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Abstract. In this paper we consider the problem of estimating depth
maps from multiple views within a variational framework. Previous work
has demonstrated that multiple views improve the depth reconstruction,
and that higher order regularisers model a good prior for typical real-
world 3D scenes. We build on these findings and stress an important
aspect that has not been considered in variational multiview depth esti-
mation so far: We investigate several parameterisations of the unknown
depth. This allows us to show, both analytically and experimentally,
that directly work with depth values introduces an undesirable bias. As
a remedy, we reveal that an inverse depth parameterisation is generally
preferable. Our analysis clearly points out its benefits w.r.t. the data and
the smoothness term. We verify these theoretical findings by means of
experiments.

1 Introduction

The task of reconstructing 3D scenes from a number of images along with cor-
responding camera poses is commonly referred to as multiview stereo. It is im-
portant for a variety of applications, and thus has received a huge amount of
attention over the last decades. One can approach the multiview stereo problem
by dividing it into the following two steps: First, one computes depth maps for a
number of input images. Second, these depth maps are merged with a volumetric
approach, see e.g. [1-3]. In this way, the multiview stereo problem constitutes
a common example, where one is interested in obtaining a depth map given
multiple views. This is the problem we focus on in our paper.
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Related Work. Ignoring the fact that multiple views are available, variational
stereo algorithms that consider image pairs can be regarded as related work, see
e.g. [4-9]. While these variational formulations compute disparities relying on
a first order regularisation, higher order regularisation has proven to be a very
successful strategy for many applications [10-12]. Often, coupled formulations
are used instead of directly implementing a higher order regulariser. Popular
variants for this are total generalised variation [13] or an approach as in [11].
Also infimal convolution is a much related alternative, where first ideas of this
can be found in [14]. Recently, Ranftl et al. demonstrated the benefits of second
order regularisation in the context of optic flow [12] and stereo [10].

However, considering only two of the multiple views discards a lot of the
available information. Unfortunately, it is not convenient to extend the concept of
computing disparities to a general multiview setting. Hence, there are a number
of variational formulations that directly estimate depth from multiple views.
Such methods have shown the benefits of using multiple images in the process of
depth map estimation. To the best of our knowledge, the basic idea of considering
multiple views to estimate a single depth map within a variational formulation is
almost two decades old and goes back to Robert and Deriche [15]. They employed
a quadratic data term along with a nonquadratic regulariser that is able to
preserve depth discontinuities. More recently, Stithmer et al. [16] presented a
similar formulation with a robust penaliser for the smoothness term as well
as the data term. Instead of the brightness constancy, assumed by [15] and
[16], Semerijan [17] uses a gradient constancy assumption and a finite element
discretisation.

All of the aforementioned approaches are directly parameterised by the un-
known depth. However, in related problems such as monocular SLAM, an inverse
depth parameterisation of point features has been shown to be beneficial [18].
Also the dense tracking and mapping approach of Newcombe et al. uses inverse
depth to compute cost values in a discrete cost volume [19] and the recently de-
veloped LSD-SLAM estimates probabilistic semi-dense inverse depth maps [20].

Contributions. While existing variational multiview formulations [15-17] di-
rectly compute the unknown depth from a number of arbitrarily placed cameras,
we generalise them by introducing a depth parameterisation. This allows us to
efficiently analyse advantages and drawbacks of different parameterisations such
as a direct depth parameterisation and an inverse depth parameterisation. More
specifically, we analyse two important aspects: On the one hand, the choice of
parameterisation is important when considering the linearisation of the data
term in a variational framework. Here, we show that for common camera se-
tups, the inverse depth parameterisation is preferable. On the other hand, the
choice of parameterisation is also important in the smoothness term, especially
in the presence of second order regularisation. Here, we show that for an inverse
depth parameterisation, piecewise affine functions correspond to piecewise pla-
nar surfaces. This is not the case for a direct depth parameterisation. We give
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deep insights into the introduced bias by analysing the shape operator of the
corresponding 3D surface.

Paper Organisation. In Section 2, we present a variational formulation for the
estimation of depth maps from multiple views with an arbitrary parameterisa-
tion. Subsequently, we analyse different parameterisations in detail (Section 3).
In Section 4, we discuss the minimisation. Finally, we show experimental results
(Section 5) before we conclude our work (Section 6).

2 Variational Multiview Depth Estimation

In this section, we describe a variational framework that allows the estimation
of a depth map d from multiple views under an arbitrary parameterisation. To
this end, we express d as the composition of an unknown p : 2 — R} and a
parameterisation ¢ : Ry — Ry such that d = ¢ o p. Then our energy functional
has the form

E(p,w) = /Q (Do) + aS(p.w)) de, (1)

with a data term D(¢op), a smoothness term S(p, w), and a positive smoothness
weight «. Since we apply second order regularisation in terms of a coupling
model, we require the additional coupling variable w. In the following sections,
we explain our model components in more detail.

Data Term. Let us assume we are given n colour images f1, ..., f, and a refer-
ence image fo. The task of the data term D(¢o p) is to enforce photoconsistency
between all available views. To this end, we first introduce a function g;(x, ¢ o p)
that maps a location @ € (2 in the reference frame f; with its depth (¢ o p)(x)
to the corresponding location in another image f;. This allows to model the as-
sumption that corresponding points & and g;(x, ¢ o p) have similar colour values
as follows:

1 n
D(6op) == (| filgi@ 60 p) — fol)[*), @
i=1
where || -|| denotes the Euclidean norm and the function ¥ : Ry — R provides a

robust penalisation. A common choice is ¥(s?) = v/s2 + €2, which approximates
an L data term for e — 0.

Smoothness Term. Higher order regularisation has shown its potential in sev-
eral applications. Essentially, there are two possibilities to design such regularis-
ers: Either by a direct penalisation of higher order derivatives or by introducing
a coupling variable. We opt for the second choice that results in the smoothness
term

S(p,w) =¥ (Vo —w|?) + B ¥(|Tw|F) 3)

where V is the spatial gradient, J the Jacobian, and || - || the Frobenius norm.
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Since our main focus is the analysis of different parameterisations, we restrict
ourselves to the discussed model assumptions. Once the parameterisations are
well understood, they can be incorporated in more sophisticated methods that
rank favourably in public benchmark systems.

3 Depth Parameterisations

Before analysing possible parameterisations ¢ in (1), we briefly explain the pin-
hole camera model as it builds the basis for our analysis. Subsequently, we con-
sider the backprojection of constant and affine patches for each parameterisation.
This yields important insights on the effect of the regularisation on the resulting
surface. Finally, we treat the effects of different paramterisations on the data
term.

3.1 Pinhole Camera Model

With homogeneous coordinates, the projection by a pinhole camera model can
be described by the linear map P € R3*%:

P=K(Rt), (4)

where R € SO(3) is a rotation matrix and ¢ € R3 is a translation, such that
the blockmatrix (R t) describes the extrinsic camera parameters. On the other
hand, the matrix

ky O
0 ky
00

K= (5)

— e 2

contains the intrinsic camera parameters k, and k,, which specify the focal
length, and the principal point (u,v)". With this notation, we express the pro-
jection of a 3D point X € R? to a point & € R? in the image plane by

:12:7T(PX), (6)

where X = (X T,1)T is the homogeneous version of X. We use this notation
to denote homogeneous coordinates throughout the whole paper. The function
m(a,b,c) = (¢9/c, b/c)T maps a homogeneous coordinate to its Euclidean coun-
terpart.

3.2 Backprojection of Parameterised Depth Maps

The previous section showed how to project a 3D point to the image plane. Here
we are interested in the other way around, i.e. the backprojection. We analyse
the following parameterisations:

(i) direct depth:  &(r) =, (7
(ii) inverse depth: ¢(r) = 1/r. (8)
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(i) direct depth (ii) inverse depth

constant affine constant affine

Fig. 1. Resulting surfaces when backprojecting along the line of sight.

In each case, there is a further design choice that we want to analyse, namely the
choice of the distance, in which we measure. Basically, there are two meaningful
possibilities to compute a backprojection:

(a) along the line of sight: £(z,¢ o p) = HK_1:EH_1 K 'z (¢op)(x), (9)
(b) along the optical axis: s(z,¢0p) = K '&- (¢ 0 p)(z). (10)

Figure 1 shows the resulting surfaces when backprojecting a constant and an
affine function along the line of sight. Note that both parameterisations (i) and
(ii) map constant and affine functions to curved surfaces. This means that a first
order regulariser would already introduce an unwanted bias because it favours a
(piecewise) constant p and thus curved surfaces. Therefore, we will not further
consider parameterisations along the line of sight in our context.

In contrast, Figure 2 shows that both parameterisations along the optical axis
map constant depth functions to surfaces with constant depth, and thus seem
to be reasonable choices when employing a first order regularisation. However,
considering an affine function (with a nonzero slope), we see that the depth
parameterisation does not create a planar surface whereas the inverse depth
parameterisation does. In the following sections, we analyse this in detail to get
a better understanding of both choices.

3.3 Analysis of Backprojected Depth Maps

Let us consider (10) as a mapping from some parameter space {2 to a surface
M,ie s: 2 C R2 - M C R3. Generally, the tangent plane of a regular
parameterised surface corresponding to a point (g, o) is spanned by the two
tangent vectors

_0Os s

sy = — and Sy = 5 (11)
Y

ox

evaluated at (z9,v0)'. The first fundamental form describes the inner product
of two tangent vectors. It can be represented by the symmetric matrix

I (('smsa:) <S$a3y>) , (12)

(8y,82) (8y,8y)
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(i) direct depth (ii) inverse depth

g

constant affine constant affine

Fig. 2. Resulting surfaces when backprojecting along the optical axis.

and allows the evaluation of metric properties such as the surface area. Similarly,
the second fundamental form is important for describing curvatures. It can be
represented by the symmetric matrix

= (3] oo, )

(n, 8yz) (1, 8yy)
where n is the unit surface normal

Sy X 8y

n (14)

s x syl
The composition of the first and second fundamental form defines the shape

operator
S=1"'1I (15)

It allows to evaluate the Gaussian curvature K and the mean curvature H, which
are given by det(S) and 1/2 - tr(.S), respectively.

Direct Depth. Let us first consider the direct depth parameterisation where the
unknown p corresponds to the sought depth. With this, we analyse the resulting
surface in the case that the depth is affine: p(z) = (a, &) with a = (a,b,c)". This
is a reasonable and interesting case because a second order regulariser favours
(piecewise) affine functions. For this case we obtain the two tangent vectors

(a,Z) + ax bx
s, = K™* ay and s, =K '|(a,Z)+by]|, (16)

a b

such that
—a
n=K' —b (17)
2ax + 2by + ¢

points along the surface normal (14), i.e. n = ||n|| - n. Equation 17 shows that

the normal direction depends on the location & = (z,y)" when backprojecting
an affine depth function. To get deeper insights on how the surface normals vary,
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let us consider the surface curvature by means of the shape operator. With (13),
the second fundamental form for this example reads

2 a® ab

Since this matrix is singular, we can directly conclude that the determinant of
the shape operator (15) and consequently the Gaussian curvature K is zero.
This further implies that at least one of the principal curvatures is zero. To
check if both principal curvatures are zero, let us additionally consider the mean
curvature
(aky)® + (bk,)*
det (K1) [|A[|®”

This shows that the mean curvature is in general not equal to zero, i.e. the
surface is bent in one direction. Only for constant functions, i.e. with a and b
equal to zero, we also obtain a vanishing mean curvature and thus, a planar
surface.

H:Etr(S):

3 (19)

Inverse Depth. Let us now consider the alternative parameterisation ¢(r) =
1/r. Then the unknown p corresponds to the inverse depth. Again we assume that
the unknown, in this case the inverse depth, is affine. Accordingly, we obtain the
two tangent vectors

_ by + ¢ _ —bx
K-! K-!
Sy = -5 | —w and s, = —5 |ax+c], (20)
(a,Z) i (a,) b
such that
n=K'a (21)

points along the surface normal (14). Thus the surface normal is constant in all
considered cases for the inverse depth parameterisation. In other words, back-
projecting an affine inverse depth always results in a planar surface. In the same
way as before, one can verify that both the Gaussian and the mean curvature of
the surface are zero.

Summary. Table 1 summarises the discussed findings for all four parameteri-
sations. In conclusion, this shows that the inverse depth parameterisation along
the optical axis is preferable when using a second order regularisation.

3.4 Linearity Analysis of the Data Term

Previously, we analysed the influence of parameterisations w.r.t. the smoothness
term. Now we analyse its effects on the data term. Since the unknown p appears
as argument of f;, the presented energy (1) is non-convex. To cope with this,
most minimisation strategies perform a linearisation. In this regard, we analyse
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how the different depth parameterisations affect this linearisation. In particular,
we are interested in the deviation from linearity of g; in p because this quantity
depends on the chosen parameterisation. As introduced in Section 2, the function
g; maps a location x € {2 in the reference frame f; with its depth (¢ o p)(x) to
the corresponding location in another image f;. This mapping can be described
as a composition of a backprojection (10) and a projection (6):

Since scaled homogeneous coordinates are equivalent, it is possible to multiply
3; by (¢ o p)(x)~! and rewrite Equation 22 as

gi(x,pop) =m(K;RK " &+ Kit; (pop)(z)™"). (23)

Direct Depth. For common setups, the camera offsets in z-direction are much
smaller than the occurring depth values. This is because one typically walks
around an object mainly with lateral motion while roughly keeping the distance
with only small rotations between views. This causes converging camera setups
that keep the object in the middle of the view. Hence, we assume in the following
analysis that the z-component of ¢; is zero. Please note the relation t = —Rg;
between t; and the camera centre c¢; and that setting the z-component of ¢;
to zero does not restrict us to camera motions in the z-y-plane. This allows to

simplify (23) to
it () + () o), 24

with the abbreviations r = K;R; K~ '& and z = K;t; that do not depend on
p(x). With the direct depth parameterisation (¢ o p)(x)~! = p(x)~!, we obtain
a hyperbola and thus expect an additional linearisation error.

Inverse Depth. This is not the case for the inverse depth parameterisation with
(pop)(x)~! = p(x). In fact, Equation 24 reveals that g; is linear in p(z) in this
case. Thus, no error is introduced when linearising g; w.r.t. the inverse depth.
To summarise, also the linearisation analysis shows that an inverse depth pa-
rameterisation turns out to be more appropriate for multiview depth estimation
than the standard direct depth parameterisation.

4 Minimisation

To solve the energy (1), we perform a first order Taylor linearisation around pg
in the data term (2):

fi(gi(z,d0p)) = fi(gi(x,d0po)) + (p—po) - Opfi(gi(x,d0p)|p=po-  (25)

Applying the chain rule gives
Opfi(gi(x, ¢ 0p)) = Tfi(gi(z,$0p))  Tgi(z,¢0p), (26)
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Table 1. Preservation of planarity.

(i) direct depth (ii) inverse depth

(a) line of sight (b) optical axis  (a) line of sight (b) optical axis

constant no yes no yes

affine no no no yes

where the image derivatives Jf; are independent of the parameterisation. The
second term in (26) is given by

Tgi(w, 60 p) = .77:( (wj‘;)(l) ))Kitiapwop)(x)-% (27)

where for the direct depth parameterisation 9,(¢ o p)(x)~! = —p(z) 2, and for

the inverse depth parameterisation d,(¢ o p)(x)~' = 1. With the abbreviations
m; = 0, fi(gi(x,p0p))|,_, and b; =m;po+fo(x)—fi(gi(m,dopo)) (28)

the energy (1) with the linearised data term reads

/ >0 p = bilP) +a(B(1V0 - wl?) + 5 ¥ (|Tw]}) )do
i=1

Euler-Lagrange Equations. The minimiser of the linearised energy functional
fulfils the corresponding Euler-Lagrange equations w.r.t. p and w. With

Up; =¥ (llmip = bill*), ¥o =2 (Vp—wl|?), ¥s=0(|TwlE) (29)

they are given by

1 n
=3 W (mimap+bi) — o div(# - (Vo —w) = 0,
i=1 (3())
Pe - (w1 —py) — B div(Pg - V) =0,

with boundary conditions (Vp — w) n = 0 and Jwn = 0, where n is the 2D
outer normal here.

Implementation. We discretise (30) with finite differences on a regular grid.
This results in a nonlinear system of equations, which we solve with two nested
loops. While we update the nonlinear terms ¥p, ¢, and g (29) in the outer
loop, we solve the linear system in the inner loop with the Fast-Jacobi algo-
rithm [21]. Furthermore, we employ a coarse-to-fine approach to overcome lin-
earisation errors.
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s

() (d)
Fig. 3. From left to right: (a) Camera setup and geometry. (b) Corresponding input

images. (c¢) Reconstruction with direct depth parameterisation. (d) Reconstruction
with inverse depth parameterisation. See text for details.

5 Experiments

Our evaluation consists of two main parts. First, we underpin our theoretical
findings from Section 3 by means of experiments with synthetic data. Figure 3(a)
shows a 3D scene with a planar surface and three cameras, and Figure 3(b) de-
picts the images captured with the corresponding cameras. Figure 3 (c) and (d)
show the computed reconstructions with a direct depth and an inverse depth
parameterisation, respectively. We clearly see that performing second order reg-
ularisation on the depth introduces a bias towards curved surfaces as discussed
in Section 3. In contrast, performing second order regularisation on the inverse
depth does not introduce such as bias and thus yields a significantly better re-
construction. In Figure 3 (c) and (d), we apply the following colour code to
visualise the reconstruction errors: Green represents an error of zero, whereas
red and blue correspond to behind and in front of the ground truth surface,
respectively.

In the second part of our evaluation, we run tests on six publically available
multiview data sets from the Middlebury benchmark [22] to obtain a quantita-
tive comparison between both parameterisations. More specifically, we use five
images for each 3D scene to compute the depth map. We have optimised the
smoothness parameters « and /3 for each parameterisation, but kept them fixed
over the individual scenes. Here, we measure for both parameterisation the re-
construction quality in terms of the root mean square error in depth. Table 2
shows that the inverse depth parameterisation provides a significantly better re-
construction quality than the direct depth parameterisation in all cases. These
quantitative experiments confirm our findings from Section 3. The inverse depth
parameterisation does not only have advantages in theory, but also practically
achieves superior reconstructions. Besides the discussed benefits for the lineari-
sation and second order regularisation, there is another advantage that we have
not stressed so far: It is a natural choice to initialise the inverse depth with zero.
This corresponds to a depth of infinity. Thus, an initialisation of the direct depth
with a large constant seems desirable but turns out to be problematic.
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Table 2. Root mean square errors for six data sets from the Middlebury bench-
mark [22].

direct depth inverse depth
Barn 1 0.67 0.25
Barn 2 1.48 0.51
Bull 0.50 0.23
Poster 0.48 0.22
Sawtooth 1.09 0.43
Venus 0.58 0.29

6 Conclusions

In this work, we have analysed different depth parameterisations within the
context of multiview depth estimation with higher order regularisation. Our
first finding is that parameterisations along the line of sight are not suitable
for such a scenario. In fact, we show that parameterisations along the optical
axis are much more reasonable. For them, we present a detailed analysis of
a direct depth and an inverse depth parameterisation. We point out several
advantages of the inverse depth parameterisation: First, it is compatible with
second order regularisation. Piecewise affine inverse depth leads to piecewise
planar 3D surfaces. On the contrary, this is not the case for the direct depth
parameterisation. It introduces a bias which we quantify both theoretically by
means of the shape operator as well as by experiments. Second, we show that
an inverse depth parameterisation is not only advantageous for the smoothness
term. It is also preferable for the linearisation required in the data term compared
to a direct depth parameterisation. Last but not least, the inverse depth approach
additionally admits a more meaningful initialisation.

Based on our findings, we recommend the inverse depth parameterisation
along the optical axis as the parameterisation of choice for variational multiview
depth estimation. We believe that this insight can improve the performance
of existing methods. In future work, we plan to extend our model with more
sophisticated assumptions on the data term and regulariser.
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