
Infimal Convolution Regularizations with

Discrete ℓ1-type Functionals

S. Setzer, G. Steidl and T. Teuber ∗

Dedicated to Prof. Dr. Lothar Berg on the occasion of his 80th birthday

August 17, 2010

Abstract

As first demonstrated by Chambolle and Lions the staircasing effect of the Rudin-
Osher-Fatemi model can be reduced by using infimal convolutions of functionals contain-
ing higher order derivatives. In this paper, we examine a modification of such infimal
convolutions in a general discrete setting. For the special case of finite difference matri-
ces, we show the relation of our approach to the continuous total generalized variation
approach recently developed by Bredies, Kunisch and Pock. We present splitting methods
to compute the minimizers of the ℓ2

2
- (modified) infimal convolution functionals which

are superior to previously applied second order cone programming methods. Moreover,
we illustrate the differences between the ordinary and the modified infimal convolution
approach by numerical examples.

1 Introduction

It is well-known that the staircasing effect visible in the minimizer of the Rudin-Osher-Fatemi
(ROF) model [29]

argmin
u∈L2

{1

2
‖f − u‖2

L2
+ α|u|BV

}
, α > 0

with the semi-norm

|u|BV := sup
V ∈C1

0 ,‖V ‖∞≤1

∫

Ω
udiv V dx

=

∫

Ω
|∇u| dx if u and its weak first derivatives are in L1(Ω)

for denoising images f : Ω → R corrupted by white Gaussian noise can be reduced by
incorporating higher order derivatives into the functional. One successful approach in this
direction was given by Chambolle and Lions in [8] who suggested to use the infimal convolution
of functionals with first and second order derivatives as regularizer, i.e.,

inf
u1+u2=u

∫

Ω
α1|∇u1| + α2|∇(∇u2)| dx.
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An alternative approach with |△u2| instead of |∇(∇u2)| was given in [10]. For various other
variational and PDE approaches involving higher order derivatives see [11, 15, 22, 24, 30,
41, 43]. Among these approaches we only mention that instead of infimal convolutions also
functionals of the form Φ(u) =

∑m
i=1 Φi(u) were proposed, see, e.g., [15, 25]. In one dimension,

the difference between the minimizers of the functionals

1

2
‖f − u‖2

L2
+ (Φ1�Φ2)(u) and

1

2
‖f − u‖2

L2
+ (Φ1 + Φ2)(u) (1)

with Φ1(u) := α1

∫
Ω |u′(x)| dx and Φ2(u) := α2

∫
Ω |u′′(x)| dx is shown in Fig. 1. The advan-

tages of the infimal convolution regularization are clearly visible. Finally, note that infimal
convolutions with other operators than derivatives were applied, e.g., for image decomposition
in [1, 2, 36].
In [34], we have applied a modified infimal convolution (MIC) regularization with first and
second order derivatives just for some computational reasons related to second order cone
programming. In general this modification leads to better numerical results than the original
one by Chambolle and Lions. We have also generalized our model to tensor-valued images
in [35]. Recently, this MIC approach was given a theoretical fundament (in the continuous
setting for derivatives of arbitrary order) by Bredies, Kunisch and Pock [5] based on tensor
algebra. The corresponding regularizer was called total generalized variation (TGV). For
other generalizations of TV we refer to [31].
In this paper, we examine more general MIC functionals than in [34] in a discrete setting.
These functionals combine ℓ1-type norms with linear operators fulfilling some general factor-
ization properties. The modifications of the ordinary infimal convolution appear by tightening
the constraints on the dual variable. The corresponding primal problem contains a modified
infimal convolution regularizer with some additional variables related to the linear operators.
We propose an alternating direction method of multipliers and a primal-dual hybrid gradient
algorithm to compute the minimizers of the functionals as well as some important interme-
diate values which are helpful to interpret the overall results. We show that this method can
beat second order cone programming used in [34] significantly in terms of computational time.

This paper is organized as follows: In Section 2, we recall properties of infimal convolutions
and consider minimization problems with ℓ2

2 data fitting term and special ℓ1-type infimal
convolutions as regularization terms. Based on the dual formulation of these problems, we
introduce modified dual problems by tightening the constraints on the dual variable in Section
3. We give a useful formulation of the modified primal problem which clearly shows its
difference to the original problem.
In Section 4, we consider modified ℓ1-type infimal convolutions with finite difference matrices.
We start with the practically most important case of ordinary difference matrices in Subsection
4.1 and show the relation to TGV regularizers introduced in [5]. This subsection is related
to our previous work [34], where we have introduced a modified infimal convolution just for
computational reasons within second order cone programming. In Subsection 4.2 we enlarge
our considerations to more general difference matrices.
To compute the minimizers for the infimal convolution regularization term we apply an alter-
nating direction method of multipliers in Section 5. Moreover, we use a primal-dual hybrid
gradient algorithm for the corresponding MIC-regularized problem.
In Section 6, we explain the differences between the ordinary and the modified infimal con-
volution approaches by numerical examples. The paper finishes with conclusions.
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(c) Result by Φ1�Φ2 (α1 = 60, α2 = 150)
0 50 100 150

−50

0

50

100

150

200

250

 

 
u
u1
u2

(d) Decomposition of (c) into u1, u2
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(e) Result by Φ1 + Φ2 (α1 = 10, α2 = 20)
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(f) Result by Φ1 + Φ2 (α1 = 0, α2 = 60)
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(g) Signal (a) repeated in vertical direction
 

 

0

50

100

150

200

250

(h) Signal (c) repeated in vertical direction
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(i) Signal (e) repeated in vertical direction
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(j) Signal (f) repeated in vertical direction

Figure 1: Results of minimizing the functionals in (1) applied to the noisy 1D signal (b)
corrupted by additive Gaussian noise of standard deviation 20. By the infimal convolution
approach both the jump discontinuities and the linear parts in the signal are nicely restored,
see (c) and (h). The corresponding decomposition into the sum of two signals is shown in (d).
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2 ℓ1-type infimal convolutions

We start by considering some general properties of infimal convolutions. The infimal convo-
lution of the convex functionals Φi : R

N → (−∞,+∞], i = 1, . . . ,m, m ≥ 2 is the functional
Φ defined by

Φ(u) = (Φ1� . . . �Φm)(u) = inf
u=u1+...+um

m∑

i=1

Φi(ui). (2)

It can be considered as the convex analysis counterpart of the usual convolution. In the
following, let Ψ∗(v) := supw∈RM{〈v,w〉 − Ψ(w)} denote the Fenchel conjugate of Ψ. For a
proper, convex, lower semi-continuous (l.s.c.) function Ψ we have that Ψ∗∗ = Ψ. Moreover,
we stress the fact that the support function supv∈C〈·, v〉 of a nonempty, closed, convex set
C ⊂ R

N is the Fenchel conjugate of the indicator function ιC of C and vice versa. If Ψ
is proper, convex, l.s.c. and positively homogeneous, then it is the support function of a
nonempty, closed, convex set. The converse is also true.
Let

(Ψ0+)(v) := lim
λ→∞

Ψ(u + λv) − Ψ(u)

λ
, u ∈ dom Ψ

be the recession function of Ψ.
By the following proposition the convexity of the Φi implies the convexity of Φ. Properness
of convex functions is not always preserved by infimal convolution since the infimum may be
−∞. Lower semi-continuity (l.s.c.) is only preserved under additional conditions. For more
information on infimal convolutions we refer to [37].

Theorem 2.1. Let Φ be the infimal convolution of proper, convex functions Φi, i = 1, . . . ,m.
Then Φ has the following properties:

i) Φ is convex.

ii) If the Φi, i = 1, . . . ,m are also l.s.c. and

(Φ10
+)(u1) + · · · + (Φm0+)(um) ≤ 0,

(Φ10
+)(−u1) + · · · + (Φm0+)(−um) > 0

imply that u1 + · · · + um 6= 0, then Φ is proper, convex and l.s.c. and the infimum in
the definition of Φ(u) is attained for any u ∈ R

N . In particular, the above implication
holds true if Φi(u) = Φi(−u) for all u ∈ R

N .

iii) If Φi(u) := ‖Riu‖ with Ri ∈ R
Ni,N , i = 1, . . . ,m and some norm ‖ · ‖ in R

Ni, then Φ is
continuous.

iv) (Φ1� . . . �Φm)∗ = Φ∗
1 + . . . + Φ∗

m.

Proof: For i) we refer to [28, p. 33] and the proof of the first part of ii) can be found in [28,
p. 76]. The last part of ii) is clear since it follows from Ψ(u) = Ψ(−u) that

(Ψ0+)(−v) = lim
λ→∞

Ψ(u − λv) − Ψ(u)

λ
= lim

λ→∞

Ψ(−u − λv) − Ψ(−u)

λ

= lim
λ→∞

Ψ(u + λv) − Ψ(u)

λ
= (Ψ0+)(v).
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To prove iii) we consider

Φ(u + h) = inf
u+h=u1+...+um

m∑

i=1

‖Riui‖ = inf
u1,...,um−1

{
m−1∑

i=1

‖Riui‖ + ‖Rm(u + h −
m−1∑

i=1

ui)‖
}

.

Since

‖Rm(u −
m−1∑

i=1

ui)‖ − ‖Rmh‖ ≤ ‖Rm(u + h −
m−1∑

i=1

ui)‖ ≤ ‖Rm(u −
m−1∑

i=1

ui)‖ + ‖Rmh‖

we conclude that
Φ(u) − ‖Rmh‖ ≤ Φ(u + h) ≤ Φ(u) + ‖Rmh‖.

This implies that |Φ(u + h) − Φ(u)| → 0 if ‖h‖ → 0 and we are done.
The proof of iv) is given in [28, p. 145]. �

The infimal convolution functionals applied in this paper will fulfill both ii) and iii).

Let ‖·‖p, 1 ≤ p ≤ ∞ denote the usual ℓp vector norms on R
N . For V = (V T

1 , . . . , V T
n )T ∈ R

nN ,
Vi ∈ R

N and positive weight vectors ω = (ωk)
n
k=1, we define norms on R

nN as follows:

‖V ‖p,ω := ‖
(
ω1V

2
1 + . . . + ωnV 2

n

) 1
2 ‖p,

where the vector multiplication and the square root are meant componentwise. For given
f ∈ R

N , we are interested in minimizers of the functional

(ℓ2
2-IC/P) argmin

u∈RN

{1

2
‖f − u‖2

2 + ΦIC(u)
}

with the infimal convolution ΦIC := Φ1� . . . �Φm of the special ℓ1-type functionals

Φi(u) := αi‖Riui‖1,ωi . (3)

Note that ‖V ‖p,ωi = ‖
(
ωi,1V

2
1 + . . . + ωi,niV

2
ni

) 1
2 ‖p for V := Riu. Since the functional in

(ℓ2
2-IC/P) is coercive, strictly convex and by Theorem 2.1 iii) continuous, it has a unique

minimizer which we denote by ûIC .
In this paper, we will propose a modification of the (ℓ2

2-IC/P) functional. Since our mo-
dification is motivated from the dual functional of (ℓ2

2-IC/P) we have to establish the dual
problem first. In general, for proper, convex, l.s.c. functions g : R

N → (−∞,+∞] and
f : R

M → (−∞,+∞] and a linear operator A ∈ R
M,N , the primal and its dual optimization

problems read

(P) min
u∈RN

{g(u) + f(Au)}, (D) − min
v∈RM

{g∗(−ATv) + f∗(v)}. (4)

Thus, using Theorem 2.1 iv) and the fact that (1
2‖f − ·‖2

2)
∗(v) = 1

2‖f + v‖2
2 − 1

2‖f‖2
2, the dual

problem of (ℓ2
2-IC/P) reads

argmin
v∈RN

{1

2
‖f − v‖2

2 +

m∑

i=1

Φ∗
i (v)

}
.
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The functionals Φi are positively homogeneous so that their Fenchel conjugates are indicator
functions ιC of some sets C, more precisely,

Φ∗
i = ιCαi

with Cαi := {v = RT
i V : ‖V ‖∞,1/ωi

≤ αi}.

Conversely, we can rewrite Φi as

Φi = ι∗Cαi
= sup

‖V ‖∞,1/ωi
≤αi

〈·, RT
i V 〉.

Hence our dual problem becomes

argmin
v∈RN

{1

2
‖f − v‖2

2 +
m∑

i=1

ιCαi
(v)
}
,

or as a constrained problem

(ℓ2
2-IC/D)

1

2
‖f − v‖2

2 → min subject to v = RT
1 V1 = . . . = RT

mVm,

‖Vi‖∞,1/ωi
≤ αi, i = 1, . . . ,m.

The relation between the minimizers ûIC of (ℓ2
2-IC/P) and v̂IC of (ℓ2

2-IC/D) is given by
ûIC = f − v̂IC .

In applications matrices Ri arising from differential operators as those in the following example
are frequently applied.

Example 2.2. Let m = 2. Take the forward difference matrix (with Neumann/mirror bound-
ary conditions)

D :=

0

B

B

B

B

B

B

B

@

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0

.

.

.

.
.
.

.
.
.

.

.

.

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1
0 · · · 0 0 0 0

1

C

C

C

C

C

C

C

A

∈ R
n,n (5)

as a discretization of the first derivative with spatial step size h = 1. Then (−D)TD is the
central difference matrix for second order derivatives. Let A⊗B denote the Kronecker product
of A and B. If we reshape square images F of size n × n columnwise into vectors f of size
N = n2 we can use

Dx := In ⊗ D, Dxx := In ⊗ (−DT)D, Dxy := (−DT) ⊗ D,

Dy := D ⊗ In, Dyy := (−DT)D ⊗ In, Dyx := D ⊗ (−DT),

as discrete partial first and second order derivative operators. For simplicity of notation we
use square images although the approach works for rectangular images, too. Set

D1 :=

(
Dx

Dy

)
, D2,a :=

(
Dxx

Dyy

)
, D2,b :=




Dxx

Dxy + Dyx

Dyy


 , D2,c :=




Dxx

Dyx

Dxy

Dyy


 .

In particular, D1 ∼ ∇ serves as a frequently used discrete gradient operator and its negative
adjoint as the corresponding discrete divergence −DT

1 ∼ div, see, e.g., [7]. In applications
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R1 := D1 and R2 := D2,• with weights (1, 1) on R
2N , (1, 1

2 , 1) on R
3N and (1, 1, 1, 1) on

R
4N were used. Note that except for ‖D2,au‖1,(1,1) the corresponding continuous functionals

of ‖Riu‖1,wi, i = 1, 2 are rotationally invariant. The continuous equivalent of (ℓ2
2-IC/P) with

m = 2 and first and second order derivative operators was for example used in the Chambolle-
Lions approach [8].

3 Modified ℓ1-type infimal convolutions

In this section, we propose a modification of the ℓ2
2-IC functional which is superior in certain

image processing tasks as demonstrated in Fig. 2.

Figure 2: Top: Original image u (left), courtesy of S. Didas [14], and noisy image f (right)
corrupted by additive Gaussian noise of standard deviation 20. Bottom: Denoised images by
ℓ2
2-IC (left) and ℓ2

2-MIC (right) with R1 = D1, R2 = D2,a and α1 = 60, α2 = 300, see [34].

To this end, we assume that the matrices Ri are related to Rm via matrices Li ∈ R
Nm,Nm−i

such that
Rm = Lm

i Rm−i = LiRm−i, i = 0, . . . ,m − 1, (6)

where we skip the superscript m in the notation of L if its relation to the index i is clear.
Furthermore, we agree that L0 := IN . Note that such a matrix Lm

i exists if rg RT
m−i =

rg (RT
m−i RT

m).
In particular, we obtain for our discrete differential operators in Example 2.2 the following
factorizations.

Example 3.1. For the matrices R1 = D1 and R2 = D2,• in Example 2.2 it holds that
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D2,• = L1,•D1 with

L1,a =

(
−DT

x 0
0 −DT

y

)
, L1,b =



−DT

x 0
−DT

y −DT

x

0 −DT

y


 , L1,c =




−DT

x 0
0 −DT

x

−DT

y 0

0 −DT

y


 .

We consider the dual problem (ℓ2
2-IC/D) in its constrained form. Having the relation

v = RT
mVm = RT

i LT
m−iVm in mind, it is self-evident to deal also with the slightly modified

functional

(ℓ2
2-MIC/D)

1

2
‖f − v‖2

2 → min subject to v = RT
mV,

‖LT
m−iV ‖∞,1/ωi

≤ αi, i = 1, . . . ,m.

In other words, in contrast to (ℓ2
2-IC/D) we have the additional restrictions Vi = LT

m−iVm,
i = 1, . . . ,m − 1. Note that RT

i Vi = RT
i Wi implies Vi = Wi if and only if N (RT

i ) = {0},
respectively, if and only if R(Ri) = R

Ni . Hence, if the above conditions hold true for i =
1, . . . ,m − 1, then the two problems (ℓ2

2-IC/D) and (ℓ2
2-MIC/D) coincide.

As an unconstrained problem (ℓ2
2-MIC/D) reads

argmin
V ∈RNm

{1

2
‖f −RT

mV ‖2
2 +ιK(V )

}
with K := {V : ‖LT

m−iV ‖∞,1/ωi
≤ αi, i = 1, . . . ,m} (7)

respectively,

argmin
V ∈RNm

{1

2
‖f − RT

mV ‖2
2 +

m∑

i=1

ιKαi
(V )

}
with Kαi := {V : ‖LT

m−iV ‖∞,1/ωi
≤ αi}. (8)

For m = 2 and the special matrices R1 = D1, R2 = D2,a, respectively, R1 = D1, R2 = D2,c of
Example 2.2 the modified dual functional (ℓ2

2-MIC/D) was suggested in [34] for the denoising
of images.
Since it is hard to see why (ℓ2

2-MIC/D) could lead to better denoising results than (ℓ2
2-IC/D)

we give a formulation of the primal problem (ℓ2
2-MIC/P) which in our opinion better clarifies

the differences between the approaches.

Proposition 3.2. The primal problem of (ℓ2
2-MIC/D) is given by

(ℓ2
2−MIC/P) argmin

u∈RN

{1

2
‖f−u‖2

2+ι∗K(Rmu)
}

with ι∗K(Rmu) := sup
‖LT

m−i
V ‖∞,1/ωi

≤αi
i=1,...,m

〈Rmu, V 〉

and can be rewritten as

argmin
u∈RN

{1

2
‖f − u‖2

2 + ΦMIC(u)
}

with

ΦMIC(u) := inf
u=u1+...+um

si∈N (RT

i
)

{m−1∑

i=1

αi‖Riui − si‖1,ωi + αm‖Rmum +
m−1∑

i=1

Lm−isi‖1,ωm

}
, (9)

where N (RT

i ) denotes the null space (kernel) of the operator RT

i .
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The difference between ΦIC and ΦMIC consists in the additional degree of freedom obtained
by the vectors si ∈ N (RT

i ), i = 1, . . . ,m − 1. We see that (ℓ2
2-MIC/P) is coercive, strictly

convex and l.s.c. Thus its minimizer which we call ûMIC is unique. It is related to the mini-
mizer v̂MIC of the dual problem by ûMIC = f − v̂MIC .

Proof: By (4) the primal problem of (7) reads as (ℓ2
2-MIC/P). By (8) the primal problem is

also given by
1

2
‖f − u‖2

2 + Φ(Rmu),

where by Theorem 2.1 iv)

Φ(Rmu) =
( m∑

i=1

ιKαi

)∗
(Rmu) = inf

Rmu=U1+...+Um

m∑

i=1

ι∗Kαi
(Ui). (10)

Using R
Nm = R(Lm−i) ⊕N (LT

m−i), we obtain that

ι∗Kαi
(U) = sup

‖LT
m−iV ‖∞,1/ωi

≤αi

〈U, V 〉 = +∞ if U 6∈ R(Lm−i).

Since we are looking for the infimum in (10) this implies that U = Lm−ix and consequently

ι∗Kαi
(U) = sup

‖LT
m−iV ‖∞,1/ωi

≤αi

〈Lm−ix, V 〉 = sup
‖z‖∞,1/ωi

≤αi

z∈R(LT
m−i

)

〈x, z〉

= sup
z
{〈x, z〉 − ι{z:‖z‖∞,1/ωi

≤αi}(z) − ι{z:z∈R(LT
m−i)}

(z)}

=
(
ι{z:‖z‖∞,1/ωi

≤αi} + ι{z:z∈R(LT
m−i)}

)∗
(x)

= inf
x=v+w

{ι∗{z:‖z‖∞,1/ωi
≤αi}

(v) + ι∗
{z:z∈R(LT

m−i)}
(w)}

= inf
x=v+w

{αi‖v‖1,ωi + ι∗
{z:z∈R(LT

m−i)}
(w)}. (11)

Since
ι∗
{z:z∈R(LT

m−i)}
(w) = sup

v∈R(LT
m−i)

〈v,w〉 = sup
y∈RNi

〈LT
m−iy,w〉,

we conclude that w ∈ N (Lm−i) since otherwise this functional becomes +∞ and cannot lead
to the infimum in (11). Hence it follows that

ι∗Kαi
(U) = inf

U=Lm−ix

w∈N (Lm−i)

αi‖x − w‖1,ωi

and the functional in (10) reads

Φ(Rmu) = inf
Rmu=

Pm
i=1

Lm−ixi
wi∈N (Lm−i)

m∑

i=1

αi‖xi − wi‖1,ωi = inf
Rmu=

Pm
i=1 Lm−ixi

m∑

i=1

αi‖xi‖1,ωi

= inf
xi∈RNi

{m−1∑

i=1

αi‖xi‖1,ωi + αm‖Rmu −
m−1∑

i=1

Lm−ixi‖1,ωm

}
.
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The structure of ΦMIC follows by setting xi := Riui−si with si ∈ N (RT
i ), um := u−∑m−1

i=1 ui

and by using (6). �

In the context of infimal convolutions we mention that

ΦMIC(u) = (Ψ1�Ψ2)(Smu) with Sm :=
1

m − 1




R1
...

Rm−1


 , m ≥ 2

and

Ψ1(x1, . . . , xm−1) :=
m−1∑

i=1

αi‖xi‖1,ωi , Ψ2(x1, . . . , xm−1) := αm‖
m−1∑

i=1

Lm−ixi‖1,ωm .

There exists an intermediate problem between ℓ2
2-IC and ℓ2

2-MIC. This is discussed in the
following remark.

Remark 3.3. Having the relation v = RT

mVm = RT

i LT

m−iVm = RT

i Vi in mind and setting
Vi = LT

m−iWi in (ℓ2
2-IC/D), we obtain the following modification of the ℓ2

2-IC functional

(ℓ2
2-ĨC/D)

1

2
‖f − v‖2

2 → min subject to v = RT

mW1 = . . . = RT

mWm,

‖LT

m−iWi‖∞,1/ωi
≤ αi, i = 1, . . . ,m

or in unconstrained form

argmin
v∈RN

{
1

2
‖f − v‖2

2 +

m∑

i=1

ιCαi
(v)

}
, Cαi := {v = RT

mV : ‖LT

m−iV ‖∞,1/ωi
≤ αi}. (12)

Following similar lines as in the proof of Proposition 3.2 the corresponding primal problem
reads

(ℓ2
2-ĨC/P) argmin

u∈RN

{1

2
‖f −u‖2 +Φ ˜IC(u)}, Φ ˜IC(u) := inf

u=u1+...+um
wi∈N (Lm−i)

m∑

i=1

αi‖Riui −wi‖1,ωi .

(13)
Having a look at the dual problems we conclude that ‖ûIC‖2 ≤ ‖û ˜IC‖2 ≤ ‖ûMIC‖2.

In image restoration applications we are mainly interested in the case m = 2. Let us summa-
rize how the penalizers of the primal problems look like for m = 2:

ΦIC(u) = inf
u=u1+u2

{α1‖R1u1‖1,ω1 + α2 ‖R2u2‖1,ω2},
= inf

R1u=x1+x2
xi∈R(R1)

{α1‖x1‖1,ω1 + α2‖L1x2‖1,ω2}, (14)

Φ ˜IC(u) = inf
u=u1+u2
w1∈N (L1)

{α1‖R1u1 − w1‖1,ω1 + α2‖R2u2‖1,ω2},

= inf
R1u=x1+x2
xi∈R(R1)
w1∈N (L1)

{α1‖x1 − w1‖1,ω1 + α2‖L1x2‖1,ω2},

ΦMIC(u) = inf
u=u1+u2
s1∈N (RT

1
)

{α1‖R1u1 − s1‖1,ω1 + α2‖R2u2 + L1s1‖1,ω2}.

= inf
R1u=x1+x2

{α1‖x1‖1,ω1 + α2‖L1x2‖1,ω2}. (15)
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Recall that we originally obtained ℓ2
2-MIC from ℓ2

2-IC via ℓ2
2-ĨC by adding further constraints

on the dual variables. Here, we see that this led to relaxed conditions on new variables x1, x2,
compare e.g. (14) and (15). For ΦMIC(u) we no longer have the restriction that xi ∈ R(R1)
for i = 1, 2 and thus, R1u can be decomposed into any x1 and x2. In general, this results of
course in different minimizers and minima. In Section 6 we will see that these modifications
improve the restoration results for the discrete difference operators studied in the next section.

4 Discrete difference matrices

In this section, we are interested in matrices Ri related to differential operators since this
is the most relevant case in practice. We restrict our attention to finite difference matrices
arising from differential operators at rectangular domains with Neumann/mirror boundary
conditions. Similar results can be obtained for matrices related to zero or periodic boundary
conditions. We start with simple i-th order difference matrices Ri in Subsection 4.1. Then,
in Subsection 4.2, we turn to more general difference matrices. The corresponding general
differential operators appear for example in the definition of L-splines [32] which can be
represented in terms of the Green function of such operators [32]. Applications of such
operators and their discrete counterparts can be found in [38, 39].

4.1 Simple difference matrices

Let D be the first order forward difference matrix (5) from Example 2.2. For j ∈ N, we
consider the following i-th order finite difference matrices

D1 := D, D2j := (−DTD)j, D2j+1 := DD2j . (16)

Moreover, we use the notation D0 := In.

Remark 4.1. Replacing the first and last j rows of D2j ∈ R
n,n, n > 2j and the first j and

last j + 1 rows of D2j+1 ∈ R
n,n, n > 2j + 1 by zero rows, we obtain that the kernel of the i-th

modified matrix is given by the span of the discrete polynomials of degree ≤ i − 1, i.e., by

span{
(
kr
)n
k=1

: r = 0, . . . , i − 1}.

One-dimensional setting. Let us first have a look at matrices related to differential op-
erators on the interval, more precisely we deal with Ri := Di. Since the matrices Di are
singular of rank n − 1, there are many ways to choose Lm−i such that (6) is fulfilled. Indeed
different choices of Lm−i may lead to different functionals ΦMIC. Related to the factorization
in (16) a self-evident choice is

Lm−i :=

{
Dm−i for i even,
Dm−i−1(−DT) for i odd .

(17)

Indeed this choice can also be explained in another way: Based on the singular value decom-
position D = UΣV T we obtain that

Di =

{
(−1)i/2V ΣiV T i even,

(−1)(i−1)/2UΣiV T i odd.

Using this relation it is easy to check that Lm−i in (17) can also be written as Lm−i = DmD†
i ,

where D†
i denotes the Moore-Penrose inverse of Di.

11



Proposition 4.2. Let the matrices Ri = Di be given by (16) and the matrices Li by (17).
Then

ΦMIC(u) = Φ ˜IC(u) = inf
u=u1+...+um

si∈N (RT

i
)

{m−1∑

i=1

αi‖Riui−ǫisi‖1+αm‖Rmum‖1

}
, ǫi =

{
1 for i even,
0 for i odd

holds true for all m ∈ N and in particular ΦIC = Φ ˜IC = ΦMIC for m = 2.

Proof: Since

N (D2j) = N (DT
2j) = N (D2j+1) = N (Lm−2j) = {c 1n : c ∈ R},

N (DT
2j+1) = N (Lm−2j−1) = {(0, . . . , 0, c)T : c ∈ R}, (18)

where 1n denotes the vector of length n consisting only of entries 1, we see that N (RT
i ) =

N (Lm−i). Hence si = wi in the definitions (9) and (13). Moreover, the last sum in (9) vanishes
and N (L0) = {0} so that ΦMIC and Φ ˜IC coincide. Further, considering ‖R2j+1u2j+1−s2j+1‖1,
s2j+1 ∈ N (DT

2j+1), we conclude by

R(D2j+1) = {(x1, . . . , xn−1, 0)
T : xi ∈ R} (19)

and the definition of Φ ˜IC that s2j+1 = 0. This finishes the proof. �

Two-dimensional setting. We consider matrices related to partial differential operators
on rectangles, more precisely we restrict our attention to the following two cases a and b. For
more sophisticated discretizations of partial derivative operators via finite mimetic differences
we refer to [23, 42].

Case a: We use

Ri,a :=

(
Di,x

Di,y

)
with Di,x := In ⊗ Di, Di,y := Di ⊗ In,

D̃m−i,x := In ⊗ Dm−i−1(−DT), D̃m−i,y := Dm−i−1(−DT) ⊗ In

and

Lm−i,a :=

{
diag(Dm−i,x,Dm−i,y) for i even,

diag(D̃m−i,x, D̃m−i,y) for i odd.

In particular, this involves the setting in Example 2.2, namely R1,a = D1, R2,a = D2,a and
L2

1,a coincides with the corresponding matrix in Example 3.1.
By definition we see that the elements of N (Lm−(2j+1),a) and R(R2j+1,a) are special compo-
sitions of the vectors in (18) and (19), respectively. Then we can conclude similarly as in the
one-dimensional setting that w2j+1 = 0 in the definition of Φ ˜IC . Therefore, for m = 2, the
functionals ΦIC and Φ ˜IC coincide again. The functional ΦMIC is indeed different. This is
discussed in more detail in the Examples 6.1 and 6.2.

Case b: Here, we use the matrices R1,b := D1, R2,b := D2,b from Example 2.2 and L2
1,b from

Example 3.1. Appropriate matrices for m = 3 fulfilling R3,b = L3
1R2,b = L3

2R1,b can be chosen
as follows:

R3,b =

0

B

B

@

Dxxx

Dxxy + Dxyx + Dyxx

Dxyy + Dyxy + Dyyx

Dyyy

1

C

C

A

:=

0

B

B

@

In ⊗ D(−DT)D
D ⊗ (−DT)D + (−DT) ⊗ DD + D ⊗ D(−DT)
D(−DT) ⊗ D + DD ⊗ (−DT) + (−DT)D ⊗ D

D(−DT)D ⊗ In

1

C

C

A

,

12



L
3
2,b =

0

B

B

@

In ⊗ D(−DT) 0
D ⊗ (−DT) + (−DT) ⊗ D In ⊗ D(−DT)

D(−DT) ⊗ In D ⊗ (−DT) + (−DT) ⊗ D

0 D(−DT) ⊗ In

1

C

C

A

, L
3
1,b =

0

B

B

@

In ⊗ D 0 0
D ⊗ In In ⊗ D 0

0 D ⊗ In In ⊗ D

0 0 D ⊗ In

1

C

C

A

.

For case b the functionals ΦMIC can be considered as discrete variants of the continuous
ℓ2
2-TGVm

α , m = 2, 3 functionals introduced in [5]. To verify this relation let us recall the
definition of TGVm

α from [5].

Definition of TGVm
α : Let

Symm(Rd) := {v : R
d × · · · × R

d
︸ ︷︷ ︸

m

→ R : v m − linear, symmetric}

be the space of m-linear, symmetric mappings over R
d to R, i.e., the space of symmetric,

covariant m-tensors. These symmetric m-tensors are completely determined by the values
v(ej1 , . . . , ejm) = vj1,...,jm, where ej denotes the j-th unit vector in R

d and ji ∈ {1, . . . , d},
j1 ≤ . . . ≤ jm. We consider symmetric m-tensor fields V : Ω → Symm(Rd) with Ω ⊂ R

d. The
total generalized variation of order m with weighting vector α > 0 is defined by

TGV m
α (u) := sup

{∫

Ω
udivmV dx : V ∈ Cm

c (Ω,Symm(Rd)),

‖divm−iV ‖∞ ≤ αi, i = 1, . . . ,m
}
,

where Ck
c (Ω,Symm(Rd)) denotes the space of k times continuously differentiable symmetric

m-tensor fields with compact support in Ω and

diviV (x) := tri((∇i ⊗ V )(x)),

tr(v)(a) :=

d∑

j=1

v(ej , a, ej), a ∈ R
d × . . . × R

d
︸ ︷︷ ︸

m−2

,

(∇i ⊗ V )(x)(a1, . . . , am+i) := Di(V )(x)(a1, . . . , ai)(ai+1, . . . , am+i).

Here Di(V ) : Ω → L
(
(Rd)i,Symm(Rd)

)
is the i-th Fréchet derivative of V (componentwise

Fréchet derivative) and L
(
(Rd)i,Symm(Rd)

)
is the space of i-linear, continuous mappings

from (Rd)i into Symm(Rd).
Note that for a symmetric m-tensor field V we have that diviV is an m − i tensor field.

In our applications, we are only interested in rectangular domains Ω ⊂ R2, i.e., d = 2. To see
the relation to our setting, consider ΦMIC from (ℓ2

2-MIC/P) in Proposition 3.2:

ΦMIC(u) = sup
V ∈RNm

{
〈u,RT

mV 〉 : ‖LT
m−iV ‖∞,1/ωi

≤ αi, i = 1, . . . ,m
}

.

We are looking for appropriate matrices RT
m playing the discrete role of divm and matrices

LT
m−i which can be considered as discrete versions of divm−i. Such a discrete setting is given

in the above case b. We explain the relation for m = 2. For symmetric 2-tensor fields

13



V = (V T
1,1, V

T
1,2, V

T
2,2)

T we obtain that the 0-tensor field (scalar function) div2V is given by

div2V = tr2((∇2 ⊗ V )(·)) = tr
(
tr((∇2 ⊗ V )(·))

)

= tr((∇2 ⊗ V )(·))(e1, e1) + tr((∇2 ⊗ V )(·))(e2, e2)

= (∇2 ⊗ V )(·)(e1, e1, e1, e1) + (∇2 ⊗ V )(·)(e2, e1, e1, e2)

+ (∇2 ⊗ V )(·)(e1, e2, e2, e1) + (∇2 ⊗ V )(·)(e2, e2, e2, e2)

= D2V (·)(e1, e1)(e1, e1) + D2V (·)(e2, e1)(e1, e2)

+ D2V (·)(e1, e2)(e2, e1) + D2V (·)(e2, e2)(e2, e2)

=
∂2

∂x2
V1,1 +

(
∂2

∂y∂x
+

∂2

∂x∂y

)
V1,2 +

∂2

∂y2
V2,2,

and the 1-tensor field (vector function with two components) div1V reads

div1V (·)(a) = tr((∇⊗ V )(·))(a) = (∇⊗ V )(·)(e1, a, e1) + (∇⊗ V )(·)(e2, a, e2)

= DV (·)(e1)(a, e1) + DV (·)(e2)(a, e2),

div1V (·)(e1) =
∂

∂x
V1,1 +

∂

∂y
V1,2,

div1V (·)(e2) =
∂

∂x
V1,2 +

∂

∂y
V2,2.

On the other hand, for a vector V = (V T
1,1, V

T
1,2, V

T
2,2)

T with V1,1, V1,2, V2,2 ∈ R
N , N = n2,

which acts as a discrete version of the above tensor field, we have indeed that

RT
2,bV = (Dxx,Dxy + Dyx,Dyy)V = DxxV1,1 + (Dxy + Dyx)V1,2 + DyyV2,2,

(L2
1,b)

TV =

(
−Dx −Dy 0
0 −Dx −Dy

)
V = −

(
DxV1,1 + DyV1,2

DxV1,2 + DyV2,2

)
.

Furthermore, we have in case b that ω1 := (1, 1) and ω2 := (1, 1
2 , 1), which correspond to the

weights used in [5, Section 4.1].

4.2 General difference matrices

Although the finite difference matrices of the previous subsection are mainly applied in prac-
tical image processing tasks, other difference operators may be useful for special applications
as well, see [39]. We consider the polynomial

PL(x) := xm + am−1x
m−1 + . . . + a1x + a0, ai ∈ R,

=

m∏

k=1

(x − ξk), ξk ∈ C (20)

and the corresponding differential operator

L(u) = u(m) + am−1u
(m−1) + . . . + a1u

′ + a0u.

The motivation for the following consideration of a discrete version of L comes from [38]. We
also refer to [38] for more material on the role of L in signal processing including references, in
particular, in connection with L-splines. Let ξmj , j = 1, . . . , m̃ denote the pairwise different
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values of ξj in (20) and assume that ξmj appears with multiplicity dj . Then, the kernel of L
is given by

N (L) := span{xreξmix : mi = 1, . . . , m̃; r = 0, . . . , di − 1}. (21)

In the following, we restrict our attention to operators with ξk ∈ R, k = 1, . . . ,m. As the
discrete counterpart of L we use

D(ξ1) := D − ξ1In,

D(ξ1, ξ2) := (−DT − ξ2In)(D − ξ1In),

D(ξ1, . . . , ξ2j) :=

j∏

l=1

((−DT − ξ2lIn)(D − ξ2l−1In)) ,

D(ξ1, . . . , ξ2j+1) := (D − ξ2j+1In)

j∏

l=1

((−DT − ξ2lIn)(D − ξ2l−1In)) ,

where we use the agreement that
∏j

l=1 Al := Aj . . . A1. Note that the ordering of the matrix
multiplication plays only a role for the first and last j rows of D(ξ1, . . . , ξ2j) and for the first
j and last j + 1 rows of D(ξ1, . . . , ξ2j+1).

Remark 4.3. Let us briefly discuss the relation to (21). Replacing the first and last j rows in
D(ξ1, . . . , ξ2j) and the first j and last j+1 rows in D(ξ1, . . . , ξ2j+1) by zero rows, we obtain for

ξ2j+1 6= −1 and ξ2j 6= 1 that the kernels of the corresponding modified matrices D̃(ξ1, . . . , ξn)
are given by

D̃(ξ1) : span{
(
(1 + ξ1)

k
)n−1

k=0
},

D̃(ξ1, ξ2) : span{
(
(1 + ξ1)

k
)n−1

k=0
,
(
(1 − ξ2)

n−k−1
)n−1

k=0
} if ξ2 6= ξ1

1 + ξ1

span{
(
(1 + ξ1)

k
)n−1

k=0
,
(
k(1 + ξ1)

k
)n−1

k=0
} if ξ2 =

ξ1

1 + ξ1

...

Note that eξi = 1 + ξi + O(ξ2
i ) as ξi → 0.

We have that D(ξ) = Di for ξ = (ξ1, . . . , ξi) = (0, . . . , 0). Therefore, we assume in the
following that ξi 6= 0, i = 1, . . . ,m. Moreover, we choose ξ2j+1 6= −1 and ξ2j 6= 1 so that
the matrices D(ξ) are invertible. Then, in the one-dimensional setting with Ri := D(ξ) the
matrices Lm

m−i in (6) are uniquely determined. Moreover, N (Lm
m−i) = N (RT

i ) = {0} so that

the problems ℓ2
2-IC, ℓ2

2-ĨC and ℓ2
2-MIC are again equivalent. Fig. 3 shows the behavior of

the functional ℓ2
2-IC with general difference operators for denoising a signal in the kernel of

D(ξ1, ξ2). If we choose the parameters αi, i = 1, 2 large enough, we obtain a very good result
for such signals in contrast to ℓ2

2-IC with ordinary first and second order difference operators.

A two-dimensional approach involving the operators D(ξ) instead of Di can be obtained in
the same way as in the previous subsection. Example 6.4 shows the differences between the
minimizers of the ℓ2

2-IC and the ℓ2
2-MIC functional for the setting in case a with D(ξ).
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Figure 3: Left: Noisy signal f of the mirrored original signal u = 5
(
(1 + 0.03)k

)128
k=1

+

5
(
(1 + 0.02)129−k

)128
k=1

corrupted by additive Gaussian noise of standard deviation 20. Mid-
dle/Right: Denoised image by ℓ2

2-IC with α1 = α2 = 1000 and difference operators Di, i = 1, 2
(middle) as well as D(0.03), D(0.03,−0.02) (right). The dash-dotted signal is the original
one.

5 Numerical algorithms

There exist several algorithms to compute the minimizer of the above problems. Second order
cone programming (SOCP) was used, e.g., by some of the authors in [34].
The fast iterative shrinkage threshold algorithm (FISTA) of Beck and Teboulle [3, 4] was
applied with outer and inner FISTA loops, e.g., in [5]. Note that FISTA is based on a
multistep algorithm proposed by Nesterov [26].
Sparked by [12, 13, 21, 40, 44], splitting methods which make use of the additive structure
of the objective function have become popular recently in image processing. The idea is to
solve in each iteration several subproblems which deal with the different components of the
objective function individually. For our minimization problems ℓ2

2-IC and ℓ2
2-MIC it turns

out that the alternating direction method of multipliers (ADMM) and the primal-dual hybrid
gradient method (PDHG) are very useful. ADMM and the PDHG method can be derived by
considering the Lagrangian function and the augmented Lagrangian function, respectively,
and minimizing alternatingly with respect to the primal and the dual variable. Furthermore,
ADMM can also be deduced via Douglas-Rachford splitting applied to the dual problem or via
Bregman proximal point methods. The PDHG algorithm turns out to be equivalent to Arrow-
Hurwicz method. More on theses algorithms can be found in [6, 9, 16, 17, 18, 19, 20, 21, 33, 44]
and the references therein.
The starting point to apply ADMM and PDHG is to rewrite a general problem of the form

argmin
v∈RD

r∑

i=1

Fi(Civ) + Fr+1(v), Ci ∈ R
Mi,D, Fi : R

Mi → (−∞,+∞] (22)

as a constrained problem

argmin
v∈RD ,zi∈RMi

r∑

i=1

Fi(zi) + Fr+1(v) subject to zi = Civ, i = 1, . . . , r (23)

with C := (CT
1 . . . CT

r )T for Ci ∈ R
Mi,D and z(k) := (z

(k)
1 , . . . , z

(k)
r )T.
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Using this notation, ADMM reads:

Algorithm (ADMM for (23) )
Initialization: z(0), b(0)

For k = 0, . . . repeat until a stopping criterion is reached:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

γ

2
‖b(k) + Cv − z(k)‖2

2

}
(24)

z(k+1) = argmin
zi∈RMi

{ r∑

i=1

Fi(zi) +
γ

2
‖b(k) + Cv(k+1) − z‖2

2

}

b(k+1) = b(k) + Cv(k+1) − z(k+1)

Let us assume that the functions Fi are proper, convex and closed. Furthermore, suppose
that (22) and its dual problem have a solution and that the duality gap is zero. Then, the
sequence (b(k))k∈N converges for every step length parameter γ > 0 to a point b̂ whose scaled
version 1

γ b̂ is a solution of the dual problem of (22). Moreover, every cluster point of (v(k))k∈N

is a minimizer of (22).

Algorithm (PDHG for (23) )
Initialization: v(0), z(0), b(0)

For k = 0, . . . repeat until a stopping criterion is reached:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

1

2τ
‖v − v(k) + τγCTb(k)‖2

2

}

z(k+1) = argmin
zi∈RMi

{ r∑

i=1

Fi(zi) +
γ

2
‖b(k) + Cv(k+1) − z‖2

2

}

b(k+1) = b(k) + Cv(k+1) − z(k+1)

Note that using the notation p(k) := 1
γ b(k) the above PDHG algorithm is often written as

follows in the literature:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

1

2τ
‖v − v(k) + τCTp(k)‖2

2

}
,

p(k+1) = argmin
pi∈RMi

{
(

r∑

i=1

Fi)
∗(p1, . . . , pr) +

1

2γ
‖p − p(k) − γCv(k+1)‖2

2

}
.

The following convergence result for PDHG was shown in [9]: Assume again that the functions
Fi are proper, convex and closed, that the primal problem (22) and its dual problem have a
solution and that the duality gap is zero. Moreover, we suppose that the domain of (

∑r
i=1 Fi)

∗

is bounded and that τγ < 1
||C||2

. Then, the sequences (v(k)))k∈N and ( 1
γ b(k))k∈N generated

by the above PDHG algorithm converge to a solution of the primal and the dual problem,
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respectively. Note that a similar convergence result for a slightly different algorithm was
given earlier in [18]. It was observed in [9, 18, 44] that a dynamic choice of the step length
parameters (τ (k), γ(k)) is advantageous. This is not implemented in the experiments reported
in this paper. We also do not use the acceleration techniques, e.g. based on FISTA, which
are proposed in [9].
We now want to apply ADMM and PDHG to the primal ℓ2

2-IC and ℓ2
2-MIC problems. There

are different ways to implement the above algorithms depending on the formulation of the
constrained problem. In our experiments, it turned out that for the ℓ2

2-IC problem an ADMM
performs best, cf. Subsection 5.1. For the ℓ2

2-MIC problem we found that a PDHG method
which we describe in Subsection 5.2 is very fast.

5.1 ADMM for ℓ
2

2
-IC/P

For m = 2 it holds that ℓ2
2-IC/P can be written as a constrained problem of the form (23)

with r = 2 which reads

argmin
u∈RN

{1

2
‖f − u‖2

2 + inf
u=u1+u2

{α1‖R1u1‖1,ω1 + α2‖R2u2‖1,ω2}
}

(25)

= argmin
u1,u2,z1,z2

{1

2
‖f − u1 − u2‖2

2
︸ ︷︷ ︸

F3(v)

+ α1‖ |z1| ‖1︸ ︷︷ ︸
F1(C1v)

+ α2‖ |z2| ‖1︸ ︷︷ ︸
F2(C2v)

}

subject to

(
R̃1 0

0 R̃2

)

︸ ︷︷ ︸
C

(
u1

u2

)

︸ ︷︷ ︸
v

=

(
z1

z2

)

︸ ︷︷ ︸
z

,

where we use the notation R̃i =
(√

ωi,1R
T
i,1, . . . ,

√
ωi,ni

RT
i,ni

)T
assuming that Ri =

(
RT

i,1, . . . , R
T
i,ni

)T ∈
R

niN,N with Ri,j ∈ R
N,N . Here, ‖ |·| ‖1 := ‖·‖1,ω for ω = (1, . . . , 1). Hence, the corresponding

ADMM reads
(

u
(k+1)
1

u
(k+1)
2

)
= argmin

u1,u2

{1

2
‖f − u1 − u2‖2

2 +
γ

2
‖b(k) + C

(
u1

u2

)
−
(

z
(k)
1

z
(k)
2

)
‖2
2

}
, (26)

(
z
(k+1)
1

z
(k+1)
2

)
= argmin

z1,z2

{
α1‖ |z1| ‖1 + α2‖ |z2| ‖1 +

γ

2
‖b(k) + C

(
u

(k+1)
1

u
(k+1)
2

)
−
(

z1

z2

)
‖2
2

}
, (27)

b(k+1) = b(k) + C

(
u

(k+1)
1

u
(k+1)
2

)
−
(

z
(k+1)
1

z
(k+1)
2

)
.

In the first step (26) we have to solve following system of linear equations:

0 = u
(k+1)
1 + u

(k+1)
2 + γR̃T

1 R̃1u
(k+1)
1 − (f − γR̃T

1 (b
(k)
1 − z

(k)
1 )︸ ︷︷ ︸

=:t1

),

0 = u
(k+1)
1 + u

(k+1)
2 + γR̃T

2 R̃2u
(k+1)
2 − (f − γR̃T

2 (b
(k)
2 − z

(k)
2 )︸ ︷︷ ︸

=:t2

).

This can be rewritten as

u
(k+1)
1 = t2 − (I + γR̃T

2 R̃2)u
(k+1)
2 , (28)

u
(k+1)
2 = t1 − (I + γR̃T

1 R̃1)u
(k+1)
1 . (29)
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If we substitute (29) into (28) and solve for u
(k+1)
1 we obtain

u
(k+1)
1 = 1

γ (R̃T
2 R̃2 + (I + γR̃T

2 R̃2)R̃
T
1 R̃1)

†((I + γR̃T
2 R̃2)t1 − t2), (30)

u
(k+1)
2 = t1 − (I + γR̃T

1 R̃1)u
(k+1)
1 .

Observe that (25) has a unique solution with respect to u. This implies that (u(k))k∈N, defined

by the sequences (u
(k)
i )k∈N, i = 1, 2 of the above ADMM via u(k) = u

(k)
1 +u

(k)
2 , converges to the

solution of ℓ2
2-IC/P, cf., e.g., [33]. On the other hand, the matrix R̃T

2 R̃2 +(I +γR̃T
2 R̃2)R̃

T
1 R̃1 is

not invertible in general, in other words, u
(k)
1 and u

(k)
2 are not unique in contrast to their sum

u(k). Nevertheless, a pair of solutions (u
(k)
1 , u

(k)
2 ) of (26) always exists and in our implementa-

tion we compute u
(k)
1 to be the one with minimal ℓ2-norm, i.e., we apply the Moore-Penrose

inverse. It is easy to see that this also implies that the sequences (u
(k)
i )k∈N, i = 1, 2, converge.

In the example described below, see also Table 1, we use the difference operators of case a
in Example 2.2. In this case, we can solve (30) explicitely via the discrete cosine transform
since both R̃T

1 R̃1 and R̃T
2 R̃2 can be diagonalized by this transformation, see, e.g., [27].

Interestingly, the second step (27) in the ADMM algorithm is very easy to compute since it

can be solved separately with respect to z
(k+1)
1 and z

(k+1)
2 , i.e., we have

z
(k+1)
i = argmin

zi

{
αi‖ |zi| ‖1 +

γ

2
‖b(k)

i + R̃iu
(k+1)
i − zi‖2

2

}
, i = 1, 2.

This problem is well-known to have the analytic solution z
(k+1)
i = shrinkαi

γ
(b

(k)
i + R̃iu

(k+1)
i ).

The operator shrinkλ : R
dM → R

dM is called coupled shrinkage and given componentwise for
pT :=

(
pT
1 , . . . , pT

d

)
, pi := (pij)

M
j=1, i = 1, ..., d, by

shrinkλ(pij) :=

{
pij − λpij/

√
p2
1j + · · · + p2

dj if
√

p2
1j + · · · + p2

dj ≥ λ,

0 otherwise.

In summary, we obtain the following algorithm:

Algorithm (ADMM for ℓ2
2
-IC/P)

Initialization: M = R̃T
2 R̃2 + (I + γR̃T

2 R̃2)R̃
T
1 R̃1, u

(0)
i = 1

2f , z
(0)
i = 1

2R̃if , b
(0)
i = 0, i = 1, 2

For k = 0, . . . repeat until a stopping criterion is reached:

u
(k+1)
1 = 1

γ M †
(
(I + γR̃T

2 R̃2)
(
f − γR̃T

1 (b
(k)
1 − z

(k)
1 )
)
−
(
f − γR̃T

2 (b
(k)
2 − z

(k)
2 )
))

u
(k+1)
2 = f − γR̃T

1 (b
(k)
1 − z

(k)
1 ) − (I + γR̃T

1 R̃1)u
(k+1)
1

z
(k+1)
i = shrinkαi

γ
(b

(k)
i + R̃iu

(k+1)
i ), i = 1, 2

b
(k+1)
i = b

(k)
i + R̃iu

(k+1)
i − z

(k+1)
i , i = 1, 2

Output: u
(k+1)
1 , u

(k+1)
2 , u(k+1) := u

(k+1)
1 + u

(k+1)
2
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In the first two rows of Table 1 we compare the running times of the above ADMM algo-
rithm with SOCP as implemented in the commercial software MOSEK 6.0 for the denoising
experiment of Fig. 11. Our computations were performed with MATLAB 7.7 on an Intel
Core Duo CPU with 2.66 GHz and 4GB RAM. Note that we use the difference operators of
case a in Example 2.2. We report the computation times for SOCP and ADMM to reach a
maximal difference in the gray value in every pixel of smaller than 1.0 and 0.1 with respect
to a reference solution. Clearly, we see that ADMM is much faster for both cases. Note that
the gray values of the original image in Fig. 11 range from 0 to 255 and therefore even a
maximal error of 1.0 yields a solution which is visually the same as the reference solution.

5.2 PDHG for ℓ
2

2
-MIC/P

For m = 2 problem ℓ2
2-MIC/P can be written as

argmin
u

{1

2
‖f − u‖2

2 + inf
R1u=x1+x2

{α1‖x1‖1,ω1 + α2‖L1x2‖1,ω2}
}

= argmin
u,x1,x2,y

{1

2
‖f − u‖2

2
︸ ︷︷ ︸

F3(v)

+ α1‖ |x1| ‖1︸ ︷︷ ︸
F1(C1v)

+ α2‖ |y| ‖1︸ ︷︷ ︸
F2(C2v)

}

subject to

(
R̃1 −Ĩ

0 L̃1

)

︸ ︷︷ ︸
C

(
u
x2

)

︸ ︷︷ ︸
v

=

(
x1

y

)

︸ ︷︷ ︸
z

,

where we use the notation R̃1 =
(√

ω1,1R
T
1,1, . . . ,

√
ω1,n1

RT
1,n1

)T
, Ĩ =

(√
ω1,1IN , . . . ,

√
ω1,n1

IN

)T

and L̃1 =
(√

ω2,1L
T
1,1, . . . ,

√
ω2,n2

LT
1,n2

)T
for L1,i ∈ R

N,n1N . For the above splitting, the ma-
trix inversion which appears when applying ADMM is much harder to compute than for the
problem ℓ2

2-IC/P in Subsection 5.1. We therefore use the PDHG method for this problem. It
reads

(
u(k+1)

x
(k+1)
2

)
= argmin

u,x2

{1

2
‖f − u‖2

2 +
1

2τ
‖
(

u
x2

)
−
(

u(k)

x
(k)
2

)
+ τγCTb(k)‖2

2

}
,

(
x

(k+1)
1

y(k+1)

)
= argmin

x1,y

{
α1‖ |x1| ‖1 + α2‖ |y| ‖1 +

γ

2
‖b(k) + C

(
u(k+1)

x
(k+1)
2

)
−
(

x1

y

)
‖2
2

}
,

b(k+1) = b(k) + C

(
u(k+1)

x
(k+1)
2

)
−
(

x
(k+1)
1

y(k+1)

)
.

Now the first step is very easy to solve. We have

u(k+1) =
1

1 + τ
(τf + u(k) − τγR̃T

1 b
(k)
1 ),

x
(k+1)
2 = x

(k)
2 + τγ(Ĩb

(k)
1 − L̃T

1 b
(k)
2 ).

In the second step, the minimization with respect to x1 and y decouples again and we can
solve the corresponding problems in the same way as in Subsection 5.1 using the coupled
shrinkage operator.
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In summary, we obtain the following algorithm:

Algorithm (PDHG for (ℓ2
2
-MIC/P))

Initialization: u(0) = f , x
(0)
1 = 1

2R̃1f , x
(0)
2 = 1

2 L̃1R̃1f , b
(0)
1 = b

(0)
2 = 0

For k = 0, . . . repeat until a stopping criterion is reached:

u(k+1) =
1

1 + τ
(τf + u(k) − τγR̃T

1 b
(k)
1 )

x
(k+1)
2 = x

(k)
2 + τγ(Ĩb

(k)
1 − L̃T

1 b
(k)
2 )

x
(k+1)
1 = shrinkα1

γ
(b

(k)
1 + R̃1u

(k+1) − x
(k+1)
2 )

y(k+1) = shrinkα2
γ

(b
(k)
2 + L̃1x

(k+1)
2 )

b
(k+1)
1 = b

(k)
1 + R̃1u

(k+1) − x
(k+1)
2 − x

(k+1)
1

b
(k+1)
2 = b

(k)
2 + L̃1x

(k+1)
2 − y(k+1)

Output: u(k+1), x
(k+1)
1 , x

(k+1)
2

The last two rows of Table 1 illustrate that this algorithm is much faster than SOCP via
MOSEK. Note that the pairs (τ, γ) used to obtain the results in Table 1 do not satisfy the
assumption τγ < 1

‖C‖2 of the convergence proof in [9]. However, we use them since the

resulting algorithms still seem to converge and are much faster. Similar observations were
reported in [18].

max. error
< 1.0 < 0.1

ℓ2
2-IC/P

SOCP 73.5 sec 81.4 sec
ADMM 3.6 sec 145 iter. 19.1 sec 806 iter.

ℓ2
2-MIC/P

SOCP 18.0 sec 42.8 sec
PDHG 1.7 sec 162 iter. 19.6 sec 1929 iter.

Table 1: Computation time to achieve a maximal difference smaller than 1.0 and 0.1 in each
pixel with respect to a reference solution for the experiment shown in Fig. 11. We use the
difference operators of case a in Example 2.2. For ADMM the best step length parameters
γ were found to be 7.6 and 25.1 for a maximal error of 1.0 and 0.1, respectively. The best
combinations of τ and γ in the PDHG algorithm are (0.07, 5.9) and (0.04, 9.1), respectively.

6 Numerical examples

Finally, we want to illustrate the differences between the ℓ2
2-IC and ℓ2

2-MIC models in two
dimensions by numerical examples.
Note that in our numerical examples the ℓ2

2-IC and ℓ2
2-MIC models corresponding to the

different cases a and b described in the Examples 2.2 and 3.1 show only marginal differences
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as depicted in Fig. 4. For this reason, we restrict our attention to the difference operators
of case a in the numerical experiments. Furthermore, we concentrate on the practically
important case m = 2. For experiments with m = 3 we refer to [5].
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Figure 4: Left: Result ûMIC,a from Fig. 2 (bottom right) obtained by ℓ2
2-MIC with R1 = D1,

α1 = 60 and R2 = D2,a, α2 = 300. Middle: Result ûMIC,b of the same experiment with
R2 = D2,b, α2 = 260. Since ‖R2,au‖1,ω2a ≤ ‖R2,bu‖1,ω2b

with ω2a = (1, 1) and ω2b = (1, 1
2 , 1),

the value of α2 has been adjusted. The difference image ûMIC,a − ûMIC,b on the right shows
that there are small differences between these two images which are in the images themselves
hard to recognize at all.

Example 6.1.

We start with the original and noisy images in Fig. 5.
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Figure 5: Original image u (left) and noisy image f (right) corrupted by additive Gaussian
noise of standard deviation 20.
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In this example we study the difference between the penalizers

ΦIC(u) = inf
u=u1+u2

{α1‖R1u1‖1,ω1 + α2‖R2u2‖1,ω2}
= inf

R1u=x1+x2
xi∈R(R1)

{α1‖x1‖1,ω1 + α2‖L1x2‖1,ω2},

ΦMIC(u) = inf
u=u1+u2
s1∈N (RT

1
)

{α1‖R1u1 − s1‖1,ω1 + α2‖R2u2 + L1s1‖1,ω2}

= inf
R1u=x1+x2

{α1‖x1‖1,ω1 + α2‖L1x2‖1,ω2}.

Figs. 6 and 7 show decompositions by ΦIC and ΦMIC of the image u given in Fig. 5 (left).
Note that for a better visual impression the gray values of the images depicting R1u, x1 and
x2 are restricted to the interval [−10, 10] and all values outside of this interval are represented
by the gray values −10 and 10.
In image restoration the aim of a regularization term is usually to penalize the noise contained
in u without penalizing structures of the original noisefree image. This example will show
that for appropriate α1, α2, the functional

ΦMIC penalizes linear regions of our noisefree test image much less than ΦIC .

In the first row of Figs. 6 and 7, we can see that the images u1 and u2 look quite similar for

both functionals. However, the decompositions of R1u into the vectors xi =
(
xT

i,1, xT
i,2

)T

for

i = 1, 2 depicted in the second and third row of Figs. 6 and 7 are fundamentally different.
In ΦMIC(u) the additional variable s1 allows for a decomposition such that x1 = R1u1 − s1

contains only the gradients of the edges whereas x2 = R1u2 + s1 comprises the gradients of
the linear parts, see also Fig. 8. Hence, by α1‖x1‖1,ω1 the functional ΦMIC(u) penalizes only
the gradients at the edges and since within linear regions the second derivatives are zero,
α2‖L1x2‖1,ω2 penalizes only the boundaries of the linear regions of u.
In contrast, for ΦIC(u) it is not possible to choose the same xi, i = 1, 2, due to the restriction
that xi must be in R(R1), or, equivalently, the absence of the variable s1. Thus, we see in
the second and third row of Fig. 6 that x1 and x2 do not separate R1u into a part which
contains the gradients of the edges and the linear components, respectively. Especially x1,2

comprises a significant part of the gradients of the linear regions which is then penalized by
α1‖x1‖1,ω1 . This leads to a higher value of the penalizer ΦIC(u) compared to the value of
ΦMIC(u), i.e. for appropriate αi the functional ΦIC wrongly penalizes linear regions a lot
more than ΦMIC(u) does.

Example 6.2.

Our next Figs. 9 and 10 illustrate what happens if we apply (ℓ2
2-IC/P) and (ℓ2

2-MIC/P) to
the noisy image depicted in Fig. 5 (right). First of all, a slight smoothing of the edges of
the restored image û is visible for both problems, in particular if we look at the images of
R1,xu and R1,yu. However, due to our choice of α1 < α2 this smoothing is of minor extent so
that it is hardly visible by looking at the restored image û compared to the original image u.
Visually more eye-catching are the staircasing artifacts of the restoration result of (ℓ2

2-IC/P).
These artifacts can be explained as follows: If we assume that u2 is given as in Fig. 9, then
u1 is the solution of the functional

inf
u1

{1

2
‖(f − u2) − u1‖2

2 + α1‖R1u1‖1,ω1}.
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(i) x2,2 = R1,yu2

Figure 6: Decomposition of the original images u and R1u in Fig. 5 by ΦIC(u) with α1 = 60
and α2 = 150.

This functional is nothing else than the ROF functional applied to f − u2, which is known to
produce staircasing at linear regions of û − u2. By choosing a larger α1 and thus, bringing
u2 closer to u, these artifacts can be reduced but visible blurring artifacts at the edges are
introduced. In contrast to (ℓ2

2-IC/P) the result of (ℓ2
2-MIC/P) is nearly perfect without any

staircasing. The reason for this is that all gradients at the linear regions of the original image
u are contained in x2 rather than x1.

Example 6.3.

For natural images, the ℓ2
2-IC and the ℓ2

2-MIC approach with ordinary difference matrices
work quite similar and for most images there will be no visual differences. The image of a car
shown in Fig. 11 contains affine sets and sharp edges so that the ℓ2

2-MIC approach is again
superior to ℓ2

2-IC.

Example 6.4.

Finally, we give a denoising example for ℓ2
2-IC/MIC with the difference matrices D(ξ1) and

D(ξ1, ξ2) in Fig. 12, where ξ1 = 0.03 and ξ2 = −0.03. We mention that the denoised image
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(f) x2,1 = R1,xu2 + s1,1
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(i) x2,2 = R1,yu2 + s1,2

Figure 7: Decomposition of the original images u and R1u in Fig. 5 by ΦMIC(u) with α1 = 60
and α2 = 150.
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(a) s1,2
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(b) R1,yu1
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(c) R1,yu2

Figure 8: The components s1,2, R1,yu1 and R1,yu2 which allow the favorable decomposition
R1,yu = x1,2 + x2,2 depicted in the third row of Figure 7.
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Figure 9: Results of (ℓ2
2-IC/P) applied to the noisy image f in Fig. 5 (right) for α1 = 60 and

α2 = 150.

for ℓ2
2-MIC with Di, i = 1, 2 (i.e. ξ1 = ξ2 = 0) looks quite similar while ℓ2

2-IC with these
matrices shows fewer staircasing effects.

7 Conclusions

We have presented a general discrete approach to modify infimal convolutions containing ℓ1-
type functionals with linear operators. For the special case of finite difference matrices we
obtain the results from our previous paper [34] and a discrete version of [5]. However, in
contrast to [34], we also considered the primal problem which in our opinion shows better
the differences between the original and the modified version. We illustrated these differences
by numerical examples showing also decompositions of the primal variables appearing in the
functional. An open question is role of different factorizations in (6). Besides, it remains to
examine other useful operators for image processing tasks as, e.g., frame analysis operators.
A first step in this direction was done by considering more general difference matrices known
from L splines. This paper also contributes to finding fast algorithms to solve problems with
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=

 

 

−50

0

50

100

150

(b) û1
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Figure 10: Results of (ℓ2
2-MIC/P) applied to the noisy image f in Fig. 5 (right) α1 = 60 and

α2 = 150.

infimal convolutions containing ℓ1-type functionals. In particular, we apply two splitting
methods, the alternating direction method of multipliers and the primal-dual hybrid gradient
algorithm. Both of them use the additive structure of our objective functions and solve in each
iteration subproblems corresponding to these terms. We show numerically that the resulting
algorithms are much faster than the commercial software MOSEK which implements second
order cone programming.
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Figure 11: Top: Original image u (left), image size: 200×270, copyright P. Allert, Allert and
Hoess Photography GbR, München, and noisy image f (right) corrupted by additive Gaussian
noise of standard deviation 20. Middle: Denoised images by ℓ2

2-IC (left) and ℓ2
2-MIC (right)

with ordinary difference matrices Di, i = 1, 2 with α1 = 23 and α2 = 60. Bottom: Part of
the denoised images by ℓ2

2-IC (left) and ℓ2
2-MIC (right).
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Figure 12: First row: Original image u (left) and noisy image f (right) corrupted by additive
Gaussian noise of standard deviation 20. Second row: Plots of the 99th row of the images in
the first row. Third row: Denoised images by ℓ2

2-IC (left) and ℓ2
2-MIC (right) for α1 = 27 and

α2 = 100. Fourth row: Plots of the 99th row of the images in the third row.
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