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Kurzzusammenfassung

In den letzten Jahrzehnten ist die Nachfrage nach digitalen 3D Modellen von
Objekten und Szenen ständig gestiegen und vieles spricht dafür, dass sich dies
auch in Zukunft fortsetzt: Computergenerierte Spezialeffekte werden immer
flächendeckender eingesetzt, der Druck von dreidimensionalen Gegenständen
macht große Fortschritte, und die Darstellung dreidimensionaler Modelle im
Webbrowser wird immer ausgereifter. Deshalb ist die 3D Rekonstruktion ei-
nes der wichtigsten Forschungsthemen im Bereich des maschinellen Sehens.
Die Rekonstruktion von einem 3D Modell aus mehreren Bildern mit gegebe-
nen Kameramatritzen ist hier eine der häufigsten Problemstellungen, bekannt
als multi-view stereo. Wir leisten einen Beitrag zu den zwei wichtigen Schrit-
ten, die in multi-view stereo Ansätzen angewandt werden: Die Schätzung von
Tiefenkarten aus mehreren Bildern und die Fusion von mehreren Tiefenkarten
zu einem einzigen 3D Modell. Anschließend lockern wir die Voraussetzung,
dass die Kameramatritzen bekannt sein müssen und präsentieren ein neu-
es Verfahren zur 3D Rekonstruktion aus Bildsequenzen, das vollständig auf
dichten Ansätzen beruht. Dies erweist sich als interessante Alternative zu
populären Methoden, die mit einzelnen Merkmalen arbeiten. Verfahren, die
auf einzelnen Merkmalen beruhen, erlauben die Schätzung von orientierten
Punktwolken. Daher entwickeln wir zum Schluss ein allgemeines Rahmenwerk
für die Berechnung von wasserdichten Oberflächen aus orientierten Punkt-
wolken.



Short Abstract

The demand for capturing 3D models of real world objects or scenes has
steadily increased in the past. Today, there are numerous developments
that indicate an even greater importance in the future: Computer generated
special effects are extensively used and highly benefit from such data, 3D
printing is starting to become more affordable, and the ability to conveniently
include 3D content in websites has quite matured. Thus, 3D reconstruction
has been and still is one of the most important research topics in the area
of computer vision. Here, the reconstruction of a 3D model from a number
of colour images with given camera poses is one of the most common tasks
known as multi-view stereo. We contribute to the two main stages that arise
in popular strategies for solving this problem: The estimation of depth maps
from multiple views and the integration of multiple depth maps into a single
watertight surface. Subsequently, we relax the constraint that the camera
poses have to be known and present a novel pipeline for 3D reconstruction
from image sequences that solely relies on dense ideas. It proves to be an
interesting alternative to popular sparse approaches and leads to competitive
results. When relying on sparse features, this only allows to estimate an
oriented point cloud instead of a surface. To this end, we finally propose a
general higher order framework for the surface reconstruction from oriented
points.



Zusammenfassung

In den letzten Jahrzehnten ist die Nachfrage nach digitalen 3D Modellen von
Objekten und Szenen ständig gestiegen und vieles spricht dafür, dass sich dies
auch in Zukunft fortsetzt: Computergenerierte Spezialeffekte werden immer
flächendeckender eingesetzt, der Druck von dreidimensionalen Gegenständen
macht große Fortschritte, und die Darstellung dreidimensionaler Modelle im
Webbrowser wird immer ausgereifter. Außerdem könnten Anwendungem im
Bereich der Augmented Reality beispielsweise durch Geräte wie die HoloLens
Einzug in das alltägliche Leben nehmen und Türen für eine Vielzahl neuer
Anwendungen öffnen. Deshalb ist die 3D Rekonstruktion eines der wichtig-
sten Forschungsthemen im Bereich des maschinellen Sehens. Dabei ist die
Rekonstruktion von einem 3D Modell aus mehreren Bildern mit gegebenen
Kameramatritzen eine der häufigsten Problemstellungen, bekannt als multi-
view stereo.

Wir leisten einen Beitrag zu zwei wichtigen Schritten, die in Methoden
zur Lösung dieses Problems angewandt werden: Die Schätzung von Tiefen-
karten aus mehreren Bildern und die Fusion von mehreren Tiefenkarten zu
einem einzigen 3D Modell. Bezüglich des ersten Schrittes generalisieren wir
bestehende Methoden durch Einführung einer Parameterisierung der Tiefe.
Dies erlaubt eine systematische Analyse verschiedener Parameterisierungen,
so dass wir sowohl theoretisch also auch praktisch die Vorzüge der inver-
sen Tiefe in Bezug auf den Datenterm und den Glattheitsterm herausstellen
können. Bezüglich des zweiten Schrittes erweitern wir einen weit verbreiteten
volumetrischen Ansatz durch Nutzung von anisotroper (richtungsabhängiger)
Regularisierung. Außerdem arbeiten wir mit der Euklidschen Distanz anstelle
der Distanz entlang des Sichtstrahls und präsentieren eine effiziente Imple-
mentierung auf einer Grafikkarte, die ein neues zyklisches Verfahren namens
Fast Jacobi nutzt.

Während die vorherige Problemstellung davon ausgeht, dass die Kamera-
matritzen bekannt sind, lockern wir diese Voraussetzung im Folgenden und
präsentieren ein neues Verfahren zur 3D Rekonstruktion aus Bildsequenzen,
das vollständig auf dichten Ansätzen beruht. Jeder einzelne Schritt minimiert
ein geeignetes Energiefunktional und sorgt so für transparente Modellannah-
men. Der vorgeschlagene Ansatz erweist sich als interessante Alternative zu
populären Methoden, die mit einzelnen Merkmalen arbeiten und führt zu
sehr konkurrenzfähigen Ergebnissen.

Verfahren, die auf einzelnen Merkmalen beruhen, erlauben die Schätzung
von orientierten Punktwolken. Daher entwickeln wir zum Schluss ein allge-
meines Rahmenwerk höherer Ordnung für die Berechnung von wasserdichten
Oberflächen aus orientierten Punktwolken. Hierdurch erreichen wir zwei Zie-
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le: Zum einen können wir mehrere weit verbreitete Verfahren systematisch
verstehen und klassifizieren. Zum anderen können wir neue Methoden her-
leiten, die relativ einfach sind und trotzdem Ergebnisse höchster Qualität
liefern.



Abstract

The demand for capturing 3D models of real world objects or scenes has
steadily increased in the past. Today, there are numerous developments that
indicate an even greater importance in the future: Computer generated spe-
cial effects are extensively used and highly benefit from such data, 3D printing
is starting to become more affordable, and the ability to conveniently include
3D content in websites has quite matured. Last but not least, augmented
reality is on the rise and might find a way into everyday life in the near fu-
ture through devices such as the HoloLens for example. This might open up
various new applications that require knowledge about the geometry of real
world objects or scenes. Thus 3D reconstruction has been and still is one of
the most important research topics in the area of computer vision. Here, the
reconstruction of a 3D model from a number of colour images with given cam-
era poses is a common task known as multi-view stereo. We contribute to the
two main steps that arise in popular strategies for solving this problem: The
estimation of depth maps from multiple views and the integration of multiple
depth maps into a single watertight surface. Concerning the former one, we
generalise existing methods by introducing a parameterisation of depth. This
allows to thoroughly analyse different choices and to theoretically and practi-
cally point out the benefits of an inverse depth parameterisation w.r.t. both
the data and the smoothness term. Concerning the second step, we extend
a popular volumetric approach by using anisotropic (direction-dependent)
regularisation and relying on the Euclidean instead of the directional signed
distance. Furthermore, we present an efficient parallel implementation on
the GPU that uses a recently introduced cyclic solver named Fast Jacobi.

While these two steps allow to obtain reconstructions in a multi-view
stereo setting, we subsequently relax the constraint that the camera poses
have to be known. To this end, we present a novel pipeline for 3D recon-
struction from image sequences that solely relies on dense ideas. Each step
minimises a suitable energy functional such that the modelling choices are
transparent throughout the whole pipeline. This proves to be an interesting
alternative to popular sparse approaches and leads to competitive results.
When relying on sparse features, this only allows to estimate an oriented
point cloud instead of a surface. Thus we finally propose a general higher
order framework for the surface reconstruction from oriented points. This
framework allows us to reach two goals: First, we can systematically under-
stand and classify a number of existing methods. Second, it enables us to
derive novel approaches to surface reconstruction from oriented points that
are fairly simple and offer state-of-the-art performance.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades, the demand for digitally capturing the geometry of
real world objects and scenes has steadily increased. The fact that computer
generated special effects which greatly benefit from such data have become
more and more widely used is one reason for this. However, there are numer-
ous other developments that highlight a trend towards relying on 3D models
which further underline the importance of digitally reconstructing the sur-
face of real world objects: 3D printing is starting to become more affordable
and is being used for manufacturing individual pieces that can contain real
world reconstructions. Furthermore, the ability to conveniently include 3D
content in websites has quite matured. For example XML3D allows to seam-
lessly integrate 3D content into HTML pages. Last but not least, augmented
reality is on the rise and might find a way into everyday life in the near fu-
ture through devices such as the HoloLens for example. This might open up
various new applications that require knowledge about the geometry of real
world objects or scenes. Under these considerations, it is not surprising that
3D reconstruction has been and still is a very important research topic in
the area of computer vision and that there is a great variety of methods that
deals with the reconstruction of surfaces such as [124, 63, 112, 40, 21, 58, 96].

This thesis aims at advancing the state-of-the-art in surface reconstruc-
tion both in theory and practice. To this end, we do not only follow popular
3D reconstruction pipelines and contribute to the important individual steps.
We also propose a novel 3D reconstruction pipeline that consequently relies
on dense approaches.

1



2 CHAPTER 1. INTRODUCTION

1.2 Scope and Overview

The scope of this thesis is the reconstruction of watertight 3D models of static
objects or scenes. In order to compute such a 3D reconstruction, some kind of
input data has to be recorded at first. Although light field cameras and time-
of-flight cameras are becoming more readily available, nowadays standard
digital cameras are still by far the most prominent device for capturing reality.
Therefore, we use colour images as a starting point when considering the
problem of 3D reconstruction. When further assuming that the colour images
have been acquired from cameras with known poses, the problem scenario
is referred to as multi-view stereo. Here, a very popular approach is given
by first computing depth maps from the images and subsequently merging
these depth maps into a unified 3D model. Such a modular formulation with
two stages incorporates the inherent advantage that one is not restricted to
working with colour images but can also directly use depth information if it is
available by simply skipping the first stage. Computing 3D reconstructions
from images without known camera poses also belongs into the scope of
this thesis. Such problems are often referred to as simultaneous localisation
and mapping (SLAM) or structure from motion (SfM). Last but not least,
oriented point clouds resemble another common form of input data that has
to be considered. In all cases, we consequently rely on variational models
to allow for transparent modeling assumptions within a clean mathematical
framework.

Organisation of this thesis. After covering important foundations in
Chapter 2, we deal with the estimation of depth maps from multiple fully
calibrated views in Chapter 3. Then Chapter 4 tackles the problem of merg-
ing multiple depth maps into a single 3D model. Subsequently, we relax the
assumption that the camera poses have to be known in advance and propose
a dense pipeline that can reconstruct objects given an image sequence and
intrinsic camera parameters only in Chapter 5. While the previous approach
is formulated in a fully dense manner, there are reconstruction pipelines that
work with sparse features to create an oriented point cloud from multiple
images [40]. Taking this output as a starting point results in the problem of
reconstructing a surface given a finite number of oriented points. We consider
this problem in Chapter 6 before we conclude in Chapter 7.

We now give a more detailed overview of the problems that we consider
in the individual chapters and point out our contributions.
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Figure 1.1: In multi-view depth estimation a number of images captured
from a static scene (left) is used to estimate a single depth map (right) as
seen from one selected reference camera which is shown in red. The depth
map is visualised with a colour coding where blue is near and red is far.

Multi-View Depth Estimation. Here we consider variational methods
that estimate a single depth map from multiple views assuming that the
camera matrices are known. This scenario is illustrated in Figure 1.1 and
we refer to it as multi-view depth estimation. Previous work has demon-
strated that multiple views improve the depth reconstruction [88, 105, 96],
and that higher order regularisers model a good prior for typical real-world
scenes [86, 35, 52, 87]. While most existing variational multi-view formula-
tions are formulated in terms of depth, we generalise them by introducing a
parameterisation of depth. This allows us to efficiently analyse advantages
and drawbacks of different parameterisations such as a direct depth para-
meterisation and an inverse depth parameterisation. More specifically, we
analyse two important aspects: On the one hand, the choice of parameteri-
sation is important when considering the linearisation of the data term in a
variational framework. Here, we show that for common camera setups, the
inverse depth parameterisation is preferable. On the other hand, the choice of
parameterisation is also important in the smoothness term, especially in the
presence of second order regularisation. Here, we show that for an inverse
depth parameterisation, piecewise affine functions correspond to piecewise
planar surfaces. This is not the case for a direct depth parameterisation. We
give deep insights into the introduced bias by analysing the shape operator
of the corresponding 3D surface. This work has been published in [8].

Surface Reconstruction from Depth Maps. While we previously dealt
with computing a single depth map from multiple images, we now aim at
combining multiple of such depth maps into a single 3D model as shown in
Figure 1.2. During the last few years, this topic has attracted an increasing
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Figure 1.2: Surface reconstruction from depth maps aims at combining mul-
tiple registered depth maps (left) into a single 3D model (right). Here the
depth maps are visualised in terms of the surface that they describe.

amount of attention. Surely, this is mainly due to the fact that range images
are becoming more readily available through devices such as the Kinect or
time-of-flight cameras [79]. The task of merging numerous depth maps into
a single 3D model can pose many difficulties for several reasons: The depth
maps may contain noise and outliers, parts of the surface can be missing
when they have not been properly reached during the acquisition, and the
sampling density might not be sufficient for a correct reconstruction.

A very promising approach to cope with these problems is given by vari-
ational techniques as proposed by Zach et al. [124]. They are able to deal
with a substantial amount of noise and outliers, while regularising and thus
creating smooth surfaces at the same time. We extend their variational range
image integration approach in several aspects: The isotropic (space-variant)
diffusion term is replaced by an anisotropic (direction-dependent) one, which
is designed to smooth along the evolving surface and evolving ridges in the
cumulative signed distance field but not across. This way it is possible to
obtain very smooth surfaces from noisy range images while preserving ridges
and corners. Furthermore, we do not use signed distances along the line of
sight when converting range images into 3D distance fields. Instead, we com-
pute the Euclidean signed distance to the range surface. Last but not least,
we employ the novel nonstandard discretisation described in [118] extended
to three dimensions and the recently introduced numerical solver called Fast
Jacobi [10]. This allows for a fast parallel implementation which we exper-
imentally demonstrate by means of a graphics processing unit (GPU) using
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Figure 1.3: Given a number of input colour images captured by a camera
following a continuous path along with its intrinsic camera parameters (left),
the goal is to estimate the camera motion and a 3D reconstruction of the
scene or object (right).

CUDA. Altogether, these changes allow for state-of-the-art results in the Mid-
dlebury benchmark at a competitive runtime. The main ideas of our work
have been published in [6]. Our efficient GPU implementation is described
in [10] and was presented at the NVIDIA GPU Technology conference 2014.

Surface Reconstruction from Image Sequences. Previously, we have
assumed knowledge of the camera matrix to create a 3D reconstruction. Here
we relax this requirement and consider the problem of estimating reconstruc-
tions from image sequences without explicit knowledge of camera poses; cf.
Figure 1.3. Many of the existing algorithms for this problem rely on sparse
features. Such methods have to select the most appropriate data carefully
and eliminate outliers. On the other hand, dense computer vision methods
have made enormous progress in the last decade. For optical flow compu-
tation they belong to the leading approaches; see e.g. [13]. Moreover, dense
strategies can also be on par with sparse methods for other problems such
as the estimation of the fundamental matrix [109]. They do not have to put
effort into selecting the best data but rather draw their robustness from using
all data.

Motivated by these achievements, we propose a novel pipeline for 3D
reconstruction from image sequences that solely relies on dense methods. As
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Figure 1.4: Given a finite number of oriented points (left), the goal is to
estimate a watertight 3D model (right).

input we require a sequence of colour images capturing a static scene while
following a continuous path. Furthermore, we only assume that an intrinsic
camera calibration is known.

The pipeline can then be described in three steps: (1) First, we jointly es-
timate correspondences and stereo geometry for each two consecutive images.
(2) Subsequently, we connect the individual pairwise estimates and globally
refine them through bundle adjustment. As a result, all camera poses are
merged into a consistent global model. This allows us to create accurate
depth maps. (3) Finally, these depth maps are merged using variational
range image integration techniques. Each of the three main steps minimises
a suitable energy functional such that the modelling choices are transparent
throughout the whole pipeline. Experiments show that our dense pipeline
is an interesting alternative to sparse approaches. It yields accurate camera
poses as well as 3D reconstructions. The main ideas of this chapter have
been published in [5].

Surface Reconstruction from Oriented Points. An oriented point of
a surface contains information about the position and the surface normal.
Oriented point clouds can be obtained in numerous ways. For instance with
active methods such as laser, structured light and time-of-flight scanning
but also through passive methods within a 3D reconstruction pipeline [40].
Therefore, we also consider the problem of reconstructing a watertight 3D
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model from a finite set of oriented points which is illustrated in Figure 1.4.
It is a common practice to fit the oriented points using a level set of an
implicit function. Such methods can produce approximating surfaces, which
is preferable if noise and outliers are present. A great variety of different
approaches exists [82, 114, 59, 74, 83, 21, 58], and commonly the implicit
function is either an approximation of the indicator function or the signed
distance function of the underlying surface.

We develop a general higher order variational framework for surface re-
construction. It is based on the idea that each oriented point allows us to
construct a function that provides a good local description of an implicit
representation of the unknown surface. With this framework, we are able
to reach two goals: First, we can systematically understand and classify a
number of existing methods. Second, it enables us to derive novel approaches
to surface reconstruction that are fairly simple and offer state-of-the-art per-
formance. We show with the recent reconstruction benchmark of Berger et
al. [15] that our novel approach yields favourable results when compared
to the most popular and widely used methods, namely (screened) Poisson
surface reconstruction [59, 58] and smooth signed distance surface recon-
struction [21]. Furthermore, we introduce a hull constraint that encourages
the surface to stay within a given region. This improves reconstructions in
difficult real world scenarios where point clouds have been estimated from
colour images. Our framework is implemented on the GPU using a recent
cyclic scheme called Fast Jacobi, which combines low implementational effort
with high efficiency. This work has been published in [7].
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Chapter 2

Foundations

This chapter deals with basic knowledge that is important throughout the
whole thesis. It covers camera geometry as well as the calculus of variations
and iterative approaches to numerically solve the resulting systems of equa-
tions. While we merely focus on the aspects required in this thesis, camera
geometry is extensively studied by Hartley and Zisserman [49]. For exhaus-
tive coverage of the calculus of variations the work of Gelfand and Fomin [42]
is a good resource. Young [122] offers a thorough introduction to iterative
solvers.

2.1 Pinhole Camera Model

The pinhole camera model shown in Figure 2.1 allows to explain the mapping
from 3D world coordinates to the 2D image plane. For now, let us assume
that the camera is aligned with the world coordinate system, i.e. the centre of
the projection c corresponds to the origin of the Euclidean world coordinate
system and the Z-axis is perpendicular to the image plane. Then the Z-axis
is called optical axis and intersects the image plane in the principal point
p. The principal point describes the origin of the coordinate system of the
2D image. The distance between camera centre c and image plane is called
focal length and is further on denoted by f . The theorem of intersecting lines
yields the relationships

x

X
=
f

Z
and

y

Y
=
f

Z
. (2.1)

This leads to the nonlinear mapping(
x
y

)
= f ·

(
X/Z
Y/Z

)
(2.2)

9
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Figure 2.1: Pinhole camera geometry for the case that the Z-axis is per-
pendicular to the image plane and the camera centre c corresponds to the
origin of the world coordinate system. From left to right: (a) Overview.
(b) Cross section in X-Z-plane.

from a 3D point X = (X, Y, Z)> to the corresponding point x = (x, y)> in
the image plane. However, when using the concept of the projective space,
this nonlinear mapping can be expressed as a linear one with homogeneous
coordinates:

x̃ =

fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 = diag(f, f, 1)
(
I3 03

)︸ ︷︷ ︸
P

X̃. (2.3)

Here, I3 denotes the 3×3 identity matrix and 03 = (0, 0, 0)> the zero vector.
The tilde is used to indicate homogeneous quantities. The 3× 4 matrix P is
the camera projection matrix or camera matrix.

Let us now derive a more general form of the camera matrix that does
not make the previously imposed assumptions that camera centre and world
coordinate origin coincide and that the Z-axis is perpendicular to the image
plane.

2.1.1 Intrinsic Parameters

In a more general model, it is required to allow for a principal point offset,
i.e. a translation of the image plane by x0 and y0 as well as a scaling by
sx and sy in both axial directions. These transformations correspond to
the internal characteristics of a physical camera device, and therefore they
are called intrinsic camera parameters. They can be encoded by the upper
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triangular matrix

K =

fsx 0 x0

0 fsy y0

0 0 1

 . (2.4)

where fsx =: kx and fsy =: ky describe the non uniform scaling that is
usually related to the pixel size. Sometimes a shearing is considered as well,
in which case K possesses 5 degrees of freedom but for typical cameras that
we consider the shearing is zero. If all entries of K are known, the camera
is said to be internally calibrated. The camera is said to be fully calibrated if
the intrinsic and extrinsic parameters are known.

2.1.2 Extrinsic Parameters

The extrinsic camera parameters describe the camera pose relative to the
world coordinate system. In the case that only a single camera is considered,
one can choose camera coordinate system and world coordinate system to co-
incide, as it was done in Figure 2.1 for simplicity. However, if several different
cameras are involved this is only possible for a single camera. Translation
and rotation of the others have to be taken into account with respect to the
world coordinate system. The mapping between world coordinate system
and camera coordinate system can be expressed as

Xc = R(X − c) = RX −Rc = RX + t, (2.5)

where the coordinates of a world point X with respect to the camera coor-
dinate system are denoted by Xc. The 3 × 3 rotation matrix R combined
with the translation t = −Rc align camera and world coordinate system,
and c denotes the camera centre specified in the world coordinate system.
The extrinsic parameters offer 6 degrees of freedom of which 3 arise from
the rotation and 3 from the translation. With homogeneous coordinates, the
mapping from world to camera coordinate system can be rewritten:

X̃c =

(
R 0
0> 1

)(
X
1

)
+

(
t
0

)
=

(
R t
0> 1

)
X̃. (2.6)

Representing Extrinsic Parameters

There are several possibilities to express the extrinsic camera parameters.
For example, quaternions or Euler angles are common choices to represent
rotations [50]. However, using Lie groups for parameterising motion has
become increasingly popular in the area of computer vision and [80, 32]
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are two recent works that illustrate this trend. Lie groups allow to exactly
parameterise the available degrees of freedom and to conveniently compute
derivatives of motion. As such, they offer a very elegant approach when
it comes to estimating camera motion. Therefore, we now treat the most
important notions related to Lie Groups. A detailed introduction can be
found in Hall [48].

Lie Group. A Lie group is both a smooth manifold and a group such that
the group product and the inverse map are smooth. Here, we are especially
interested in real matrix Lie groups, where the elements can be represented
by means of real matrices. Suppose that G is a matrix Lie group with k
degrees of freedom and elements in Rn×n. Then the groups multiplication
and inversion operation are simply given by matrix multiplication and matrix
inversion, respectively. It is well known that the set of all invertible n × n
matrices with the operation of matrix multiplication is a Lie group referred
to as general linear group and that all matrix Lie groups are closed subgroups
of it.

Lie Algebra. The corresponding Lie algebra g is the tangent space around
the identity element of G. It is a k-dimensional vector space, spanned by
basis vectors V1, . . . ,Vk. These basis vectors can be represented by matrices
in Rn×n as well and are commonly referred to as generators. It may be
more intuitive to think of the tangent vectors in terms of their k coefficients.
Assume that ω ∈ Rk is a vector of such coefficients. Then the corresponding
element of the Lie algebra, i.e. the tangent space, is given by the linear
combination

ω̂ =
k∑
i=1

ωiVi. (2.7)

Exponential Map. The exponential map, exp : g→ G, maps an element
from the Lie algebra to an element of the Lie group. In the case of matrix
Lie groups, the exponential map is simply given by the matrix exponential
defined by the usual power series

exp(ω̂) =
∞∑
i=0

ω̂i

i!
. (2.8)
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Now it is easy to see that the partial derivative of exp(ω̂) w.r.t. ωi at ω = 0
is simply given by the corresponding generator

∂exp(ω̂)

∂ωi

∣∣∣∣
ω=0

= Vi. (2.9)

For dealing with rotations, we are interested in the special orthogonal group
SO(3). It is the group of rotations in 3D space given by the orthogonal 3× 3
matrices with determinant 1. Its group generators are given by

V1 =

0 0 0
0 0 −1
0 1 0

 , V2 =

 0 0 1
0 0 0
−1 0 0

 , V3 =

0 −1 0
1 0 0
0 0 0

 . (2.10)

These generators are the tangent vectors around the identity element and
correspond to derivatives of rotation around each of the axes. Let Rx(α)
perform a rotation around the X-axis, then V1 = ∂αRx(α) |α=0. The same
interpretation works for V2 and V3 by considering rotations around the Y -axis
and Z-axis, respectively. In this case, the linear combination of the generators
ω̂ is a skew-symmetric matrix. More specifically, we have ω̂ = [ω]x where

[ω]× =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (2.11)

is the skew symmetric matrix that allows to express the cross product by
matrix vector multiplication ω × v = [ω]×v. This allows to evaluate the
corresponding exponential map in closed form when using the fact that

[ω]3x = −|ω|2 · [ω]x (2.12)

and considering the Taylor expansions of the sine and cosine functions. The
exponential map then reads

exp(ω̂) = I +

(
sin(|ω|)
|ω|

)
ω̂ +

(
1− cos(|ω|)
|ω|

)
ω̂2, (2.13)

which is the well known Rodrigues formula. By | · |, we always denote the
Euclidean norm unless explicitly stated otherwise. Being able to evaluate
derivatives at ω = 0 and mapping from elements of the Lie algebra ω̂ to
elements of the Lie group, in this example a rotation matrix R ∈ SO(3),
is sufficient for the tasks required in this thesis. Generators and the cor-
responding exponential maps for other Lie groups such as SO(2), SE(2) or
SE(3) can be derived in an analogous way [48].
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General Pinhole Camera Model

Combining intrinsic and extrinsic camera parameters, the camera matrix P
of a general pinhole camera can be obtained as

x̃ = K
(
I3 03

)
X̃c = K

(
R t

)
X̃. (2.14)

Accordingly, the camera matrix P is given by

P = K
(
R t

)
=
(
KR Kt

)
. (2.15)

In total, the general camera matrix offers 11 degrees of freedom: 5 arise from
the calibration matrix K and 6 from rotation R and translation t.

2.1.3 Backprojection

In the previous section, we have discussed how 3D points are projected to the
image plane. In this section, we are concerned with the inverse operation,
i.e. a backprojection. Obviously, the camera matrix is not invertible in the
classical sense. However, the row vectors of the camera matrix are linearly
independent such that its Moore-Penrose inverse can be computed as

P+ = P>(PP>)−1. (2.16)

Obviously, the point P+x̃ projects to x̃ because PP+ = PP>(PP>)−1 = I.
Thus, the ray that projects to x̃ can be written as the join of this point and
the camera centre

X̃(λ) = P+x̃+ λc̃. (2.17)

While this relation is quite general and holds for general camera matrices, it
is possible to develop a more convenient expression for the pinhole camera
model previously described. Let us consider a location x in the image plane.
Then we know that the point

d = (KR)−1(x̃−Kt) (2.18)

lies on the optical ray because it projects to x̃:

P d̃ =
(
KR Kt

)((KR)−1(x̃−Kt)
1

)
= x̃. (2.19)

The camera centre c̃ is the right null-space of P and can be expressed as

c = −(KR)−1Kt (2.20)
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as described in [49]. Thus, we can define the optical ray as

s(λ) = c+ λ(d− c) = c+ λ(KR)−1x̃, (2.21)

where λ ∈ R+. Here, λ describes the distance of the resulting point s(λ) to
the camera centre c. By construction, this distance is measured along the
optical axis. In order to measure along the optical ray, i.e. the line of sight,
we need to normalise d− c such that we obtain the equation

l(λ) = c+ λ
(KR)−1x̃

|(KR)−1x̃|
. (2.22)

2.2 Two View Geometry

While the previous section was concerned with the projection and back-
projection operation performed by a single perspective camera, this section
treats important relations that occur in setups where two pinhole cameras
are involved. In this case, one can consider the projections x and x′ of a
single 3D point X onto each of the image planes. Given a location x, it is
then interesting to understand in which way the corresponding point x′ is
constrained. Before we deal with this constraint in detail and describe how
to express it by means of the fundamental matrix or the essential matrix, let
us first go over some important terminology.

As illustrated in Figure 2.2, the line connecting the centres of both cam-
eras is referred to as baseline. It allows to define the epipole e as the inter-
section of the baseline with the image plane. Every plane that contains the
baseline is called epipolar plane. Thus, there is a family of epipolar planes
that offers one degree of freedom. By intersecting the epipolar plane with an
image plane, we are able to describe an epipolar line. Thus, by construction
all epipolar lines have to intersect in the epipole.

2.2.1 Epipolar Constraint

Let us consider an image point x in the left camera. Then the corresponding
scene pointX has to lie on the optical ray through x. Therefore, the position
x′ of the projection of X in the right camera cannot be arbitrary. In fact,
x′ has to be located on the epipolar line l′. This constraint is known as the
epipolar constraint and can be expressed as

x′>l′ = 0. (2.23)
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Figure 2.2: Epipolar geometry between to views.

Now we are are interested in a mapping

x 7→ l′ (2.24)

that allows to determine the epipolar line l′ given an image point x. In
fact, the epipolar line can be obtained by projecting the optical ray through
x into the right camera. Looking at the formula for backprojection (2.17)
immediately reveals that the two points e′ = P ′c̃ and P ′P+x̃ have to lie on
the epipolar line. Since the cross product of two homogeneous points yields
the line passing through them, the epipolar line can be defined as

l′ = [e′]×P
′P+x̃. (2.25)

2.2.2 Fundamental Matrix

The fundamental matrix F is the algebraic representation of the mapping
from an image point to the associated epipolar line given by

F = [e′]×P
′P+. (2.26)

For the case of the pinhole camera model from the previous section, where
the first camera is aligned with the world coordinate system, the fundamental
matrix reads

F = K ′−>[t]×RK
−1. (2.27)

By means of the fundamental matrix, the epipolar constraint (2.23) for two
corresponding points can be expressed as

x̃′>F x̃ = 0. (2.28)

This shows that it is also possible to define F merely by point correspon-
dences without any knowledge of the camera matrices.
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Properties of the Fundamental Matrix

Assume that l and l′ are a pair of epipolar planes obtained by intersecting the
images planes with an epipolar plane. Then it is easy to see that all points
on l are required to have a correspondence that lies on l′. For this reason,
the fundamental matrix F is not injective. This means it cannot be inverted
and is not of full rank. In fact it has rank 2 and 7 degrees of freedom. This
is because it is only defined up to a scale in addition to the rank deficiency.
A pair of cameras is called weakly calibrated if the fundamental matrix is
known.

Projective Reconstruction Theorem

As we have seen in Equation 2.25, the fundamental matrix can be uniquely
defined by the camera matrices P and P ′. Now it is interesting to ask to
what degree a given fundamental matrix determines both involved camera
matrices. To this end, let us introduce the projective transformation matrix
H ∈ R4×4. Then

x̃ = PX̃ = (PH)(H−1X̃), (2.29)

x̃′ = P ′X̃ = (P ′H)(H−1X̃) (2.30)

holds. This means that the points X̃ or H−1X̃ with corresponding cam-
era pairs (P ,P ′) or (PH ,P ′H) yield the same correspondences. For this
reason, both camera pairs share the same fundamental matrix. In fact it is
known that this is the only degree of freedom such that a given fundamen-
tal matrix allows for camera extraction up to a projective transformation
[49]. This implies that also a 3D reconstruction based on a fundamental ma-
trix can only be estimated up to a projective transformation unless further
information is supplied to impose additional constraints.

2.2.3 Essential Matrix

The essential matrix allows to establish a relation between normalised image
coordinates

K−1x̃ and K
′−1x̃′. (2.31)

Such normalised image points can be understood as projections of a camera

K−1P =
(
R t

)
, (2.32)

that has been normalised by reversing the effect of the intrinsic camera pa-
rameters. Alternatively, such a normalised camera matrix can also be seen
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as a camera with the calibration matrix K equivalent to the identity matrix
I. We can obtain the essential matrix

E = [t]×R (2.33)

using Equation 2.27 and the fact that K = K ′ = I in this case. Thus, we
see that the essential matrix can be uniquely defined by the camera pose(
R t

)
. However, just as with the fundamental matrix, also the essential

matrix can be defined by relating coordinates:

(K
′−1x̃′)> E (K−1x̃) = 0, (2.34)

where in this case the normalised coordinates are used. By comparing this to
Equation 2.27, we can relate the essential matrix to the fundamental matrix
by

E = K
′>FK. (2.35)

Properties of the Essential Matrix

As a homogeneous quantity, the essential matrix offers 5 degrees of freedom.
Six degrees of freedom stem from R and t but one has to be subtracted due
to scale ambiguity. From the decomposition E = [t]×R, it can be shown
that the first two singular values have to be equivalent and the third one
has to be zero [49]. While the camera pose

(
R t

)
uniqueley determines the

essential matrix, it is again interesting to understand to what degree a known
essential matrix constrains the camera pair. Compared to the fundamental
matrix, the reduced degree of freedom leads to additional constraints. While
the fundamental matrix only allows camera extraction up to a projective am-
biguity, the essential matrix allows to retrieve the involved camera matrices
up to scale. To be more exact, the essential matrix still leaves room for a
four-fold ambiguity. This means that four solutions exist additional to the
scale ambiguity. However, the four-fould ambiguity can easily be resolved
using a single point correspondence. In order to extract a camera pair from
an essential matrix E, one has to understand how it can be decomposed into
a skew-symmetric matrix [t]× and a rotation matrix R.

Decomposition

To this end, it is important to know that a skew-symmetric matrix [t]× may
be decomposed as [49]

[t]× = k UZU>, (2.36)
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where k ∈ R, U is an orthogonal matrix and

Z =

 0 1 0
−1 0 0
0 0 0

 . (2.37)

Then it is possible to construct an orthogonal matrix

W =

0 −1 0
1 0 0
0 0 1

 (2.38)

satisfying Z = diag(1, 1, 0)W up to sign. Thus, [t]× = Udiag(1, 1, 0)WU>

holds up to scale. With this we have the singular value decomposition (SVD)

E = [t]×R = Udiag(1, 1, 0)
(
WU>R

)
(2.39)

with the orthogonal matrices U and V > := WU>R. Thus, the SVD con-
tains exactly two equal singular values that are non-zero. On the other hand,
it is also possible to decompose a matrix with two equal non-zero singular
values into [t]×R in this way. In fact, this allows to extract a pair of camera
matrices up to a four-fold and scale ambiguity. Assuming that just a single
correspondence is known, which is usually easy to obtain, the fourfold am-
biguity can be eliminated such that just the scale ambiguity remains. The
following section explains the camera extraction in more detail.

Extracting a Camera Pair from the Essential Matrix

From the previous decomposition (2.39) we can find

[t]× = UZU> (2.40)

and

R = UW>V >. (2.41)

In fact, also R = UWV > is a possible solution, due to the open sign [49].
Having found [t]× from E, we still have to find t. To this end, one can use
the fact [t]×t = 0 and see from (2.36) that t = U(0, 0, a)> with a ∈ R fulfils
this. The scalar value a reflects the open scale and is usually chosen equal
to one such that the baseline also has a length of one and corresponds to the
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P1 P2

X

P1P2

X

P1 P2

X P1P2

X

Figure 2.3: Four different solutions for camera pairs extracted from the es-
sential matrix E. Only for one of the configurations the reconstructed 3D
point X is in front of both cameras.

third column of U , i.e. t = ±u3. Summing up, this leaves four solutions
besides the scale ambiguity:

P ′ ∈
{ (

UWV > | + u3

)
,(

UW>V > | + u3

)
,(

UWV > | − u3

)
,(

UW>V > | − u3

) }
.

This four-fould ambiguity can easily be resolved using a single point corre-
spondence because only for one configuration, the reconstructed 3D point
will be in front of both cameras, see Fig 2.3. The different configurations
can be related by a rotation of 180◦ around the baseline and reversing the
translation.

2.3 Calculus of Variations

Functionals are an important tool for describing problems that arise in var-
ious disciplines such as mathematics or physics and are also the basis of the
approaches we present. Thus, we now cover the most important concepts
that are required within this thesis. Gelfand and Fomin [42] offer an exten-
sive treatment of this topic.
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A functional maps each function belonging to some space of functions to
a real number. As such, a functional can be interpreted as a function, where
the variable itself is a function. Problems that consist of finding maxima or
minima of functionals are referred to as variational problems. The functional

E(u) =

∫
Ω

F (x, u1,∇u1,Hu1, . . . , um,∇um,Hum) dx, (2.42)

of order two with Ω ⊂ Rn and u : Ω → Rm is sufficient to cover the models
used within this thesis and usually we will have m ∈ {1, 2} and n ∈ {2, 3}.
All models in this thesis are posed in such a way that we are interested in
finding the minimiser of a given functional. It is well known that a minimiser
must necessarily fulfil the corresponding Euler-Lagrange equations

δE

δuk
= 0 (2.43)

for k = 1, . . . ,m along with the natural boundary conditions. To find the
functional derivatives δE

δuk
one computes the Gâteaux derivative

δE(uk, v) =
d

dε
E(u1, . . . , uk + εv, . . . um)

∣∣∣∣
ε=0

, (2.44)

which can be interpreted as an extension of the directional derivative to
the infinite dimensional case and is also commonly referred to as the first
variation of a functional. Using multidimensional integration by parts and
the definition

δE(uk, v) =

〈
δE

δuk
, v

〉
(2.45)

allows to identify the functional gradients for (2.42) as

δE

δuk
= Fuk −

n∑
i=1

∂xiF∂xiuk +
n∑

i,j=1

∂xi∂xjF∂xj∂xiuk (2.46)

with the natural boundary conditions

n∑
i=1

(
F∂xiuk −

n∑
j=1

∂xjF∂xj∂xiuk

)
ni = 0 (2.47)

and
n∑
j=1

F∂xj∂xiuknj = 0. (2.48)
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Here, n is the outer normal vector to the boundary of Ω. In order to solve
these partial differential equations numerically, they have to be discretised,
for example with a finite differences scheme or the finite element method [42].
In this way, we can turn the originally infinite dimensional problem into a
finite dimensional one. An alternative approach is given by discretising the
energy functional in the first step before computing its gradient. However,
either strategy will lead to a (non)linear system of equations. In fact in many
cases both strategies even yield the exact same system of equations. In our
case, it is always of the form

M (x) x = b(x), (2.49)

where M (x) and b(x) are matrix valued and vector valued operators, re-
spectively. For each x ∈ Rn, the value of M(x) is a symmetric positive
definite n × n matrix and the value of b(x) is a vector with n components.
This nonlinear problem can then be tackled in form of a fixed point iteration

xk+1 = φ
(
xk
)

(2.50)

for k ∈ N with

φ(x) = (M(x))−1 b(x). (2.51)

In this case, solving the nonlinear problem comes down to solving a series of
linear systems of the form

M (xk) xk+1 = b(xk), (2.52)

where the basic idea is to evaluate the nonlinear operators with the old
solution xk. This idea corresponds to the Lagged Diffusivity or Kačanov
method [41, 25]. Since solving linear systems is at the core of this fixed point
iteration, let us discuss efficient approaches for this task.

2.4 Numerical Solvers for Linear Systems

Iterative methods have become more and more popular for solving large
and sparse linear systems of equations as they can offer several advantages
when compared to direct solvers: Iterative methods are usually simpler to
implement and it is straightforward to exploit the sparsity pattern of the
problem at hand. This allows to efficiently solve large and sparse problems
with essentially no overhead. As we will later see, all problems discussed in
this thesis lead to very large and sparse system matrices where the number
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of unknowns is typically larger than 106 and there are only a few nonzero
elements compared to the total number of elements. Furthermore, iterative
methods are well suited for parallel hardware which is a very important
aspect nowadays as GPUs have become quite cheap and are widely used in
scientific computing.

Iterative methods can be put into two categories [90]: On the one hand,
there are the basic iterative methods such as the Jacobi method or the Gauss-
Seidel method. On the other hand, there are the projection methods such
as the conjugate gradient algorithm which is based on a projection process
onto Krylov subspaces. In the following, we will focus on the basic iterative
methods. More specifically, we will first discuss stationary methods and then
present a recently proposed nonstationary method called Fast Jacobi which is
able to drastically speed up convergence and requires almost no extra efforts
in implementation compared to the stationary methods.

2.4.1 Stationary Iterative Methods

Let us assume we are given a linear system of equations

Mx = b, (2.53)

with a symmetric positive definite matrix M ∈ Rn×n, a vector b ∈ Rn and
an unknown x ∈ Rn. Stationary iterative methods [122, 90] can then be
explained by splitting the system matrix

M = B + (M −B) (2.54)

with an invertible matrix B ∈ Rn×n. Then we have

(B + (M −B))x = b, (2.55)

which can be rephrased as the fixed point iteration

xk+1 = B−1(b− (M −B)xk) = (I −B−1M)xk +B−1b. (2.56)

In general, there is a tradeoff one has to consider when choosing the matrix
B: On the one hand, it should be simple to invert it and on the other hand
it should be a good approximation of M . Table 2.1 lists the choices of B for
several popular methods, where

M = L+D +U (2.57)
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Method B

Richardson I

Relaxed Richardson ωI

Jacobi D

Relaxed Jacobi
1
ω
D

Gauss-Seidel D + L

Successive over-relaxation
1
ω
D + L

Table 2.1: Choices of B for several iterative linear solvers.

is composed of a strictly lower triangular, a diagonal, and a strictly upper
triangular matrix.

In order to ensure convergence, it is well known that the spectral radius
of the iteration matrix has to be smaller than one, i.e.

ρ
(
I −B−1M

)
< 1. (2.58)

Since the spectral radius is the largest modulus of the eigenvalues of a matrix,
this implies that all eigenvalues should lie in the interval (−1, 1).

2.4.2 Fast Jacobi

Before explaining the Fast Jacobi algorithm, let us first consider an iteration
of the relaxed Jacobi method [110]. It reads

xk+1 = (I − ωD−1M )xk + ωD−1b, (2.59)

which corresponds to a choice of B = 1
ω
D as shown in Table 2.1. For the

choice of ω = 1 it is equivalent to the standard Jacobi method and concerning
convergence according to (2.58), we require

ρ
(
I − ωD−1M

)
< 1. (2.60)

Let us assume that µmax(D
−1M ) denotes the largest eigenvalue of D−1M ,

where M is positive definite. Then we can easily see that (2.60) is fulfilled
as long as we have

ω <
2

µmax(D−1M )
=: ωmax. (2.61)
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The relaxed Jacobi method is a stationary iterative method and keeps
the iteration matrix fixed. In contrast to this, nonstationary methods adapt
the iteration matrix as they proceed. A subclass of these methods uses
cycles of varying iteration matrices. Such approaches are known as periodic
nonstationary methods and the Fast Jacobi algorithm belongs to this class.
One cycle of length n reads

xi+1 = (I − ωiD−1M )xi + ωiD
−1b, (2.62)

with i = 0, . . . , n− 1 and the relaxation parameters

ωi = ω · 1

2cos2
(
π · 2i+1

4n+2

) , (2.63)

where ω fulfils (2.61). These relaxation parameters differ from classical
choices and have been derived via a factorisation of a box filter. In the
setting of fast explicit diffusion, this offers a good compromise between an
accurate approximation of a Gaussian and a large stopping time when com-
pared to factorisations of other symmetric filters. In the elliptic case this
translates to a good compromise between error damping or smoothing prop-
erties and fast convergence [10]. A cycle of length n of Fast Jacobi (2.62) can
also be written directly in terms of x0 as

xn =

(
n−1∏
i=0

(
I − ωiD−1M

))
︸ ︷︷ ︸

G

x0 +
n−1∑
i=0

ωi

(
n−1∏
j=i+1

(
I − ωjD−1M

))
D−1b︸ ︷︷ ︸

r

.

(2.64)
Then performing several cycles of Fast Jacobi can be interpreted as the sta-
tionary method

xk+1 = Gxk + r (2.65)

that is a composite of Fast Jacobi cycles and converges if ρ(G) < 1. Let
µ1, . . . , µN be the positive eigenvalues of D−1M ∈ RN×N and v1, . . . ,vN its
eigenvectors. Then one can see that

Gvj =
n−1∏
i=0

(
I − ωiD−1M

)
vj =

n−1∏
i=0

(1− ωi · µj)vj, (2.66)

which means that D−1M and G share the same eigenvectors and the eigen-
values of G are given by

λj =
n−1∏
i=0

(1− ωi · µj) (2.67)
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Algorithm 1: Fast Jacobi method [10].

Input: Positive definite system matrix M ,

Right hand side b,

Cycle length n,

Relaxation parameter ω ∈ (0, ωmax),

Accuracy parameter ε > 0

Output: Numerical solution of linear system x0 = M−1b

/* Initialise */

1 initialise(x0);

2 for i = 0 to n− 1 do

3 ωi = ω · 1

2cos2(π· 2i+1
4n+2)

4 end

5 reorderWeights(ω0, . . . , ωn−1); /* See [10] */

/* Perform cycles of Fast Jacobi */

6 repeat

7 for i = 0 to n− 1 do

8 x1 = (I − ωiD−1M ) x0 + ωiD
−1b;

9 x0 = x1;

10 end

11 until converged(M , b,x0,x1);

for j = 1, . . . , N . This is related to the filter factorisation [10] and it was
shown that λj ∈ (−1, 1) for all j when ω < ωmax according to (2.61).

Of course the matrix G is never actually computed in order to perform
the Fast Jacobi algorithm. Instead one just repeats the cycles of varying
parameters as in Equation 2.62. Algorithm 1 outlines this behaviour. Here
it is important to note that one always has to perform a full cycle. It is not
allowed to stop in between. Although the ordering of relaxation parameters
does not matter in exact arithmetic, it influences the result in practice as
rounding errors can lead to instability, especially when n is large. As a
remedy the relaxation weights are usually rearranged within the sequence (cf.
Line 5 of Algorithm 1) such that small ones and large ones are more evenly
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distributed. Two strategies for this, namely κ-cycles and Leja ordering, are
described in [10].

There are different criteria that can be considered to check for convergence
which is required in Line 11 of Algorithm 1. One prominent example is
checking whether the relative residual is below some threshold [60]

|b−Mxk|
|b|

< ε . (2.68)

Here, xk denotes the solution after k iterations. However, the relative error
of the solution depends on the condition number of M . Considering the
relation between the initial residual and the current one instead, i.e.

|b−Mxk|
|b−Mx0|

< ε , (2.69)

can lead to a more appropriate stopping criterion. Another approach is to
check whether the norm of the difference in solutions between iterations is
smaller than a threshold, i.e. |xk − xk−1| < ε.

In general, an iterative method does not have to depend on the last com-
puted solution only. It could also make use of several older solutions. In [46]
some interesting variants have been proposed that also yield the advantage
that they do not require a reordering for numerical stability. However in the
scenarios present in this thesis it can already be prohibitive to rely on more
than one old solution due to the fact the we consider very large problems
that are quickly constrained by the memory available on a GPU.
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Chapter 3

Multi-View Depth Estimation

The task of reconstructing 3D scenes from a number of images along with
corresponding camera poses is commonly referred to as multi-view stereo.
One can approach the multi-view stereo problem by dividing it into the fol-
lowing two steps: First, one computes depth maps for a number of input
images. Second, these depth maps are merged with a volumetric approach,
see e.g. [29, 124, 123]. In this case, the multi-view stereo problem constitutes
a common example, where one is interested in obtaining a depth map given
multiple views. This is the problem we focus on in this chapter. It is illus-
trated in Figure 3.1 and we refer to it as multi-view depth estimation. In this
scenario, it is assumed that all camera parameters have already been esti-
mated such that only the unknown depth as seen from one reference camera
has to be recovered.

Previous work has demonstrated that multiple views improve the depth
reconstruction, and that higher order regularisers model a good prior for typ-
ical real-world 3D scenes. We build on these findings and specifically analyse
an important aspect that has not been considered in variational multi-view
depth estimation so far: We investigate several parameterisations of the un-
known depth. While most existing methods directly work with depth values,
we show, both analytically and experimentally, that this introduces an unde-
sirable bias. As a remedy, we reveal that an inverse depth parameterisation
is generally preferable. Our analysis clearly points out its benefits w.r.t. the
data and the smoothness term of a variational multi-view depth estimation
approach. This work has been published in [8].

Organisation of this Chapter. After discussing related work as well as
pointing out our contributions, we present a variational formulation for the
estimation of depth maps from multiple views with an arbitrary paramete-
risation in Section 3.3. Subsequently, we analyse different parameterisations

29
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Figure 3.1: In multi-view depth estimation a number of images captured
from a static scene (left) is used to estimate a single depth map (right) as
seen from one selected reference camera which is shown in red. Here the
depth map is visualised using a colour coding.

in detail (Section 3.4). In Section 3.5, we discuss the minimisation. Finally,
we show experimental results (Section 3.6) as well as a discussion of limita-
tions (Section 3.7) before we summarise the most important insights of this
chapter (Section 3.8).

3.1 Related Work

Ignoring the fact that multiple views are available, variational stereo algo-
rithms that consider image pairs can be regarded as related work, see e.g.
[76, 75, 91, 102, 126, 108]. While these variational formulations compute dis-
parities relying on a first order regularisation, higher order regularisation has
proven to be a very successful strategy for many applications [86, 35, 52, 87].
Often, coupled formulations are used instead of directly implementing a
higher order regulariser. Popular variants for this are total generalised varia-
tion [18] or an approach as in [52]. Also infimal convolution is a much related
alternative, where first ideas of this can be found in [23]. Recently, Ranftl et
al. demonstrated the benefits of second order regularisation in the context of
optic flow [87] and stereo [86].

However, considering only two of the multiple views discards a lot of
the available information. Unfortunately, it is not convenient to extend the
concept of computing disparities to a general multi-view setting. Hence,
there are a number of variational formulations that directly estimate depth
from multiple views. Such methods have shown the benefits of using multiple
images in the process of depth map estimation. To the best of our knowledge,
the basic idea of considering multiple views to estimate a single depth map
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within a variational formulation is almost two decades old and goes back
to Robert and Deriche [88]. They employed a quadratic data term along
with a nonquadratic regulariser that is able to preserve depth discontinuities.
More recently, Stühmer et al. [105] presented a similar formulation with a
robust penaliser for the smoothness term as well as the data term. Instead
of the brightness constancy, assumed by [88] and [105], Semerijan [96] uses a
gradient constancy assumption and a finite element discretisation.

While all aforementioned approaches that are able to estimate a depth
map from multiple images are directly parameterised by the unknown depth,
Strecha and Gool [104] proposed a PDE-based formulation with a depth
related parameter that essentially comes down to an inverse depth parame-
terisation. Furthermore, in related problems such as monocular simultaneous
localisation and mapping (SLAM), an inverse depth parameterisation of point
features has been shown to be beneficial [28]. Also the dense tracking and
mapping approach of Newcombe et al. uses inverse depth to compute cost
values in a discrete cost volume [80] and the recently developed LSD-SLAM
estimates probabilistic semi-dense inverse depth maps [32].

3.2 Contributions

While most existing variational multi-view formulations [88, 105, 96] directly
compute the unknown depth from a number of arbitrarily placed cameras, we
generalise them by introducing a depth parameterisation. This allows us to
efficiently analyse advantages and drawbacks of different parameterisations
such as a direct depth parameterisation and an inverse depth parameteri-
sation. More specifically, we analyse two important aspects: On the one
hand, the choice of parameterisation is important when considering the lin-
earisation of the data term in a variational framework. Here, we show that
for common camera setups, the inverse depth parameterisation is preferable.
On the other hand, the choice of parameterisation is also important in the
smoothness term, especially in the presence of second order regularisation.
Here, we show that for an inverse depth parameterisation, piecewise affine
functions correspond to piecewise planar surfaces. This is not the case for
a direct depth parameterisation. We give deep insights into the introduced
bias by analysing the shape operator of the corresponding 3D surface.
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3.3 Variational Formulation

In this section, we describe a variational framework that allows the estimation
of a depth map d from multiple views under an arbitrary parameterisation.
To this end, we express d as the composition of an unknown ρ : Ω → R+

and a parameterisation φ : R+ → R+ such that d = φ ◦ ρ. Then our energy
functional has the form

E(ρ) =

∫
Ω

D(φ ◦ ρ) dx + α R(ρ), (3.1)

with a data term D(φ ◦ ρ) that enforces photoconsistency, a regulariser R(ρ)
that prefers (piecewise) affine functions, and a positive regularisation weight
α. In the following sections, we explain our model components in more detail.

Data Term

Let us assume we are given n colour images f1, . . . ,fn and a reference image
f0. The task of the data term D(φ◦ρ) is to enforce photoconsistency between
all available views. To this end, we first introduce a function gi(x, φ◦ρ) that
maps a location x ∈ Ω in the reference frame f0 with its depth (φ ◦ ρ)(x) to
the corresponding location in another image fi. This mapping is illustrated
in Figure 3.2 and can be described as a composition of a backprojection and
a projection operation explained in Section 2.1. This allows to model the
assumption that corresponding points x and gi(x, φ ◦ ρ) have similar colour
values as follows:

D(φ ◦ ρ) =
1

n

n∑
i=1

Ψ
(
|fi(gi(x, φ ◦ ρ))− f0(x)|2

)
, (3.2)

where the function Ψ : R+ → R+ provides a robust penalisation. A common
choice is Ψ(s2) =

√
s2 + ε2, which approximates an L1 data term for ε→ 0.

Smoothness Term

Higher order regularisation has shown its potential in several applications.
Essentially, there are two possibilities to design such regularisers: Either by
a direct penalisation of higher order derivatives or by introducing a coupling
variable w : Ω → R2. We opt for the second choice that results in the
regulariser

R(ρ) = inf
w

{∫
Ω

(
Ψ
(
|∇ρ−w|2

)
+ β Ψ

(
|Jw|2F

) )
dx

}
, (3.3)
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Figure 3.2: The mapping gi(x, φ◦ρ) allows to find the corresponding point in
the i-th image plane when given a location and depth value in the reference
image (red). It can be described by first performing a backprojection from
the reference view followed by a projection into the i-th image plane.

where ∇ is the spatial gradient, J the Jacobian, and | · |F the Frobenius
norm. This regulariser is similar to total generalised variation of second
order (TGV2) [18] and allows to obtain piecewise affine functions ρ.

Since our main focus is the analysis of different parameterisations, we
restrict ourselves to the discussed model assumptions. Once the parameteri-
sations are well understood, they can be incorporated in more sophisticated
methods with more elaborate photoconsistency assumptions and regularisers
that rank favourably in public benchmark systems.

3.4 Depth Parameterisations

We use the pinhole camera model described in Section 2.1 in order to analyse
the effect of different parameterisations. With this model, the projection of
a 3D point X ∈ R3 to a point x ∈ R2 in the image plane is given by

x = π
(
PX̃

)
, (3.4)

where X̃ = (X>, 1)> is the homogeneous version of X, and

π(a, b, c) =

(
a/c
b/c

)
(3.5)

maps a homogeneous coordinate to its Euclidean counterpart. Let us now
look at the resulting surfaces when backprojecting depth maps under different
parameterisations.
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Figure 3.3: There are two common ways to measure the distance in the
backprojection step. Either the distance is measured along the optical axis
(blue) or it is measured along the line of sight (red).

3.4.1 Backprojection of Parameterised Depth Maps

We analyse the following parameterisations:

(i) direct depth: φ(r) = r,
(3.6)

(ii) inverse depth: φ(r) = 1/r. (3.7)

In each case, there is a further design choice that we want to analyse,
namely the choice of the distance, in which we measure. Basically, there are
two meaningful possibilities to compute a backprojection:

(a) along the line of sight: `
(
x, φ ◦ ρ

)
=
K−1x̃

|K−1x̃|
· (φ ◦ ρ)(x), (3.8)

(b) along the optical axis: s
(
x, φ ◦ ρ

)
= K−1x̃ · (φ ◦ ρ)(x). (3.9)

These possibilities are illustrated in Figure 3.3. Figure 3.4 shows the
resulting surfaces when backprojecting a constant and an affine function
along the line of sight. Note that both parameterisations (i) and (ii) map
constant and affine functions to curved surfaces. This means that a first
order regulariser would already introduce an unwanted bias because it favours
a (piecewise) constant ρ and thus curved surfaces. Therefore, we will not
further consider parameterisations along the line of sight in our context.

In contrast, Figure 3.5 shows that both parameterisations along the opti-
cal axis map constant depth functions to surfaces with constant depth, and
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Figure 3.4: Resulting surfaces when backprojecting along the line of sight.

thus seem to be reasonable choices when employing a first order regularisa-
tion. However, considering an affine function (with a nonzero slope), we see
that the depth parameterisation does not create a planar surface whereas the
inverse depth parameterisation does. In the following sections, we analyse
this in detail to get a better understanding of both choices.

3.4.2 Analysis of Backprojected Depth Maps

Let us consider (3.9) as a mapping from some parameter space Ω to a surface
M , i.e. s : Ω ⊂ R2 → M ⊂ R3. Generally, the tangent plane of a regular
parameterised surface corresponding to a point (x0, y0)> is spanned by the
two tangent vectors

sx =
∂s

∂x
and sy =

∂s

∂y
, (3.10)

evaluated at (x0, y0)>. The first fundamental form describes the inner prod-
uct of two tangent vectors. It can be represented by the symmetric matrix

I =

(
E F
F G

)
=

(
〈sx, sx〉 〈sx, sy〉
〈sy, sx〉 〈sy, sy〉

)
, (3.11)
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Figure 3.5: Resulting surfaces when backprojecting along the optical axis.

and allows the evaluation of metric properties such as the surface area. Sim-
ilarly, the second fundamental form is important for describing curvatures.
It can be represented by the symmetric matrix

II =

(
e f
f g

)
=

(
〈n, sxx〉 〈n, sxy〉
〈n, syx〉 〈n, syy〉

)
, (3.12)

where n is the unit surface normal

n =
sx × sy
|sx × sy|

. (3.13)

Figure 3.6 shows the tangent plane spanned by two tangent vectors along
with the corresponding surface normal. The composition of the first and
second fundamental form defines the shape operator [45]

S = I−1 II = (EG− F 2)−1

(
eG− fF fG− gF
fE − eF gE − fF

)
, (3.14)



3.4. DEPTH PARAMETERISATIONS 37

Figure 3.6: Tangent plane spanned by two tangent vectors sx (red) and sy
(blue) along with the corresponding surface normal n (green).

which can be expressed in terms of the components of the first and second
fundamental form. It allows to evaluate the Gaussian curvature

K = det(S) =
det(II)

det(I)
(3.15)

and the mean curvature

H =
1

2
· tr(S) =

1

2

eG− 2fF + gE

EG− F 2
. (3.16)

Direct Depth

Let us first consider the direct depth parameterisation where the unknown ρ
corresponds to the sought depth. With this, we analyse the resulting surface
in the case that the depth is affine: ρ(x) = 〈a, x̃〉 with a = (a, b, c)>. This is
a reasonable and interesting case because a second order regulariser favours
(piecewise) affine functions. For this case we obtain the two tangent vectors

sx = K−1

〈a, x̃〉+ ax
ay
a

 and sy = K−1

 bx
〈a, x̃〉+ by

b

 , (3.17)

such that

n̂ = K>

 −a
−b

2ax+ 2by + c

 (3.18)

points along the surface normal (3.13), i.e. n̂ = |n̂| · n. Equation 3.18
shows that the normal direction depends on the location x = (x, y)> when
backprojecting an affine depth function. To get deeper insights on how the
surface normals vary, let us consider the surface curvature by means of the
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shape operator. With (3.12), the second fundamental form for this example
reads

II = − 2

|n̂|

(
a2 ab
ab b2

)
. (3.19)

Since this matrix is singular, we can directly conclude that the determinant
of the shape operator (3.14) and consequently the Gaussian curvature K is
zero. This further implies that at least one of the principal curvatures is zero.
To check if both principal curvatures are zero, let us additionally consider
the mean curvature

H =
1

2
tr(S) (3.20)

=− a2|sy|2 − 2ab〈sx, sy〉+ b2|sx|2

(det (K−1) 〈a, x̃〉)2 |n̂|3
(3.21)

=− |asy − bsx|2

(det (K−1) 〈a, x̃〉)2 |n̂|3
(3.22)

=− (akx)
2 + (bky)

2

|n̂|3
. (3.23)

Here, we have used the relation

det(I) = EG− F 2 = |sx × sy|2 (3.24)

between the coefficients of the first fundamental form and the length of the
cross product of both tangent vectors and the fact that

|sx × sy| = det
(
K−1

)
〈a, x̂〉 |n̂|. (3.25)

This shows that the mean curvature is in general not equal to zero, i.e.
the surface is bent in one direction. Only for constant functions, i.e. with a
and b equal to zero, we also obtain a vanishing mean curvature and thus, a
planar surface.

Inverse Depth

Let us now consider the alternative parameterisation φ(r) = 1/r. Then the
unknown ρ corresponds to the inverse depth. Again we assume that the
unknown, in this case the inverse depth, is affine. Accordingly, we obtain the
two tangent vectors

sx =
K−1

〈a, x̃〉2

by + c
−ay
−a

 and sy =
K−1

〈a, x̃〉2

 −bxax+ c
−b

 , (3.26)
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Table 3.1: Preservation of planarity.

direct depth inverse depth

line of sight optical axis line of sight optical axis

constant no yes no yes

affine no no no yes

such that

n̂ = K>a (3.27)

points along the surface normal (3.13). Thus, the surface normal points in the
same direction in all considered cases for the inverse depth parameterisation.
In other words, backprojecting an affine inverse depth always results in a
planar surface. This imples that both the Gaussian and the mean curvature
of the surface are zero.

Summary

Table 3.1 summarises the discussed findings for all four parameterisations.
In conclusion, this shows that the inverse depth parameterisation along the
optical axis is preferable w.r.t. the smoothness term when using a second
order regularisation.

3.4.3 Linearity Analysis of the Data Term

Previously, we analysed the influence of parameterisations w.r.t. the smooth-
ness term. Now we analyse its effects on the data term. Since the unknown
ρ appears as argument of fi, the presented energy (3.1) is non-convex. To
cope with this, most minimisation strategies perform a linearisation. In this
regard, we analyse how the different depth parameterisations affect this lin-
earisation. In particular, we are interested in the deviation from linearity of
gi in ρ because this quantity depends on the chosen parameterisation. As
introduced in Section 3.3, the function gi maps a location x ∈ Ω in the
reference frame f0 with its depth (φ ◦ ρ)(x) to the corresponding location
in another image fi. This mapping can be described as a composition of a
backprojection (3.9) and a projection (3.4):

gi(x, φ ◦ ρ) = π
(
Pi · s̃i(x, φ ◦ ρ)

)
. (3.28)
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Figure 3.7: Three different camera setups that are common for multi-view
setups. For all of them the Z-component of ti is zero.

Since scaled homogeneous coordinates are equivalent, it is possible to multi-
ply s̃i by (φ ◦ ρ)(x)−1 and rewrite Equation 3.28 as

gi(x, φ ◦ ρ) = π
(
KiRiK

−1 x̃+Kiti (φ ◦ ρ)(x)−1
)
. (3.29)

Direct Depth

For common setups, the camera offsets in Z-direction are much smaller than
the occurring depth values. This is because one typically walks around an
object mainly with lateral motion while roughly keeping the distance with
only small rotations between views. This causes converging camera setups
that keep the object in the middle of the view. Hence, we assume in the
following analysis that the Z-component of ti is zero. Please note the relation
t = −Rci between ti and the camera centre ci and that setting the Z-
component of ti to zero does not restrict us to camera motions in the X-
Y -plane. Figure 3.7 shows three exemplary camera setups where the Z-
component of ti is zero. This allows to simplify (3.29) to

r−1
3 ·

((
r1

r2

)
+

(
z1

z2

)
(φ ◦ ρ)(x)−1

)
, (3.30)

with the abbreviations r = KiRiK
−1x̃ and z = Kiti that do not depend

on ρ(x). With the direct depth parameterisation (φ ◦ ρ)(x)−1 = ρ(x)−1, we
obtain a hyperbola and thus expect an additional linearisation error.

Inverse Depth

This is not the case for the inverse depth parameterisation with (φ◦ρ)(x)−1 =
ρ(x). In fact, Equation 3.30 reveals that gi is linear in ρ(x) in this case.
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Thus, no error is introduced when linearising gi w.r.t. the inverse depth.
To summarise, also the linearisation analysis shows that an inverse depth
parameterisation turns out to be more appropriate for multi-view depth es-
timation than the standard direct depth parameterisation.

3.5 Minimisation and Implementation

To solve the energy (3.1), we perform a linearisation around ρ0 in the data
term (3.2):

fi(gi(x, φ ◦ ρ)) ≈ fi(gi(x, φ ◦ ρ0)) + (ρ− ρ0) · ∂ρfi(gi(x, φ ◦ ρ)|ρ=ρ0 . (3.31)

Applying the chain rule gives

∂ρfi(gi(x, φ ◦ ρ)) = Jfi(gi(x, φ ◦ ρ)) ·Jgi(x, φ ◦ ρ), (3.32)

where the image derivatives Jfi are independent of the parameterisation.
The second term in (3.32) is given by

Jgi(x, φ ◦ ρ) = Jπ
(
Pi

(
K−1x̃

(φ ◦ ρ)(x)−1

))
Kiti ∂ρ(φ ◦ ρ)(x)−1, (3.33)

where for the direct depth parameterisation

∂ρ(φ ◦ ρ)(x)−1 = −ρ(x)−2, (3.34)

and for the inverse depth parameterisation

∂ρ(φ ◦ ρ)(x)−1 = 1. (3.35)

With the abbreviations

mi = ∂ρfi(gi(x, φ ◦ ρ))|ρ=ρ0
(3.36)

and

bi = mi ρ0 + f0(x)− fi(gi(x, φ ◦ ρ0)) (3.37)

the energy (3.1) with the linearised data term reads

E(ρ,w) =

∫
Ω

1

n

n∑
i=1

Ψ
(
|mi ρ− bi|2

)
+ (3.38)

α
(

Ψ
(
|∇ρ−w|2

)
+ β Ψ

(
|Jw|2F

) )
dx.
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Euler-Lagrange Equations

The minimiser of the linearised energy functional fulfils the corresponding
Euler-Lagrange equations w.r.t. ρ and w. With

Ψ′Di = Ψ′
(
|miρ− bi|2

)
,

Ψ′C = Ψ′
(
|∇ρ−w|2

)
,

Ψ′S = Ψ′
(
|Jw|2F

)
,

(3.39)

they are given by

1

n

n∑
i=1

Ψ′Di · 〈mi,mi ρ+ bi〉 − α div(Ψ′C · (∇ρ−w)) = 0,

Ψ′C · (w1 − px)− β div(Ψ′S ·∇w1) = 0,

Ψ′C · (w2 − py)− β div(Ψ′S ·∇w2) = 0

(3.40)

with boundary conditions (∇ρ −w)>n = 0 and Jwn = 0, where n is the
2D outer normal here.

Implementation

We discretise (3.40) with finite differences on a regular grid using a standard
discretisation. This results in a nonlinear system of equations, which we
solve with two nested loops. While we update the nonlinear terms ΨD, ΨC ,
and ΨS (3.39) in the outer loop, we solve the linear system in the inner loop
with the Fast-Jacobi algorithm [10]. Furthermore, we employ a coarse-to-fine
approach to overcome linearisation errors.

3.6 Experimental Results

Our evaluation consists of two main parts. In the first part, we underpin our
theoretical findings from Section 3.4 by means of experiments with synthetic
data. Figure 3.8(a) shows a 3D scene with a planar surface and three cam-
eras, and Figure 3.8(b) depicts the images captured with the corresponding
cameras. Figure 3.8(c) and (d) show the computed reconstructions with a
direct depth and an inverse depth parameterisation, respectively. We clearly
see that performing second order regularisation on the depth introduces a bias
towards curved surfaces as discussed in Section 3.4. In contrast, performing
second order regularisation on the inverse depth does not introduce such as
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Table 3.2: Root mean square errors for six data sets from the Middlebury
benchmark [92].

direct depth inverse depth

Barn 1 0.67 0.25

Barn 2 1.48 0.51

Bull 0.50 0.23

Poster 0.48 0.22

Sawtooth 1.09 0.43

Venus 0.58 0.29

bias and thus yields a significantly better reconstruction. In Figure 3.8(c)
and (d), we apply the following colour code to visualise the reconstruction
errors: Green represents an error of zero, whereas red and blue correspond
to behind and in front of the ground truth surface, respectively.

In the second part of our evaluation, we run tests on six publicly avail-
able multi-view data sets from the Middlebury benchmark [92] to obtain a
quantitative comparison between both parameterisations. More specifically,
we use five images for each 3D scene to compute the depth map. We have
optimised the smoothness parameters α and β for each parameterisation, but
kept them fixed over the individual scenes. Here we measure for both param-
eterisations the reconstruction quality in terms of the root mean square error
in depth. Table 3.2 shows that the inverse depth parameterisation provides
a significantly better reconstruction quality than the direct depth parame-
terisation in all cases. These quantitative experiments confirm our findings
from Section 3.4. The inverse depth parameterisation does not only have
advantages in theory, but also practically achieves superior reconstructions.
Besides the discussed benefits for the linearisation and second order regular-
isation, there is another advantage that we have not stressed so far: It is a
natural choice to initialise the inverse depth with zero. This corresponds to
a depth of infinity. Thus, an initialisation of the direct depth with a large
constant seems desirable but turns out to be problematic.
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3.7 Limitations and Discussion

In contrast to modelling smoothness on the image domain, directly enforcing
prior assumptions on the resulting depth surface is an alternative approach
[56, 96, 44]. The benefit of such a strategy is that it renders the effects of
regularisation on the resulting surface more explicit. This can be of advan-
tage since one is interested in the appearance of the surface and not in an
intermediate representation of depth.

However, we have shown that an inverse depth parameterisation allows
to model the assumption that the scene is composed of piecewise planar
surfaces by imposing a regulariser defined on the image domain. Since the
smoothness assumption is defined on the image domain, a great variety of well
known regularisers is available. Therefore, it is straightforward to introduce
more sophisticated extensions such as ITGV [86, 35] or non-local variants
[87]. On the other hand, it is usually more difficult to extend approaches
that define the regularisation on the surface in a similar way. Thus, defining
regularisation on the depth surface may introduce some additional freedom
in the modelling but it is usually more cumbersome to deal with.

Next we would like to discuss how each of the multiple views captured
influences the final result. In order to get a better understanding of this,
it helps to interpret the depth estimation problem as a joint denoising and
inpainting approach.

Interpretation as Joint Denoising and Inpainting. For simplicity, let
us assume that we are dealing with grey value images. Now we consider the
argument of Ψ in the linearised data term of Equation 3.38 in more detail.
The argument then reads

(miρ− bi)2 , (3.41)

where mi = ∇fi(gi(x, φ ◦ ρ))>Jgi(x, φ ◦ ρ) (cf. Equations 3.36 and 3.32).
It is clear that at locations where mi = 0, the data term does not impose a
constraint on the unknown ρ such that the depth values are solely filled in
by the smoothness term in these regions. At locations where mi 6= 0 we can
rewrite the above expression as

m2
i

(
ρ− bi

mi

)2

. (3.42)

Thus, the data term penalises deviations of ρ from bi/mi with a weight of
m2
i . In this way, the multi-view depth estimation problem exhibits the same
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structure as a joint denoising and inpainting problem of the form

E(u) =

∫
Ω

w (u− f)2 dx+R(u), (3.43)

where w is a confidence function, f some input data, and R(u) a regular-
isation term. In this case we have w = m2

i and f = bi/mi in the relevant
locations where the confidence is larger than zero. By the form of mi, we
can observe that in the multi-view depth estimation scenario both the image
gradient as well as the Jacobian of gi determine the confidence.

Since the influence of the weighting induced by the image gradient and
the effects of a normalisation have been discussed in related scenarios such
as optical flow [101, 66, 127], let us focus on the second term Jgi(x, φ ◦ ρ)
in more detail. Intuitively speaking, the Jacobian of the mapping gi allows
to describe the rate of change along the epipolar line in the i-th image plane
depending on the unknown ρ. Thus, in camera configurations where this
rate of change is zero, the data term is automatically switched off. This case
occurs if the i-th camera centre corresponds to the reference camera centre
for example. Accordingly, camera pairs that allow a reliable estimation of
the unknown ρ tend to be weighted higher than unsuitable pairs with a too
small baseline.

Summing up, the interpretation as a joint denoising and inpainting prob-
lem allows to get a better insight of how the data term is weighted for differ-
ent camera pairs in a multi-view depth estimation scenario and reveals that
suitable camera pairs tend to be preferred while less reliable or degenerate
camera pairs are weighted down or even completely switched off.

3.8 Summary

In this chapter, we have analysed different depth parameterisations within
the context of multi-view depth estimation with higher order regularisation.
Our first finding is that parameterisations along the line of sight are not
suitable for such a scenario. In fact, we show that parameterisations along
the optical axis are much more reasonable. For them, we present a detailed
analysis of a direct depth and an inverse depth parameterisation. We point
out several advantages of the inverse depth parameterisation: First, it is
compatible with second order regularisation. Piecewise affine inverse depth
leads to piecewise planar 3D surfaces. On the contrary, this is not the case
for the direct depth parameterisation. It introduces a bias which we quantify
both theoretically by means of the shape operator as well as by experiments.
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Second, we show that an inverse depth parameterisation is not only advan-
tageous for the smoothness term. It is also preferable for the linearisation
required in the data term compared to a direct depth parameterisation. Last
but not least, the inverse depth approach additionally admits a more mean-
ingful initialisation. Based on our findings, we recommend the inverse depth
parameterisation along the optical axis as the parameterisation of choice for
variational multi-view depth estimation.
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(a) (b)

(c) (d)

Figure 3.8: From top left to bottom right: (a) Camera setup and geom-
etry. (b) Corresponding input images. (c) Reconstruction with direct depth
parameterisation. (d) Reconstruction with inverse depth parameterisation.
See text for details.
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Chapter 4

Surface Reconstruction from
Depth Maps

While we were concerned with computing a single depth map from multiple
images in the last chapter, this chapter aims at combining multiple depth
maps, also often referred to as range images, into a single 3D model as shown
in Figure 4.1. Often both steps are performed subsequently in order to solve
the multi-view stereo problem. However, since depth maps are becoming
more readily available through devices such as the Kinect or time-of-flight
cameras, the topic of range image integration itself has also attracted an
increasing amount of attention [79]. Performing this integration can be dif-
ficult for several reasons: The range images may contain noise and outliers,
parts of the surface can be missing when they have not been properly reached
during the acquisition, and the sampling density might not be sufficient for
a correct reconstruction.

A very promising approach is given by variational range image integra-
tion methods as propsed by Zach et al. [124]: They are able to deal with
a substantial amount of noise and outliers, while regularising and thus cre-
ating smooth surfaces at the same time. In this chapter, we extend their
state-of-the-art approach in several aspects and present an efficient GPU
implementation. The main ideas of our work have been published in [6].
The GPU implementation has been published in [10] and presented at the
NVIDIA GPU Technology conference 2014.

Organisation of this Chapter. After covering important related work,
we describe the accurate computation of signed distance fields from range
images in Section 4.3. Section 4.4 explains how the signed distance fields
are integrated into a globally optimal cumulative signed distance field using
anisotropic regularisation. Subsequently, Section 4.5 describes implementa-

49
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Figure 4.1: Surface reconstruction from depth maps aims at combining mul-
tiple registered depth maps (left) into a single 3D model (right). Here the
depth maps are visualised in terms of the surface that they describe.

tion aspects concerning the computation and storage of signed distance fields,
the discretisation, and efficient numerics on the GPU. We display experimen-
tal results in Section 4.6 before we discuss limitations in Section 4.7 and sum
up the most important insights in Section 4.8.

4.1 Related Work

There is a vast amount of work that deals with the integration of registered
depth maps into a unified surface representation. Bernadini and Rushmeier
[16] order existing techniques based on how the surface is reconstructed.
Their classification is comprised of four categories: Delauney based methods,
surface based methods, deformable surfaces and volumetric methods. To
focus on the most closely related techniques, we restrict ourselves to the
class of volumetric methods in the following as our approach belongs to this
category.

The goal of volumetric range image integration methods is to estimate an
implicit representation of the desired surface. Such intermediate volumetric
representations are often advantageous when integrating range images be-
cause they allow handling meshes of arbitrary genus. Furthermore, one can
spare the effort of finding a suitable surface parameterisation. The implicit
function is usually defined on a regular 3D grid that contains all registered
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depth maps. Once it is found, the sought surface can be extracted as a level
line of the implicit function using algorithms such as marching cubes [71].
Volumetric methods differ in how the implicit representation is obtained and
we group them into two categories: The first category typically minimises
an Lp data term possibly accompanied by a smoothness assumption. The
second category comprises methods that are derived in a probabilistic way
leading to binary labelling problems.

Lp Data Term. Curless and Levoy [29] estimate the signed distance for
each voxel near the surface for each scan by casting a ray from the sensor
through the voxel. This way they obtain an intersection of ray and surface
and can infer the distance between intersection and voxel along the ray. Sub-
sequently, the signed distance values from all scans are accumulated, where
they are weighted depending on surface normal and viewing direction. Let us
denote the 3D signed distance fields by f1(x), . . . , fn(x) and the weighting
functions by w1(x), . . . , wn(x). Then the unified signed distance function
u(x) is computed as the pointwise weighted average

u(x) =

∑n
i=1wi(x)fi(x)∑n

i=1 wi(x)
. (4.1)

This effectively minimises an energy with a weighted L2 data term

E(u) =
n∑
i=1

∫
Ω3

wi(x)
(
u(x)− fi(x)

)2
dx . (4.2)

While Curless and Levoy are concerned with merging depth maps, Goesele
et al. [43] embed this idea in a multi-view stereo context and are able to show
convincing results in this setting. Hilton et al. [53] follow a similar approach
as Curless and Levoy also minimising an energy as (4.2). However, these
pointwise approaches suffer from several problems: A solution can only be
computed at locations where data is given. Thus, Curless and Levoy have to
employ a hole filling algorithm in a postprocessing step in order to deal with
unseen portions of the surface. Still the resulting reconstruction does not
necessarily have to be watertight. Furthermore, it is known that averaging
without regularisation leads to inconsistent surfaces due to frequent sign
changes within the cumulative signed distance field. Wheeler et al. [119]
try to deal with incorrect surface locations by assigning the distance to the
consensus surface to each voxel instead. The consensus surface is given by a
weighted average of the nearby measurements. Zach et al. [124] address the
previously mentioned problems by computing the cumulative signed distance
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field as the global minimiser of a suitable energy functional that incorporates
a total variation (TV) [89] smoothness term along with a robust L1 data
term.

In general, volumetric methods are well suited for large datasets because
their memory requirement and time complexity mainly depends on the res-
olution of the implicit function. More recent works show reconstructions in
real time [57] or of larger scenes [125]. When choosing a high resolution, this
corresponds to small voxels which often lead to an unnecessarily large num-
ber of triangles in the resulting 3D model. On the other hand large voxels
imply a loss of small scale features. An adaptive sampling employing octrees
[85, 27] can be a remedy. Besides octrees, the voxel hashing algorithm of
Nießner et al. [81] also offers an interesting alternative for dealing with large
scenes.

Probabilistic Approaches. The basic idea of the probabilistic approaches
is to find the most probable surface S that best explains some given input
data r1, . . . , rn by maximising

E(S) = P (S | {r1, . . . , rn}) (4.3)

over the set of watertight surfaces lying inside the volume Ω3 [69, 112, 63, 64].
Here, P denotes the probability for a surface S given a set of observations
{r1, . . . , rn}. The observations do not necessarily have to be limited to a set
of scalar valued range images ri : Ω2 → R+. They can also contain additional
confidence information or be comprised of colour images for example. The
Bayes formula implies that

P (S | {r1, . . . , rn}) ∝ P ({r1, . . . , rn} |S) · P (S), (4.4)

and since any constant factor larger than zero does not affect the solution,
both expressions P (S | {r1, . . . , rn}) and P ({r1, . . . , rn} |S) · P (S) can be in-
terchanged in this context. This allows to introduce the a priori probability
P (S) that prefers certain types of surfaces. A very basic choice is

P (S) = exp

(
−α
∫
S

ds

)
, (4.5)

where α is a weighting parameter and
∫
S

ds corresponds to the Euclidean
surface area. This allows to prefer smooth surfaces with simple topology.
For a more general formulation, the Euclidean metric can be replaced by a
Riemannian one [112, 64]. Since minimising for the surface area alone would
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simply lead to the trivial solution given by the empty set, also the modelling
of P ({r1, . . . , rn} |S) is a crucial issue. To this end, the 3D domain Ω3 is
decomposed into an interior region Ωin

3 corresponding to points lying inside
an object and an exterior region Ωout

3 denoting the remaining points such
that Ω3 = Ωin

3 ∪ Ωout
3 . Furthermore, one usually assumes that observations

of separate voxels are independent from each other and constructs functions
Pin(x) and Pout(x) based on the input data. By taking the negative loga-
rithm, the maximisation problem (4.3) can then be converted into the energy
minimisation problem

E(S) =

∫
Ωin3

ρin(x) dx+

∫
Ωout3

ρout(x) dx+ α

∫
S

ds, (4.6)

with the regional terms ρin(x) = −ln
(
Pin(x)

)
and ρout(x) = −ln

(
Pout(x)

)
.

The simplest idea is to use constant functions for the regional terms which
corresponds to ballooning terms as in [69, 112]. This can successfully prevent
the empty set as a solution because the ballooning term allows to prefer
surfaces of larger volume. However, it suffers from oversmoothing effects and
tends to destroy small structures. Other works define the regional terms
based on silhouettes [63] or based on depth maps [51, 62]. An equivalent
formulation to (4.6) is given by introducing the implicit function u as the
characteristic function of the surface interior :

E(u) =

∫
Ω3

ρin(x)u(x)dx +

∫
Ω3

ρout(x)(1− u(x))dx +

α

∫
Ω3

|∇u(x)|dx

s.t. u : Ω3 → {0, 1}.

(4.7)

Due to the constraint, this is a non-convex optimisation problem since it is
carried out over the set of binary functions. However, it was shown that it
is possible to relax the problem by minimising over all functions that fulfil
u : Ω3 → [0, 1] and subsequently threshold the minimiser of the relaxed
problem at some value within (0, 1) in order to obtain the minimiser of (4.7)
[26, 63]. This is an interesting result because such relaxation techniques often
sacrifice optimality in the sense that the thresholded solution is not optimal
for the original binary labelling problem. However, here the constraint can
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be relaxed without this disadvantage and one only has to solve a convex
problem of the form

E(u) =

∫
Ω3

g(x) · u(x) dx+ α

∫
Ω3

|∇u(x)| dx (4.8)

s.t. u : Ω3 → [0, 1] with g(x) = ρin(x)−ρout(x). However, it was noted that
for such models the data term strongly pushes to the interval boundaries and
Zach [123] has shown that this leads to aliasing artefacts.

4.2 Contributions

We extend the variational range image integration approach presented by
Zach et al. [124] in several aspects. The isotropic (space-variant) diffusion
term is replaced by an anisotropic (direction-dependent) one, which is de-
signed to smooth along the evolving surface and evolving ridges in the cumu-
lative signed distance field but not across. This way it is possible to obtain
very smooth surfaces from noisy range images while preserving ridges and
corners. In contrast to Zach et al. and our previous work [94], we do not use
signed distances along the line of sight when converting range images into
3D distance fields. Instead, we compute the Euclidean signed distance to
the range surface. Furthermore, we adopt a more efficient storage of signed
distance values and we employ a different discretisation and a new numeri-
cal solver called Fast Jacobi. This allows for a fast parallel implementation
which we experimentally demonstrate by means of a GPU using CUDA. Al-
together, these changes allow for state-of-the-art results in the Middlebury
benchmark at a very competitive runtime.

4.3 Signed Distance Fields

A range image maps each location of the image domain Ω2 ⊂ R2 to a depth
value, which describes the distance from the camera centre to the surface of
the scene along the corresponding optical ray. Let us assume that a range
image r : Ω2 → R+ and the corresponding camera matrix

P = K
(
R t

)
(4.9)

are given. In volumetric range image integration methods [29, 124, 123], a
range image r is converted into a 3D signed distance field f by computing the
signed distance ` of a point x ∈ Ω3 ⊂ R3 along the line of sight. Computing
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Figure 4.2: Generally, the directional signed distance `(x) overestimates the
Euclidean signed distance d(x) to the range surface S and is a less accurate
approximation of the true distance to the object.

this directional signed distance is computationally inexpensive because it can
directly be evaluated as

`(x) = r
(
π(P x̃)

)
− |x− c|, (4.10)

where c corresponds to the camera centre and locations in front of the sur-
face are arbitrarily given a positive value. By x̃, we denote the homogeneous
version of x and π maps from homogeneous to Euclidean coordinates. How-
ever, Figure 4.2 illustrates that the directional signed distance `(x) generally
overestimates the Euclidean distance. Although directional distance and Eu-
clidean distance can coincide at certain locations, e.g. at the range surface
itself, problems occur when averaging and regularising multiple directional
signed distance values. Therefore, we propose to use a more accurate approx-
imation of the Euclidean distance to the object by computing the Euclidean
signed distance to the range surface S:

d(x) = sgn
(
`(x)

)
· inf
y ∈S
|x− y|. (4.11)

Since the range image and its corresponding projection are given, the range
surface S can directly be evaluated. The sign of the Euclidean distance is
determined by the sign of the directional signed distance. Alternatively, the
sign could also be determined using range surface normals as in [119].

We follow [124] for the remaining part of this section by scaling the signed
distance values with a factor of 1/δ and truncating them to the interval [−1, 1]:

f(x) = ψ
(
d(x)

)
with ψ(d) =

{
sgn(d) if |d| ≥ δ
d/δ else.

(4.12)
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The parameter δ thus reflects the expected uncertainty of the depth values.
We also use a binary weight w : Ω3 → {0, 1} associated with the signed
distance field f in order to assign low confidence to f at locations behind the
surface where d(x) < −η. The parameter η > 0 thus specifies how much of
the occluded region behind a surface is assumed to be solid.

4.4 Variational Signed Distance Field Inte-

gration

The cumulative signed distance function u : Ω3 → R is computed as the
minimiser of the energy

E(u) =

∫
Ω3

(
D(f ,w, u) + α S(∇u)

)
dx, (4.13)

containing n signed distance fields f = (f1, . . . , fn)> and the associated
weights w = (w1, . . . , wn)>. The data term D(f ,w, u) models the as-
sumption that u should be similar to all signed distance fields f , while the
smoothness term or regulariser enforces u to be smoothly varying in space
by penalising large gradients of u. Its influence is steered by the smoothness
weight α > 0. The desired surface geometry is then given by the zero level
line of the global minimiser u. Figure 4.3 illustrates a slice of such a global
minimiser u for a given 3D model.

Zach et al. [124] employ a robust L1 data term along with a total variation
(TV) smoothness term, such that data term and smoothness term are not
continuously differentiable and the resulting energy is not strictly convex.
Therefore, they introduce an auxiliary variable and solve a convex approx-
imation of this energy using a numerical scheme that combines the duality
principle for the TV term with a pointwise optimisation step.

4.4.1 Minimisation

Alternatively, it is possible to replace the absolute value function by the con-
tinuously differentiable and strictly convex approximation ΨD(s2) = ΨS(s2) =√
s2 + ε2 with a small regularisation constant ε > 0 yielding the data term

D(f ,w, u) =
n∑
i=1

wi ΨD

(
(u− fi)2

)
(4.14)

and the smoothness term

S(∇u) = ΨS

(
|∇u|2

)
. (4.15)
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Figure 4.3: Left: Dancing children 3D model taken from Berger et al. [15].
Middle: A single xy-slice of the cumulative scaled and truncated signed
distance function u. Right: Overlay of both.

The resulting energy approximates the TV-L1 energy by Zach et al. and is
strictly convex. Its minimiser necessarily fulfils the Euler-Lagrange equation

Du(f ,w, u)− α div
(
S∇u(∇u)

)
= 0 (4.16)

with the corresponding natural boundary condition

〈n, S∇u(∇u)〉 = 0, (4.17)

where n denotes the outer normal and S∇u = (Sux , Suy , Suz)
>. When intro-

ducing the abbreviations Ψ′i,D := Ψ′D
(
(u−fi)2

)
and Ψ′S := Ψ′S

(
|∇u|2

)
, data

and smoothness term derivatives are given by

Du(f ,w, u) = 2
(
u

n∑
i=1

wi Ψ
′
i,D −

n∑
i=1

wi Ψ
′
i,D fi

)
(4.18)

and

S∇u(∇u) = 2 Ψ′S∇u. (4.19)

4.4.2 Isotropic Regularisation

This choice of smoothness term leads to an isotropic regularisation: It is
space-variant but not direction-dependent. As stated, one obtains TV regu-
larisation for the choice of ε = 0. Especially in the case of 3D reconstruction,
this allows for a nice geometric interpretation of the regulariser. To this end,
let us first define the characteristic function χA of a set A ⊂ Ω as

χA(x) =

{
1 if x ∈ A
0 else.

(4.20)
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This allows to define the perimeter of A by means of the total variation of
the indicator function, i.e. Per(A) = TV(χA). Now the co-area formula by
Federer [34] and Fleming and Rishel [37] states that

TV(u) =

∫ +∞

−∞
Per
(
A(u, λ)

)
dλ, (4.21)

where A(u, λ) = {x ∈ Ω | u(x) < λ} corresponds to the λ-level set of u.
This shows that the TV regulariser sums up the length of all level lines. For
this reason, TV regularisation leads to minimal surfaces because it penalises
the perimeter of the level sets of u [24]. In the setting of 3D reconstruc-
tion, the perimeter of the zero level line of the implicit function u exactly
corresponds to the surface area of the 3D object. Increasing the smoothness
weight α thus results in reducing isolated small scale features and generating
low-genus isosurfaces instead of an increased smoothing of u. However, the
space-variant diffusivity Ψ′S ignores the surface orientation. Incorporating an
orientation dependent behaviour requires anisotropic smoothing [115], which
is discussed next.

4.4.3 Anisotropic Regularisation

In order to obtain an anisotropic smoothing behaviour, we modify the diffu-
sion term in the Euler-Lagrange equation (4.16) by replacing the smoothness
term derivative with

S∇u(∇u) = 2 Ψ′S(Jρ,σ)∇u. (4.22)

This essentially lifts the idea of Zimmer et al. [126], who modelled an aniso-
tropic disparity-driven stereo vision, to three dimensions. The matrix-valued
function Ψ′S is an extension of a scalar-valued function that is applied only
to the eigenvalues while leaving the eigenvectors unchanged, and

Jρ,σ := Kρ ∗ (∇uσ∇u>σ ) (4.23)

is the structure tensor [38]. Here, uσ := Kσ∗u, where ∗ denotes a convolution
with a Gaussian Kσ of standard deviation σ.

Apparently, the structure tensor Jρ,σ extends the tensor product ∇u∇u>

in two aspects: On the one hand, u is replaced by a smoothed version uσ,
which is obtained by performing a Gaussian convolution with standard de-
viation σ on u. Thus, σ acts like a noise scale because high frequencies are
attenuated due to the low-pass effect of Gaussian convolution. However, also
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Homogeneous
Region

Smooth Surface Ridge Corner

Figure 4.4: Visualisation of diffusion tensors as ellipsoids for different local
structures.

∇uσ is still sensitive to noise in case σ is chosen too small. If one selects
a σ that is too large, this will result in cancellation effects which is also
not desirable. As a remedy, another Gaussian convolution that acts on the
tensor entries is introduced. This poses the second difference between the
tensor product ∇u∇u> and the structure tensor. We denote the standard
deviation of the convolution acting on the tensor entries by ρ. It describes
the window size over which the orientations are aggregated and is commonly
referred to as integration scale.

Let us now discuss how the anisotropic smoothing behaviour adapts to the
local structure by considering the eigenvalues of the diffusion tensor Ψ′S(Jρ,σ)
for the following four cases:

(I) In homogeneous regions, all eigenvalues are equally large, which causes
homogeneous smoothing in all three directions.

(II) At smooth surfaces, one eigenvalue is close to zero, which leads to
anisotropic smoothing along the surface but not across.

(III) At ridges, i.e. oriented 1D structures in 3D space, only one eigenvalue
is large, resulting in smoothing along the ridge.

(IV) At corners, all eigenvalues vanish, which prevents smoothing.

Figure 4.4 visualises the diffusion tensors as ellipsoids, where the eigen-
vectors correspond to the semi-principal axes and the eigenvalues to the
respective equatorial radii.

The anisotropic regularisation can be interpreted as a generalisation of
the isotropic model, and it is straightforward to show that both coincide if
σ = ρ = 0. In this case, the structure tensor J = ∇u∇u> has rank 1. Thus,
its eigenvalues λ2 and λ3 vanish, and the remaining eigenvalue λ1 is given
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Figure 4.5: From left to right: (a) 3D model. (b) Bounding boxes of the
bounding volume hierarchy. (c) Overlay of 3D model and bounding volume
hierarchy.

by λ1 = trace(J) = |∇u|2. Its corresponding eigenvector is the normalised
image gradient v1 = ∇u

|∇u| . With this one can see that

Ψ′S(J)∇u = Ψ′S(∇u∇u>)∇u (4.24)

=
3∑
i=1

Ψ′S(λi)viv
>
i ∇u (4.25)

= Ψ′S(|∇u|2)
∇u∇u>

|∇u||∇u|
∇u (4.26)

= Ψ′S(|∇u|2)∇u, (4.27)

where we use the fact that v>2 ∇u = v>3 ∇u = 0, since the eigenvectors are
orthonormal.

4.5 Implementation

First we explain how signed distance fields can be efficiently computed and
stored. Subsequently, we focus on the numerical solution of the partial dif-
ferential equation (PDE) (4.16) that allows to integrate the individual signed
distance fields into a single 3D model. This also comprises the discretisation
as well as important aspects for a GPU implementation.

4.5.1 Signed Distance Fields

An axis aligned bounding box that contains all range surfaces is chosen as
domain of integration Ω3. It can be discretised by choosing a number of
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equidistant samples N = (N1, N2, N3)> in each direction, resulting in the
sampling distances h = (h1, h2, h3)> and N = N1 ·N2 ·N3 unknowns.

Efficient Computation of Signed Distance Fields. In order to set up
one of the multiple signed distance fields, we have to compute the distance
from a point to a triangle N ·M times when assuming that a range surface
is discretised by M triangles. This complexity of O(N ·M) causes severe
problems because common resolutions of 2003 voxels and 6 · 105 triangles
require almost 5 · 1012 computations. The resulting complexity essentially
consists of two parts, N and M . Thus, we use two strategies, each dealing
with one of the factors in order to greatly reduce the computational effort
when setting up the signed distance fields.

First, we use the directional signed distance as a heuristic for closeness
to the surface and only compute the Euclidean distance if |`i(x)| < c·δ for
some c ≥ 1. With this heuristic, we only need to compute the distance to
all M triangles in a much smaller number of locations N̂ , where typically
N̂ � N . Furthermore, we also expect N̂ to grow much slower than N .
Increasing the volume resolution in each dimension, we expect N̂ to grow
quadratically opposed to N , which grows cubically. Thus, we denote the
resulting complexity by O(N̂ ·M).

In order to account for the second factor, we accelerate the computation
of the Euclidean distance for a single voxel by organising the range surface in
a bounding volume hierarchy (BVH) in order to bring the complexity towards
O(N̂ ·log(M)) [84]. When choosing the shape of the bounding volume, one
has to take several factors into account. On the one hand, storing them and
computing distances to them should be cheap. On the other hand, we would
like to fit our input data tightly so that we avoid traversing uninteresting
subtrees. It hast turned out, that using axis aligned bounding boxes is often
preferable to using other shapes in practice. Thus, we also opt for axis aligned
bounding boxes.

For the BVH construction we employ a top-down approach. Starting
with the whole object, we fit an axis aligned bounding box to all triangles.
Then we split the bounding box in halves along the dimension where it has
the largest extent. We recursively repeat this logic for each of the bounding
boxes and stop recursing if a bounding box contains less triangles than a
specified maximal number of primitives or if the bounding box becomes too
small. Figure 4.5 shows a triangle mesh and the corresponding bounding
volume hierarchy.

Having such a bounding volume hierarchy, it is much more efficient to
compute the distance from a given point in space to the 3D mesh as the
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bounding boxes allow to quickly evaluate the smallest and the largest distance
possible to any triangle contained in them. This allows to prune a bounding
box and all its children as soon as its smallest distance is larger than the
largest distance of another bounding box. Note that a distance transform
with a quadratic structuring element in principle also allows for an efficient
evaluation of a distance function because it is separable. Unfortunately, this
is not directly applicable in this case because the distance transform cannot
directly work on the range images.

Efficient Storage of Signed Distance Fields. Storing all signed dis-
tance fields and their associated weights directly requires a huge amount of
memory. This is necessary to evaluate the nonlinearities stemming from the
data term

D(f ,w, u) =
n∑
i=1

wi ΨD

(
(u− fi)2

)
(4.28)

when ΨD is subquadratic. In order to reduce the memory requirement, one
can either employ a voxelwise runlength encoding [124] or a coarser quanti-
sation of the signed distances leading to a histogram based approach as in
[123]. Here one uses the fact that the signed distance fields are truncated to
the interval [−1, 1] and samples this interval evenly to obtain m bins with
centres cj. This allows to count the occurrences of measurement values ηj(x)
in each bin and to replace the data term (4.28) by

DH(η, c, u) =
m∑
j=1

ηj ΨD

(
(u− cj)2

)
. (4.29)

In this approximation, the measured signed distance fi(x) is effectively re-
placed by its closest bin centre. Choosing the number of bins m allows to
tune the accuracy of the approximation and usually a quite small number of
bins, such as 8 bins, yields a good approximation. Instead of having to keep
all input distance fields f , one only has to maintain a histogram with m bins
in each voxel and thus is independent of the number of input images used in
the minimisation step. This allows to efficiently solve problems containing
several hundred range images. Furthermore, the number of measurement
values in each bin ηj(x) is usually a sufficiently small integer number that is
cheaper to store than a floating point number.

Another quite drastic approach to cut down on memory requirements
is given by adjusting the data term to enforce similarity to the pointwise
weighted median of all measurement values at a given location. This can
also yield acceptable results and drastically reduce memory requirement.
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As the signed distance fields are truncated to the interval [−1, 1], it is
possible to implicitly encode a weight of zero by using a value outside of this
interval.

4.5.2 Numerical Solution

The elliptic PDE (4.16) allows to find a single signed distance function
that approximates all individual input fields while adhering to a well suited
smoothness assumption as discussed in Section 4.4.3. Its numerical solution
is a crucial part within the implementation and may consume by far the most
computation time compared to the other steps when done inefficiently. It is
possible to write (4.16) as

p(u)u− α div
(
D∇u

)
= q(u) , (4.30)

where u : Ω → R is the unknown solution and p(u) and q(u) are the
real-valued functions

p(u) =
n∑
i=1

wi Ψ
′
i,D and

n∑
i=1

wi Ψ
′
i,D fi (4.31)

with the abbreviation Ψ′i,D := Ψ′i,D ((u− fi)2). Furthermore D = Ψ′S(J) is
the diffusion tensor, where J ∈ R3×3 is the 3-D structure tensor, and the
matrix valued function Ψ′S yields the anisotropic behaviour.

Discretisation. After the discretisation on a regular grid, this corresponds
to a nonlinear system

(P (u)− αA(u))u = q(u) (4.32)

with N equations, where N is the number of voxels. The vectors u, q(u) ∈
RN are obtained by a spatial discretisation of the functions u and q(u),
respectively. Moreover, P (u) := diag(p(u)) ∈ RN×N with the discrete
version p(u) ∈ RN of p(u). The matrix A(u) ∈ RN×N is the 3D discrete
divergence operator. For its discretisation, we use the nonstandard approach
described by Weickert et al. [118] applied to the three dimensional setting.
Essentially, it uses the fact that the discrete divergence term A(u) has the
continuous counterpart div(D∇u) which is the negative functional gradient
of the energy

G(u) =
1

2

∫
Ω

∇u>D∇u dx. (4.33)
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Thus, one can first discretise (4.33) and then obtain A(u) as the negative
gradient of this discrete energy. The exact choice of discretisation is based
on a private communication with Joachim Weickert and Martin Welk.

Parallel Implementation on the GPU. In order the solve (4.32), we
use the fixed point iteration

uk+1 =
(
P (uk)− αA(uk)

)−1
q(uk) (4.34)

for k ∈ N and solve each resulting linear system using the Fast Jacobi algo-
rithm described in Section 2.4.2. It is perfectly suited for parallelisation since
in one iteration the voxels can be processed independent from each other. We
use CUDA and employ 3D textures and 3D surfaces for efficient processing
and good caching behaviour in 3D space. The old solution is bound to a tex-
ture for efficient read operations while the new one is bound to a surface for
efficient write operations. This has shown to be the favourable approach in
terms of implementation effort and computational efficiency when compared
to using global memory or shared memory. It is also straightforward to com-
pute the stencil weights corresponding to the entries of A(uk) in parallel. On
the GPU the amount of available memory is often a bottleneck. Although
the stencil contains 33 = 27 weights for each voxel, which indicates a large
memory requirement, we know that the central weight equals the negative
sum of all other weights and due to symmetry only half of the remaining 26
weights need to be stored.

Initialisation. Obviously, we can reach an accurate solution in less itera-
tions when we start with a better initial guess of the solution. To this end,
one can observe that the minimiser u is given by the pointwise weighted me-
dian of the signed distance fields when ignoring the smoothness term and
setting ε = 0. In general, the number of iterations required for convergence
can be greatly reduced when using this as an initialisation compared to an
initialisation with a constant value z ∈ [−1, 1]. If a voxel has never been
seen and the bounding box is chosen rather tight, it is most probable that
the voxel lies inside the object such that it is reasonable to initialise it with
−1. Alternatively, a coarse-to-fine approach can also be interpreted as a
means of obtaining a better initialisation on the finest level with a quite low
computational effort. It is well known that coarse-to-fine approaches can be
employed to speed up the convergence and in this case it depends on the
input data and the choice of the regularisation parameter α, which strategy
yields faster convergence.
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Figure 4.6: Colour code for reconstruction errors. Values of blue, green,
and red denote locations in front, on, and behind the ground truth surface,
respectively.

4.6 Experimental Results

First, we will cover the error measure commonly used in surface reconstruc-
tion and give some general guidelines for choosing the available parameters.
Then experiments show the benefit of using the Euclidean instead of the di-
rectional distance and an anisotropic instead of an isotropic regularisation.
Last but not least, we will demonstrate the advantage of a parallel GPU
implementation in terms of runtime.

Error Measure

Let us assume that both the 3D reconstruction and a ground truth model are
available as triangle meshes. Let us furthermore denote the reconstruction
by R and the ground truth mesh by G. In order to determine the accuracy
of the reconstruction, one would like to know the (signed) distances from all
points on R to G. However, in practice R is simply sampled at its vertices
[95]. A very insightful error visualisation is given by colour coding the recon-
structed mesh according to the error values. This allows to identify locations
where the reconstruction exhibits large errors and by considering the sign
of the distances in the colour code, one can also judge at which locations a
reconstruction tends to over- or underestimate the correct shape. Figure 4.6
depicts the colour code that we use. Blue corresponds to locations that lie
behind the ground truth and red denotes locations in front of the ground
truth. Green indicates that ground truth and reconstruction coincide.

In order to allow for a ranking, one usually aggregates the errors mea-
sured at each vertex in a statistic. Most commonly one reports the accuracy
as a distance belonging to a certain percentile, i.e. a distance d such that
x% of all distances are smaller than d. Although this measure of accuracy
allows to rank reconstructions, it is not symmetric since it only takes into
account the distances from the reconstruction to the ground truth but not
the distances from the ground truth to the reconstruction. This would favour
reconstructions that capture only a small part of the ground truth very ac-
curately. Instead of adapting the accuracy measure to account for this, Seitz
et al. [95] additionally measures the completeness of the reconstruction. To
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Figure 4.7: From left to right: (a)-(c) A sphere was reconstructed from
synthetically generated range images with δ = 0, δ = |h|/4, and δ = |h|
using Euclidean signed distances.

this end, they consider the fraction of vertices on the ground truth G that
are within an allowable distance to the reconstruction. Points on G that are
further away are considered as not covered. Thus, this distance has to be
chosen to account for reasonable reconstruction errors.

Guidelines for Choosing the Parameters

The parameters δ and η denote the relevant region close to the surface and
the occluded region behind the surface, respectively. When choosing δ < |h|,
subvoxel accuracy that was originally present in the range image is lost in the
signed distance field due to the truncation of distances. Therefore, one can
see increasing staircasing artefacts when δ goes from |h| towards zero (see
Figure 4.7(a)-(c)) and it is advisable to choose δ ≥ |h|. Additionally, it makes
sense to adapt δ in such a way that it reflects the expected measurement error
in the depth maps. Choosing η involves a tradeoff: On the one hand, η should
be as small as possible to avoid influencing surfaces on the other side. On
the other hand, η has to be large enough to allow for sign changes in the
signed distance field.

Directional Distance vs. Euclidean Distance

In Figure 4.8(b) one can see artefacts on a sphere that was reconstructed
from 48 ground truth range images using directional signed distance values.
Figure 4.8(a) shows a visualisation of the error values, where blue corre-
sponds to a negative, red to a positive error value and green corresponds to
an error of zero. The error for a vertex is given by its distance to the ground
truth according to the error measure for accuracy which we explained in the
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Figure 4.8: A sphere was reconstructed from synthetically generated range
images with δ = |h|. From top left to bottom right: (a) Reconstruc-
tion using Euclidean distance (b) Reconstruction using directional signed
distances (c) Error visualisation for (a) (d) Error visualisation for (b)

beginning of this section and which is also used in the Middlebury Bench-
mark [95]. The minimum and maximum error values have been mapped to
blue and red, respectively. Only when using the Euclidean distance to the
range surface, one can obtain an accurate reconstruction without artefacts
(see Figure 4.8(c),(d)). It is important to note that even in the case of perfect
range images without any noise, the directional signed distance can introduce
reconstruction errors. For a given voxel, one does not obtain the true Eu-
clidean distance for each camera but a distribution of distance values that
depends on the scene geometry as well as the camera position.

Benefits of Anisotropic Regularisation

We have reconstructed two different 3D objects taken from [15] using 48
synthetically generated range images. In order to account for measurement
errors as they often occur in modern depth cameras, Gaussian noise has
been added along the line of sight. Figure 4.9 and Figure 4.10 show recon-
structions using no regularisation, isotropic regularisation, and anisotropic



68 CHAPTER 4. RECONSTRUCTION FROM DEPTH MAPS

regularisation. The first two strategies correspond to the methods of Curless
and Levoy [29] and Zach et al. [124], respectively. The latter one has been
proposed by us.

When using no regularisation, the reconstructed surface is very rough,
there is a noticeable amount of isolated clutter, and there is a large amount
of locations with high errors (see red and blue regions in Figure 4.9). While
the isotropic regularisation allows to get a much smoother reconstruction,
wrinkles are still well visible on the surface and there is still a relatively big
region containing large errors. In contrast to this, the anisotropic regulariser
is able to produce a very smooth surface without any visible wrinkles. Fur-
thermore, it also allows to greatly reduce the area of regions that contain a
large error. Figure 4.10 shows that the TV smoothness term is also able to
preserve the ridges but cannot achieve a comparable smoothness in the flat
regions.

This also holds for the reconstructions of the full Dino dataset (cf. Fig-
ure 4.11) from the Middlebury benchmark depicted in Figure 4.13 (b) and (c).
We have used the Euclidean distance when converting the range images into
signed distance fields, and we have computed depth maps according to the
method of Valgaerts et al. [108]. Compared to the method of Zach [123], we
are able to significantly improve the accuracy from 0.55mm to 0.33mm (see
also http://vision.middlebury.edu/mview/). In fact, only the currently
leading approach of Furukawa and Ponce [40] is able to obtain a slightly
higher accuracy of 0.32mm at this time for the full dataset. However, the
reconstruction of Furukawa is not able to achieve a similar smoothness, such
that our reconstruction is visually closer to the ground truth (see Figure
4.13 (a)). Table 4.1 additionally lists the error values for the Dino Ring and
the Dino Sparse Ring datasets and Figure 4.12 shows reconstruction results.
Here one can observe that the type of approach that we employ is best suited
for scenarios where many input images are available. As mentioned, our ap-
proach is well suited for a parallel implementation which we will demonstrate
in the next experiment.

Benefits of Parallel Implementation

In this experiment, we compare the running times of a sequential CPU and a
parallel GPU implementation of the Fast-Jacobi algorithm [10] for solving the
arising linear systems (4.34). The runtime comparison is shown in Table 4.2,
where we have used a 3.2 GHz Intel Xeon processor and a single GPU of the
NVIDIA GeForce GTX 690, respectively. The number of unknowns directly
corresponds to the number of voxels which itself depends on the resolution

http://vision.middlebury.edu/mview/
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Accuracy Completeness

Dino Full 0.33 99.7%

Dino Ring 0.33 99.7%

Dino Sparse Ring 0.54 98.6%

Table 4.1: Accuracy and completeness for the Dino dataset from the Mid-
dlebury benchmark (see also http://vision.middlebury.edu/mview/).

Table 4.2: Computing times in seconds for the sequential CPU and the par-
allel GPU implementation of the Fast-Jacobi algorithm.

resolution CPU [s] GPU [s] speed up factor

643 30.03 0.31 96.9

1283 239.70 1.70 141.0

2563 2006.05 12.93 155.1

that was specified. Here, we have used the well known Stanford bunny1 as
our test object. We have measured runtimes for reconstructions with up to
2563 ≈ 16·106 unknowns. As we see in Table 4.2, the parallel implementation
is up to 155 times faster than its sequential counterpart. In conclusion, this
experiment illustrates that the Fast-Jacobi algorithm is very well suited for
parallelisation.

4.7 Limitations and Discussion

By construction, we are required to solve a nonlinear system composed of
N = N1 · N2 · N3 equations. Thus, the required amount of memory grows
cubically when increasing the resolution in each dimension. Therefore, it
can be difficult to use methods that find an implicit representation of the
3D surface in a globally optimal way in large scale scenarios, for example in
the reconstruction of whole cities. However, adaptive data structures such
as octrees may be a remedy in this case or one could try to compute several
smaller reconstructions and fuse these reconstructions in another step. Multi-
view stereo settings where only a few images are available tend to be the most

1taken from the Stanford 3D scanning repository [103]

http://vision.middlebury.edu/mview/


70 CHAPTER 4. RECONSTRUCTION FROM DEPTH MAPS

challenging ones. However, as our method scales very well in the number of
range images provided a simple remedy is given by capturing more input
data.

4.8 Summary

We have extended the variational range image integration method of Zach et
al. [124] in several aspects. On the one hand, we have employed an anisotropic
regulariser that outperforms the existing isotropic one. It can produce much
smoother surfaces while preserving ridges and corners. On the other hand,
the signed distance fields were generated from range images by computing the
Euclidean signed distance to the range surface instead of evaluating the di-
rectional signed distance along the line of sight. In the experimental section,
we could show that these modifications were able to improve the reconstruc-
tion quality. Furthermore, we have presented a parallel GPU implementation
that allows for competitive runtimes.
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Figure 4.9: Reconstructions of the dancing children model taken from [15].
From top to bottom: No regularisation. Isotropic regularisation with
α = 3. Anisotropic regularisation with α = 1, σ = 0.9, and ρ = 1.5. From
left to right: Reconstructed surface. Errors w.r.t. the ground truth surface
using the colour code shown in Figure 4.6.
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Figure 4.10: Reconstructions of the anchor model taken from [15]. From
top to bottom: No regularisation. Isotropic regularisation with α = 3.
Anisotropic regularisation with α = 3, σ = 0.2, and ρ = 0.6. From left to
right: Reconstructed surface. Errors w.r.t. the ground truth surface using
the colour code shown in Figure 4.6.
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Figure 4.11: Four out of the 363 images that are available in the full dataset
of the Middlebury benchmark. Each image has a resolution of 640 × 480
pixels.

Figure 4.12: Front and back view of the reconstruction results for the Dino
model from the Middlebury benchmark. Columns from left to right: Full
dataset. Ring dataset. Sparsering dataset. The corresponding error values
are shown in Table 4.1.
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(a) Furukawa [40] (b) Zach [123]

(c) Our method (d) Ground truth

Figure 4.13: Compared to the reconstruction of the leading method of Fu-
rukawa and Ponce [40] as well as the method of Zach [123], our approach
creates a smoother surface that better resembles the ground truth in a visual
comparison. This is especially visible in the zooms that are shown below the
respective reconstruction.



Chapter 5

Surface Reconstruction from
Image Sequences

This chapter is concerned with computing 3D reconstructions from images
of a moving camera where the camera pose is not known (see Figure 5.1).
Many of the existing algorithms for this task rely on sparse features. Such
methods have to carefully select the most appropriate data and eliminate
outliers. On the other hand, dense methods do not have to put effort into
selecting the best data but rather draw their robustness from using all data.
They have made significant progress in the last decade and belong to the
leading approaches for optical flow computation; see e.g. [13]. Moreover,
dense strategies can also be on par with sparse methods for other problems
such as the estimation of the fundamental matrix [109]. Motivated by these
achievements, we construct a pipeline for 3D reconstruction that consistently
relies on dense methods: It does not require sparse features at any point. The
pipeline can be divided into three stages. (i) First we compute dense corre-
spondences and the fundamental matrix for each consecutive image pair in a
joint approach. Every pairwise estimate generally has its own scale. To esti-
mate a consistent motion sequence these scales have to be unified. (ii) Thus,
in the second step, we first connect a number of pairwise estimates and sub-
sequently perform a global refinement with bundle adjustment. (iii) Finally,
we refine the depth maps and merge them into a 3D model using anisotropic
range image integration.

In contrast to many existing approaches for camera motion estimation
that rely on feature descriptors, our novel pipeline uses state-of-the-art dense
variational methods in every part of the process of reconstructing a 3D object
from unregistered cameras. This is especially advantageous in sequences with
less texture and many similar structures, where unordered feature matching
is difficult. The main ideas of this chapter have been published in [5].

75
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Figure 5.1: Given a number of input colour images captured by a camera
following a continuous path along with its intrinsic camera parameters (left),
the goal is to estimate the camera motion and a 3D reconstruction of the
scene or object (right).

Organisation of the Chapter. After discussing related work and our
contributions, Section 5.3 presents our dense reconstruction pipeline and ex-
plains each stage in detail. Section 5.4 then evaluates its performance before
describe limitations and possible remedies (Section 5.5). Finally, we conclude
with a summary in Section 5.6.

5.1 Related Work

Based on the problem statement of this chapter and the chosen solution
strategy, there are two classes of methods that are closely related: On the one
hand we have structure from motion (SfM) or simultaneous localisation and
mapping (SLAM) approaches and on the other hand range image integration
techniques. The latter ones have already been described in the previous
chapter 4.1. Therefore, we will only focus on the former ones here.

There are many algorithms that simultaneously estimate camera poses
along with the structure of a scene. Approaches that are tailored to work
with unstructured input data often apply a robust detection and matching
of feature points. These matches are first used to find initial geometric rela-
tionships between views and subsequently form the basis for a global bundle
adjustment step; see e.g. [12, 11]. In this scenario, the term structure from
motion is more prevalent. On the other hand, methods that are designed
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for continuous image sequences or video streams often track feature points
from frame to frame and perform pose optimisation iteratively. These types
of approaches are mostly referred to as SLAM and they are more closely
related to our scenario in the sense that we also assume a camera that is
moving continuously while capturing a static scene. SLAM originally comes
from the area of robotics and refers to the process of a mobile robot build-
ing a map of some environment while at the same time using this map to
determine its own location [31]. However, it is also widely used for tracking
a position of a camera in general.

A very prominent algorithm from this category is the parallel tracking
and mapping (PTAM) algorithm by Klein and Murray [61]. It tracks sparse
features of the scene and creates a map of the environment. With this map
the new camera pose is estimated depending on the matched features. New-
combe et al. [80] follow a similar tracking approach, but use a dense scene
model instead of a sparse feature map in their dense tracking and map-
ping (DTAM) method. This way, they achieve a higher robustness to rapid
motion. However, they still need standard point features to initialise their
tracking algorithm. In order to describe such point features one can employ
the well-known SIFT descriptor by Lowe [73], or one of the many modifica-
tions such as SURF [14] or GLOH [78]. Direct SLAM methods on the other
hand do not require detection and tracking of features. Engel et al. [32]
recover semi-dense inverse depth maps based on photoconsistency in their
large scale direct (LSD-SLAM) approach for example.

Instead of using colour images for tracking, also depth maps can be suc-
cessfully employed for this task. Newcombe et al. [79] present a tracking
algorithm based on dense depth frame alignment, and Izadi et al. [57] in-
vestigate a similar approach that focuses on reconstruction. Zhou et al. use
points of interest to reconstruct a dense model from range images [125]. They
employ a global optimisation scheme which protects parts of the scene that
have been scanned already. This leads to more consistent and detailed re-
constructions. The disadvantage of depth sensors is their typically lower
resolution compared to RGB images. Moreover, these algorithms are only
applicable if depth data is available which cannot generally be assumed.

5.2 Contributions

We present a novel 3D reconstruction pipeline that allows to obtain both the
camera motion as well as a watertight 3D model of the object or scene that
was observed. It solely requires a sequence of colour images captured from
a camera that follows a continuous path as well as the intrinsic parameters
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of the camera. Our pipeline does not rely on sparse features at any point
and consistently makes use of dense methods. It consists of three main steps
of which each single one minimises a suitable energy functional such that
the modelling choices are very transparent throughout the whole pipeline.
We experimentally present advantages compared to methods that rely on
sparse features and are able to outperform them quantitatively in terms of
the achieved error. The implementation for the concatenation of flow fields
as well as the error computation of the camera poses has been provided by
Timm Schneevoigt [93].

5.3 Dense Reconstruction Pipeline

This section describes the three steps of our dense 3D reconstruction pipeline
and explains how they can be connected. First, we discuss how to obtain
correspondences and epipolar geometry for all consecutive image pairs fol-
lowing a joint approach. Then we describe how we connect this pairwise
information to compute a globally consistent camera motion with the help
of bundle adjustment. Finally, we explain how this enables us to construct
a high quality 3D model using anisotropic range image integration.

5.3.1 Correspondences and Epipolar Geometry

As we assume a static scene, the only scene element that moves is the cam-
era itself. Therefore, the moving camera can equivalently be understood as
multiple identical cameras that capture the scene from different positions at
the same time. In this chapter, we assume that there is no knowledge about
the camera movement other than that contained in the images. In order to
cope with this, we use an anisotropic version of the joint method of Valgaerts
et al. [109]. It is capable of estimating dense point correspondences and the
associated fundamental matrix at the same time. Besides obtaining the fun-
damental matrix, this has the inherent advantage that the correspondence
search is simplified as it is guided by the evolving epipolar constraint. The
flow field w : Ω→ R2 over the image domain Ω between two images fi, fi+1

and the fundamental matrix F ∈ R3×3 are found as a minimiser of a suitable
energy in this joint approach [109]:

E(w,F ) = ED + αES + βEE . (5.1)

Here ED is the data term, ES the smoothness term, and EE denotes the
epipolar term. The weights α, β > 0 balance the individual terms. In the
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data term we assume brightness and gradient constancy for all image points,
expressed by the first and second line of the following data term, respectively:

ED(w) =

∫
Ω

Ψ
(
|fi+1(x+w)− fi(x)|2 (5.2)

+ γ|∇fi+1(x+w)−∇fi(x)|2
)
dx ,

with a sub-quadratic penaliser function Ψ(s2) =
√
s2 + ε2 and a positive

weight parameter γ ∈ R that balances brightness and gradient constancy
assumptions.

To obtain a smooth flow fieldw = (u, v)T , Valgaerts et al. [109] employed
an isotropic flow-driven regulariser with sub-quadratic penalisation. To ob-
tain better performance, we use a flow-driven anisotropic regulariser [116]

ES(∇w) =

∫
Ω

tr
(

Ψ
(
∇u∇uT + ∇v∇vT

) )
dx , (5.3)

where tr is the matrix trace operator, and Ψ is an extension of the scalar
valued function that acts on the eigenvalues of the matrix. The epipolar term
directly couples the flow field w with the fundamental matrix F :

EE(w,F ) =

∫
Ω

Ψ

((
x+w

1

)T
F

(
x
1

))
dx . (5.4)

In this way it softly constrains the correspondences to fulfil an epipolar con-
straint. Note that the trivial solution of F = 0 has to be excluded by
imposing a constraint on the Frobenius norm |F |2F = 1.

As in [109], we employ the method of Lagrange multipliers to solve the
constrained optimisation problem (5.1) subject to |F |2F = 1. Thus, we have
to find critical points for which the functional derivatives of the Lagrangian
vanish. This comes down to solving a system of equations, which in this case
can be achieved by iterating between optical flow computation and funda-
mental matrix estimation. In the first iteration, we can simply use a zero
matrix as initialisation for the fundamental matrix. This corresponds to
switching off the epipolar constraint such that the fundamental matrix is
recovered from pure optical flow in the first iteration.

5.3.2 Constraints over Multiple Images

After processing all subsequent image pairs of the sequence as discussed in
the previous subsection, we obtain fundamental matrices that describe the
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epipolar geometry for each image pair along with dense point correspon-
dences (flow field). Since we assume that the cameras are calibrated, i. e.
the intrinsic parameters are known, we can extract the relative pose of a
canonical camera pair from each estimated fundamental matrix as described
in Section 2.2.3. The main problem at this stage is merely the remaining
scale ambiguity for each pairwise estimate.

To find a mutually consistent scale we have to enforce a set of constraints
that connects the whole image sequence. Each constraint has to span at least
three images to contribute to a consistent scale. To build such constraints,
we construct point trajectories by simply adding up flow vectors. Let us
assume we would like to start a trajectory at location x in the i-th image.
Then the location in the next image is given by

xi+1 = xi +wi(xi). (5.5)

We keep extending the trajectory in this manner and estimate displacement
vectors between the flow field’s grid positions by bilinear interpolation. We
follow the idea of Sundaram et al. [106] and test the validity of the resulting
trajectories with a forward-backward flow consistency check. If there are no
occlusions and the flow was correctly estimated, we expect that forward flow
wi and backward flow ŵi add up to zero

wi(xi)− ŵi(xi+1) = 0. (5.6)

Thus, if the sum of forward and backward flow is too far away from zero,
this is a good reason to stop extending the trajectory. To account for small
estimation errors in the optic flow, we check whether

|wi − ŵi|2 < σ · (|wi|2 + |ŵi|2) + µ. (5.7)

Besides having a fixed threshold µ, the factor σ allows to increase the toler-
ance with motion magnitude. In practice, µ = 0.5 and σ = 0.01 work well.
Furthermore, regions of large flow gradients can originate from flow bound-
aries, where the estimates are less reliable. We also exclude such regions from
our computation by the criterion

|∇ui|2 + |∇vi|2 > σ · |wi|2 + µ (5.8)

with µ = 0.002 and σ = 0.01 as proposed by Sundaram et al. Even with
highly accurate optical flow and despite the mentioned consistency checks,
estimation and interpolation errors add up at some point. Therefore, we
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propose to limit the length of trajectories to a fixed value. However, short
trajectories that connect only two frames may still help to improve or preserve
the initially estimated relative scene geometry, even if it does not contribute
to obtaining a unified scale directly.

Unlike Sundaram et al., we do not limit the sampling of trajectory starting
points to well textured regions. Since the idea of dense optical flow is to
provide meaningful displacements even in less textured regions, we spare
this additional filtering effort. In our experiments, we show that a simple
uniform subsampling can be used to decrease the computational effort and
that this can even lead to more accurate results when compared to the texture
based sampling. The trajectory points should just lie on the scene object.
Background regions are filtered out by given masks, which typically can be
obtained by image segmentation approaches.

5.3.3 Bundle Adjustment

In order to find a consistent camera motion, we would like to adapt all camera
poses to minimise the reprojection error induced by the point trajectories.
This task is known as bundle adjustment [107]. Let us have a closer look at
the formulation of the corresponding cost function, its minimisation, and its
parameterisation.

Cost Function

As stated, the cost function for bundle adjustment should penalise deviations
between observed locations and predicted locations in the image. To this end,
let us assume that there are K cameras Pi with i = 1, . . . , K and that we
have created N trajectories by adding up flow vectors in the previous step.
Each trajectory has to describe the observation of the same 3D point over
several images. Therefore, there are also N 3D points Xi with i = 1, . . . , N
involved. Each trajectory can have a length of K at most. This means
that every 3D point Xi was observed in all images, leading to L = N · K
2D observations mi with i = 1, . . . , L in the image plane. However, due to
visibility constraints and due to the fact that we usually limit the maximum
length of trajectories, the number of observations L will be much smaller in
practice such that L � N · K holds. In order to relate measurements mi,
3D points Xi and cameras Pi, we define the two maps

η : [1, . . . , L]→ [1, . . . , N ] and κ : [1, . . . , L]→ [1, . . . , K]. (5.9)

They specify to which camera and to which 3D point the i-th measure-
ment belongs, respectively. Thus, the observation mi should correspond to
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projecting the 3D point Xκ(i) into camera Pη(i). This allows to define the
reprojection error as

ri(x) = mi − π
(
Pη(i)X̃κ(i)

)
, (5.10)

where π maps from homogeneous to Euclidean coordinates, and x contains
all unknown camera parameters ξi ∈ R6 and 3D points Xi ∈ R3, i.e.

x =
(
ξ>1 , . . . , ξ

>
K ,X

>
1 , . . . ,X

>
N

)>
. (5.11)

Besides the number of cameras K and the number of 3D points N , the num-
ber of unknowns that is contained in x also depends on the parameterisation
of the cameras Pi. We will have A = 3N + 6K unknowns because we have
parameterised the camera Pi to have six degrees of freedom ξi = (ω>i , t

>
i )>

where ωi represents the rotation and ti the translation. Note that we con-
sider the intrinsic camera parameters as given in this scenario. The cost
function then reads

C(x) =
L∑
i=1

|ri(x)|2 = |f(x)|2 (5.12)

with f(x) = (r>1 (x), . . . , r>L (x))>. Bundle adjustment, i.e. the procedure of
minimising C(x) for all unknown 3D points and camera parameters x, thus
comes down to solving the non-linear least squares problem

argmin
x∈RA

|f(x)|2 . (5.13)

Thus, we briefly cover standard approaches for solving non-linear least squares
problems and then specifically focus on the bundle adjustment problem.

Minimisation

The Gauss-Newton method is a very common approach to tackle nonlinear
least squares problems. It turns the task of solving a nonlinear problem into
the much simpler task of solving a series of linear problems. To this end,
Taylor’s theorem is used to rewrite the original problem (5.13) by linearising
around a point xk. This gives

argmin
∆x ∈ RA

∣∣f (xk)+ J
(
xk
)

∆x
∣∣2 (5.14)
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with ∆x = xk+1−xk and J denoting the Jacobian of f . The solution of the
linear least squares problem with respect to the increment ∆x is given by

∆x = −
(
J
(
xk
)>
J
(
xk
))−1

J
(
xk
)>
f
(
xk
)
. (5.15)

With this, one computes the new solution xk+1 = xk + ∆x and repeats this
process until a stopping criterion is reached. Typical stopping criteria involve

checking whether |∆x| < ε or |J
(
xk
)>
f
(
xk
)
| < ε, where ε is some small

constant and J
(
xk
)>
f
(
xk
)

= 1/2∇C
(
xk
)

corresponds to a scaled version
of the gradient of the energy (5.12) that one wants to minimise. The Gauss-
Newton method can also be interpreted as performing the Newton method
for ∇C(x)

∆x = −H−1 ∇C(x), (5.16)

where the Hessian H is approximated using the product 2J>J of the Jaco-
bian. Levenberg [70] suggested to replace (5.15) by a damped version

∆x = −
(
J
(
xk
)>
J
(
xk
)

+ λI
)−1

J
(
xk
)>
f
(
xk
)
, (5.17)

which corresponds to adding the term λ|∆x|2 to the Energy 5.14 in order to
force small increments. For λ = 0, it obviously corresponds to the standard
Gauss-Newton method and for very large λ it turns into gradient descent
on (5.12). The non-negative damping factor λ is usually adjusted at each
iteration and allows to enforce a decrease in C(x) in each step. This way, it
is possible to interpolate between Gauss-Newton and gradient descent which
renders this approach more robust in terms of finding a solution even with
a bad initialisation. Marquardt [77] replaced the identity matrix by the
diagonal entries of J>J in order to improve convergence yielding the iteration
instruction

∆x = −
(
J>J + λdiag

(
J>J

))−1
J>f , (5.18)

where we have omitted the dependency on xk for better readability.

Problem Structure

Let us first inspect the structure of the Jacobian J and J>J for the bun-
dle adjustment problem before dealing with the parameterisation and the
computation of individual partial derivatives. Figure 5.2 shows the sparsity
pattern for a simple example with L = 7 observations, K = 3 cameras, N = 3
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Figure 5.2: Structure of the Jacobian J (left) and J>J (right) for the bundle
adjustment problem in a small toy example. Grey squares denote nonzero
entries in the matrices.

3D points, and the mappings

η = {(1, 1), (2, 2), (3, 3), (4, 1), (5, 2), (6, 2), (7, 3)} , (5.19)

κ = {(1, 1), (2, 1), (3, 1), (4, 2), (5, 2), (6, 3), (7, 3)} , (5.20)

that specify to which camera and to which 3D point a measurement belongs,
respectively. Typically, the Jacobian has a very sparse structure, since each
ri only depends on a single camera and a single 3D point. Thus, each row
of the Jacobian is zero everywhere except at the columns that belong to the
corresponding unknown camera parameters Pη(i) or the unknown 3D point
Xκ(i). Due to the structure of J , we can express

J>J =

(
U W
W> V

)
, (5.21)

where U and V are block diagonal matrices. The individual blocks on the
diagonal of U are in our case given by the 6× 6 matrices

Ukk =
L∑
i=1

η(i)=k

∂ri
∂Pk

> ∂ri
∂Pk

(5.22)
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that aggregate the partial derivatives w.r.t. the camera parameters of all
observations that are in the k-th camera for k = 1, . . . , K. We will discuss
the evaluation of the occurring partial derivatives in the next section where
we get to the parameterisation of camera motion and focus on the problem
structure in this section. The blocks on the diagonal of V are given by the
3× 3 matrices

Vjj =
L∑
i=1

κ(i)=j

∂ri
∂Xj

> ∂ri
∂Xj

(5.23)

that aggregate the partial derivatives w.r.t. the 3D point positions of all
observations of the j-th 3D point for j = 1, . . . , N . If there exists a measure-
ment i that connects the j-th 3D point with the k-th camera, i.e. η(i) = k
and κ(i) = j, then

Wkj =
∂ri
∂Pk

> ∂ri
∂Xj

. (5.24)

Otherwise we have Wkj = 0. Thus, the sparsity of W depends on how
cameras and 3D points are connected through observations. If all 3D points
were visible in all cameras, W would be dense. However, especially when the
problems grow larger involving many cameras, W tends to be very sparse.

Parameterisation and Partial Derivatives

Previously, we have discussed the structure of J and J>J . However, we have
not yet treated how the individual partial derivatives of

ri(x) = mi − π
(
Pη(i)X̃κ(i)

)
(5.25)

can be computed. To this end, we can w.l.o.g. drop the index i for notational
convenience and simply consider a single residual that only depends on the
parameters of the corresponding camera Pη(i) and the corresponding 3D point

X̃κ(i). This can be written as

r(X,ω, t) = m− π
(
K
[
exp(ω̂)R t

]
X̃
)
, (5.26)

where ω̂ ∈ so(3) is an element of the Lie algebra, and exp : so(3) → SO(3)
maps from the Lie algebra to the Lie group; see Section 2.1.2. Furthermore,
we have used the forward compositional formulation for representing the
camera rotation as in [80, 32]. This means the rotation is described as the
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composition of a known rotation R and an unknown incremental rotation
exp(ω̂). In our case, we initialise the known rotation based on the camera
rotation extracted from the essential matrices as described in Section 2.2.3.
As soon as an increment is computed, the known rotation is updated with
the rule

R← exp(ω̂)R (5.27)

and the next incremental rotation is computed until convergence is reached.
With this strategy one always linearises around ω = 0 in order to obtain the
incremental rotation and thus only has to evaluate the partial derivatives at
ω = 0. More specifically, we have

∂r(X,ω, t)

∂ωm

∣∣∣∣
ω=0

= − ∂π(a)

∂a

∣∣∣∣
a=K

(
R t

)
X̃

K
(
∂exp(ω̂)
∂ωm

∣∣∣
ω=0

R 0
)
X̃

(5.28)
for the partial derivatives w.r.t. the camera rotation with m = 1, 2, 3. As
explained in 2.1.2, the partial derivatives

∂exp(ω̂)

∂ωm

∣∣∣∣
ω=0

(5.29)

are simply given by the group generators. Using this fact allows to rewrite
the above expression and to conveniently express the partial derivative w.r.t.
all ω = (ω1, ω2, ω3)> as

∂r(X,ω, t)

∂ω

∣∣∣∣
ω=0

= − ∂π(a)

∂a

∣∣∣∣
a=K

(
R t

)
X̃

K(−[RX]×). (5.30)

The derivative w.r.t. the translation t is given by

∂r(X,ω, t)

∂t

∣∣∣∣
ω=0

= − ∂π(a)

∂a

∣∣∣∣
a=K

(
R t

)
X̃

K, (5.31)

and the derivative w.r.t. the 3D point X is given by

∂r(X,ω, t)

∂X

∣∣∣∣
ω=0

= − ∂π(a)

∂a

∣∣∣∣
a=K

(
R t

)
X̃

KR . (5.32)

Robustification and Solvers. To deal with outliers, it is a straightfor-
ward approach to robustify the Energy 5.12 by means of a subquadratic
penaliser function Ψ:

C(x) =
L∑
i=1

Ψ
(
|ri(x)|2

)
. (5.33)
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Following the same strategy as before, one obtains the modified update equa-
tion

∆x = −
(
J
(
xk
)>
W
(
xk
)
J
(
xk
))−1

J
(
xk
)>
W
(
xk
)
f
(
xk
)
, (5.34)

when using the lagged diffusivity method [41, 25]. Compared to (5.15), it
contains an additional diagonal matrix W (xk) that contains the weights
Ψ′
(
|ri(xk)|2

)
. Alternatively, this can also be interpreted as an iteratively

reweighted least squares approach where in each iteration the weights are
computed based on the previous solution and subsequently a weighted least
squares fit is performed.

The (sparse) Cholesky factorisation is a common approach to solving the
resulting linear systems [107, 49, 33, 72]. However, also iterative solvers
have been successfully applied in the bundle adjustment problem [11, 20,
12, 121]. It is possible to obtain a reduced camera or structure system that
only contains unknowns either concerning the camera parameters or the 3D
points by using Gauss elimination. The remaining unknowns can be found
by back substitution in a second step. This allows to solve two smaller linear
problems instead of a single large one and is known as the Schur complement
trick [19].

Implementation Details

After processing all subsequent image pairs of the sequence, we concatenate
the pairwise poses (R̂k, t̂k) that specify the rotation and translation relative
to the previous camera one by one to form an initial scene model. The
absolute camera poses in this initial scene model are thus simply given by(

Rk tk
0 1

)
=

k∏
l=1

(
R̂l t̂l
0 1

)
. (5.35)

Furthermore, we triangulate the depth of one 3D point for each point trajec-
tory to serve as an initialisation. This initial scene model is then refined by
enforcing the constraints imposed by the point trajectories. To this end, we
minimise the reprojection error at each trajectory point by adjusting the tri-
angulated scene point coordinates and the camera poses according to (5.12).
We stop when either a gradient threshold or a fixed number of maximum it-
erations is reached. In our experiments, less than 60 iterations were sufficient
yielding average reprojection errors that were much smaller than a pixel.

To estimate initial 3D scene points, we use the first two frames containing
a trajectory thus adopting their local scale. Since badly triangulated scene
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points resulting from very small baselines or difficult object geometry may
harm the optimisation, we propose to exclude points that are triangulated
to implausible depths by using a threshold. However, it is also possible to
choose a different camera pair instead, in order to perform the triangulation.

5.3.4 Range Image Integration

From the optimisation with bundle adjustment explained in the previous
section, we have obtained a globally consistent estimation of camera motion.
In return, we can now use this knowledge to compute fundamental matri-
ces that are in accordance with the global estimation for each image pair.
Then we minimise the energy from Equation 5.1 again, but this time we keep
the fundamental matrix fixed, i.e. we only minimise w.r.t. the flow w. By
putting a high weight on the epipolar term, we can elegantly make use of
the fact that stereo matching constitutes a 1D search problem only without
requiring image rectification. This high weight allows to constrain the cor-
respondences to closely obey the epipolar constraint. These correspondences
define registered depth maps, which can be merged using variational range
image integration techniques. To this end we define a 3D bounding box of
interest Ω3 and compute a signed distance field g within it for each input
depth map. In the second step we find a cumulative signed distance function
u : Ω3 → R as a minimiser of the energy

E(u) =

∫
Ω3

( K∑
i=1

ci Ψ((u− gi)2) + α S(∇u)

)
dx, (5.36)

where ci are confidence weights. The unknown surface is then given by the
zero level set of u. We employ the anisotropic range image integration algo-
rithm described in the previous chapter. It incorporates a direction depen-
dent smoothing behaviour that is capable of creating smooth surfaces while
preserving ridges and corners.

5.4 Experimental Results

In order to evaluate our approach, we require a number of image sequences
with ground truth camera poses available as well as an error measure. With
this at hand, we will first conduct experiments to find preferable parameter
settings for building trajectories and then compare our dense method to a
sparse feature tracker. To this end, we have selected the popular Voodoo
Camera Tracker (VCT) [111], which uses the Kanade-Lucas-Tomasi (KLT)
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tracker [99] and monitors the tracked image windows to detect outliers. Let
us now describe the datasets and the error measure in more detail before we
come to the actual experiments.

Figure 5.3: Four images out of each sequence used for the experiments.
From top to bottom: (a) Terra (b) Indy (c) Monkey (d) Plant (e) Dino
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Datasets

In the experimental evaluation, we will employ five image sequences which are
shown in Figure 5.3. Four of these sequences are synthetic ones which have
been modelled and rendered using the Blender software available at http:

//www.blender.org. The Terra, Indy, and Plant models are available on the
blendswap.com platform and contain 112, 112, and 91 images, respectively.
The Monkey model is directly available in Blender and the dataset consists
of 112 images. For all synthetic datasets, the camera moves around each
object while the baseline lengths between two poses vary by a factor of 2 to
3. The last sequence that we use for evaluation is the DinoRing dataset of
the Middlebury multi-view stereo benchmark available at http://vision.

middlebury.edu/mview/. It contains 48 images.

Error Measure

In order to quantitatively evaluate the estimated camera poses we require an
error measure. However, as explained before, even after the bundle adjust-
ment step the overall global scale is unknown and the first camera has been
arbitrarily set to coincide with the world coordinate system. Therefore, the
computed solution still leaves room for a similarity transform

T =

(
sR t
0 1

)
∈ R4×4, (5.37)

where R ∈ SO(3) is a rotation matrix, t ∈ R3 a translation vector, and s > 0
a scale factor. To eliminate this degree of freedom, we find the transformation
that optimally aligns the camera centres c̄i of the ground truth with the
estimated ones ci by minimising the least squares error

E(T ) =
K∑
i=1

∣∣∣∣(c̄i1
)
− T

(
ci
1

)∣∣∣∣2 . (5.38)

We use the closed-form solution of Horn et al. [54] to find the optimal sim-
ilarity transform T . This allows to align the estimated camera poses to the
ground truth ones. Subsequently, we compute the pose error w.r.t. the cam-
era position and the camera rotation. The error in camera position is simply
evaluated as the average of the Euclidean distances from the estimated cam-
era centres to their ground truth counterparts:

ec =
1

K

K∑
i=1

|c̄i − ci| . (5.39)

http://www.blender.org
http://www.blender.org
http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/mview/
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Figure 5.4: Visualisation of a subset of trajectories for the Monkey dataset.
From left to right the maximum lengths are 4, 8, 16, and 32.

Measuring the error in camera rotations is not that straightforward and re-
quires some more consideration. Obviously, building an error measure that
solely relies on the viewing direction of the cameras is not sufficient because
it neglects rotation around the optical axes. Instead we require a distance
measure for 3D rotations. Such measures have for example been compared
and analysed by Huynh [55]. In this context, it is useful to switch from rota-
tion matrices to a quaternion representation [50] of rotation and to use the
function

d(q1, q2) = 2 · arccos ( |〈q1, q2〉| ) (5.40)

to measure the distance between two unit quaternions q1 and q2. We use the
factor 2 such that we obtain values in the interval [0, π]. We then evaluate
the error in rotation as the average of such distance values

eR =
1

K

K∑
i=1

d(q̄i, qi), (5.41)

where q̄i and qi are unit quaternions representing the rotation of the i-th
ground truth camera and the i-th estimated camera, respectively.

Maximum Length of Trajectories

As described in Section 5.3.2, we add up flow vectors of subsequent flow fields
in order to obtain trajectories that span over multiple images. Figure 5.4
visualises a subset of these trajectories with different maximum lengths for
the Monkey dataset. Here a single trajectory describes how the projection
of a specific 3D point moves in the image sequence. Concatenating flow
vectors to obtain trajectories is necessary, because otherwise we would be left
with pairwise constraints between cameras. This would not allow to resolve
the scale ambiguities between subsequent camera pairs. Thus, it is clear
that the maximum length of trajectories should be larger than 2. However,
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Max 4 8 16 32 64

Dino
ec 0.019 0.008 0.007 0.278 0.356
eR 0.043 0.016 0.014 0.383 0.420

Monkey
ec 0.041 0.019 0.014 0.018 0.163
eR 0.015 0.007 0.004 0.005 0.028

Indy
ec 1.122 0.451 0.299 0.275 4.098
eR 0.161 0.054 0.032 0.028 0.527

Plant
ec 0.453 0.415 0.287 0.170 0.173
eR 0.063 0.058 0.040 0.025 0.026

Terra
ec 0.083 0.058 0.051 0.058 0.046
eR 0.013 0.009 0.006 0.007 0.005

Table 5.1: Errors in camera position ec and camera rotation eR for an in-
creasing maximum trajectory length.

allowing trajectories that span too many images of a sequence can harm the
reconstruction quality because errors in the flow fields may accumulate.

To find a good limit for trajectory lengths, we list the errors of the recov-
ered camera poses for different maximum lengths in Table 5.1. Please note
that this is only a constraint on the maximum length of trajectories. For
example, we do also keep trajectories of length 2. Even though they do not
contribute towards finding a unique global scale, they can still be beneficial
for fixing the relative pose between two cameras.

Basically Table 5.1 shows that the additional information in longer tra-
jectories improves the accuracy of the estimated camera poses. However, as
expected the accumulated errors start to degrade the estimation quality at
some point. Both 16 and 32 seem to be a reasonable limit for the maximum
trajectory length for most sequences. In the remainder of the experiments
we will use 16 as maximum length because it is better suited for the short
Dino sequence and also computationally slightly less demanding.

Uniform Subsampling

Since we have computed dense flow fields for all subsequent camera pairs,
it is possible to start trajectories for every pixel. However, this typically
leads to a large memory requirement and computing time given typical im-
age resolutions and sequence lengths. As a remedy, one can use a simple
uniform subsampling to greatly reduce the computational effort and memory
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Figure 5.5: Uniform subsampling of trajectories with factors 4,8,16, and 32
from left to right.

Grid 2 4 8 16 32 64

Dino
ec 0.007 0.007 0.007 0.007 0.006 0.008
eR 0.014 0.014 0.014 0.014 0.011 0.018

Monkey
ec 0.015 0.014 0.014 0.018 0.016 0.035
eR 0.005 0.005 0.004 0.006 0.005 0.012

Indy
ec 0.269 0.263 0.299 0.338 0.282 0.415
eR 0.031 0.029 0.032 0.035 0.029 0.053

Plant
ec 0.278 0.291 0.287 0.266 0.178 0.318
eR 0.040 0.041 0.040 0.037 0.026 0.044

Terra
ec 0.048 0.051 0.051 0.054 0.083 0.285
eR 0.005 0.005 0.006 0.006 0.009 0.036

Table 5.2: Errors in camera position ec and camera rotation eR for varying
grid size.

requirement. Figure 5.5 shows trajectories obtained with different subsam-
pling factors for the Monkey dataset. Even with such a subsampling, the
pipeline can still be interpreted as a fully dense method that partially op-
erates on low resolution images. Table 5.2 shows the accuracy of estimated
camera poses for different subsampling factors. Varying the subsampling grid
tends to affect the accuracy of the estimated camera poses only slightly and
we can observe that a too coarse sampling of trajectories tends to give the
worst results. Thus, we choose a subsampling factor of 8 for the remainder
of the experiments because this usually gives a good compromise between
computation time and memory usage as well as a good accuracy.
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Structure Based Sampling

As we have mentioned previously, Sundaram et al. [106] have presented a
structure based sampling strategy for determining trajectory starting points.
In their approach, they consider the structure tensor [38]

Kρ ∗
(
∇(Kσ ∗ fi)∇(Kσ ∗ fi)>

)
(5.42)

of an image fi where Kσ and Kρ are Gaussian kernels. More specifically,
they use some portion of the mean of the second eigenvalue of the structure
tensor as a threshold to determine the locations where new trajectories are
started.

In this experiment, we follow this idea and investigate how such a struc-
ture based sampling strategy affects the accuracy of the reconstructed camera
poses. We also use the second eigenvalue of the structure tensor as a criterion
to start new trajectories. However, we choose the threshold in such a way
that the amount of resulting trajectories for the structure based approach is
in the same order of magnitude as in the case of the uniform sampling that
we compare to. Furthermore, we also examine the structure based approach
in combination with subsampling to a coarser grid.

Figure 5.6 visualises trajectory starting points of the structure based ap-
proach for different grids. It shows that combining both approaches allows to
obtain a compromise between respecting structural information and having
an even distribution over the whole model. Again we adapt the threshold
in each case such that the amount of trajectories is in the same order of
magnitude.

Table 5.3 lists the resulting error values. They show that a pure struc-
ture based sampling typically leads to worse results in this scenario. When
combining both ideas, the structure based sampling can in two cases slightly
improve the accuracy of the camera poses. However, respecting the local
texture measure does not generally increase the accuracy of the recovered
camera poses. This underlines that the dense flow fields are not only reliable
in highly textured regions. Therefore, we refrain from structure based sam-
pling ideas and stick to the simple uniform approach in the remainder of the
experiments.

Comparison to Voodoo Camera Tracker (VCT)

Table 5.4 shows the errors in position and orientation of the final globally
aligned model estimate for the evaluation sequences. They are being com-
pared with the errors of the VCT. Also for VCT, we supply the intrinsic
camera calibration as a fixed parameter for all cameras. Our dense method
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Figure 5.6: Structure based sampling. From left to right the underlying grid
on which the structure based sampling is performed becomes coarser such
that the trajectory starting points become more evenly distributed.

Structure based Uniform

Grid 1 2 3 4 5 8

Dino
ec 0.051 0.010 0.008 0.006 0.006 0.007
eR 0.074 0.017 0.015 0.012 0.013 0.014

Monkey
ec 0.066 0.034 0.027 0.018 0.019 0.014
eR 0.027 0.012 0.009 0.006 0.006 0.004

Indy
ec 0.355 0.302 0.247 0.272 0.267 0.299
eR 0.042 0.033 0.028 0.030 0.030 0.032

Plant
ec 0.423 0.352 0.337 0.363 0.314 0.287
eR 0.050 0.042 0.041 0.047 0.042 0.040

Terra
ec 0.141 0.102 0.061 0.070 0.055 0.051
eR 0.014 0.009 0.005 0.006 0.005 0.006

Table 5.3: Structure based vs. uniform sampling of trajectory starting points.
The structure based approach is performed on different grids where a grid of
one corresponds to no subsampling and thus a pure structure based approach.
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turns out to yield competitive results compared to VCT which relies on sparse
features. Actually, it is able to outperform VCT on all models except for the
Monkey dataset. Since this dataset is highly textured, it is comprehensible
that sparse feature tracking achieves very good results. However, also in this
case we are able to obtain a comparable accuracy. Figure 5.7 shows the re-
constructed camera motion along with the 3D points estimated by VCT. As
a comparison, we show the 3D points estimated within our pipeline when us-
ing a uniformly subsampled grid with factor 8. Here we can observe that our
approach leads to much denser and quite uniformly distributed point clouds.
Figure 5.8 shows the resulting 3D reconstructions for the used datasets with
our dense pipeline. Since it is not within the scope of this thesis to estimate
accurate material propertis, we resort to a very naive strategy to obtain the
textured reconstructions: We simply estimate the colour of a point on the
surface by projecting it into all cameras and then averaging the individual
colour values from all cameras where the corresponding surface point is visi-
ble.

5.5 Limitations and Discussion

Bundle adjustment can lead to an undesired local minimum for an erroneous
initialisation. Since the main source of error in our initial model is the vary-
ing scaling between scene points triangulated from different camera pairs, it
might be beneficial to only optimise for the baseline scales in a first step. This
can help guiding a subsequent full bundle adjustment into a preferable min-
imum. A similar approach is taken in the odometry method of Fraundorfer
et al. [39].

Loop closure is not directly included into our pipeline since the trajecto-
ries are initially computed over neighbouring frames of an image sequence.
However, after computing camera poses and the 3D reconstruction with our
pipeline, it is possible to identify new frame correspondences to extend ex-
isting trajectories. This can help to solve the problem of closing loops when
iterating the pipeline a second time.

Errors in the optical flow are not corrected by the bundle adjustment
step, since the trajectory constraints build upon the flow field. Furthermore,
the flow fields are interpolated between grid points when computing trajecto-
ries, which can introduce additional errors. However, usually this constitutes
a rather small error and it is possible to limit the maximum length of tra-
jectories. In terms of variational methods one could estimate the flow over
multiple frames simultaneously. It is well-known that one can increase the
flow quality by using temporal regularisation; see e.g. [117, 113].
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Model VCT (KLT) Ours

Dino
ec 0.010 0.007
eR 0.019 0.014

Monkey
ec 0.013 0.014
eR 0.005 0.004

Indy
ec 0.437 0.299
eR 0.054 0.032

Plant
ec 0.809 0.287
eR 0.105 0.040

Terra
ec 0.094 0.051
eR 0.011 0.006

Table 5.4: Accuracy of the sparse Voodoo Camera Tracker (VCT) compared
to our dense approach.

5.6 Summary

We have presented a novel pipeline for 3D reconstruction that completely
relies on dense methods. From an image sequence of a static scene, optical
flow fields and stereo geometry are jointly estimated for each consecutive
image pair with a variational approach. Subsequently, the pairwise estimates
are connected and globally refined through bundle adjustment. After this
step, we obtain a refined model of the scene camera positions. Using these,
depth maps are computed and fused by anisotropic range image integration.

Even for bad initialisations our optical flow based trajectories prove to
be sufficiently robust constraints, enabling the bundle adjustment to recover
the correct global model. This and our comparisons to VCT show that dense
approaches are an interesting alternative to sparse methods.
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Figure 5.7: Reconstructed camera motion and 3D points for the Voodoo
Camera tracker (left) and for our approach with a subsampling factor of 8
(right).
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Figure 5.8: Two different views of each 3D reconstruction obtained with our
dense pipeline. Each view is shown without and with texture.
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Chapter 6

Surface Reconstruction from
Oriented Points

An oriented point of a surface contains information about the position and
the surface normal. The problem of reconstructing a watertight surface from
a finite set of oriented points is visualised in Figure 6.1. Oriented point
clouds arise in 3D reconstruction pipelines that use passive methods relying
on sparse features. A prominent example for this is the patch-based multi-
view stereo reconstruction algorithm of Furukawa and Ponce [40]. Oriented
point clouds can also be obtained with active methods such as laser, struc-
tured light and time-of-flight scanning. Due to viewpoint dependence, usually
many scans have to be acquired and subsequently aligned to cover the whole
surface. Each surface measurement can conveniently be equipped with the
direction to the source or an even better approximation of surface orientation
by considering neighbouring measurements of one scan. Also many methods
exist to estimate normals from point clouds, see e.g. [17].

Reconstructing an accurate surface is a difficult task. In practice it often
occurs that some parts of the surface cannot be captured. Furthermore, one
has to deal with uneven sampling due to overlapping scans, and the sam-
ples contain noise caused by inaccuracies of the sensor. Misalignments of
the individual scans further increase the difficulty. The reconstruction prob-
lem is even more cumbersome when using multi-view stereo reconstruction
algorithms on data captured from consumer grade cameras in uncontrolled
environments. Due to this fact and because nowadays point clouds easily
contain many millions of points, it is essential to apply robust and efficient
algorithms. It is a common practice to fit the oriented points using a level set
of an implicit function. Such methods can produce approximating surfaces,
which is preferable if noise and outliers are present. Furthermore, they have
the inherent advantage that one does not have to parameterise the surfaces.

101
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Figure 6.1: Given a finite number of oriented points (left), the goal is to
estimate a watertight 3D model (right).

Many different approaches exist, and commonly the implicit function is either
an approximation to the indicator function or the signed distance function
of the underlying surface. As there exists a variety of different methods, it
would be beneficial to have a joint platform that allows to explicitly dis-
play similarities and differences. From a didactic point of view, this gives an
opportunity to explain existing methods to people new in this field. Further-
more, it offers a systematic approach for deriving novel methods. Thus, we
present a general higher order framework for surface reconstruction in this
chapter which we have published in [7].

Organisation of this chapter. After covering related work and listing our
contributions, Section 6.3 introduces our general framework with higher order
terms. Section 6.4 then classifies existing approaches within this framework
and Section 6.5 describes our novel approaches for surface reconstruction.
In Section 6.6, we show how colour information can be used to obtain tex-
tured reconstructions. Subsequently, we discuss our GPU implementation in
Section 6.7 followed by experimental results in Section 6.8. The following
discussion in Section 6.9 reveals an additional opportunity for improving the
reconstruction quality. To this end, we introduce a hull constraint in Sec-
tion 6.10. Finally, we summarise the most important insights in Section 6.11.
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6.1 Related Work

We will focus on methods that fit the input data using a level set of an implicit
function. As mentioned, the implicit function is either an approximation to
the indicator function or the signed distance function of the underlying sur-
face in many cases. Therefore, we use this as a criterion to broadly categorise
prior work.

Indicator Function Approximation

Kazhdan et al. estimate the indicator function by first computing a vector
field that approximates the smoothed surface normal field and then integrat-
ing it in the least squares sense [59]. This approach is known as Poisson
surface reconstruction and has been extended by Kazhdan and Hoppe [58]
who add an explicit point-wise constraint on the function value at the input
points. Manson et al. reconstruct the indicator function using a wavelet ba-
sis [74]. As each sample point only influences a small number of coefficients,
the reconstruction is very fast. Lempitsky and Boykov find a compromise
between the number of collected input points and the surface area [68]. They
minimise the resulting energy over binary functions using graph-cuts.

Signed Distance Function Approximation

A popular approach for estimating the signed distance function from a set of
oriented points is the implicit moving least squares (IMLS) algorithm pro-
posed by Shen et al. in [98]. Kolluri analyses a variant of this algorithm
that uses constant basis functions [65]. He is able to show that it yields
geometrically and topologically correct reconstructions if certain sampling
conditions are fulfilled. In the presence of sharp features, it can make sense
to use robust variants, see [36, 83]. Calakli and Taubin estimate an approx-
imation of the signed distance function using a smoothing thin plate spline
with additional pointwise constraints on the normals [21]. To minimise the
energy, they employ a hybrid finite element / finite difference discretisation
on an octree structure. Walder et al. consider the same energy but aim at
expressing the solution as weighted sum of kernel functions centred at the
input points [114]. If a triangle representation is desired in the end, an iso-
surface can be extracted from the implicit function with algorithms such as
Marching Cubes [71].
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6.2 Contributions

We develop a general higher order variational framework for surface recon-
struction from oriented points. It is based on the idea that each oriented
point allows us to construct a function that provides a good local description
of an implicit representation of the unknown surface. This framework allows
us to reach two goals: First, we can systematically understand and classify a
number of existing methods. Second, it enables us to derive novel approaches
to surface reconstruction that are fairly simple and offer state-of-the-art per-
formance. We show with the recent reconstruction benchmark of Berger et al.
[15] that one of these approaches yields favourable results when compared
to the most popular and widely used methods, namely (screened) Poisson
surface reconstruction and smooth signed distance surface reconstruction.
Furthermore, we introduce a hull constraint that encourages the surface to
stay within a given region. This improves reconstructions in difficult real
world scenarios where point clouds have been estimated from colour images.

6.3 A Higher Order Framework

In this section we describe how point and normal constraints can be used in
a general variational formulation with higher order terms in order to recon-
struct smooth surfaces. The reconstruction is then implicitly given by the
boundary of the zero level set of the minimiser. To describe our framework,
we first begin with some basic definitions.

Basic Definitions

Let us assume that a set of N oriented points{
(pi,ni) ∈ R3 × R3

∣∣∣ i = 1, . . . , N
}

(6.1)

has been sampled from a smooth surface. Here pi and ni denote location
and normal, respectively. Then the surface can locally be approximated by
a sufficiently small linear patch given by{

x ∈ Bσ(pi)
∣∣∣ 〈x− pi,ni〉 = 0

}
, (6.2)

i.e. a subset of the tangent plane to the surface at pi (cf. Figure 6.2). Here
Bσ(pi) denotes an open ball with a small radius σ > 0 centred around pi. Ac-
cordingly, the signed distance function can also be well approximated locally
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around pi by

fi(x) = 〈x− pi,ni〉. (6.3)

This gives rise to a data fidelity term

D(u) =
N∑
i=1

∫
Bσ(pi)

(
u(x)− fi(x)

)2

dx (6.4)

that rewards a close fit to the given functions by penalising a locally weighted
squared L2-distance to each of the functions fi(x). In the above equation,
the deviation at each location within Bσ(pi) is penalised with equal weight.
In order to generalise this, we rewrite Equation 6.4 as

D(u) =
N∑
i=1

∫
Ω

wσ(|x− pi|)
(
u(x)− fi(x)

)2

dx, (6.5)

where

wσ(s) =

{
1, if |s| ≤ σ

0, otherwise.
(6.6)

The domain Ω ⊂ R3 is a region that contains all local approximations and
u : Ω→ R. In this notation, it becomes apparent that one can conveniently
use an arbitrary weighting function instead of a hard window. An often
preferable choice is a smooth, decaying function such as a Gaussian:

wσ(s) = exp

(
−
( s
σ

)2
)
. (6.7)

This allows for good reconstructions even if coarser approximations with
fewer linear patches are used, because the values further away from pi, that
are usually less reliable, are only taken into account with a very small weight.

Higher Order Energy

So far, we have penalised deviations in function values only. In a general
setting, we would now like to allow penalising the difference in all derivatives
up to order K directly. To this end we first define a data term for the k-th
derivative:

Dk(u) =
N∑
i=1

∫
Ω

wi,k
dk

∣∣∣D(k)
(
u− fi

)∣∣∣2dx, (6.8)
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Figure 6.2: (Left): The oriented points define tangent planes which can be
used to construct local approximations to the surface. (Right): They also
allow to approximate the signed distance function to the surface in a small
neighbourhood.

where we omit the dependence on x for better readability. We allow choosing
different weighting functions wi,k for each order of derivative and sample. As
we will see, we can create pointwise, localised or global constraints by differ-
ent choices of the weighting functions. The term dk accounts for a possible
normalisation. It can either be a constant or a function that allows for a
pointwise reweighting. The term D(k) is a differential operator that results
in a vector of all derivatives of order k when applied to a function. Combin-
ing these data terms with a suitable smoothness functional S(u) yields the
energy

E(u) =
K∑
k=0

αk Dk(u) + α S(u). (6.9)

The weights α = (α0, . . . , αK)> specify how strong deviations in each deriva-
tive should be penalised. This broad perspective gives a systematic way of
approaching the surface reconstruction problem.

6.4 Relation of Existing Methods

In this chapter, we will consider the cases K = 0, 1, 2 with α = 0, i.e. elim-
inating a dedicated smoothness term. This allows to systematically explain
and relate several popular surface reconstruction approaches with our higher
order framework.
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6.4.1 Implicit Moving Least Squares (K = 0)

A choice of K = 0 means that we only consider a single data term that
penalises the deviation in function values. It has the analytic solution

u(x) =

∑N
i=1 wi,0(x) 〈x− pi,ni〉∑N

i=1 wi,0(x)
, (6.10)

where one can choose a weighting function wi,0(x) = ai exp(−|x−pi|2/σ2
i ) with

a varying standard deviation σi modified by a normalisation factor ai for each
input point. This corresponds to the implicit moving least squares (IMLS)
algorithm with constant basis functions, which was proposed by Shen et
al. [98]. The partition of unity (PoU) approach of Ohtake et al. [82] is
very close in spirit and can even be equivalent. The weighting functions
wi,0 are carefully adapted for each individual sample. The choice of σi and
ai generally depend on the sampling density, which relates to the size of
features one may expect. Since there is no smoothness term, a suitable
choice of σi and ai has to allow for removing isolated clutter and closing
gaps. However, often it is not possible to find parameters that fulfil this
while preserving details. Therefore, IMLS-based reconstructions can exhibit
spurious artefacts. Examples for this have also been shown in [21, 58] when
comparing to the approach of Ohtake et al. [82].

6.4.2 (Screened) Poisson Surface Reconstruction
(K = 1)

Let us start by only considering the first order data term, i.e. choosing
α = (0, 1)>. Please recall that fi(x) = 〈x − pi,ni〉 and thus ∇fi(x) = ni.
This results in the energy

E(u) =
N∑
i=1

∫
Ω

wi,1
d1

|∇u− ni|2 dx, (6.11)

where wi,1 describes a local weighting, for example via a Gaussian function.
We have chosen a pointwise normalisation factor d1(x) that accounts for
uneven sample placements:

d1(x) =
N∑
i=1

wi,1(x). (6.12)
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The above energy can be rewritten as

E(u) =

∫
Ω

|∇u− v |2 dx+R, (6.13)

where the last expression R is a constant that contains residual terms that
do not influence the minimiser, and v is a convex combination of the given
normals:

v =
N∑
i=1

wi,1
d1

ni. (6.14)

Interestingly, one can interpret this as solving two subsequent minimisation
problems. First, a vector field is computed based on the input normals by
solving a moving least squares problem similar as in the previous section but
this time for the normal vectors. Then one finds the unknown function u in
a second step by solving the above energy. Such an approach is described
in [100].

Poisson Surface Reconstruction

Obviously the energy in Equation 6.13 leads to a Poisson equation. For a
suitable choice of v it resembles Poisson surface reconstruction [59]. The
weighting required for this is motivated by an interesting observation: The
gradient of the smoothed indicator function and the smoothed surface nor-
mal field are equal. Thus, v can be understood as an approximation of the
smoothed surface normal field that can be obtained by performing a numer-
ical integration

v =
N∑
i=1

|Pi|wi,1ni, (6.15)

where the patch sizes |Pi| are estimated with a density estimator. High
densities relate to small patches and vice versa. While this seems to be a
subtle change from Equation 6.14 to Equation 6.15, the effect is rather large:
With this weighting, the length of the vectors v actually decreases towards
zero when going away from the input points, as required for an indicator
function. With the previous choice one estimates a distance field instead.

In both cases, the solution can only be computed up to a global constant.
This generally does not have to pose a problem, but sometimes it is not pos-
sible to find a satisfactory one. Let us consider a somewhat artificial but very
simple example to illustrate this. If the same surface orientation is measured
everywhere, this will result in a constant vector field when using Equation
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6.14. Thus, the reconstructed surface will be planar for any global offset. If
the locations of the normals do not happen to be on a line, the reconstruc-
tion will thus appear to drift away from the input points. In practice, such
problems have also been observed for Poisson surface reconstruction, where
the input points were not fitted tightly enough and the reconstructions were
too smooth.

Screened Poisson Surface Reconstruction

To account for this, Kazhdan and Hoppe add point constraints and show
that this results in more accurate reconstructions [58]. With an appropriate
α0, they minimise the energy

E(u) = α0

n∑
i=1

u(pi)
2 +

∫
Ω

|∇u− v |2 dx, (6.16)

over a suitable space of functions. The first term (screening term) of order
zero can be obtained in our framework by choosing the Dirac distribution
for each wi,0. This effectively creates point constraints instead of constraints
that are localised to some neighbourhood.

Relation to Global Optimisation for Shape Fitting

Another interesting observation is that the global optimisation for shape fit-
ting approach of Lempitsky and Boykov [68] can be closely related to Poisson
surface reconstruction. To see this, we rewrite Equation 6.13: We expand
the scalar product and perform partial integration:

E(u) =

∫
Ω

|∇u− v|2 dx (6.17)

=

∫
Ω

(
|∇u|2 − 2 · 〈∇u,v〉+ |v|2

)
dx (6.18)

=

∫
Ω

(
|∇u|2 + 2 · u · divv + |v|2

)
dx− 2 ·

∫
∂Ω

〈uv,n〉ds. (6.19)

Subsequently, we introduce the parameters α and β in the following way:

E(u) = α

∫
Ω

|∇u|β+1dx+

∫
Ω

2u · div v dx+ β G(u). (6.20)
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The expression G(u) is composed of three terms, where the first two of them
are constant and do not have an effect in the minimisation. The last one
influences the natural boundary condition. Explicitly G(u) is given by

G(u) = R +

∫
Ω

|v|2 dx+

∫
∂Ω

〈uv,n〉 ds. (6.21)

Note that we recover Equation 6.13 for α = β = 1. Setting β = 0 yields the
energy minimised by Lempitsky and Boykov over binary functions.

Although very differently motivated, the vector field v is in both cases
computed as a weighted sum of the normals using Gaussian weighting func-
tions. In both methods, the standard deviation is adapted based on sample
spacing as it is also common for moving least squares based approaches.

Lempitsky and Boykov minimise over a space of binary functions using
graph cuts. In the context of surface reconstruction, the minimisation over
binary functions has the drawback that it creates aliasing problems which
have to be taken care of when extracting the isosurface.

6.4.3 Smooth Signed Distance Surface Reconstruction
(K = 2)

Let us choose K = 2 in (6.9) and recall that fi(x) = 〈x−pi,ni〉, ∇fi(x) = ni
and Hfi(x) = 0 with H denoting the Hessian. Then, we set

dk =
N∑
i=1

∫
Ω

wi,k(x) dx, (6.22)

so that each data term is automatically scaled by the area of all N weight
functions. We select the Dirac distribution for all wi,0 and wi,1 creating
pointwise constraints for input locations and normals. Furthermore, we use
a constant wi,2 := 1

N
which effectively creates a global constraint. This

corresponds to the energy by Calakli and Taubin:

E(u) =
α0

N

N∑
i=1

|u(pi)|2

+
α1

N

N∑
i=1

|∇u(pi)− ni|2

+
α2

|Ω|

∫
Ω

|Hu(x)|2F dx,

(6.23)
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Order Weighting
Equivalent
Methods

Related
Methods

0 wi,0 = ai e
− |x−pi|

2

σ2
i

IMLS [98] PoU [82]

1 wi,1 = ai e
− |x−pi|

2

σ2
i

VIR [100]
PSR [59]
SPSR [58]
GOSF [68]

2

wi,0 = δ(|x − pi|)
wi,1 = δ(|x − pi|)
wi,2 = 1

N

SSD [21]
ISM [114]

Table 6.1: Given an order K and weighting functions w in our general frame-
work, this table shows which existing methods are equivalent and which can
be closely related. Here δ denotes the Dirac delta.

which is minimised over a suitable function space [21]. Here | · |F is the
Frobenius norm. The last term can be understood as a smoothness term
that arose by merely selecting appropriate weighting functions and thus it is
in harmony with the constraints of the other terms.

The previous sections have shown that we are able to explain a number
of existing approaches when varying the order K of our model. Some ap-
proaches directly follow from simple adaptions of the weighting functions.
Relating others requires slightly more involved derivations. While we have
explained these relations in detail in the previous sections, Table 6.1 sketches
a brief overview.

6.5 Novel Formulations

In this section we describe three novel variational formulations for the inte-
gration of point and normal constraints derived from our general framework.
We will refer to them as Hessian-IMLS, TV-IMLS and HOM-IMLS.

6.5.1 Hessian-IMLS

We have discussed that for pure IMLS-based approaches it is often not pos-
sible to find a σ to recover details while removing measurement errors and
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isolated clutter. Furthermore, we have argued that a Hessian smoothness
term is in harmony with the point and normal constraints and it naturally
arises for a suitable choice of weighting functions when discussing the case of
K = 2. In general, this regulariser is popular for geometrical problems [114],
also due to its good filling-in behaviour in unsampled regions. It corresponds
to the thin plate energy of order 2, cf. [30]. Thus, we propose to minimise
an energy combining both terms:

E(u) =
N∑
i=1

∫
Ω

wi
(
u− fi

)2
dx+ α

∫
Ω

|Hu|2F dx (6.24)

with

wi = wσ(|x− pi|), (6.25)

using a small constant σ > 0. We advocate that our model comprised of only
two terms is the simplest choice possible within the higher order framework
that incorporates the benefits of IMLS and an appropriate regularisation.
Affine functions are not penalised: Thus, if only a single oriented point is
present, the computed surface is given by the plane defined by it. Increasing
the smoothness weight α leads to solutions with less curvature. Therefore, the
regulariser can be understood as a low curvature prior. The corresponding
Euler-Lagrange equation can be written as

u
N∑
i=1

wi + α div2(Hu) =
N∑
i=1

wi fi. (6.26)

Operators of the form divk with k ∈ N are commonly used when working
with tensor fields as for example in [18]. Accordingly, div2 applied to a 3-
dimensional second order tensor field M results in a scalar field, i.e. a tensor
field of two orders less, given by

div2(M) =
3∑

i,j=1

∂xi∂xjmij. (6.27)

The natural boundary conditions are given by:

n>

uxxx + uxyy + uxzz uxx uyx uzx
uyxx + uyyy + uyzz uxy uyy uzy
uzxx + uzyy + uzzz uxz uyz uzz

 = 0. (6.28)

Here n is a vector normal to the boundary of the domain Ω. In the SSD
approach, the Dirac distribution as weighting function effectively removes
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Figure 6.3: Reconstruction with our TV-IMLS (left) and Hessian-IMLS
(right) approaches from two dimensional oriented points sampled from an
anchor shape. The 2D implicit functions are visualised as height fields.

the normal constraint from the first term in (6.23) in contrast to our second
order model (6.24). We only require one data term that has the benefit
of allowing to smooth out smaller measurement errors by considering local
information with a small σ > 0. Additionally this term is easier to discretise
as will be seen in Section 6.7. We do not require a hybrid finite element /
finite difference discretisation as in [21], and our data term only contributes
to the diagonal entries of the discrete system matrix. Furthermore, the use
of weighting functions offers a natural way of treating varying patch sizes.
They can arise e.g. when computing oriented points with the patch based
multi-view stereo approach of Furukawa and Ponce [40].

6.5.2 TV-IMLS and HOM-IMLS

Instead of approximating the signed distance function, several other ap-
proaches approximate the indicator function of the unknown surface. This
poses an interesting alternative. To achieve this, we reconsider the basic
idea of understanding oriented points as local approximations within some
small neighbourhood. As previously discussed, the oriented points allow us
to construct a local approximation of the signed distance function

fi(x) = 〈x− pi,ni〉. (6.29)

However, this also allows to locally approximate the indicator function around
pi by Θ(fi(x)), where Θ is a continuous approximation of the Heaviside func-
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tion. Thus, we propose the data fidelity term

DΘ(u) =
N∑
i=1

∫
Bσ(pi)

(
u(x)−Θ

(
fi(x)

))2

dx (6.30)

that rewards a close fit to the given local approximations. Also here, one
can replace the hard window Bσ(pi) by a Gaussian weighting function for
example. A simple way to obtain a continuous approximation Θ is given by
convolving the Heaviside function with a suitable kernel. If one uses a box
function as convolution kernel, the resulting Θ can as well be interpreted as
a scaled and truncated signed distance function as it is used in [29].

The indicator function is fundamentally different from the signed distance
function as displayed in a simplified 2D example in Figure 6.3. This has to
be considered in the choice of the smoothness term. As the gradient of
the indicator function is zero almost everywhere, we propose to minimise a
suitable energy with a first order smoothness term:

EΘ(u) = DΘ(u) + α

∫
Ω

Ψ(|∇u(x)|2) dx, (6.31)

where the parameter α > 0 controls the degree of smoothness. This alterna-
tive is interesting as it only requires computing first order derivatives.

More specifically, we will consider two choices of Ψ, namely Ψ(s2) =
s2 and Ψ(s2) =

√
s2 + ε2 with a small constant ε > 0. We refer to these

models as HOM-IMLS and TV-IMLS, respectively. The former choice will
lead to a penalisation of the squared gradient magnitude. The latter choice
is motivated by the fact that it yields total variation regularisation (TV)
for ε = 0, which is well-suited for the reconstruction of piecewise constant
functions such as an indicator function. Furthermore, it is known that TV
penalises the perimeter of the level sets, which in this case corresponds to
surface area. This is a favourable property, which usually leads to removal
of small isolated clutter and reconstructions of low genus. The minimiser
of Equation 6.31 must necessarily fulfil the corresponding Euler-Lagrange
equation

u

N∑
i=1

wi − α div
(
Ψ′(|∇u|2)∇u

)
=

N∑
i=1

wi Θ(fi), (6.32)

with natural boundary condition 〈n,∇u〉 = 0.
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6.6 Surfaces with Texture

If a set of oriented points is provided along with colour information{
(pi,ni, ci) ∈ R3 × R3 × R3

∣∣∣ i = 1, . . . , N
}
, (6.33)

then it is straightforward to obtain textured reconstructions. After recon-
structing a surface from the oriented points, one can simply follow the previ-
ous strategy and compute a unified colour map g : Ω→ R3 as the minimiser
of

E(g) =
N∑
i=1

∫
Ω

wi|g − ci|2 dx + α

∫
Ω

|Jg|2F dx. (6.34)

Here J is the Jacobi Matrix. This generalises the approach of Calakli and
Taubin [22] who used the Dirac distribution as weighting function. Although
this constitutes a simple way of obtaining reconstructions with texture, it
might be advisable to use recorded colour images directly if they are available.

6.7 GPU Implementation

Our GPU implementation uses the NVIDIA CUDA framework. It can essen-
tially be divided into two stages of computation. First, setting up coefficients
and right hand side for a system of equations and subsequently solving it.
Let us now first discuss required discretisations before describing how both
of these steps can efficiently be computed on parallel graphics hardware.

Either we set the domain Ω as a rectangular axis aligned bounding box
[a1, b1]× [a2, b2]× [a3, b3] ⊂ R3 that contains all oriented points or we manu-
ally specify it. The domain Ω is then discretised by choosing (m1,m2,m3)>

equidistant samples in each direction resulting in M = m1 ·m2 ·m3 unknowns.

Minimising Hessian-IMLS

Let us denote by u and fi ∈ RM the discrete versions of u(x) and fi(x). We
have rearranged the unknowns in a vector using column major ordering. Let
Wi be a diagonal matrix that contains all weights wi(x) and V := {x, y, z}.
Then we can discretise Equation 6.24 as follows:

E(u) =
N∑
i=1

|W
1
2
i (u− fi)|2 + α

M∑
j=1

∑
γ∈V 2

(Dγu)2
j , (6.35)
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where Dγ realises the corresponding second order derivative at each location
where it can be estimated using a given stencil. The necessary and sufficient
condition for a minimiser can be obtained in this case by setting the gradient
to zero:  N∑

i=1

Wi + α
∑
γ∈V 2

D>γDγ

 u =
N∑
i=1

Wifi. (6.36)

Compared to the smooth signed distance surface reconstruction [21], we
only require one data term instead of two. Moreover, we do not require a
hybrid finite element / finite difference discretisation. This is because we
effectively enforce similarity to a small oriented patch instead of a pointwise
function value and normal constraint. Therefore, the data term only con-
tributes to the diagonal of the system matrix and not to any off-diagonal
entries as in [21].

Discretisation. Let us now cover the discretisation in more detail. Specif-
ically we will point out our choice of the different Dγ . To this end, it is more
convenient to use the spatial coordinates (i, j, k) instead of considering u to
be a column vector with a single index. This is because the spatial coordi-
nates better express that u is a discrete version of a 3D function. Remember
that we have rearranged the unknowns in u by first sampling the 3D function
u(x) and then using column major ordering to obtain the column vector u.
Therefore, there is a bijective mapping between the single index and the spa-
tial coordinates such that it is straightforward to go back and forth between
both different representations. For the second derivatives w.r.t. x, we use
the discretisation

[Dxxu]i,j,k =
ui+1,j,k − 2ui,j,k + ui−1,j,k

h2
x

. (6.37)

The corresponding contribution D>xxDxx to the discrete gradient from Equa-
tion 6.36 can be represented by the weights in the following stencil:

1

h4
x

· Xi−1

−2Xi
−2Xi−1

Xi+1

+4Xi
+Xi−1

−2Xi
−2Xi+1

Xi+1 (6.38)
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with the function X defined as

Xi =

{
1, 1 < i < m1

0, else.
(6.39)

It assumes that we use the indexing 1, . . . ,m1 for the unknowns in x-direction
and ensures correct stencil weights also at the boundaries. The discretisation
of the second derivatives w.r.t. y and z is chosen analogously. Therefore, the
corresponding stencils can be represented in a similar way using the functions
Y and Z defined as

Yj =

{
1, 1 < j < m2

0, else
and Zk =

{
1, 1 < k < m3

0, else
(6.40)

to ensure correct treatment of the boundaries. For the mixed derivatives, we
choose the discretisation

[Dxyu]i,j,k =
ui+1,j+1,k − ui+1,j−1,k − ui−1,j+1,k + ui−1,j−1,k

4hx hy
. (6.41)

Then the corresponding contribution D>xyDxy to the discrete gradient from
Equation 6.36 can be represented by the weights in the following stencil:

1

16h2
x h

2
y

·

Xi−1Yj+1 0
−Xi+1Yj+1

−Xi−1Yj+1

0 Xi+1Yj+1

0 0 0 0 0

−Xi−1Yj+1

−Xi−1Yj−1

0

Xi+1Yj+1+

Xi+1Yj−1+

Xi−1Yj+1+

Xi−1Yj−1

0
−Xi+1Yj+1

−Xi+1Yj−1

0 0 0 0 0

Xi−1Yj−1 0
−Xi+1Yj−1

−Xi−1Yj−1

0 Xi+1Yj−1

The other mixed derivatives Dxz and Dyz are chosen analogously. When
assembling all the contributions of the six different stencils by adding up all
entries corresponding to the same cell, one obtains a (5× 5× 5)-stencil with
a sparsity pattern as shown in Figure 6.4. Note that the functions X , Y , and
Z can efficiently be computed on the fly on the GPU and do not have to be
precomputed and stored.
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Figure 6.4: Sparsity pattern of the (5 × 5 × 5)-stencil of the discretisation
arising from penalising the Frobenius norm of the Hessian. Locations with a
nonzero entry are depicted by a grey box. Left: Nonzero entries arising from
the terms u2

xx, u
2
yy, and u2

zz. Middle: Nonzero entries when considering the
previous terms and u2

xz. Right: Nonzero entries when considering all terms.
Although there are only 25 nonzero entries out of the 125 locations in the
(5× 5× 5)-neighbourhood, the stencil is still irreducible.

Minimising TV-IMLS and HOM-IMLS

Similar as in the previous paragraph, we discretise (6.31) as follows:

E(u) =
N∑
i=1

|W
1
2
i (u−Θ(fi))|2 + α

M∑
j=1

Ψ

(∑
γ∈V

(Dγu)2
j

)
. (6.42)

Here Θ(fi) ∈ RM is the discrete version of Θ(fi(x)), and Dγ realises forward
differences in direction of γ for each location where forward differences can
be evaluated. By computing the gradient, we obtain the necessary condition
a minimiser u must fulfil:(

N∑
i=1

Wi + α
∑
γ∈V

D>γ Φ(u)Dγ

)
u =

N∑
i=1

Wi Θ(fi), (6.43)

where Φ(u) is a diagonal matrix with

(Φ(u))jj = Ψ′

(∑
γ∈V

(Dγu)2
j

)
. (6.44)

Since the energy is strictly convex, the minimiser is unique and the necessary
condition is also sufficient. More compactly, we express the nonlinear system
as

(P + αA(u)) u = q, (6.45)
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with the abbreviations

P =
N∑
i=1

Wi, A(u) =
∑
γ∈V

D>γ Φ(u)Dγ, q =
N∑
i=1

WiΘ(fi). (6.46)

The nonlinear system of equations can be solved by the fixed point iteration(
P + α A(uk)

)
uk+1 = q (k ≥ 0), (6.47)

i.e. by solving a sequence of linear systems. In the case of HOM-IMLS,
the squared gradient magnitude is penalised, and the resulting system of
equations is linear.

Discretisation. Let us now cover the discretisation in more detail. As
when discussing the Hessian-IMLS approach, we switch to the spatial location
(i, j, k) at this point instead of the single index notation where u is considered
to be a column vector. We use forward differences such that

[Dxu]i,j,k =
ui+1,j,k − ui,j,k

hx
. (6.48)

Accordingly, the coefficients of the matrix D>x Φ(u)Dx can be described by
the weights of the stencil

1

h2
x

· −Ψ′i−1,j,k Ψ′i−1,j,k + Ψ′i,j,k −Ψ′i,j,k , (6.49)

where

Ψ′i,j,k := Ψ′

(∑
γ∈V

(Dγu)2
i,j,k

)
. (6.50)

The contributions of the other terms D>y Φ(u)Dy and D>z Φ(u)Dz are found
in an analogous way. By adding up all entries corresponding to the same cell,
one obtains the complete (3 × 3 × 3)-stencil for A(u) which contains seven
nonzero entries. We have also tested other common discretisations for the
PDE (6.32). However, we could not find a noticeable improvement in this
context.

Implementation Details

For setting up the system matrix and the right hand side, we carry out the
summations required to compute P and q in parallel using atomic operations.
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Due to the fact that we use a small constant σ this operation is extremely
fast. For solving the linear system of equations that either arise directly
or within the fixed point iteration for solving a nonlinear system, we use a
cascadic version of the Fast Jacobi (FJ) solver [10] explained in Chapter 2.
The FJ solver is essentially a modified Jacobi over-relaxation (JOR) method,
where the relaxation parameter is not fixed but varied in a cyclic way. Due
to this, FJ is much more efficient than JOR but still as simple to implement;
see Section 2.4.2. In particular, it is perfectly suited for parallelisation as it
merely requires knowing values from the last iteration to compute the new
iterations result. We use 3D CUDA arrays bound to textures or surfaces,
which is well-suited in this scenario. It allows for fast read and write opera-
tions required in each iteration and makes use of efficient 3D caching. In the
linear case, 4 ·M3 variables have to be stored. This corresponds to a memory
usage of 2 GiB when using a volumetric grid of 5123 voxels and 32-bit floating
point accuracy. For the nonlinear case, the nonlinearities Φ(uk) are stored
as well. The reconstruction with 4003 voxels shown in Figure 6.5 took 7.4
seconds on a GeForce GTX690. This illustrates the good performance of FJ
on modern GPUs.

6.8 Experimental Results

For the examples taken from the Stanford scanning repository [103], raw data
in range grid format is available. We estimate normals using the neighbouring
pixels within each range scan. We have used cubic voxels and Gaussian
weighting functions with a constant σ equal to the voxel size for each input
point in all experiments.

Dragon

In Figure 6.5, we have reconstructed the Dragon model from the Stanford
scanning repository [103] using our HOM-IMLS approach. One can see that
choosing a too small smoothness weight (α = 0.1) results in isolated clutter.
This is reasonable because a smoothness weight of zero simply yields an
implicit moving least squares solution which has been shown to produce
reconstructions with spurious artefacts in many cases [58, 21]. By selecting
a suitable smoothness weight (α = 10), it is possible to remove the clutter
while preserving the details even with the quadratic first order model. This
illustrates the benefit of combining the strengths of the IMLS approach with
the advantages of regularisation.
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Figure 6.5: Reconstructions with our HOM-IMLS approach (6.31) at 4003

voxels. Top: Choosing a smoothness weight close to zero (α = 0.1) ap-
proximates a moving least squares solution, which results in isolated clutter.
Bottom: By choosing a suitable smoothness weight (α = 10), the isolated
clutter is removed while small details are kept.

Drill

In Figure 6.6, we use use the drill dataset taken from the Stanford scanning
repository [103] to compare wavelet surface reconstruction [74], (screened)
Poisson surface reconstruction (PSR) [58], and smooth signed distance sur-
face reconstruction (SSD) [21] to our novel approaches. We have always used
the implementations provided by the respective authors and a tree depth of
9. Let us now consider the reconstructions in this order.

The wavelet approach (b) is very fast (0.4 seconds) and can also deal
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Figure 6.6: In reading order: (a) Oriented points (b) Wavelet surface
reconstruction (c) Poisson surface reconstruction (d) Screened Poisson sur-
face reconstruction (e) Our HOM-IMLS approach (6.31) (f) Our TV-IMLS
approach (6.31) (g) SSD (h) Our Hessian-IMLS approach (6.24)

with noise and outliers to a certain extent. However, in this case it is not
able to produce a faithful reconstruction. PSR (c) delivers a reasonable
reconstruction, but the drill bit itself is rather unsmooth. Adding a screening
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Figure 6.7: In reading order: (a) Screened PSR with adaptive octree
(b) Screened PSR on fine regular grid (c) Our HOM-IMLS approach (d) SSD
(e) Our TV-IMLS approach (6.31) (f) Our Hessian-IMLS approach (6.24)

weight (α0 = 1) in this case leads to overfitting noise (d). In the SSD
reconstruction (g), the drill bit is also noisy although we have already chosen
a large smoothness weight (α2 = 25) and one can clearly see that the top part
is oversmoothed. By choosing a smaller weight for the smoothness term, it is
possible to obtain a good reconstruction of the top part at the cost of more
noise on the drill bit itself. All of our novel reconstructions (e), (f) and (h)
are able to convey the shape of the drill bit. Moreover, in the magnifications
one can even slightly recognise the windings carved in towards the bottom of
the drill bit. The running times of our HOM-IMLS, TV-IMLS, and Hessian-
IMLS approaches are 2.9, 3.2, and 3.6 seconds, respectively. PSR requires
12.8 in the standard and 14.3 in the screened version, whereas SSD finishes
in 4.8 seconds.

Torus

In Figure 6.7, we examine the different models and implementations for a
simple shape defined by only few oriented points. PSR computes the solution
on an octree that adapts to the input points. Doing so it is possible to
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obtain a reasonable but coarse reconstruction, see Figure 6.7 (a). When
switching off the adaptivity of the octree using a maximal tree depth of 8,
artefacts occur around the input points, cf. Figure 6.7 (b). Similar but
less prominent artefacts occur in our HOM-IMLS approach (c). The SSD
approach does not allow to switch off the adaptivity of the octree in the given
implementation. Therefore, it can only compute a coarse reconstruction (d).
In our reconstruction with TV-IMLS (e), one can see how the surface area is
minimised. However, here this property is not beneficial. Our Hessian-IMLS
approach (f) achieves a reconstruction without artefacts and is in our eyes
the most promising approach. Thus, we will focus on this approach in the
remainder of the experiments. The coarse reconstructions with SSD (0.3 s)
and PSR (0.4 s) are quite fast. However, two minutes are required when
switching off the adaptivity of the octree in PSR. Our methods HOM-IMLS,
TV-IMLS, and Hessian-IMLS finish in 0.9, 1.1, and 1.4 seconds, respectively.

Reconstruction Benchmark

We use the reconstruction benchmark of Berger et al. [15] for evaluating re-
construction accuracy of our Hessian-IMLS approach compared to (screened)
PSR [58] and SSD [21]. The benchmark simulates scanner error as nonuni-
form sampling, noise and misalignment and covers many virtual scans of five
different implicit surfaces. We use the most recently available author imple-
mentations for PSR and SSD, which are Versions 5.5 and 3.0, respectively.
For PSR, we select the settings recommended by the authors for this bench-
mark, i.e. we use a screening weight of 4 for screened PSR and the same
implementation with a screening weight of 0 to compute the unscreened ver-
sion [58]. For SSD we have found the weights α = (1, 1, 1)> to produce the
best error values when considering both distance and angular errors. We
use a resolution of 3003 voxels, which is appropriate for covering present de-
tails in the models and accordingly choose an octree depth of 9 for the other
approaches. For our approach we select a smoothness weight α = 1.

When comparing the errors in distance values, one can see in Figure 6.8
that all methods tend to yield lower errors compared to PSR. In general,
the error values are close together, though. However, when considering the
angular error values, our approach manages to also obtain the lowest error
in most cases.

Globe

We have recorded several colour images of an ordinary globe and used Vi-
sualSFM [120] to estimate the camera poses. Subsequently we used the
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Figure 6.8: Reconstruction accuracy compared with the benchmark of
Berger et al. [15]. For each of the five datasets, Anchor, Dancing, Daratech,
Gargoyle and Quasimodo (rows from top to bottom), the two plots show the
ratios of the mean distance (left) and mean normal errors (right) of screened
PSR (blue), SSD (green) and our approach Hessian-IMLS (purple), relative
to the original PSR algorithm. Each symbol corresponds to one benchmark
test, where the horizontal axis denotes the amount of oriented points avail-
able in that test.
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Figure 6.9: In reading order: (a) Subset of the input images
(b) Coloured oriented point cloud produced by PMVS (c) Dense geometry
reconstructed with our Hessian-IMLS approach (6.24) (d) Textured recon-
struction
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Figure 6.10: In reading order: (a) Input point cloud (b) SSD
(c) Hessian-IMLS (d) Hessian-IMLS with hull constraint

patch-based multi-view stereo (PMVS) [40] algorithm to compute a coloured
oriented point cloud. Figure 6.9 shows that our method is capable of produc-
ing a reasonable reconstruction from this point cloud despite of uncovered
areas on the globe and noise. The texture has been computed by extending
the idea of [22] to fit into our framework.

6.9 Limitations and Discussion

An octree as in [21, 58] allows for a better scaling in the unknowns and it
is also possible to solve our model on an octree instead of a regular grid.
However, in both previously mentioned implementations, the octree only
adapts to the input data and not to the evolving solution, i.e. the unknown
surface. Our fast GPU implementation allows to compute reconstructions of
resolutions as required for the recent reconstruction benchmark of Berger et
al. [15] in a competitive runtime of a couple of seconds.
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We usually choose a small constant σ in order to account for the fact
that an oriented point only defines a small linear surface patch locally. This
is possible because the smoothness term will take care of regularising and
filling in missing information. For standard implicit moving least squares
approaches, the parameter σ has to be used to both regularise and fill in
missing information. As previously mentioned, this can be problematic since
filling large missing regions requires a large σ and thus smoothing away small
scale features. When considering our Hessian-IMLS approach, the smooth-
ness term does not penalise linear functions. It is interesting to observe that
this is in accordance with the data term. To this end, we assume that all ori-
ented points have been sampled from a planar surface. Then one can easily
observe that the data term will preserve this planar surface independent of
the choice of σ.

Concerning measurement errors, we basically can differentiate between
two kinds of problems in the oriented point cloud: First, some oriented points
may have been measured at inaccurate locations. Second, there may be large
regions of the object that are not covered by oriented points at all. In the
first case, regularisation can be a remedy. However, in the second case the
regularisation may fill in the missing regions in an undesirable way. To avoid
unwanted surface sheets, it can thus be beneficial to incorporate a further
constraint that preserves free space. We explain how such a constraint can
be added into the Hessian-IMLS model, which is our best performing one.

6.10 Hull Constraints

Often, it is possible to estimate a hull that should contain the object to be
reconstructed. In real world scenarios where oriented points are recovered
from images, a prominent example of such a hull is the visual hull [67]. Thus,
we propose to augment our Hessian-IMLS formulation with an additional
term that allows to encourage the surface to stay within a specified hull. This
is especially helpful to steer the surface reconstruction when larger parts of
the object are not sufficiently covered with oriented points.

Let H denote the set of all points within a specified hull. Then we know
that for any point x outside H, its distance value u(x) should be larger
or equal to the Euclidean distance from the hull d(H,x). However, inside
the hull all values should be allowed without further penalisation. Thus, we
propose to add the following term to our model (6.24):

Hull(u) = β

∫
Ω\H

max{0, d(H,x)− u(x)}2dx. (6.51)
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This hull constraint can be regarded as an optional additional level of control.
Its importance can be specified by choosing a suitable β > 0 and it can be
switched off by setting β = 0 if a hull should not be used. In the presence of
a hull constraint, we need to consider the gradient of 6.51 additionally. The
j-th component of it can be written as

2 β H(dj) H(dj − uj) (uj − dj), (6.52)

where H denotes the Heaviside function and d the discrete version of d(H,x).
Although the Heaviside function itself is discontinuous, the above expression
is continuous.

With the same pipeline as in the globe experiment, we have computed
an oriented point cloud of a fountain, see Figure 6.10 (a). In this case, the
lack of oriented points in some locations, for example at the very top, causes
unwanted filling-in effects as in (b) and (c). Our hull constraint according to
Equation 6.51 allows for a better control of the surface (d). In this case, we
used a visual hull estimated from silhouettes made with the approach in [47].

As we have stated in [7], incorporating a hull constraint is also possible
for the first order approaches. It can be realised by adding a term to the
energy that prefers a suitable constant value outside the given hull. Such an
approach has simultaneously been published by Shan et al. [97] who integrate
such a constraint into the Poisson surface reconstruction method.

6.11 Summary

We have proposed a general higher order framework for the implicit recon-
struction of watertight surfaces from a finite set of oriented points and showed
the benefits of this systematisation: It makes specific features of popular ex-
isting approaches explicit. Moreover, it helps to identify gaps within the
systematisation allowing to derive hitherto unexplored approaches. While
all these approaches can yield competitive results, one of them showed to be
especially promising. Our Hessian-IMLS formulation combines the benefits
of implicit moving least squares based approaches and thin plate spline reg-
ularisation. In difficult real world scenarios, unwanted filling-in effects that
produce surfaces in regions that should be unoccupied can frequently appear
for all approaches. To deal with such effects, we have proposed to incorpo-
rate a hull constraint. We implemented our framework on the GPU using a
novel cyclic scheme named Fast Jacobi for solving the resulting systems of
equations.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have considered the problem of reconstructing the surface
of a static object or scene using variational methods. Typically, such a task
is split into a number of independent steps which altogether can be referred
to as 3D reconstruction pipeline. We have investigated and contributed to
several important steps that occur within popular 3D reconstruction pipelines
and presented a novel pipeline that consistently relies on dense methods.

In Chapter 3, we analysed variational methods that estimate a single
depth map from multiple views. While previous work is mostly formulated
in terms of the unknown depth, we generalised it by introducing a parame-
terisation of depth. This allowed us to find that parameterisations along the
line of sight are not suitable for such a scenario and that parameterisations
along the optical axis are much more reasonable. For them, we presented
a detailed analysis of a direct depth and an inverse depth parameterisation
and are able to theoretically and practically point out several advantages of
an inverse depth parameterisation. Concerning smoothness assumptions, it
is compatible with second order regularisation because piecewise affine in-
verse depth leads to piecewise planar 3D surfaces. On the contrary, this is
not the case for a direct depth parameterisation. It introduces a bias which
we quantify both theoretically by means of the shape operator as well as
by experiments. Furthermore, we were able to show that an inverse depth
parameterisation is not only advantageous for the smoothness term. It is
also preferable for the linearisation required in the data term. This is due to
the fact that for common camera setups, the inverse depth parameterisation
does not increase the deviation from linearity of the data term. Based on
our findings, we thus recommend the inverse depth parameterisation along
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the optical axis as the parameterisation of choice for variational multi-view
depth estimation.

Having computed depth maps, Chapter 4 dealt with the problem of merg-
ing multiple depth maps into a single watertight 3D model. However, it is
important to note that it does not matter how the depth maps have been
acquired at this stage. They can be computed from multiple colour images
as in a multi-view stereo setting but they can also be directly captured with
active sensors. We based our analysis on the variational range image integra-
tion method of Zach et al. [124] and were able to improve the reconstruction
quality by extending it in several aspects. On the one hand, we have em-
ployed an anisotropic regulariser that outperforms the existing isotropic one
because it can produce much smoother surfaces while preserving ridges and
corners. On the other hand we use the Euclidean signed distance instead
of the distance along the line of sight when converting the depth maps into
signed distance fields. Furthermore, we have presented a parallel GPU imple-
mentation using a nonstandard discretisation and the Fast Jacobi algorithm
that allows for competitive runtimes.

In Chapter 5, we have relaxed the requirement that the camera poses
have to be known in advance and have presented a novel 3D reconstruction
pipeline that solely relies on dense methods. It only requires an image se-
quence of a static scene captured while following a continuous path along
with the intrinsic camera parameters. We first estimate optical flow and
stereo geometry in a joint variational approach for each consecutive image
pair. Then we concatenate the flow fields and perform a global refinement
via bundle adjustment. This yields globally consistent camera poses which
allows to evaluate depth maps that can be merged as previously described.
Our optical flow based constraints prove to be sufficiently robust such that
the bundle adjustment can recover an accurate global model. Furthermore,
our comparisons to a popular approach working with sparse features show
that dense methods can be an interesting alternative also in this scenario.

When building a 3D reconstruction pipeline that relies on sparse features,
this usually results in an oriented point cloud instead of a mesh. Thus, this
point cloud has to be converted into a mesh in the last processing step of
the pipeline. To this end, we have proposed a general higher order frame-
work for the implicit reconstruction of watertight surfaces from a finite set
of oriented points in Chapter 6. We were able to show the benefits of such
a systematisation: It made specific features of popular existing approaches
explicit. Furthermore, it allowed to identify gaps within the systematisation
allowing to derive several new formulations. One of them combines the ben-
efits of implicit moving least squares based approaches and thin plate spline
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regularisation. This approach, which we refer to as Hessian-IMLS, was able
to outperform very popular and widely used state-of-the-art methods on a
publicly available benchmark. Last but not least, we have proposed to in-
corporate a hull constraint when computing a mesh from an oriented point
cloud. This allows to avoid unwanted filling in effects that produce surfaces
in regions that should be free space. We have implemented our framework
on the GPU using a novel cyclic scheme named Fast Jacobi for solving the
resulting systems of equations.

In summary, this thesis has contributed to several important steps that
occur within common 3D reconstruction pipelines. Since these pipelines are
designed in such a way that each step can be processed sequentially, the
methods presented are effectively individual approaches that are able to re-
construct surfaces from different input data such as colour images, depth
maps, or oriented points. Each method relies on a variational formulation
which allows for a clean and transparent modelling without any hidden as-
sumptions. The recently introduced Fast Jacobi solver is employed in the
minimisation of all models presented in this thesis and thus proves its ver-
satility. It is perfectly suited for parallelisation and leads to highly efficient
GPU implementations. Furthermore, we have seen that anisotropic ideas can
allow to improve the reconstruction quality by incorporating directional in-
formation also in the case of 3D reconstruction. Last but not least, we show
that dense approaches can offer an interesting alternative to sparse ones also
in the setting of 3D reconstruction.

7.2 Future Work

Although we were able to provide a number of advances and insights within
this thesis, capturing accurate 3D models of real world objects or scenes still
remains a challenging task. Thus, we will discuss some possibilities for future
work in the following.

In Chapter 3, we have shown that an inverse depth parameterisation is
preferable compared to a direct parameterisation of depth. To demonstrate
this, we have used very basic assumptions in both the data term and the
smoothness term. Thus, in future work, reconstruction results can be im-
proved by using more sophisticated photoconsistency measures than a simple
brightness constancy assumption in the data term. Also the smoothness term
can benefit from more sophisticated regularisation strategies that incorporate
directional information or non-local ideas. Furthermore, the estimation of a
depth map from multiple views usually assumes that the camera poses are
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known in advance such that they have to be computed in a preprocessing
step if they are not captured with a calibrated camera setup. Therefore, it
could be rewarding to analyse the challenges and benefits of strategies that
jointly estimate the camera poses and the depth map.

The range image integration approach presented in Chapter 4 scales very
well in terms of runtime with the number of input images and allows for
detailed and accurate reconstructions. However, if a very high resolution is
needed to capture very large objects or scenes, both memory requirements
and runtime can become prohibitive for practical purposes. To this end,
it could be very beneficial to investigate discretisations of the anisotropic
regularisation term on octrees or general unstructured grids. This can allow
to compute implicit functions that only have a very coarse resolution away
from the surface but are highly resolved in regions close to the surface. Most
probably, this will allow to compute reconstructions of a given quality with a
greatly reduced memory footprint and computation time compared to using a
Cartesian grid. The usage of multiple GPUs can be another more hardware
demanding remedy. Computer architectures that support multiple GPUs
have become quite popular and also the speed of data transfer between GPUs
increases steadily. Therefore, algorithms that are parallelised across many
GPUs also become more attractive. In this case, it would be interesting
to analyse the data transfer required between GPUs as well as the runtime
for different decomposition strategies of the domain. Also in the setting of
surface reconstruction from oriented points, unstructured grids and multiple
GPUs are interesting to consider.

The dense pipeline for 3D reconstruction from image sequences presented
in Chapter 5 proves to be an interesting alternative to sparse approaches and
the jointly estimated flows and camera geometries yield a sufficiently good
initialisation for the bundle adjustment step. Future work could investigate
to what extent incremental ideas as well as spatio-temporal regularisation
can increase the robustness and accuracy of the results.

On a more general scale, it would be interesting to transfer the novel ideas
and insights from the context of 3D reconstruction from static scenes to a
dynamic setting where the scene geometry can change over time. Further-
more, the textured reconstructions shown in this thesis are simply computed
by averaging colour values from the input images. To this end, it would be
interesting to estimate material properties in a physically plausible way in
order to allow for rendering the appearance more realistically.
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Commentationes Mathematicae Universitatis Carolinae, 14(4):651–
659, 1973.



140 BIBLIOGRAPHY

[42] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Dover Publi-
cations, Mineola, NY, USA, 2000.

[43] M. Goesele, B. Curless, and S. M. Seitz. Multi-view stereo revisited. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 2402–2409, New York, NY, USA, June 2006.

[44] G. Graber, J. Balzer, S. Soatto, and T. Pock. Efficient minimal-
surface regularization of perspective depth maps in variational stereo.
In Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion, Boston, MA, USA, June 2015.

[45] A. Gray, E. Abbena, and S. Salamon. Modern Differential Geometry
of Curves and Surfaces with Mathematica. Chapman & Hall/CRC, 3rd
edition, 2006.

[46] S. Grewenig. Fast Explicit Methods for PDE-Based Image Analysis.
PhD thesis, Dept. of Mathematics and Computer Science, Saarland
University, Saarbrücken, Germany, 2013.

[47] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman.
Geodesic star convexity for interactive image segmentation. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition, pages
3129–3136, San Francisco, CA, June 2010.

[48] B. C. Hall. Lie Groups, Lie Algebras, and Representations: An Ele-
mentary Introduction. Springer, New York, 2003.

[49] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2003.

[50] W. B. Heard. Rigid Body Mechanics: Mathematics, Physics and Ap-
plications. Wiley-VCH, Weinheim, 2006.

[51] C. Hernandez, G. Vogiatzis, and R. Cipolla. Probabilistic visibility for
multi-view stereo. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, Minneapolis, MN, USA, June 2007.

[52] A. Hewer, J. Weickert, H. Seibert, T. Scheffer, and S. Diebels. La-
grangian strain tensor computation with higher order variational mod-
els. In Proc. British Machine Vision Conference, pages 129.1–129.10,
Bristol, UK, Sept. 2013. BMVA Press.



BIBLIOGRAPHY 141

[53] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Reliable
surface reconstruction from multiple range images. In B. Buxton and
R. Cipolla, editors, Computer Vision – ECCV ’96, volume 1064 of
Lecture Notes in Computer Science, pages 117–126. Springer Berlin,
1996.

[54] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices. Journal
of the Optical Societ of America A, 5(7):1127–1135, 1988.

[55] D. Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Jour-
nal of Mathematical Imaging and Vision, 35(2):155–164, Oct. 2009.

[56] H. Ishikawa. Total absolute Gaussian curvature for stereo prior. In
Y. Yagi, S. Kang, I. Kweon, and H. Zha, editors, Computer Vision –
ACCV 2007, volume 4844 of Lecture Notes in Computer Science, pages
537–548. Springer Berlin, 2007.

[57] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: Real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proc. 24th Annual ACM Symposium on User In-
terface Software and Technology, UIST ’11, pages 559–568, New York,
NY, 2011. ACM.

[58] M. Kazhdan and H. Hoppe. Screened Poisson surface reconstruction.
ACM Transactions on Graphics, 32(3):29:1–29:13, July 2013.

[59] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the Fourth Eurographics Symposium on Ge-
ometry Processing, SGP ’06, pages 61–70. Eurographics Association,
2006.

[60] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
SIAM, Philadelphia, 1995.

[61] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality, ISMAR ’07, pages 1–10, Washington,
DC, 2007. IEEE Computer Society.

[62] K. Kolev, M. Klodt, T. Brox, and D. Cremers. Propagated photo-
consistency and convexity in variational multiview 3D reconstruction.



142 BIBLIOGRAPHY

In Workshop on Photometric Analysis for Computer Vision, Rio de
Janeiro, Brazil, Oct. 2007.

[63] K. Kolev, M. Klodt, T. Brox, S. Esedoglu, and D. Cremers. Continuous
global optimization in multiview 3d reconstruction. In A. L. Yuille,
S.-C. Zhu, D. Cremers, and Y. Wang, editors, Energy Minimization
Methods in Computer Vision and Pattern Recognition, volume 4679 of
Lecture Notes in Computer Science, pages 441–452. Springer, Berlin,
2007.

[64] K. Kolev, T. Pock, and D. Cremers. Anisotropic minimal surfaces inte-
grating photoconsistency and normal information for multiview stereo.
In K. Daniilidis, P. Maragos, and N. Paragios, editors, Computer Vi-
sion – ECCV 2010, volume 6313 of Lecture Notes in Computer Science,
pages 538–551. Springer, Berlin, 2010.

[65] R. Kolluri. Provably good moving least squares. ACM Transactions
on Algorithms, 4(2):18:1–18:25, May 2008. ISSN 1549-6325.

[66] S.-H. Lai and B. C. Vemuri. Reliable and efficient computation of
optical flow. International Journal of Computer Vision, 29(2):87–105,
1998.

[67] A. Laurentini. The visual hull concept for silhouette-based image un-
derstanding. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(2):150–162, Feb. 1994.

[68] V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, Minneapolis, MN, USA, June 2007.

[69] V. Lempitsky, Y. Boykov, and D. Ivanov. Oriented visibility for multi-
view reconstruction. In A. Leonardis, H. Bischof, and A. Pinz, editors,
Computer Vision – ECCV 2006, volume 3953 of Lecture Notes in Com-
puter Science, pages 226–238. Springer, Berlin, 2006.

[70] K. Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly Journal of Applied Mathmatics, 2(2):164–
168, 1944.

[71] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proc. SIGGRAPH 87, volume 21,
pages 163–169, July 1987.



BIBLIOGRAPHY 143

[72] M. A. Lourakis and A. Argyros. SBA: A software package for generic
sparse bundle adjustment. ACM Transactions on Mathematical Soft-
ware, 36(1):1–30, 2009.

[73] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[74] J. Manson, G. Petrova, and S. Schaefer. Streaming surface reconstruc-
tion using wavelets. Computer Graphics Forum, 27(5):1411–1420, 2008.

[75] A.-R. Mansouri, A. Mitiche, and J. Konrad. Selective image diffusion:
Application to disparity estimation. In Proc. IEEE International Con-
ference on Image Processing, pages 284–288, Chicago, IL, Oct. 1998.

[76] R. March. Computation of stereo disparity using regularization. Pat-
tern Recognition Letters, 8(3):181 – 187, 1988.

[77] D. W. Marquardt. An algorithm for least-squares estimation of nonlin-
ear parameters. SIAM Journal on Applied Mathematics, 11(2):431–441,
1963.

[78] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 27(10):1615–1630, 2005.

[79] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In Proc. Tenth
IEEE International Symposium on Mixed and Augmented Reality, IS-
MAR ’11, pages 127–136, Washington, DC, 2011. IEEE Computer So-
ciety.

[80] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense
tracking and mapping in real-time. In Proc. IEEE International Con-
ference on Computer Vision, pages 2320–2327, Barcelona, Spain, Nov.
2011.
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