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Abstract In recent years, convex optimization methods were suagissipplied
for various image processing tasks and a large number ofofidgr methods were
designed to minimize the corresponding functionals. bggngly, it was shown re-
cently in [25] that the simple idea of so-called “superstgges” leads to very effi-
cient schemes for time-dependent (parabolic) image emmagat problems as well
as for steady state (elliptic) image compression tasks. “Saperstep cycles” ap-
proach is similar to the nonstationary (cyclic) Richardsoeethod which has been
around for over sixty years.

In this paper, we investigate the incorporation of supersieles into the projected
gradient method. We show for two problems in compressivsisgrand image pro-
cessing, namely the LASSO approach and the Rudin-Osherdratodel that the
resulting simplecyclic projected gradient algorithm can numerically compare with
various state-of-the-art first-order algorithms. Howedere to the nonlinear projec-
tion within the algorithm convergence proofs even undetrice assumptions on
the linear operators appear to be hard. We demonstrate ffilties by studying
the simplest case of a two-cycle algorithmRA with projections onto the Euclidean
ball.
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1 Introduction

Many sparse recovery problems as well as image processkg sach as denoising,
deblurring, inpainting and image segmentation can be ftated as convex opti-
mization problems. To minimize the corresponding funddisnfirst-order methods,
i.e., methods which only use gradient information of thectional were extensively
exploited in recent years. The most popular ones are pegjeptadient methods in-
troduced in [24,28], see [7] for further references, andr thariants such as FISTA
[31,5], Barzilai-Borwein techniques [3,17] and primaladimethods [16,41].

On the other hand, the idea of so-called “super-time steppiras recently revi-
talized from another point of view withifast explicit diffusion(FED) schemes in
[25]. More precisely, the authors provided very efficieftames for time-dependent
(parabolic) image enhancement problems as well as fortate (elliptic) image
compression. In the latter case, FED schemes were speedpdampbedding them
in a cascadic coarse-to-fine approach. Indeed the idea péfdime stepping” pro-
posed by Gentzsch et al. [22, 23] for the explicit solutiopafabolic partial differen-
tial equations is very similar to those of the nonstatior{ayglic) Richardson method
[2,12,21]: zeros of Tschebyscheff polynomials were usegagng acceleration pa-
rameters in the algorithm in a cyclic way. Although thesestationary acceleration
parameters violate the convergence restrictions on aatiiteralgorithm in 50 percent
of all cases, the overall cycle is still in agreement withséheestrictions. Hence the
theoretical convergence of the algorithm is ensured. Hewgractical implementa-
tion of these cyclic methods require a proper ordering oftteeleration parameters
to avoid the accumulation of round-off errors in case ofdaugycles.

In this paper, we are interested in incorporating cyclicesggeps in projected gradient
algorithms. Indeed our numerical experiments show thaisimple idea can speed up
the fixed step length version of the algorithm significantigd aan even compare with
various state-of-the-art first-order algorithms. Howedeie to the nonlinear projec-
tion operator involved in the algorithm it seems to be hangrtavide any convergence
analysis as a simple case study underlines. One way to geareonvergence is to
use a line search strategy.

The rest of the paper is organized as follows. In Section 2revew the basic idea
of the method of “super-time stepping” and of the nonstatigricyclic) Richardson
method. In Section 3 we incorporate cyclic supersteps withé projected gradient
method and call the resulting approach the cyclic projegtadient method. Then,
we examine the convergence of the method in a simple casgatadshow how a line
search strategy can be employed to guarantee convergesatmr4 compares our
cyclic projected gradient method with various first-ordigyosithms for two sparse
recovery and image processing tasks, namely for the LAS8$0lgm and the Rudin-
Osher-Fatemi approach. While the first one requires priojggonto the/-ball, the
second method involves projections onto the (mixgehall.
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2 Modified Cyclic Richardson Method

In this section we briefly explain the idea of so-called “sufie stepping” [22,23]
which is closely related to the nonstationary (cyclic) Riadson method [2,12,21] so
that we call the first one a modified cyclic Richardson meti@mhsider the standard
example of the heat equation

on|[0, 1]2 with Neumann boundary conditions and initial conditig®, y, 0) = f(x,y).
A simple explicit scheme to approximate the solution of (d)tlee spatial-temporal
grid with spatial mesh sizéx = ﬁ and time step sizét is given by

u® = f

)

ot
u ( (5X)2L)u , k=0,1,..., (2)

whereu® is the column vector obtained by columnwise reshamlnfﬁ)i'f'j;lo, and

ui(,kj) ~u((i+ %)6x, (j+ %)6x, kot). The matrixL results from the approximation of

the derivatives in the Laplacian by symmetric finite diffezes. More precisely, we

have that. = 0", wherell is the discrete gradient operafor. u — (3") given by
y

10... 00
11 00

. (1®D : . . . N,N
D'_(D®I) with D := : S| eRTL (3)
0 00...-11
0 00... 00

Here,® denotes the Kronecker product. Clearly, the mdtrig a symmetric, positive
semi-definite matrix and it is well-known that its eigenveduare given by, j =
4(sin(irr/(2N))2 +sin(jt/(2N))?),i,j=0,...,N—1sothat < A; ; < 8. We denote
by Amax(L) = ||L||2 the largest eigenvalue &f Then the above scheme converges if

and only if the eigenvalues of- (55;)2 L given by 1— (5‘%/\;,] are within the interval

(—1,1] which is the case if and only i&‘% < %. Note that in this case(® converges
to a constant vector whose entries are equal to the mean ehludn [22,23] the

authors suggested to speed up the algorithm by incorpgratimperstep cycles”. To
understand the basic idea we provide the following profmsit

Proposition 2.1. Let g := cos(g((zzri]ﬁ;) andt :=1/c? i=0,....,n—1. Then we

have for a symmetric matrix A with eigenvalue$dri] that

n—1

o = [L(I —TiA)

has eigenvalues if-1,1].
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Proof First note that{0,+c; :i =0,...,n—1} are the zeros of the Tschebyscheff
polynomial of first kindT,, 1. Using Vieta’s theorem, we see that

nri 2 =2""2n+1).

Let n-1
Ph(x?) 1= 22" |'L(x2 —¢f) = Tonpa(X)/X.

Then, we have that

1 1
gt _(_yn _
yren[gi(]( Y 2n+1Pn(y) (-1) 2n+1P”(0) 1, (4)
1

a1 ~
yrgg(;g]( 5y ) > -1 (5)

Next, we rewrites/ as

o = (—1)"|n|‘!jr. ]’E(A—C?I)
1

o 2l dn - o _Lopa
2n+1}1 2n+1
By (4) and (5) this yields the assertion. O
In [22,23] the following algorithm was proposed.
u® = f,
usMH+D — (| — %L)u(s”“), i—01..n-1s=01,.... ©6)

This iteration scheme has an inner cycle of lengivhose iteration matrices can have
eigenvalues with absolute values much larger than 1. Hoseyéroposition 2.1 the
overall iteration matrix of the inner cycle has again eigeues in(—1, 1] so that the
convergence of the whole algorithm is assured in exactragtit. In the ordinary

explicit scheme (2), we arrive aftaSsteps of maximal lengtht = @ atnS%.

Since
n—-1

zo T = %n(m— 1),

we have aftenSsteps in (6) the time Iengt%m(n+ 1)8% which is a larger time
interval forn > 3.

The recursion (6) is closely related to the following notistzary (cyclic) Richardson
algorithm [12,21,37] which solves the linear system of diguas Au = b by

u(sn+i+1) _ u(sn+i) + vi(b—Au(SnH))

= (1 -vAu™) tvb  i=01,...,n—1,5=0,1,....
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Here,A is assumed to be a symmetric, positive definite matrix wigeevalues in
[d1,dy], 0 < d; < dy andv; are the reciprocals of the zeros of the Tschebyscheff
polynomialsT, on[di,d], i.e.,

2
dp+dy — (dp — dy) cos( <2'+1>)

Although Richardson’s original method was a stationary witl fixed vi = v he
always observed that better convergence can be obtaineadrfongv;. In subsequent
papers, numerical properties of the nonstationary Ridmrdnethods and various
applications were discussed. For an overview see the ptgpri

Note that ford; = 0 andd, = 1 which was our setting in Proposition 2.1, we obtain

that v; = 1/sm2( m(2i+1) ) Of course, assumind; = 0 neglects thaf has to be

positive definite. We call the following algorithm the modii cyclic Richardson
method.

Vi =

Algorithm (Modified Cyclic Richardson Method)

1: Initialization u©, A symmetrich, a > ||A|2

2: for s=0,1,... until a convergence criterion is reachzal
3: for i=0,...,n—1do

4: ysmHi+1) — y(sn+i) + %(b—Au(S”“))

All the above algorithms converge in exact arithmetic whsohf course not provided
by a computer. In practice, round-off errors can accumulateughout the cycles
and cause numerical instabilities for largerThis is in particular the case if we
apply the acceleration parameters within the algorithmsiceading or descending
order. Indeed, the success of the cyclic algorithms dependse proper ordering of
the acceleration parametess resp.v;, see [1]. The so-called “Lebedev-Finogenov
ordering” of v; which makes the cyclic Richardson iteration computatilyrethble
was first proposed by Lebedev-Finogenov [27] and a stalaihitylysis for cycles of
lengthsn which are powers of two was given in [38].

In [22,23], the following heuristic procedure was suggegteorder the values;.
Let 1< kK < n be an integer having no common divisors withThen, we permute
the order of the; by T, with

n(i):=i-kmodn, i=0,....n—1 @)
Up to now it is not clear which values aflead to the best stability results.
3 Cyclic Projected Gradient Method
3.1 Supersteps in the Projected Gradient Method

Recently, projected gradient algorithms were applied irous image processing
tasks, in particular when minimizing functionals contamthe Rudin-Osher-Fatemi
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regularization term [15,33] or in sparse approximation aochpressed sensing. To
improve the convergence of the projected gradient algworitarious first-order algo-
rithms as Nesterov’s algorithm [32] and the related FISTA &, Barzilai-Borwein
techniques [3,17] or primal-dual methods [16,41] were tigved. Here, we propose
a very simple speed up by incorporating supersteps intorijeqied gradient algo-
rithm. In Section 4, we will see that the resulting algoritean compete with the
other state-of-the-art algorithms.

We are interested in minimizers of the convex functional

argmin{:—ZL|Bu— f||§+lc(u)}7 (®)

ucRM

wheref e RN, Be RNM, Cis a closed, convex set anglis the indicator function of
the selC defined byic(u) := 0 foru e C andic(u) := +o foru ¢ C.

Note that without the ternt the solutions of (8) are given by the solution®Bu=
B™ f which can be computed by the cyclic Richardson method #vith B'B andb :=
B" f. Denoting byP: the orthogonal projection ont®, our cyclic projected gradient
method reads as follows:

Algorithm (C-PG - Cyclic Projected Gradient Method)

1 Initialization u©® € RM,Be RNM, f ¢ RN, a > ||B||3

2: for s=0,1,... until a convergence criterion is reacheal
3 for i=0,...,n—1do

4 s — P (u(sn+i> +LBT(f - Bu(smi)))

An operatofT : RN — RN is calledfirmly nonexpansivié
[TX=Ty||53<(Tx=Tyx—y)  ¥xyeRN

A firmly nonexpansive operator is nonexpansive, i.e., alirsgmmetric operator (in
matrix form) is firmly nonexpansive if and only if all its eigealues lie within the
interval(—1,1]. If T is firmly nonexpansive and has at least one fixed point, then th
sequence{Tku@)k N converges for any starting point? € RN to a fixed point of

<
T. For more information on firmly nonexpansive operators orergeneral averaged
operators, see [4].
It is well-known that: is a firmly nonexpansive operator. However, we cannot apply
Proposition 2.1 to prove convergence of the algorithm simealo not have in gen-
eral thatr-A1 P-Ag is honexpansive if Ag is nonexpansive as the following example
shows.

Example.LetC = {x € R?: ||x||» < 1} be the closed,-ball in R? so that

SRVID B if xe C,
“7 7 1 ¥/IIx]|2 otherwise
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_ (1 (1
x._(o), y._(g), O<ex<l

that||x—y||2 = €. Further, we have for

. (10 . (10
roi=(50). m=(p3). a=1

a

Then we obtain for

thatA;Ag is honexpansive. We compute

A()X = PcAoX = Aj_PcAoX = PcA]_PcA(JX =X
and

1
poy=( ) Pehoy = ¢

with c:= y/1+ (a€)? and get

1 1/1
[IPeALP-ApX — PCAlPCAOyH% = H (0) “C <£>

1 1/1
<a£) , ArPcAgy = PcA1PcAgy = c < )

2_ (c—1)%4 €2

2
2 C

Using this relation we conclude far> 2/(1— €2) that
[PeArPcAoX — PcArRcAoY (|2 > [IX— Y2

so thatPcA;P-Ag is not nonexpansive.

Indeed, it seems to be hard to give a convergence proof fayitie projected gradi-
ent method even under stronger conditionsxoiWe demonstrate the difficulties by
a case study in the following subsection.

3.2 A Case Study

In this subsection, we consider theball in RN, i.e.,C:= {xc RN : ||x||» < 1} and
the corresponding projection

Py — 4 X if xe C,
“7 7 1 ¥/IIx]|2 otherwise

We are interested in the cyclic projected gradient methal fvi= 0, more precisely,
in the nonlinear operator

n

T:= _r!(PcAnfi) =PFcAn-1...RcAo,

whereA; ;=1 — ;A andA is a symmetric matrix with eigenvalues|iy 1).
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Remark 3.1. In one dimension, i.e., if N= 1 it is easy to check that TR — R is
nonexpansive since

‘TX— Ty‘ = ‘PcAn,]_ . PCAOX— PcAn,j_ ... PCAOy‘

< |An-1...PcAoX— An_1... R-ALY|
|An-1||PcAn—2... PeAoX— PcAn ... PcAvy|

IN

n

< TAi| [x=y] < [x—y
N

)

where the last inequality follows by Proposition 2.1.

By the following lemma we can restrict our attention also ighter dimensions to
diagonal matricesy.

Lemma 3.2. Let A =UAUT, i =0,...,n— 1 be the eigenvalue decompositions of
A; with an orthonormal matrix U and diagonal matricés. Then the operator T is

n
firmly nonexpansive if and only if:S [ (ReAn—i) is firmly nonexpansive.
i=1

Proof Since||Ux||2 = ||X||2 it follows thatR-U x = U R-x. Consequently, we obtain

=}

T= (PcAnfi)X = PCU/\n,luT . PCU/\ZUT RP-UAQU X

= PCU/\n,luT PCU/\ZUTU PAoU X
|

=
= U [T(PeAn_i)Ux.
i

Hence it follows withu := U™x andv := U™y that
ITx—Tyl3 = [USUX—USUY||3 = [|Su— SV3
and
(Tx—Ty,x—y) = (USu—USyx—y) = (USu—USyUu—Uv) = (Su— Syu—v).
SinceU’ is a one-to-one mapping, we obtain the assertion. O

In the rest of this section, we consider the cyclic projegeatlient method for the
caseN = 2 andn = 2. More precisely, we are interested if the oper&@ohgPR-A; is
nonexpansive, whem® := cog7t/10), ¢; := cog3m/10), 1 := 1/c?,i = 0,1 and

L : Ao O . Aio O 71 Ciz_/\O 0 _
wora(90)- (B 2) -3 (50,0 ) acon @

The matrix/\g has eigenvalues if—0.1056 1] and the matrixA; in (—1.8944 1].
Note that by Lemma 3.2 we can restrict our attention to diagovatrices\;. Then we
can claim the following proposition which “proof” contaiasmmumerical component.
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Proposition 3.3. LetA;, i = 0,1 be given by{9), whereA; € [0,1— €], € > 0.16. Then,
for all u,v € R? the relation

H PeNAgPoAU— Pc/\opc/\1V||2 < ||U — V||2 (10)
holds true, i.e., PAgPcA1 is nonexpansive.

“Proof” (with numerical computation) By Remark 3.1, we can restigt attention

to invertible matriceg\;, i = 0,1 i.e., matrices without zero eigenvalues, since we are
otherwise in the one-dimensional setting. Using: Aju andy := A1v and regarding
thatAg andP: are nonexpansive, the assertion (10) can be rewritten as

[AoPex — AoPeyll2 < 1AL H(X—Y)|2- (11)

We distinguish three cases.

1. If ||x|2 < 1 and|ly||l2 < 1, then (11) is equivalent tpAoA1(U— V) |2 < [lu—V]2
which holds true by Proposition 2.1.

2. Let||x||2 <1 and|ly||2 > 1. W.l.o.g. we assume thag,x; > 0, i.e.,x lies within
the first quadrant. Then, (11) becomes

||Ao( L >|2_|/\1 =)l

and using (9) further

2 2
1 1

Mo (XO - ) +28( x ( n ) —2(X0 Yo)? + 32 —(x1—y1)?
Afo

Iyll2 lIyll2 f1
and
1 Yo 21 2 42 Y1 2
0< —(X— )\Z(xo——)Jr—x— A (- .
AlZO( ¥0)® = Ado e Alzl( 1-Y1) = Af | X e
Multiplying by G ’\O)C(CZ yields
Yo 2
0< (G- M) <xo—yo>2—yo(xO——)
lIyll2
Y1 2
+ (c§ — Ao)? ((Xl—Y1)2_ vi <X1— m) ) , (12)

where by the proof of Proposition 2.1

GG (Tn) <1

74
CoCy

We consider the following cases for

2
2.1. Ify lies within the area denoted by 3 in Fig. 1, then—y;)? > (xi — H%) for
i =0,1 so that (12) holds true.
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2.2. Lety lie within the areas denoted by 1 an/driFig. 1. Any elementin the areal
can be written ag = (—Yo,y1)", where(yo,y1)" lies within area 1. Then, (12) reads

yll2

2
WY Cu2 N
+ (cF— o) <(X1 Y1) —n (Xl ||y|2) ) -

By straightforward computation we see that fgi|$||> < 1 the relation

2
0< (cf—M)? ((Xo+yo)2—Vo (xO+ﬂ) )

2 2
(%0 —Y0)®— o (XO_ ﬂ) < (%+Y0)*— o (xO+ ﬂ)
lIyll2 [I¥ll2
holds true. Therefore, we can restrict our attention to &area
Lety lie within area 1. By the following argument, we may assurnat ffi/|, = 1. If
IX]l2 < 1, we shift it tox:= x+ (5,0)" such that|X||, = 1. We have thad € (0, &),
whereep := yp/||Y|l2 — Xo. Then, the second summand on the right-hand side of (12)
is the same foxk andx. Concerning the first summand, we obtain wdth:= yo — %o
that

2
<xO+5—yo>2—yo(xo+5—|§ﬁ) — (do— )2 yo(eo—8)2 < B — e

if &< 2“2%@"’) which holds true sincey < Mg:iyyg%). Therefore it remains to con-
sider the caséx||> = 1. Changing our setting to polar coordinates

xi= (Gt ) vi= Ivl2 (Song )

where 0< ¢ < ¢y < Z, inequality (12) becomes

0 < (c§—A1)?((cosy — [ly]|2cosp)? — yo(cosy — cosp)?)
+ (cd — A0)? ((siny — |lyl[2sing)? — ya(siny — sing )?) . (13)

The right-hand side is a convex, quadratic functiofjyfi, and we can compute the
values where this function is zero. Now we have checkedericallyif the largest of
these (real) values is less or equal than 1. In this case$38)id since||y||> > 1. To
this end, we have used the gid:=0:0.001:084 fori = 0,1 andy := 0: 0.001rT:
/2, ¢ < . The desired property follows fox € [0,0.84],i = 1,2.

2.3. If y lies within the area denoted by 2 orig Fig. 1, then we can argue as in the
case 2.2 by exchanging the roles of the coordinates.

3. If1 < ||x]|2 < ||Y]l2, then (11) becomes

X _
||/\o<m—ﬁ) 2 < 1A x— ) (14)
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X
I R Il

Fig. 1: Areas for the study of case 2.

i Y vy i
SlnceHsz =R ( \XHz) and by case 2 we obtain

i (o) 12 = 1 (R () —* (7))
A - <o (P -2m) —Pe (2L
T 0(|X||2 i) 2= Vel Pl ) ~ P\ ) ) 12

_ X y
()
A o~ o) 12

1 _
= m”/\l 1(x—y)||2

which implies (14). O

3.3 A convergence guarantee via nonmonotone backtradkiagéarch

As described above, the convergence properties of the CHpgsitam remain an

open question. One way to circumvent this problem is to useeadearch strat-
egy. This is a well-known approach for projected gradientrogs and different line
search techniques exist. Below we show how to adapt to ctimgéhe nonmonotone
backtracking line search method which was proposed in §,aso [10,11], for a
projected gradient method with Barzilai-Borwein step sizss in [9], we obtain the
following convergence result.

Theorem 3.4. Every accumulation point of the sequen@)), generated by the
C-PG algorithm with nonmonotone backtracking line seasch solution of(8).

Proof The proof follows from [9, Theorem 2.3], cf. also [8, Progimsi 2.3.3], and
the convexity of both the quadratic function and theGét (8).

Observe that if the s& is bounded in addition to being closed and convex, we can
conclude that an accumulation point exists. Moreover,im¢hse every subsequence
contains itself a subsequence which converges to a solution
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Algorithm (C-PG with nonmonotone backtracking line search)

1: Initialization u©® ¢ RM,B€ RNM, f ¢ RN, a > ||B||3, £ €(0,1),K €N
2: for s=0,1,... until a convergence criterion is reachzal
3: for i=0,...,n—1do

4 s+l — B (u(sn+i) +ILBT(f - Bu(smi)))
5: t= max 3||Bu<sn+i*1> — 13
o<j<min(sm+i—1,K—1)2
6 d = y(smi+1) _ (snti)
7: 6=1 . .
8: while %||B(u(5”+'> +0d)—f||3>t+£6(d,B"(BuS™) —f)) do0 =06
9 u(sn+i+l) _ u(sn+i) +6d

4 Numerical Comparison

In this section, we show how the cyclic projected gradiegbathm compares with
other state-of-the-art algorithms. We consider the mination problem

1 )
min {5[Bu— {3+ ic(u)}. (15)

whereB € RNM andf € RN are given an€ c RM denotes the set of feasible points.
We restrict our attention to first-order methods, i.e., md#which only use gradient
information. Algorithms of this type have become popularerly, e.g., for sparse
recovery problems and in image processing. We consider teopg of first-order
algorithms: variants of the projected gradient algorithmd &rst-order primal-dual
methods.

Variants of the Projected Gradient AlgorithiRecall that the main idea of the pro-
jected gradient algorithm is to perform in each iteratiomadient descent step on the
guadratic part of (15) followed by projecting the resultpaint back onto the feasible
setC. We consider the following versions of the projected gratiégorithm:

i) Projected gradient algorithm with fixed step size (PG),

i) Cyclic projected gradient algorithm (C-PG),
iii) Projected gradient algorithm with Barzilai-Borweitep sizes (BB-PG),
iv) Fast iterative threshold algorithm (FISTA).

The PG algorithm has the form:

Algorithm (PG)

1: Initialization u©® ¢ RM, B RNM, f ¢ RN, y < 2/||B||3
2: for k=0,1,... until a convergence criterion is reacheal
3 ulk D) = Rl — yBT(BUM - 1))
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Convergence is guaranteed for gny 2/||B||3. Note that|B||3 is the Lipschitz con-
stant of the gradient of quadratic function in (15).

As we will see in the experiments below, our cyclic versiof?G-of this algorithm
performs much better. Hence, we want to compare our algor@hPG to accelera-
tion schemes of PG which have become popular recently. JBE8Ekilai and Borwein
proposed to use a Quasi-Newton method with the simplesixngt?‘l fulfilling the
Quasi-Newton condition

v UM — Ly = grB(u® — uk-b),

This results in the following algorithm.

Algorithm (BB-PG)

1: Initialization u©® € RM,Be RNM f e RN, 1o >0
2: for k=0,1,... until a convergence criterion is reacheal

3 uk ) = po(u — BT (BUM — 1))

g D) =y D) oyl — grged)
. (sl D) gfk+D)y

¥ = e

Observe that we can easily reformulate BB-PG so that we lwernputeB'Bu¥)
only once in each iteration. Hence, BB-PG uses the same mwhbeatrix multipli-
cations as PG. The above form was chosen for the sake of besidability. It should
be mentioned that many related Barzilai-Borwein step-sifes have been proposed
in recent years. We refer to [20] for an overview and furtlegerences. Note that in
general, one needs to incorporate a line search to guaremteergence of BB-PG.
We apply the spectral projected gradient method SPG2 ofdf twhich uses a non-
monotone backtracking line search, cf. Section 3.3.

Algorithm (BB-PG with nonmonotone backtracking line searc (SPG2))

1: Initialization u©® ¢ RM, B RVM, f ¢ RN, yp>0,& € (0,1), p € (0,1),0<
Omin < Omax K €N
2: for k=0,1,... until a convergence criterion is reacheal

3 ukD =g (u(") + WBT(f — Bu<k>))

4 t=  max }||Bu(k’j)—f|\%
0<j<min(k,K—1) 2

5:  d=ulkt gyl

6: 6=1

7. while 3||B(u® +6d) - f||3>t+&6(d,B"(Bu¥ —f)) do@ =00
g ukth =y 4 od

o gkl — ykt D) _y®) yiki) — grggktd)
10: if sk ykH)) < Othen Y1 = Amax

. glk+1) ‘S( k+1)
11:  elsey1 = min{dmax, max{aminészM +H
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Another method designed to improve the convergence speB&a$ the fast iter-

ative shrinkage thresholding algorithm (FISTA) of [5] whibuilds on the method
of Nesterov [31]. It uses a fixed step length but combinesqatieg iterations in a

clever way to achieve a significant speed-up. It can be shbhatthe convergence
rate measured as the difference of the current functiorevalthe optimal function

value decreases &g 1/k?) instead of only(1/k) for the standard PG method.

Algorithm (FISTA)

1 Initialization u©® =w® ¢ RM, B RNM, f ¢ RN, y = ||B||3, to =
2: for k=0,1,... until a convergence cr|ter|0n is reacheal

3 u ) = po(w — yBT(BWM — 1))

4 tgr=3(1+/1+4)

5 wk+D) — y® %(u(i@rl) — u(k))

First-Order Primal-Dual AlgorithmsAn increasingly important class of algorithms
are first-order methods based on the primal-dual Lagrarigramulation of the given
optimization problem. We consider the following three noett:

i) Two primal-dual algorithms (CP-I/11) proposed by Chantlb@and Pock in [16],
i) The primal-dual hybrid gradient algorithm (PDHG) of Zlaad Chan, cf., [41].

More specifically, CP-I has the following form:

Algorithm (CP-1)

1: Initialization u©® ¢ RN, v© ¢ RM, B RNM, f ¢ RN, o1 < 1/||B||3
2: for k=0,1,... until a convergence criterion is reacheal

3 ukD = po(u 4 gBTHN)

4 D = L (vl — rBukY 4 1)

5 Pl = ek d) 4 g(ylktd) (k)

In our experiments, we will always chooBe= 1. Algorithm CP-1l shown below is a
variant of CP-I with dynamic step-sizes.

Algorithm (CP-II)

1 Initialization u©@ € RN, v ¢ RM, B RNM, f ¢ RN, gp19 < 1/||B||3, y > 0
2: for k=0,1,... until a convergence criterion is reacheal

3 ukD = po(u + g BTIK)

viktl) — Tlrk(v(k) 1 Buktd 4 1, f)

O = 1//I1+2y1y, Tup1 = Gk/Tk7 Oi+1 = Okbk

k1) — y(k+1) +9k( (k+1) _\( )

o a ok
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It was shown in [16] that if the step length parameters in @Rate chosen as stated
above, the algorithms converge. Moreover, for CP-II theveogence rate measured
in terms of the squared distance to the linit= limy_, v, i.e., VK —v*|3, de-
creases ag'(1/k?), cf. [16].

The following PDHG algorithm differs from CP-Il in th& = O for all k and a spe-
cial dynamic step-size rule is used. For a recent conveggprmof, see [13]. The
step-size strategy makes PDHG very fast for solving the iR@tiher-Fatemi model
which we consider in Subsection 4.2. However, it is tailaiethis application and
does not converge in the other test settings we examine here.

Algorithm (PDHG)

1: Initialization u@ € RN, v(® ¢ RM, Be RNM| f ¢ RN
2: for k=0,1,... until a convergence criterion is reacheal

3 ulD = Re(ui 4 i)
4. v = (1— VK + g (f — BuktD)
5 T =0.2+0.08k

. __1 5

In the following numerical experiments, we consider twdatiént set€. We start
with the /;-ball and then consider a generalization of theball.

4.1 Projection onto thé;-Ball

The basis pursuit problem consists of findirgparsesolution of an underdetermined
system via the&onvexminimization problem

argmin|ul|y subjectto Bu= f (16)
UcRM

with B RNM N « M and f € RN being the measured signal. This model has at-
tracted a lot of attention recently both because of its asting theoretical properties
and because of its importance for sparse approximation@mg@essive sensing, cf.,
e.g., [14,19]. Since in most applications noise is pregdifierent problems related
to (16) where proposed which relax the linear constraintsréfter to [6, 36] for com-
parisons of these models and further references. The noligest model we want to
consider here is the following convex problem called LAS$agt absolute shrink-
age and selection operator) which was originally proposeiibshirani in [35]. It
has the form

argmin}||Bu— f|5 subjectto ||ufli <&, (17)

ueRM 2

whereB € RNM with N < M and f € RN. Recall that by solving (17) our goal is
to find asparsevectoru* which is anapproximatesolution to the underdetermined
systemBu= f.
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For our numerical tests, we use the software described ih 28 a givenB and a
given sparsar* it computes a parametérand a right-hand sidé such thau* is a
solution of (17). We choose a matiwith M = 1000 andN = 200 whose entries are
independent realization of a Gaussian random variablewéhn zero and standard
deviation one. The vectar of length 1000 has 25 nonzero elements which are also
independent realizations of a Gaussian random variableméan zero and standard
deviation one.

Table 1 summarizes the results of our experiments. As a pedgioce measure, we
choose the number of matrix multiplication needed to reawh different accura-
cies in terms of the value of the objective functiefu) := %HBU— f||3. Comparing
matrix multiplications allows us to be independent of th@lementation, hardware
and programming language used and takes into account ghatalrix multiplica-
tions with the fully populated matri8 are by far be the most expensive part of the
algorithm. Observe that we have averaged the results of 4i€Yienents.

Table 1 confirms the observation of other papers that thelBaBorwein step length
rule is very effective for sparse recovery problems. Our@&d?gorithm is outper-
formed by BB-PG (SPG2) in the high-accuracy case. For theamadel-accuracy case,
however, our method is faster. Furthermore, it outperfalthe other methods con-
sidered here for both stopping criteria.

Choice of parametersWe optimized the parameters of every method by hand in
order to be independent of the performance of applicatpatific parameter heuris-
tics. All the methods except BB-PG were applied without aditshal line search
and require the knowledge ¢iB||,. Although estimating this norm can be costly,
we exclude the computation §B||, from the performance measure since for some
matrices used in compressive sensing, e.g., partial DCTicaat this value is imme-
diately known. Here, we simply normaliZsuch that its spectral norm is equal to
one.

It turns out that for this experiment C-PG converges witheolime search. We found
that the line search does not increase the number of matrlkpiizations if we
chooseK > n. However, it also does not make the algorithm faster if weausmaller
value ofK.

As already mentioned, there exist various variants of theizé-Borwein step length
rule presented above. We tested several of them, inclutiegAtiaptive Barzilai-
Borwein method (ABB) of [39], the ABBmin2 strategy proposad20], the cyclic
Barzilai-Borwein method of [18,26] and the PG-SS algoritbi)30]. For all these
methods, we also optimized the parameters by hand and eltedsults which are
very similar to BB-PG so that we show only the results of theefehere. We suspect
that the hand-tuning of the parameters is the reason fordhkidt. Observe that the
SPGL1 software of [6] also uses the Barzilai-Borwein methpglied here.

In our experiment, BB-PG combined with the backtracking Isearch of [9-11]
not only comes with a convergence guarantee but is alsor fdsta standard BB-
PG. We found that the following line search parameters dieddstest convergence:
& =p =0.5, tdmin = 10 2 andamax = 10'2. Although the nonmonotonicity allowed
by this line search is very important in many applicatiorms, dur experiment the
monotone version, i.e., settikg= 1, yields the best results.
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[F(u—F(u)]<107 [F(uy—Fu)[<10°

Method Parameters Matrix mult. Parameters Matrix mult.
PG y=1 299 y=1 686
C-PG n=19,k=8 44 n=18,k =5 130
BB-PG (SPG2)| w=2,K=1 54 Ww=5K=1 103
FISTA L=1 76 L=1 340
CP-l 1=0.19 60 T=0.18 196
CP-ll 7p=02,y=0.1 51 70 =0.17,y=0.005 187

Table 1: Comparison of first-order algorithms to solve theSS®©O problem (17).
The parameters are hand-tuned and the results averageti@ivexperiments. The
stopping criterion is measured in terms of the differenadmeffunction valud- (u) =
$|Bu— f||2 to the optimal valud (u*).

For CP-I, we found that for a givenit is optimal to choose = 1/1. The same holds
true forrp and gy in CP-I11. Hence, we only state the bastor CP-I and the optimal
Tp andy for CP-Il in Table 1.

4.2 Projection onto the Mixed,-Ball

Next we compare the convergence speed of the algorithmspimhage denoising
problems which can be written in the form (15). First, we ¢desthe Rudin-Osher-
Fatemi model for edge-preserving image denoising, cf..[B8} a noisy function
f: Q = R, Q c R? the Rudin-Osher-Fatemi model describes the denoised iamge

the solution of 1
argmin [v— 2, ) + A Vrv}, (18)
veBV(Q)

where B Q) is the space of functions of bounded variation dn¢ltv is the total-
variation semi-norm

IV]lTv = sup[/Q vdivgdx: g€ C}(Q,R?) and/g?+ g3 < 1}.

If vis smooth, it holds that

v = [ \/ (82 + (@2 dxdy (19)

In order to discretize (18), we use the gradient maftixlefined in (3). So, if we
reorder the discrete noisy image columnwise into a vettarRN we obtain the
following discrete version of (18)

1
argmin{ S[lv— f |5+ A |Ov] |1}, (20)
veRN 2

where we use the notatigfilv))i := (((1 @ D)v)2+ (D@ 1)v)?)Y/2. The dual problem
of (20) has the form of (15), i.e.,

1
afgm'n{zllBU— 5+ 1 acry (W)} (21)

UeR2N
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with B = [0". Note that we can recover the solutighof (20) from a solutioru* of
(21) as follows
v = f —BU".

In Table 2, we show the number of iterations and runtimes egég the algorithms
to meet two different stopping criteria far= 25 andA = 50, respectively. The noisy
image we use here is depicted in Figure 2 as well as the dagaissult using the
regularization parametér = 25. The experiments were performed on a laptop with
an Intel Core Duo processor with 2.66 GHz running Matlab R&00

As in Subsection 4.1, we hand-tuned the parameters of athitbods so that they
yield fastest convergence. Observe that we use the b@Bh\§1< 8. In Figure 3,
we show the behaviour of C-PG with the two sets of parametaad forA = 25, cf.
Table 2 (top), for a large numbers of iterations. So, evehauit the backtracking line
search described in Subsection 3.3 the algorithm seemsit@ge. We observe the
same forA = 50 and all the other experiments presented in this papercéidiable
2 shows the results of C-PG without a line search. Note thatave tested several
BB-PG variants, including those considered in [20,40],thig did not improve the
speed of convergence. Moreover, the backtracking lineche#rBB-PG (SPG2) did
not lead to faster convergence so that we report the perfurenaf standard BB-PG
here. Concerning CP-1 and CP-Il, we found that it is best wosled = 1/(81) and
0o = 1/(81p). The optimal values for, 7o andy are given in Tabl@?.

We see that our method C-PG outperforms all other algorithmsederate accuracy
is required. If we use a more restrictive stopping criterioR-1l and PDHG have ad-
vantages and for the harder problem withk= 50 also FISTA and CP-I are faster. Note
that FISTA now performs much better compared to what we hega & Subsection
4.1 whereas BB-PG is less efficient for this experiment.

Finally, we consider the following variant of the Rudin-@statemi model. We sub-
stitute the norm of the gradient in (19) by the Frobenius nofthe Hessian, cf. [34].
This yields for the case of smooth functions

1
argvmln{§||v—f|\fz(9)+/\/g\/(0XXV)2+((3va)2+(0yxv)2+(0yyv)2dxdy}. 22)

We obtain a discrete version of (22) as follows

1
argmin| 5 |[v — FlI3+ A1 1B™ 2}, (23)
veRN
Dyx DD
Dy D'D®I
T A% .
whereB" = D | = | D@D and
Dyy D®DT

(IB'V])i := ((Dxxv)? + (DxyV)? + (Dyu¥)? + (Dyyv)?) /2.

As above, the dual problem to (23) has the form of (15), i.e.,

1
argmln{EHBu— f||§+l{m.wm§,\}(u)}. (24)

UeRMN
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Fig. 2: Top: Original image of size 256256 with values iff0, 255 and noisy image
(Gaussian noise with standard deviation 25). Bottom: Rettoation via the Rudin-
Osher-Fatemi model (21) and regularization parameter25 (left) and model (24)
with A = 15 (right).

As before, we can recover a solutighof (23) from a solutioru* of (24) via
v =f —BuU".

Table 3 shows the performance of the first-order methodsftoirgy (24). We use the
regularization parametér= 15 andA = 30 and for each case two different stopping
criteria. ForA = 15, the denoised image is depicted in Figure 2. Observe thatwe
now ||B||3 < 64. The observations we made above for (21) concerning thieelof
parameters and the use of the line search also hold trueisoetperiment. Note that
PDHG using the dynamic step length strategy described aliogs not converge
for this problem and a simple rescaling of the parameters dogyield an efficient
method either.

Our method C-PG is now the fastest method in three of the fmatrdettings. Fur-
thermore, we notice a clearer advantage of C-PG over the wibhods than for the
caseB = . Only in the hardest case where we use- 30 and the strict stopping
criterion||v—v*||» < 0.1 it is outperformed by FISTA, CP-1 and CP-II.

High-accuracy casein the experiments presented in Table 2 and Table 3, wecestri
our attention to relatively modest accuracy requiremértisse stopping criteria are
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A=25
[V—Vvw <1 [v—ve <01
Method Parameters Iterations | Time Parameters Iterations | Time
PG y=0.249 253 1.52 y=0.249 5073 28.74
C-PG n=19,k=11 41 0.27 n=49,k=19 272 1.62
BB-PG =6 86 0.81 v =028 1017 9.85
FISTA y=1/8 64 0.54 y=1/8 279 2.45
CP-I =23 78 0.52 =06 287 1.93
CP-II 1=0.15y=02 67 0.45 | T=028,y=0.44 221 1.55
PDHG 46 0.28 194 1.14
A =50
IV—Vvw <1 lv—v]e <01

Method Parameters Iterations | Time Parameters Iterations | Time
PG y=0.249 1179 6.61 y=0.249 18596 104.31

C-PG n=37,k=8 86 0.50 n=55k=12 829 4.72
BB-PG Yo=>5 255 2.56 Yo=2 4289 48.60

FISTA y=1/8 148 1.29 y=1/8 469 4.03

CP-I T=24 118 0.81 =09 409 2.69

CP-II 1=01,y=028 102 0.70 1=0.04,y=0.2 367 2.48

PDHG 91 0.57 350 2.01

Table 2: Comparison of first-order algorithms to solve thaldRudin-Osher-Fatemi
problem (21) for two different regularization parameters: 25 (top) andA = 50
(bottom). Runtime is given in seconds and as stopping @itave use the maxi-
mal pixel difference to a reference solution (obtainedradti&arge number of FISTA
iterations) smaller than.@ (left) and 01 (right).

appropriate for the denoising problem presented here dsawehany other image
processing tasks since a higher precision will not lead tsaally different result.
For high-accuracy settings, it turns out that our stepilestrategy does not perform
very well. If we solve (21) withA = 25 and stopping criteriofiv — v*||. < 0.001,
e.g., the fastest method is PDHG which needs 678 iteratbfs ec.) whereas C-

PG with 42 625 iterations (411 sec.) is only slightly faster than tlamdard projected
gradient method (PG).

5 Conclusions

We introduced a projected gradient algorithm which usesmlsingth strategy based
on so-called superstep cycles. The performance of theitligpwas tested for the
LASSO problem and two version of the Rudin-Osher-Fatemiehadhich is popular
in image processing. These numerical experiments shovethahethod is competi-
tive to recent first-order optimization algorithms. Corgemce can be guaranteed by
applying a nonmonotone backtracking line search. Experiatly, however, conver-
gence was observed even without this line search. Altholiglptoof of this obser-
vation remains an open problem, we show for a simple casedrdimensions that
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Fig. 3: Behaviour of C-PG for large iteration numbers. ThaldRudin-Osher-Fatemi
problem (21) withh = 25 is solved using C-PG with two different sets of parameters
Shown is the error log||u® — u*||. as a function of logyk wherek = sn+i is the
iteration number.

the corresponding operator which is applied in each stepeftgorithm is nonex-
pansive.
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