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Abstract. We present a novel structure tensor for matrix-valued im-
ages. It allows for user defined parameters that add flexibility to a num-
ber of image processing algorithms for the segmentation and smoothing
of tensor fields. We provide a thorough theoretical derivation of the new
structure tensor, including a proof of the equivalence of its unweighted
version to the existing structure tensor from the literature. Finally, we
demonstrate its advantages for segmentation and smoothing, both on
synthetic tensor fields and on real DT-MRI data.

1 Introduction

In recent years, second-order tensor fields have received increasing attention.
This is partly due to the now widely-used diffusion tensor magnetic resonance
imaging (DT-MRI) modality that uses a diffusion tensor in each voxel to describe
the self-diffusion of water molecules [1]. The methods presented in this paper
have been developed with an eye on the processing of DT-MRI data, but can be
used wherever real-valued, symmetric 3× 3 matrix fields arise.

To approach the smoothing and segmentation of such fields, Feddern et al.
[2, 3] have proposed an extension of some well-known curvature-based partial
differential equations (PDEs), like mean curvature motion and active contour
models, to the tensor case. Other methods for tensor image regularization [4–7]
and segmentation [8–11] have been suggested. However, all of them use a fixed
distance measure on the tensors. Therefore, none of the existing approaches allow
the user to emphasize the relevance of particular properties of the diffusion tensor
(i.e., overall diffusivity, anisotropy, and orientation) for a given application.

Feddern et al. derive a structure tensor for tensor-valued images. Subse-
quently, they define generalized level lines as integral lines of its minor eigenvec-
tor field and generalized gradient magnitude as the structure tensor trace.

Our present work uses a decomposition of the tensor field gradient which has
been suggested by Kindlmann [12] to replace this structure tensor with a new
formulation that has user defined parameters. When they are all set to one, the
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new formulation is equivalent to the previous one. However, we will show that
the option to weight its individual terms is crucial for some specific applications.

The paper is organized as follows: Section 2 revises the previous work by
Kindlmann which serves as the basis of our re-formulation, presented in Sec-
tion 3. A proof of the equivalence to the previous structure tensor is given in
Section 4. In Section 5, example applications on synthetic and real DT-MRI data
follow, before Section 6 concludes the paper.

2 Projected Tensor Gradients

Let Sym3 denote the six-dimensional vector space of symmetric, real-valued
3×3 matrices and let D be a field of Sym3 matrices over R3. Then, the gradient
∇D of the field is a 3 × 3 × 3 third-order tensor which we will index such that
(∇D)ijk = ∂Djk

∂xi
. Thus, ∇D can be thought of as a three-vector of second-order

tensors, expressing the partial derivatives of D in each image direction.
Kindlmann’s contribution in [12] is to decompose ∇D into parts that cor-

respond to changes in three tensor invariants which cover changes in shape, as
well as the parts of ∇D that correspond to rotations around each eigenvector.

The invariants he uses to describe tensor shape are derived from the moments
of the eigenvalues λ1, λ2, and λ3. In the context of DT-MRI, µ1 := 1

3

∑
i λi,

the eigenvalue mean, is a measure of bulk diffusivity. The eigenvalue variance
µ2 := 1

3

∑
i(λi − µ1)2 measures diffusion anisotropy. The eigenvalue skewness

α3 := µ3/
√
µ3

2 (with µ3 := 1
3

∑
i(λi−µ1)3) reflects the type of anisotropy. It is a

dimensionless quantity with range
[
−1/

√
2, 1/

√
2
]
, where α3 = −1/

√
2 indicates

a perfectly planar tensor and α3 = 1/
√

2 a perfectly linear one.
If we consider these invariants as scalar-valued functions over Sym3, their

gradient is a map from Sym3 to Sym3. We will denote this gradient of an
invariant J as the invariant gradient ∇J , marked by a boldface ∇.

Kindlmann decomposes the tensor field gradient ∇D by projecting it onto
the invariant gradients. In order to avoid undesired scaling in this step, he first
normalizes ∇J with respect to the tensor scalar product A : B :=

∑
i,j aijbij .

Let ‖D‖ :=
√

D : D denote the associated Frobenius norm. If ‖∇J‖ > 0, its
normalized version is ∇̂J := ∇J/‖∇J‖. However, ∇µ2 vanishes when µ2 = 0,
and ∇α3 vanishes when α3 reaches one of its extrema as well as in the isotropic
case (µ2 = 0), for which α3 is undefined.

Kindlmann derives expressions for the invariant gradients1 and suggests aux-
illary constructs to ensure that ∇̂µ1, ∇̂µ2 and ∇̂α3 are always orthonormal and
span the space of changes in tensor shape, even if some of the underlying invari-
ant gradients are undefined. As a consequence, the directions of ∇̂µ2 and ∇̂α3

are arbitrary and exchangeable when µ2 = 0.
The projected gradient ∇̂J is obtained by taking the tensor scalar product

of ∇̂J with each of the three Sym3 tensors within ∇D:
1 The exact formulas are not required to understand this paper. The interested reader

can find them in [12, p. 73].
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(∇̂J)i :=
∑
j,k

(∇̂J)jk(∇D)ijk (1)

∇̂J is a vector in R3, expressing for each of the three spatial directions the
amount of tensor change that corresponds to changes in the invariant J .

To cover changes in orientation, Kindlmann calculates rotation tangents (Φ1,
Φ2,Φ3 ∈ Sym3) as the changes in D caused by infinitesimal rotations around
its eigenvectors. Subsequently, the effect of finite rotations is approximated by
adding some scalar multiple of the normalized tangents Φ̂i [12, p. 87].

Kindlmann shows that the rotation tangents are orthogonal both to each
other and to the invariant gradients defined above. The rotation tangents are
used in the same manner as before to define projected tensor field gradients ∇̂φi.

3 The New Structure Tensor

The structure tensor used by Feddern et al. [3] is defined as follows:

Jorig(∇Dσ) :=
3∑

i=1

3∑
j=1

∇(Dσ)i,j ∇T (Dσ)i,j (2)

The indexing with σ indicates that the gradient is calculated from a Gaussian-
smoothed version of the original tensor field, to allow noise-scale pre-processing.
This definition can be considered an extension of Di Zenzo’s approach for vector-
valued images [13]. Its advantages are that it makes use of the full tensor infor-
mation, it is rotationally invariant, and it has proven to work well in practice.

Equation (2) is based on the gradients of the nine tensor channels. Our
alternative approach uses the six projected gradients from Section 2 instead.
As these are physically meaningful, their individual influence can reasonably be
weighted via user coefficients w∗2.

However, we now need to handle cases in which the invariant gradients be-
come ill-defined. We will tackle this problem with functions ψ∗ that calculate
effective weights from the user-controlled parameters w∗.

For isotropic tensors (µ2 = 0), ∇̂µ2 and ∇̂α3 are arbitrary and exchangeable.
We reason that in the case of perfect isotropy, it does not make sense to speak
of changes in the type of anisotropy, so all tensor change that gets projected on
the span of ∇̂µ2 and ∇̂α3 should be attributed to changes in variance.

To make a smooth transition towards this case, we use the fractional aniso-
tropy (FA), a common anisotropy measure in the context of DT-MRI [14]:

FA :=

√
3
2
‖D− µ1I‖

‖D‖
=

3√
2

√
µ2

‖D‖
(3)

where I is the unit matrix. It is clear from Equation (3) that FA = 0 if µ2 = 0,
so we define ψα3 such that it tends to wµ2 as FA → 0:
2 With the asterisk ∗, we refer to all possible indices of a variable.
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ψα3(FA;wµ2 , wα3) :=

{
wα3 if FA > ε(

FA
ε − 1

)2
wµ2 +

[
1−

(
FA
ε − 1

)2]
wα3 else

Making a smooth transition requires to introduce a parameter ε that defines the
threshold starting from which we fully rely on the gradient direction ∇̂α3. In
our experiments, a value of ε = 0.1 worked well.

Further singularities occur when dealing with changes in orientation. Since
the two ill-defined eigenvectors of a perfectly linear (α3 = 1/

√
2) or planar

(α3 = −1/
√

2) tensor are exchangeable, the effect of rotating the tensor around
any of them may just as well be attributed to the other one. Thus, the ψφi

are
designed to let them share the total amount of rotation around any of them by
averaging their weights in the limit case:

ψφ1(FA, α3;wφ1 , wφ2) =

{
wφ1 if FA = 0 or α3 > 0(
1− α2

3

)
wφ1 + α2

3wφ2 else

ψφ2(FA, α3;wφ1 , wφ2 , wφ3) =


wφ2 if FA = 0(
1− α2

3

)
wφ2 + α2

3wφ1 if FA > 0 and α3 < 0(
1− α2

3

)
wφ2 + α2

3wφ3 else

ψφ3(FA, α3;wφ2 , wφ3) =

{
wφ3 if FA = 0 or α3 < 0(
1− α2

3

)
wφ3 + α2

3wφ2 else

With these definitions, the new structure tensor reads:

Jnew(∇̂µ1,∇̂µ2, ∇̂α3, ∇̂φ1, ∇̂φ2, ∇̂φ3; FA, α3) :=

wµ1∇̂µ1,σ∇̂µT
1,σ + wµ2∇̂µ2,σ∇̂µT

2,σ+

ψα3(FA;wµ2 , wα3)∇̂α3,σ∇̂αT
3,σ+

3∑
i=1

ψφi
(FA, α3;wφ1 , wφ2 , wφ3)∇̂φi,σ∇̂φT

i,σ

(4)

It is rotationally invariant for arbitrary sets of weights and uses the full tensor
information when all weights are non-zero.

4 Equivalence to the Previous Structure Tensor

In its unweighted form (w∗ = 1), the new structure tensor Jnew is equivalent to
the one used by Feddern et al., Jorig. This fact ensures that our new structure
tensor has all the desirable properties of the established one.

Proof. We can write element (i, j) of the original structure tensor Jorig (2) in
terms of the tensor scalar product:

(Jorig)ij = ∇Di : ∇Dj (5)
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Note that the normalized invariant gradients and rotation tangents defined by
Kindlmann form an orthonormal basis of Sym3. If we denote the kth of these
basis vectors by Bk, we can write element (i, j) of the new structure tensor Jnew

(4) correspondingly as

(Jnew)ij =
∑

k

(
∇Di : Bk

) (
∇Dj : Bk

)
(6)

For the sake of simplicity, we are going to embed the tensors isometrically in R6.
This can be done by using the six non-redundant tensor channels as components
of the vector, where non-diagonal elements are multiplied by

√
2.

Let ∇di and bk be the embedded versions of ∇Di and Bk, respectively.
Then, we can re-write Equation (6) and reorder the terms as follows:

(Jnew)ij =
∑

k

(
∇di · bk

) (
∇dj · bk

)
=
∑

l

(∑
k

(bkl )2
)
∇dil∇djl +

∑
l,m
l 6=m

(∑
k

bkl b
k
m

)
∇dil∇djm (7)

If we arrange the bk as rows of a matrix, the resulting matrix is orthogonal,
because the Bk were orthonormal and our mapping preserved the scalar product.
Thus, the column vectors of the matrix will also be orthonormal:

∑
k b

k
l b

k
m = δlm.

With this result, Equation (7) reduces to ∇di ·∇dj , which is by our definition
equivalent to Equation (5). ut

5 Applications

5.1 Application to Segmentation

We will now demonstrate the advantages of the weightable structure tensor in the
context of a geodesic active contour model [15, 16] for interactive segmentation.
This model allows the user to provide the approximate position and shape of the
object that is to be segmented. Consequently, the contour moves to the exact
boundary of the object, based on edge information from the image.

For tensor-valued images f , Feddern et al. [3] suggest to use the structure
tensor trace as an edge detector. A simple implementation of the segmentation
model is then given by embedding the initial contour as a zero level set into a
function u0 (via a distance transformation) and evolving it under the PDE

∂tu = |∇u|div
(
g(trJ(∇fσ))

∇u
|∇u|

)
(8)

which simultaneously regularizes the surface and draws it towards edges in the
image f . g is a non-increasing stopping function. In our experiments, we used
the following diffusivity [17, p. 114]:
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(a) Initialization of
the active surface,
between two edges

(b) Without weight-
ing, the inner box
gets segmented

(c) Setting wµ1 := 10
leads to a segmenta-
tion of the outer box

Fig. 1. Active surface segmentation of a synthetic data set (t = 500). Varying the
weights draws the segmentation towards specific types of edges in the data

g(s2) :=

{
1 if s2 = 0

1− exp
(
−3.31488
(s2/λ2)4

)
if s2 > 0

(9)

The evolution of Equation (8) is stopped at a time t, when u no longer
changes significantly. The segmentation result is extracted as the zero level set
of u. Unlike the version presented in [3], our implementation of (8) works in 3D,
so we will refer to it as an active surface model.

We first applied this method to the synthetic dataset shown in Figure 1. It
consists of two nested boxes of different materials: The tensors in the outer box
are isotropic, but have the same trace as the linear ones in the inner box. Thus,
two types of edges arise: A change of tensor trace between air and the outer box
and a change of anisotropy between the outer and the inner box.

Figure 1 shows the setup using superquadric glyphs [18] on three orthogonal
slices. When we initialize the active surface to a sphere that lies between the two
boundaries (Figure 1(a)), the unweighted structure tensor leads to a segmenta-
tion of the inner box (Figure 1(b)). By increasing the weight of changes in trace
(wµ1 := 10), we can guide the segmentation to the outer box.

We also segmented the corpus callosum (CC), a major white-matter struc-
ture, in a real DT-MRI dataset. Figure 2(a) shows the initialization of the active
surface to an ellipsoid, superimposed on a sagittal slice of the data in the stan-
dard xyz-RGB eigenvector color coding. It encompasses the structure of interest,
which appears as red in the color image, or as dark in halftones.

The original, unweighted structure tensor basically leads to a segmentation
of the ventricle (Figure 2(b), the ventricle is shown in white). The CC is distin-
guished from its neighborhood by its anisotropy (wµ2 := 1) and major eigenvec-
tor orientation (wφ2 := wφ3 := 0.2). Setting all other weights zero allows for a
plausible segmentation of this structure, shown in Figure 2(c).
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(a) Initialization of
the active surface

(b) The unweighted
structure tensor seg-
ments the ventricle

(c) The weights allow
to capture the corpus
callosum

Fig. 2. Active surface segmentation of a DT-MRI data set (t = 1200). Weighting the
new structure tensor allows to specify the structure of interest

A small structure inferior to the CC also got segmented. Although it differs
from the CC by its global orientation, we cannot differentiate it in our model,
which only considers local variations in tensor value. In practice, a simple con-
nected component analysis would be sufficient to remove the undesired island.

For the numerical implementation, we have used the additive operator split-
ting (AOS) scheme as described by Weickert and Kühne [19]. It allowed us to
solve Equation (8) on the real DT-MRI dataset (grid size 74 × 95 × 80) for
t = 1200 in 40 seconds on a 2 GHz dual-core Athlon 64 processor; the synthetic
examples took two seconds each.

5.2 Application to Smoothing

Feddern et al. [3] also generalize the self-snakes smoothing process initially pro-
posed by Sapiro [20] to the tensor-valued case. In 3D, it can be written as a
system of six coupled PDEs for the individual tensor channels,

∂tui,j = g(trJ(∇uσ)) (∂vvui,j + ∂wwui,j) +∇T (g(trJ(∇uσ)))∇ui,j (10)

with ui,j(x, y, z, 0) = fi,j(x, y, z) as the initial condition. The vectors v and w
denote the minor and medium eigenvectors of the structure tensor J, respec-
tively. Equation (10) leads to a smoothing along the plane spanned by v and
w; this is analogous to the smoothing along level surfaces in scalar-valued mean
curvature motion (MCM). The diffusivity function g stops the smoothing process
at important image features.

Our new structure tensor allows to steer this process. We first demonstrate
this with the synthetic dataset from Figure 3(a), in which the tensors vary con-
tinuously in shape (from linear to planar) and orientation (rotation by 90◦). In
this example, we set g := 1 to obtain purely MCM-like smoothing.

Setting the weights of Jnew allows to specify which features we would like to
preserve. If we set wφ∗ := 1 (all other weights zero), the result in Figure 3(b)
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(a) A tensor field
that varies in shape
and orientation

(b) Result of orien-
tation-preserving
smoothing

(c) Result of shape-
preserving smooth-
ing

Fig. 3. Mean Curvature Motion-like smoothing of a synthetic data set (t = 250).
Customizing the structure tensor allows to select which features should be preserved

shows that the shapes are completely averaged at t = 250, while the orientation
has been preserved. On the other hand, we can set only wµ2 := wα3 := 1 to
preserve shape and average the orientation, as shown in Figure 3(c).

In our experiments on real DT-MRI data, we found that for many smoothing
tasks, Jorig already works well in its default configuration. Figure 4 presents a
situation in which its behaviour can still be improved by changing the weights.

Figure 4(a) shows two touching fiber tracts. One of them lies in the depicted
sagittal plane, the other one (shown by an integral curve of major eigenvectors,
started at the position marked by the ball) touches the plane almost tangentially.
It is a delicate task to smooth the dataset without mixing these two tracts.

Figure 4(b) shows that after applying self-snakes with Jorig, the tangentially
touching tract has been lost at t = 5. To preserve the directions of both tracts,
we configured Jnew to concentrate on orientation (wφ∗ := 1) and to prevent
influence of the nearby ventricle (wµ1 := 0.1, all other weights zero). Figure 4(c)
shows that this configuration makes it possible to preserve both tracts.

In this experiment, we set g to the diffusivity function (9). As the trace of
different structure tensors does not in general lie on the same order of magnitude,
we select the contrast parameter λ2 as 0.01 times the maximum structure tensor
trace in the first iteration and then keep it constant.

Solving Equation (10) with a simple explicit scheme took 30 seconds on the
real dataset (t = 5) and four seconds in the synthetic case (t = 250).

6 Conclusion

We have presented methods for flexible smoothing and segmentation of matrix-
valued images. User-controllable options to concentrate on specific features in
the high-dimensional data are introduced by integrating Kindlmann’s decompo-
sition of the tensor field gradient [12] into the PDE framework of Feddern et
al. [3]. We found solutions for cases in which Kindlmann’s invariant gradients
become ill-defined and proved that the new structure tensor in its unweighted
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(a) The original
tensor field with a
tracked fiber

(b) Smoothing with
Jorig changes the
fiber significantly

(c) Weighting Jnew

allows to preserve
the fiber

Fig. 4. Emphasizing orientation using the new structure tensor can help to preserve
the direction of fibers. Here, the glyphs are shaded to indicate the degree of linearity

form is equivalent to the previous one. Finally, we successfully demonstrated the
advantages of our re-formulation, both on synthetic and on real data.

Future work may use diffusion processes to preprocess DT-MRI data for fiber
tracking.
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