG – Cyclic Projected Gradient Method)

1: Initialization u(0) ∈ R
M, B∈ R

N,M, f ∈ R
N, α ≥ ‖B‖2

2
2: for s= 0,1, . . . until a convergence criterion is reacheddo
3: for i = 0, . . . ,n−1 do

4: u(sn+i+1) = PC

(

u(sn+i)+ τi
α BT( f −Bu(sn+i))

)

An operatorT : RN → R
N is calledfirmly nonexpansiveif

‖Tx−Ty‖2
2 ≤ 〈Tx−Ty,x− y〉 ∀x,y∈ R

N.

A firmly nonexpansive operator is nonexpansive, i.e., a linear symmetric operator (in
matrix form) is firmly nonexpansive if and only if all its eigenvalues lie within the
interval(−1,1]. If T is firmly nonexpansive and has at least one fixed point, then the

sequence
(

Tku(0)
)

k∈N
converges for any starting pointu(0) ∈ R

N to a fixed point of

T. For more information on firmly nonexpansive operators or more general averaged
operators, see [4].
It is well-known thatPC is a firmly nonexpansive operator. However, we cannot apply
Proposition 2.1 to prove convergence of the algorithm sincewe do not have in gen-
eral thatPCA1PCA0 is nonexpansive ifA1A0 is nonexpansive as the following example
shows.

Example.Let C= {x∈ R
2 : ‖x‖2 ≤ 1} be the closedℓ2-ball in R

2 so that

PCx=

{
x if x∈C,
x/‖x‖2 otherwise.



A Cyclic Projected Gradient Method 7

Then we obtain for

x :=

(
1
0

)

, y :=

(
1
ε

)

, 0< ε < 1

that‖x− y‖2 = ε. Further, we have for

A0 :=

(
1 0
0 a

)

, A1 :=

(
1 0
0 1

a

)

, a≥ 1

thatA1A0 is nonexpansive. We compute

A0x= PCA0x= A1PCA0x= PCA1PCA0x= x

and

A0y=

(
1
aε

)

, PCA0y=
1
c

(
1
aε

)

, A1PCA0y= PCA1PCA0y=
1
c

(
1
ε

)

with c :=
√

1+(aε)2 and get

‖PCA1PCA0x−PCA1PCA0y‖2
2 =

∥
∥
∥
∥

(
1
0

)

− 1
c

(
1
ε

)∥
∥
∥
∥

2

2
=

(c−1)2+ ε2

c2 .

Using this relation we conclude forc> 2/(1− ε2) that

‖PCA1PCA0x−PCA1PCA0y‖2 > ‖x− y‖2

so thatPCA1PCA0 is not nonexpansive.

Indeed, it seems to be hard to give a convergence proof for thecyclic projected gradi-
ent method even under stronger conditions onα. We demonstrate the difficulties by
a case study in the following subsection.

3.2 A Case Study

In this subsection, we consider theℓ2-ball in R
N, i.e.,C := {x∈ R

N : ‖x‖2 ≤ 1} and
the corresponding projection

PCx=

{
x if x∈C,
x/‖x‖2 otherwise.

We are interested in the cyclic projected gradient method with f = 0, more precisely,
in the nonlinear operator

T :=
n

∏
i=1

(PCAn−i) = PCAn−1 . . .PCA0,

whereAi := I − τiA andA is a symmetric matrix with eigenvalues in[0,1).
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Remark 3.1. In one dimension, i.e., if N= 1 it is easy to check that T: R → R is
nonexpansive since

∣
∣Tx−Ty

∣
∣ =

∣
∣PCAn−1 . . .PCA0x−PCAn−1 . . .PcA0y

∣
∣

≤
∣
∣An−1 . . .PCA0x−An−1 . . .PCA1y

∣
∣

=
∣
∣An−1

∣
∣
∣
∣PCAn−2 . . .PCA0x−PCAn−2 . . .PCA0y

∣
∣

≤ . . .

≤
∣
∣

n

∏
i=1

An−i
∣
∣
∣
∣x− y

∣
∣ ≤

∣
∣x− y

∣
∣,

where the last inequality follows by Proposition 2.1.

By the following lemma we can restrict our attention also in higher dimensions to
diagonal matricesAi .

Lemma 3.2. Let Ai = UΛiU T, i = 0, . . . ,n−1 be the eigenvalue decompositions of
Ai with an orthonormal matrix U and diagonal matricesΛi . Then the operator T is

firmly nonexpansive if and only if S:=
n
∏
i=1

(PCΛn−i) is firmly nonexpansive.

Proof Since‖Ux‖2 = ‖x‖2 it follows thatPCUx=UPCx. Consequently, we obtain

T =
n

∏
i=1

(PCAn−i)x = PCUΛn−1U
T . . . PCUΛ2U

T PCUΛ0U
Tx

= PCUΛn−1U
T . . . PCUΛ2U TU

︸︷︷︸

I

PCΛ0U
Tx

= . . .

= U
n

∏
i=1

(PCΛn−i)U
Tx.

Hence it follows withu :=U Tx andv :=U Ty that

‖Tx−Ty‖2
2 = ‖USUTx−USUTy‖2

2 = ‖Su−Sv‖2
2

and

〈Tx−Ty,x− y〉= 〈USu−USv,x− y〉= 〈USu−USv,Uu−Uv〉= 〈Su−Sv,u− v〉.

SinceU T is a one-to-one mapping, we obtain the assertion. �

In the rest of this section, we consider the cyclic projectedgradient method for the
caseN = 2 andn= 2. More precisely, we are interested if the operatorPCΛ0PCΛ1 is
nonexpansive, wherec0 := cos(π/10), c1 := cos(3π/10), τi := 1/c2

i , i = 0,1 and

Λi := I − τi

(
λ0 0
0 λ1

)

=

(
λi0 0
0 λi1

)

=
1

c2
i

(
c2

i −λ0 0
0 c2

i −λ1

)

, λi ∈ [0,1). (9)

The matrixΛ0 has eigenvalues in(−0.1056,1] and the matrixΛ1 in (−1.8944,1].
Note that by Lemma 3.2 we can restrict our attention to diagonal matricesΛi . Then we
can claim the following proposition which “proof” containsa numerical component.
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Proposition 3.3. LetΛi , i = 0,1 be given by(9), whereλi ∈ [0,1−ε], ε ≥ 0.16. Then,
for all u,v∈ R

2 the relation

‖PCΛ0PCΛ1u−PCΛ0PCΛ1v‖2 ≤ ‖u− v‖2 (10)

holds true, i.e., PCΛ0PCΛ1 is nonexpansive.

“Proof” (with numerical computation) By Remark 3.1, we can restrictour attention
to invertible matricesΛi , i = 0,1 i.e., matrices without zero eigenvalues, since we are
otherwise in the one-dimensional setting. Usingx :=Λ1u andy :=Λ1v and regarding
thatΛ0 andPC are nonexpansive, the assertion (10) can be rewritten as

‖Λ0PCx−Λ0PCy‖2 ≤ ‖Λ−1
1 (x− y)‖2. (11)

We distinguish three cases.
1. If ‖x‖2 ≤ 1 and‖y‖2 ≤ 1, then (11) is equivalent to‖Λ0Λ1(u− v)‖2 ≤ ‖u− v‖2

which holds true by Proposition 2.1.
2. Let ‖x‖2 ≤ 1 and‖y‖2 > 1. W.l.o.g. we assume thatx0,x1 ≥ 0, i.e.,x lies within
the first quadrant. Then, (11) becomes

‖Λ0

(

x− y
‖y‖2

)

‖2 ≤ ‖Λ−1
1 (x− y)‖2

and using (9) further

λ 2
00

(

x0−
y0

‖y‖2

)2

+λ 2
01

(

x1−
y1

‖y‖2

)2

≤ 1

λ 2
10

(x0− y0)
2+

1

λ 2
11

(x1− y1)
2

and

0≤ 1

λ 2
10

(x0− y0)
2−λ 2

00

(

x0−
y0

‖y‖2

)2

+
1

λ 2
11

(x1− y1)
2−λ 2

01

(

x1−
y1

‖y‖2

)2

.

Multiplying by
(c2

1−λ0)
2(c2

1−λ1)
2

c4
1

yields

0 ≤ (c2
1−λ1)

2

(

(x0− y0)
2− γ0

(

x0−
y0

‖y‖2

)2
)

+ (c2
1−λ0)

2

(

(x1− y1)
2− γ1

(

x1−
y1

‖y‖2

)2
)

, (12)

where by the proof of Proposition 2.1

γi :=
(c2

0−λi)
2(c2

1−λi)
2

c4
0c4

1

=

(
1
5

P2(λi)

)2

≤ 1.

We consider the following cases fory.

2.1. If y lies within the area denoted by 3 in Fig. 1, then(xi − yi)
2 ≥

(

xi − yi
‖y‖2

)2
for

i = 0,1 so that (12) holds true.



10 Simon Setzer et al.

2.2. Lety lie within the areas denoted by 1 and 1
′
in Fig. 1. Any element in the area 1

′

can be written asy= (−y0,y1)
T, where(y0,y1)

T lies within area 1. Then, (12) reads

0 ≤ (c2
1−λ1)

2

(

(x0+ y0)
2− γ0

(

x0+
y0

‖y‖2

)2
)

+ (c2
1−λ0)

2

(

(x1− y1)
2− γ1

(

x1−
y1

‖y‖2

)2
)

.

By straightforward computation we see that for 1/‖y‖2 < 1 the relation

(x0− y0)
2− γ0

(

x0−
y0

‖y‖2

)2

≤ (x0+ y0)
2− γ0

(

x0+
y0

‖y‖2

)2

holds true. Therefore, we can restrict our attention to area1.
Let y lie within area 1. By the following argument, we may assume that‖x‖2 = 1. If
‖x‖2 < 1, we shift it tox̃ := x+(δ ,0)T such that‖x̃‖2 = 1. We have thatδ ∈ (0,e0],
wheree0 := y0/‖y‖2− x0. Then, the second summand on the right-hand side of (12)
is the same forx andx̃. Concerning the first summand, we obtain withd0 := y0− x0

that

(x0+ δ − y0)
2− γ0

(

x0+ δ − y0

‖y‖2

)2

= (d0− δ )2− γ0(e0− δ )2 ≤ d2
0 − γ0e2

0

if δ ≤ 2(d0−γ0e0)
1−γ0

which holds true sincee0 ≤ 2(d0−γ0e0)
1−γ0

. Therefore it remains to con-
sider the case‖x‖2 = 1. Changing our setting to polar coordinates

x :=

(
cosψ
sinψ

)

, y := ‖y‖2

(
cosϕ
sinϕ

)

where 0≤ ϕ ≤ ψ ≤ π
2 , inequality (12) becomes

0 ≤ (c2
1−λ1)

2((cosψ −‖y‖2cosϕ)2− γ0(cosψ − cosϕ)2)

+ (c2
1−λ0)

2((sinψ −‖y‖2sinϕ)2− γ1(sinψ − sinϕ)2) . (13)

The right-hand side is a convex, quadratic function in‖y‖2 and we can compute the
values where this function is zero. Now we have checkednumericallyif the largest of
these (real) values is less or equal than 1. In this case (13) is valid since‖y‖2 > 1. To
this end, we have used the gridλi := 0 : 0.001 : 0.84 for i = 0,1 andψ := 0 : 0.001π :
π/2, ϕ ≤ ψ . The desired property follows forλi ∈ [0,0.84], i = 1,2.
2.3. If y lies within the area denoted by 2 or 2

′
in Fig. 1, then we can argue as in the

case 2.2 by exchanging the roles of the coordinates.
3. If 1< ‖x‖2 ≤ ‖y‖2, then (11) becomes

‖Λ0

(
x

‖x‖2
− y

‖y‖2

)

‖2 ≤ ‖Λ−1
1 (x− y)‖2. (14)
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x 

1 
�µ 

2 

�µ 

. 

3 

3 
3 

3 

Fig. 1: Areas for the study of case 2.

Since y
‖y‖2

= PC

(
y

‖x‖2

)

and by case 2 we obtain

1
‖x‖2

‖Λ0

(
x

‖x‖2
− y

‖y‖2

)

‖2 ≤ ‖Λ0

(

PC

(
x

‖x‖2

)

−PC

(
y

‖x‖2

))

‖2

≤ ‖Λ−1
1

(
x

‖x‖2
− y

‖x‖2

)

‖2

=
1

‖x‖2
‖Λ−1

1 (x− y)‖2

which implies (14). �

3.3 A convergence guarantee via nonmonotone backtracking line search

As described above, the convergence properties of the C-PG algorithm remain an
open question. One way to circumvent this problem is to use a line search strat-
egy. This is a well-known approach for projected gradient methods and different line
search techniques exist. Below we show how to adapt to our setting the nonmonotone
backtracking line search method which was proposed in [9], see also [10,11], for a
projected gradient method with Barzilai-Borwein step sizes. As in [9], we obtain the
following convergence result.

Theorem 3.4. Every accumulation point of the sequence(u(k))k generated by the
C-PG algorithm with nonmonotone backtracking line search is a solution of(8).

Proof The proof follows from [9, Theorem 2.3], cf. also [8, Proposition 2.3.3], and
the convexity of both the quadratic function and the setC in (8).

Observe that if the setC is bounded in addition to being closed and convex, we can
conclude that an accumulation point exists. Moreover, in this case every subsequence
contains itself a subsequence which converges to a solution.
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Algorithm (C-PG with nonmonotone backtracking line search)

1: Initialization u(0) ∈ R
M, B∈ R

N,M, f ∈ R
N, α ≥ ‖B‖2

2, ξ ∈ (0,1), K ∈ N

2: for s= 0,1, . . . until a convergence criterion is reacheddo
3: for i = 0, . . . ,n−1 do

4: u(sn+i+1) = PC

(

u(sn+i)+ τi
α BT( f −Bu(sn+i))

)

5: t = max
0≤ j≤min(sn+i−1,K−1)

1
2
‖Bu(sn+i− j)− f‖2

2

6: d = u(sn+i+1)−u(sn+i)

7: θ = 1
8: while 1

2‖B(u(sn+i)+θd)− f‖2
2 > t+ξ θ 〈d,BT(Bu(sn+i)− f )〉 do θ = σθ

9: u(sn+i+1) = u(sn+i)+θd

4 Numerical Comparison

In this section, we show how the cyclic projected gradient algorithm compares with
other state-of-the-art algorithms. We consider the minimization problem

min
u∈RM

{1
2
‖Bu− f‖2

2+ ιC(u)}, (15)

whereB∈R
N,M and f ∈R

N are given andC⊂R
M denotes the set of feasible points.

We restrict our attention to first-order methods, i.e., methods which only use gradient
information. Algorithms of this type have become popular recently, e.g., for sparse
recovery problems and in image processing. We consider two groups of first-order
algorithms: variants of the projected gradient algorithm and first-order primal-dual
methods.

Variants of the Projected Gradient AlgorithmRecall that the main idea of the pro-
jected gradient algorithm is to perform in each iteration a gradient descent step on the
quadratic part of (15) followed by projecting the resultingpoint back onto the feasible
setC. We consider the following versions of the projected gradient algorithm:

i) Projected gradient algorithm with fixed step size (PG),
ii) Cyclic projected gradient algorithm (C-PG),
iii) Projected gradient algorithm with Barzilai-Borwein step sizes (BB-PG),
iv) Fast iterative threshold algorithm (FISTA).

The PG algorithm has the form:

Algorithm (PG)

1: Initialization u(0) ∈ R
M, B∈ R

N,M, f ∈ R
N, γ < 2/‖B‖2

2
2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(u(k)− γBT(Bu(k)− f ))
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Convergence is guaranteed for anyγ < 2/‖B‖2
2. Note that‖B‖2

2 is the Lipschitz con-
stant of the gradient of quadratic function in (15).
As we will see in the experiments below, our cyclic version C-PG of this algorithm
performs much better. Hence, we want to compare our algorithm C-PG to accelera-
tion schemes of PG which have become popular recently. In [3], Barzilai and Borwein
proposed to use a Quasi-Newton method with the simplest matrix γ−1

k I fulfilling the
Quasi-Newton condition

γ−1
k I(u(k)−u(k−1)) = BTB(u(k)−u(k−1)).

This results in the following algorithm.

Algorithm (BB-PG)

1: Initialization u(0) ∈ R
M, B∈ R

N,M, f ∈ R
N, γ0 > 0

2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(u(k)− γkBT(Bu(k)− f ))
4: s(k+1) = u(k+1)−u(k), y(k+1) = BTBs(k+1)

5: γk+1 =
〈s(k+1),s(k+1)〉
〈s(k+1),y(k+1)〉

Observe that we can easily reformulate BB-PG so that we have to computeBTBu(k)

only once in each iteration. Hence, BB-PG uses the same number of matrix multipli-
cations as PG. The above form was chosen for the sake of betterreadability. It should
be mentioned that many related Barzilai-Borwein step-sizerules have been proposed
in recent years. We refer to [20] for an overview and further references. Note that in
general, one needs to incorporate a line search to guaranteeconvergence of BB-PG.
We apply the spectral projected gradient method SPG2 of [9] here which uses a non-
monotone backtracking line search, cf. Section 3.3.

Algorithm (BB-PG with nonmonotone backtracking line search (SPG2))

1: Initialization u(0) ∈ R
M, B∈ R

N,M, f ∈ R
N, γ0 > 0, ξ ∈ (0,1), ρ ∈ (0,1), 0<

αmin < αmax, K ∈ N

2: for k= 0,1, . . . until a convergence criterion is reacheddo

3: u(k+1) = PC

(

u(k)+ γkBT( f −Bu(k))
)

4: t = max
0≤ j≤min(k,K−1)

1
2
‖Bu(k− j)− f‖2

2

5: d = u(k+1)−u(k)

6: θ = 1
7: while 1

2‖B(u(k)+θd)− f‖2
2 > t + ξ θ 〈d,BT(Bu(k)− f )〉 do θ = σθ

8: u(k+1) = u(k)+θd
9: s(k+1) = u(k+1)−u(k), y(k+1) = BTBs(k+1)

10: if 〈s(k+1),y(k+1)〉 ≤ 0 then γk+1 = αmax

11: elseγk+1 = min{αmax,max{αmin
〈s(k+1),s(k+1)〉
〈s(k+1),y(k+1)〉}}
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Another method designed to improve the convergence speed ofPG is the fast iter-
ative shrinkage thresholding algorithm (FISTA) of [5] which builds on the method
of Nesterov [31]. It uses a fixed step length but combines preceding iterations in a
clever way to achieve a significant speed-up. It can be shown that the convergence
rate measured as the difference of the current function value to the optimal function
value decreases asO(1/k2) instead of onlyO(1/k) for the standard PG method.

Algorithm (FISTA)

1: Initialization u(0) = w(0) ∈ R
M, B∈R

N,M , f ∈ R
N, γ = ‖B‖2

2, t0 = 1
2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(w(k)− γBT(Bw(k)− f ))

4: tk+1 =
1
2(1+

√

1+4t2
k)

5: w(k+1) = u(k)+ tk−1
tk+1

(u(k+1)−u(k))

First-Order Primal-Dual AlgorithmsAn increasingly important class of algorithms
are first-order methods based on the primal-dual Lagrangianformulation of the given
optimization problem. We consider the following three methods:

i) Two primal-dual algorithms (CP-I/II) proposed by Chambolle and Pock in [16],
ii) The primal-dual hybrid gradient algorithm (PDHG) of Zhuand Chan, cf., [41].

More specifically, CP-I has the following form:

Algorithm (CP-I)

1: Initialization u(0) ∈ R
N, v(0) ∈ R

M, B∈ R
N,M, f ∈ R

N, στ < 1/‖B‖2
2

2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(u(k)+σBTṽ(k))
4: v(k+1) = 1

1+τ (v
(k)− τBu(k+1)+ τ f )

5: ṽ(k+1) = v(k+1)+θ (v(k+1)− v(k))

In our experiments, we will always chooseθ = 1. Algorithm CP-II shown below is a
variant of CP-I with dynamic step-sizes.

Algorithm (CP-II)

1: Initialization u(0) ∈ R
N, v(0) ∈ R

M, B∈ R
N,M, f ∈ R

N, σ0τ0 < 1/‖B‖2
2, γ > 0

2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(u(k)+σkBTṽ(k))
4: v(k+1) = 1

1+τk
(v(k)− τkBu(k+1)+ τk f )

5: θk = 1/
√

1+2γτk, τk+1 = θk/τk, σk+1 = σkθk

6: ṽ(k+1) = v(k+1)+θk(v(k+1)− v(k))
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It was shown in [16] that if the step length parameters in CP-I/II are chosen as stated
above, the algorithms converge. Moreover, for CP-II the convergence rate measured
in terms of the squared distance to the limitv∗ := limk→∞ v(k), i.e.,‖v(k)− v∗‖2

2, de-
creases asO(1/k2), cf. [16].
The following PDHG algorithm differs from CP-II in thatθk = 0 for all k and a spe-
cial dynamic step-size rule is used. For a recent convergence proof, see [13]. The
step-size strategy makes PDHG very fast for solving the Rudin-Osher-Fatemi model
which we consider in Subsection 4.2. However, it is tailoredto this application and
does not converge in the other test settings we examine here.

Algorithm (PDHG)

1: Initialization u(0) ∈ R
N, v(0) ∈ R

M, B∈ R
N,M, f ∈ R

N

2: for k= 0,1, . . . until a convergence criterion is reacheddo
3: u(k+1) = PC(u(k)+ τkBTv(k))
4: v(k+1) = (1−θk)v(k)+θk( f −Bu(k+1))
5: τk+1 = 0.2+0.08k
6: θk+1 =

1
τk+1

(
0.5− 5

15+k

)

In the following numerical experiments, we consider two different setsC. We start
with theℓ1-ball and then consider a generalization of theℓ∞-ball.

4.1 Projection onto theℓ1-Ball

The basis pursuit problem consists of finding asparsesolution of an underdetermined
system via theconvexminimization problem

argmin
u∈RM

‖u‖1 subject to Bu= f (16)

with B∈ R
N,M, N ≪ M and f ∈ R

N being the measured signal. This model has at-
tracted a lot of attention recently both because of its interesting theoretical properties
and because of its importance for sparse approximation and compressive sensing, cf.,
e.g., [14,19]. Since in most applications noise is present,different problems related
to (16) where proposed which relax the linear constraints. We refer to [6,36] for com-
parisons of these models and further references. The noise-robust model we want to
consider here is the following convex problem called LASSO (least absolute shrink-
age and selection operator) which was originally proposed by Tibshirani in [35]. It
has the form

argmin
u∈RM

1
2
‖Bu− f‖2

2 subject to ‖u‖1 ≤ ξ , (17)

whereB ∈ R
N,M with N ≪ M and f ∈ R

N. Recall that by solving (17) our goal is
to find asparsevectoru∗ which is anapproximatesolution to the underdetermined
systemBu= f .
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For our numerical tests, we use the software described in [29]. For a givenB and a
given sparseu∗ it computes a parameterξ and a right-hand sidef such thatu∗ is a
solution of (17). We choose a matrixB with M = 1000 andN= 200 whose entries are
independent realization of a Gaussian random variable withmean zero and standard
deviation one. The vectoru∗ of length 1000 has 25 nonzero elements which are also
independent realizations of a Gaussian random variable with mean zero and standard
deviation one.
Table 1 summarizes the results of our experiments. As a performance measure, we
choose the number of matrix multiplication needed to reach two different accura-
cies in terms of the value of the objective functionF(u) := 1

2‖Bu− f‖2
2. Comparing

matrix multiplications allows us to be independent of the implementation, hardware
and programming language used and takes into account that the matrix multiplica-
tions with the fully populated matrixB are by far be the most expensive part of the
algorithm. Observe that we have averaged the results of 100 experiments.
Table 1 confirms the observation of other papers that the Barzilai-Borwein step length
rule is very effective for sparse recovery problems. Our C-PG algorithm is outper-
formed by BB-PG (SPG2) in the high-accuracy case. For the moderate-accuracy case,
however, our method is faster. Furthermore, it outperformsall the other methods con-
sidered here for both stopping criteria.

Choice of parameters:We optimized the parameters of every method by hand in
order to be independent of the performance of application-specific parameter heuris-
tics. All the methods except BB-PG were applied without an additional line search
and require the knowledge of‖B‖2. Although estimating this norm can be costly,
we exclude the computation of‖B‖2 from the performance measure since for some
matrices used in compressive sensing, e.g., partial DCT matrices, this value is imme-
diately known. Here, we simply normalizeB such that its spectral norm is equal to
one.
It turns out that for this experiment C-PG converges withouta line search. We found
that the line search does not increase the number of matrix multiplications if we
chooseK > n. However, it also does not make the algorithm faster if we usea smaller
value ofK.
As already mentioned, there exist various variants of the Barzilai-Borwein step length
rule presented above. We tested several of them, including the Adaptive Barzilai-
Borwein method (ABB) of [39], the ABBmin2 strategy proposedin [20], the cyclic
Barzilai-Borwein method of [18,26] and the PG-SS algorithmof [30]. For all these
methods, we also optimized the parameters by hand and obtained results which are
very similar to BB-PG so that we show only the results of the latter here. We suspect
that the hand-tuning of the parameters is the reason for thisresult. Observe that the
SPGL1 software of [6] also uses the Barzilai-Borwein methodapplied here.
In our experiment, BB-PG combined with the backtracking line search of [9–11]
not only comes with a convergence guarantee but is also faster than standard BB-
PG. We found that the following line search parameters give the fastest convergence:
ξ = ρ = 0.5, αmin = 10−12 andαmax= 1012. Although the nonmonotonicity allowed
by this line search is very important in many applications, for our experiment the
monotone version, i.e., settingK = 1, yields the best results.
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|F(u)−F(u∗)|< 10−3 |F(u)−F(u∗)|< 10−9

Method Parameters Matrix mult. Parameters Matrix mult.
PG γ = 1 299 γ = 1 686

C-PG n= 19,κ = 8 44 n= 18,κ = 5 130
BB-PG (SPG2) γ0 = 2, K = 1 54 γ0 = 5, K = 1 103

FISTA L = 1 76 L = 1 340
CP-I τ = 0.19 60 τ = 0.18 196
CP-II τ0 = 0.2, γ = 0.1 51 τ0 = 0.17,γ = 0.005 187

Table 1: Comparison of first-order algorithms to solve the LASSO problem (17).
The parameters are hand-tuned and the results averaged over100 experiments. The
stopping criterion is measured in terms of the difference ofthe function valueF(u) =
1
2‖Bu− f‖2

2 to the optimal valueF(u∗).

For CP-I, we found that for a givenτ it is optimal to chooseσ = 1/τ. The same holds
true forτ0 andσ0 in CP-II. Hence, we only state the bestτ for CP-I and the optimal
τ0 andγ for CP-II in Table 1.

4.2 Projection onto the Mixedℓ∞-Ball

Next we compare the convergence speed of the algorithms for two image denoising
problems which can be written in the form (15). First, we consider the Rudin-Osher-
Fatemi model for edge-preserving image denoising, cf. [33]. For a noisy function
f : Ω →R, Ω ⊂ R

2 the Rudin-Osher-Fatemi model describes the denoised imageas
the solution of

argmin
v∈BV(Ω)

{1
2
‖v− f‖2

L2(Ω)+λ‖v‖TV}, (18)

where BV(Ω) is the space of functions of bounded variation and‖ · ‖TV is the total-
variation semi-norm

‖v‖TV = sup{
∫

Ω
vdivgdx : g∈C1

0(Ω ,R2) and
√

g2
1+g2

2 ≤ 1}.

If v is smooth, it holds that

‖v‖TV =
∫

Ω

√

(∂xv)2+(∂yv)2dxdy. (19)

In order to discretize (18), we use the gradient matrix∇ defined in (3). So, if we
reorder the discrete noisy image columnwise into a vectorf ∈ R

N we obtain the
following discrete version of (18)

argmin
v∈RN

{1
2
‖v− f‖2

2+λ‖|∇v|‖1}, (20)

where we use the notation(|∇v|)i :=(((I⊗D)v)2
i +((D⊗ I)v)2

i )
1/2. The dual problem

of (20) has the form of (15), i.e.,

argmin
u∈R2N

{1
2
‖Bu− f‖2

2+ ι{‖ |·|‖∞≤λ}(u)} (21)
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with B= ∇T. Note that we can recover the solutionv∗ of (20) from a solutionu∗ of
(21) as follows

v∗ = f −Bu∗.

In Table 2, we show the number of iterations and runtimes needed by the algorithms
to meet two different stopping criteria forλ = 25 andλ = 50, respectively. The noisy
image we use here is depicted in Figure 2 as well as the denoising result using the
regularization parameterλ = 25. The experiments were performed on a laptop with
an Intel Core Duo processor with 2.66 GHz running Matlab R2008b.
As in Subsection 4.1, we hand-tuned the parameters of all themethods so that they
yield fastest convergence. Observe that we use the bound‖B‖2

2 < 8. In Figure 3,
we show the behaviour of C-PG with the two sets of parameters used forλ = 25, cf.
Table 2 (top), for a large numbers of iterations. So, even without the backtracking line
search described in Subsection 3.3 the algorithm seems to converge. We observe the
same forλ = 50 and all the other experiments presented in this paper. Hence, Table
2 shows the results of C-PG without a line search. Note that wehave tested several
BB-PG variants, including those considered in [20,40], butthis did not improve the
speed of convergence. Moreover, the backtracking line search of BB-PG (SPG2) did
not lead to faster convergence so that we report the performance of standard BB-PG
here. Concerning CP-I and CP-II, we found that it is best to chooseσ = 1/(8τ) and
σ0 = 1/(8τ0). The optimal values forτ, τ0 andγ are given in Table??.
We see that our method C-PG outperforms all other algorithmsif moderate accuracy
is required. If we use a more restrictive stopping criterion, CP-II and PDHG have ad-
vantages and for the harder problem withλ = 50 also FISTA and CP-I are faster. Note
that FISTA now performs much better compared to what we have seen in Subsection
4.1 whereas BB-PG is less efficient for this experiment.
Finally, we consider the following variant of the Rudin-Osher-Fatemi model. We sub-
stitute the norm of the gradient in (19) by the Frobenius normof the Hessian, cf. [34].
This yields for the case of smooth functions

argmin
v

{1
2
‖v− f‖2

L2(Ω)+λ
∫

Ω

√

(∂xxv)2+(∂xyv)2+(∂yxv)2+(∂yyv)2dxdy}. (22)

We obtain a discrete version of (22) as follows

argmin
v∈RN

{1
2
‖v− f‖2

2+λ‖|BTv|‖1}, (23)

whereBT =







Dxx

Dxy

Dyx

Dyy







:=







I ⊗DTD
DTD⊗ I
DT ⊗D
D⊗DT







and

(|BTv|)i := ((Dxxv)
2
i +(Dxyv)

2
i +(Dyxv)

2
i +(Dyyv)

2
i )

1/2.

As above, the dual problem to (23) has the form of (15), i.e.,

argmin
u∈R4N

{1
2
‖Bu− f‖2

2+ ι{‖ |·|‖∞≤λ}(u)}. (24)
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Fig. 2: Top: Original image of size 256×256 with values in[0,255] and noisy image
(Gaussian noise with standard deviation 25). Bottom: Reconstruction via the Rudin-
Osher-Fatemi model (21) and regularization parameterλ = 25 (left) and model (24)
with λ = 15 (right).

As before, we can recover a solutionv∗ of (23) from a solutionu∗ of (24) via

v∗ = f −Bu∗.

Table 3 shows the performance of the first-order methods for solving (24). We use the
regularization parameterλ = 15 andλ = 30 and for each case two different stopping
criteria. Forλ = 15, the denoised image is depicted in Figure 2. Observe that we have
now ‖B‖2

2 < 64. The observations we made above for (21) concerning the choice of
parameters and the use of the line search also hold true for this experiment. Note that
PDHG using the dynamic step length strategy described abovedoes not converge
for this problem and a simple rescaling of the parameters does not yield an efficient
method either.
Our method C-PG is now the fastest method in three of the four test settings. Fur-
thermore, we notice a clearer advantage of C-PG over the other methods than for the
caseB = ∇T. Only in the hardest case where we useλ = 30 and the strict stopping
criterion‖v− v∗‖∞ < 0.1 it is outperformed by FISTA, CP-I and CP-II.

High-accuracy case:In the experiments presented in Table 2 and Table 3, we restrict
our attention to relatively modest accuracy requirements.These stopping criteria are
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λ = 25
‖v−v∗‖∞ < 1 ‖v−v∗‖∞ < 0.1

Method Parameters Iterations Time Parameters Iterations Time
PG γ = 0.249 253 1.52 γ = 0.249 5073 28.74

C-PG n= 19,κ = 11 41 0.27 n= 49,κ = 19 272 1.62
BB-PG γ0 = 6 86 0.81 γ0 = 0.8 1017 9.85
FISTA γ = 1/8 64 0.54 γ = 1/8 279 2.45
CP-I τ = 2.3 78 0.52 τ = 0.6 287 1.93
CP-II τ = 0.15, γ = 0.2 67 0.45 τ = 0.28,γ = 0.44 221 1.55
PDHG 46 0.28 194 1.14

λ = 50
‖v−v∗‖∞ < 1 ‖v−v∗‖∞ < 0.1

Method Parameters Iterations Time Parameters Iterations Time
PG γ = 0.249 1179 6.61 γ = 0.249 18596 104.31

C-PG n= 37,κ = 8 86 0.50 n= 55,κ = 12 829 4.72
BB-PG γ0 = 5 255 2.56 γ0 = 2 4289 48.60
FISTA γ = 1/8 148 1.29 γ = 1/8 469 4.03
CP-I τ = 2.4 118 0.81 τ = 0.9 409 2.69
CP-II τ = 0.1, γ = 0.28 102 0.70 τ = 0.04, γ = 0.2 367 2.48
PDHG 91 0.57 350 2.01

Table 2: Comparison of first-order algorithms to solve the dual Rudin-Osher-Fatemi
problem (21) for two different regularization parameters,λ = 25 (top) andλ = 50
(bottom). Runtime is given in seconds and as stopping criterion we use the maxi-
mal pixel difference to a reference solution (obtained after a large number of FISTA
iterations) smaller than 1.0 (left) and 0.1 (right).

appropriate for the denoising problem presented here as well as many other image
processing tasks since a higher precision will not lead to a visually different result.
For high-accuracy settings, it turns out that our step-length strategy does not perform
very well. If we solve (21) withλ = 25 and stopping criterion‖v− v∗‖∞ < 0.001,
e.g., the fastest method is PDHG which needs 678 iterations (5.08 sec.) whereas C-
PG with 42,625 iterations (411 sec.) is only slightly faster than the standard projected
gradient method (PG).

5 Conclusions

We introduced a projected gradient algorithm which uses a step length strategy based
on so-called superstep cycles. The performance of the algorithm was tested for the
LASSO problem and two version of the Rudin-Osher-Fatemi model which is popular
in image processing. These numerical experiments show thatour method is competi-
tive to recent first-order optimization algorithms. Convergence can be guaranteed by
applying a nonmonotone backtracking line search. Experimentally, however, conver-
gence was observed even without this line search. Although the proof of this obser-
vation remains an open problem, we show for a simple case in two dimensions that
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Fig. 3: Behaviour of C-PG for large iteration numbers. The dual Rudin-Osher-Fatemi
problem (21) withλ = 25 is solved using C-PG with two different sets of parameters.
Shown is the error log10‖u(k)−u∗‖∞ as a function of log10k wherek = sn+ i is the
iteration number.

the corresponding operator which is applied in each step of the algorithm is nonex-
pansive.
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