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Abstract. We propose a novel pipeline for 3D reconstruction from im-
age sequences that solely relies on dense methods. At no point sparse
features are required. As input we only need a sequence of color images
capturing a static scene while following a continuous path. Furthermore,
we assume that an intrinsic camera calibration is known. Our pipeline
comprises three steps: (1) First, we jointly estimate correspondences
and stereo geometry for each two consecutive images. (2) Subsequently,
we connect the individual pairwise estimates and globally refine them
through bundle adjustment. As a result, all camera poses are merged
into a consistent global model. This allows us to create accurate depth
maps. (3) Finally, these depth maps are merged using variational range
image integration techniques. Experiments show that our dense pipeline
is an interesting alternative to sparse approaches. It yields accurate cam-
era poses as well as 3D reconstructions.

1 Introduction

Recovering high-quality 3D models of a static scene from images of a moving
camera is an important task in computer vision. Many of the existing algo-
rithms for this problem rely on sparse features. Such methods have to select
the most appropriate data carefully and eliminate outliers. On the other hand,
dense computer vision methods have made enormous progress in the last decade.
For optical flow computation they belong to the leading approaches; see e.g. [1].
Moreover, dense strategies can also be on par with sparse methods for other
problems such as the estimation of the fundamental matrix [16]. Dense meth-
ods do not have to put effort into selecting the best data but rather draw their
robustness from using all data.
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Our Goals. Motivated by these achievements, the goal of our paper is to present
a pipeline for 3D reconstruction that consistently relies on dense methods: It does
not require sparse features at any point. The pipeline can be divided into three
stages. First we compute dense correspondences and the fundamental matrix
for each consecutive image pair in a joint approach. Every pairwise estimate
generally has its own scale. To estimate a consistent motion sequence these scales
have to be unified. Thus, in the second step, we connect the pairwise estimates
and perform a global refinement with bundle adjustment. Finally, we compute
accurate depth maps and merge them into a 3D model using anisotropic range
image integration.

In contrast to many existing approaches for camera motion estimation that
rely on sophisticated feature descriptors, our novel pipeline uses state-of-the-art
dense variational methods in every part of the process of reconstructing a 3D
object from unregistered cameras. This is especially advantageous in sequences
with less texture and many similar structures, where unordered feature matching
is difficult.

Organization of the Paper. Our paper is organized as follows: After dis-
cussing related work in Section 2, Section 3 presents our dense reconstruction
pipeline. Section 4 then evaluates its performance before the paper is concluded
with a summary.

2 Related Work

Monocular tracking and range image integration are most closely related to our
work. A prominent tracking approach is the PTAM algorithm by Klein and
Murray [7], which tracks sparse features of the scene and creates a map of the
environment. With this map the new camera pose is estimated depending on
the matched features. Newcombe et al. [11] follow a similar tracking approach,
but use a dense scene model instead of a sparse feature map. This way, they
achieve a higher robustness to rapid motion. However, they still need standard
point features to initialize their tracking algorithm. In order to describe such
point features one can employ the well-known SIFT descriptor by Lowe [8], or
one of the many modifications such as SURF [2] or GLOH [9].

Instead of using RGB images for tracking, also range images can be success-
fully employed for this task. Newcombe et al. [10] present a tracking algorithm
based on dense depth frame alignment, and Izadi et al. [6] investigate a simi-
lar approach that focuses on reconstruction. Zhou et al. use points of interest
to reconstruct a dense model from range images [21]. They employ a global
optimization scheme which protects parts of the scene that have been scanned
already. This leads to more consistent and detailed reconstructions. The disad-
vantage of depth sensors is their typically lower resolution compared to RGB
images. Moreover, these algorithms are not applicable in certain situations such
as the reconstruction from old image sequences or benchmarks where no depth
data is available.
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3 Our 3D Reconstruction Pipeline

This section describes the three steps of our 3D reconstruction pipeline and
explains how they can be connected. First, we discuss how to obtain correspon-
dences and epipolar geometry for all consecutive image pairs following a joint
approach. Then we describe how we connect this pairwise information to com-
pute a globally consistent camera motion with the help of bundle adjustment.
Finally we explain how this enables us to construct a high quality 3D model
using anisotropic range image integration.

3.1 Joint Estimation of Correspondences and Epipolar Geometry

As we assume a static scene, the only scene element that moves is the camera
itself. Therefore, the moving camera can equivalently be understood as multiple
identical cameras that capture the scene from different positions at the same
time. In this paper, we assume that there is no knowledge about the camera
movement other than that contained in the images. In order to cope with this, we
propose an anisotropic modification of the joint method of Valgaerts et al. [16].
It is capable of estimating dense point correspondences and the associated fun-
damental matrix at the same time. Besides obtaining the fundamental matrix,
this has the inherent advantage that the correspondence search is simplified as
it is guided by the evolving epipolar constraint. The flow field w : Ω → R

2

over the image domain Ω between two images fi, fi+1 and the fundamental
matrix F ∈ R

3×3 are found as a minimizer of a suitable energy in this joint
approach [16]:

E(w,F ) = ED + αES + βEE . (1)

Here ED is the data term, ES the smoothness term, and EE denotes the epipolar
term. The weights α, β > 0 balance the individual terms. In the data term we
assume brightness and gradient constancy for all image points, expressed by the
first and second line of the following data term, respectively:

ED(w) =

∫

Ω

Ψ
(

|fi+1(x+w)− fi(x)|2 (2)

+ γ|∇fi+1(x+w)−∇fi(x)|2
)

dx ,

with a sub-quadratic penalizer function Ψ(s2) =
√
s2 + ǫ2 and a positive weight

parameter γ ∈ R that balances brightness and gradient constancy assumptions.
To obtain a smooth flow field w = (u, v)T , Valgaerts et al. [16] employed

an isotropic flow-driven regularizer with sub-quadratic penalization. To obtain
better performance, we use a flow-driven anisotropic regularizer [18]

ES(∇w) =

∫

Ω

tr
(

Ψ
(

∇u∇uT +∇v∇vT
) )

dx , (3)
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where tr is the matrix trace operator, and Ψ is an extension of the scalar valued
function that acts on the eigenvalues of the matrix. The epipolar term directly
couples the flow field w with the fundamental matrix F :

EE(w,F ) =

∫

Ω

Ψ

(

(

x+w

1

)T

F

(

x

1

)

)

dx . (4)

In this way it softly constrains the correspondences to fulfill an epipolar con-
straint. Note that the trivial solution of F = 0 has to be excluded by imposing
a constraint on the Frobenius norm ‖F ‖2

F
= 1.

As in [16], we employ the method of Lagrange multipliers to solve the con-

strained optimization problem (1) subject to ‖F ‖2
F

= 1. Thus we have to find
critical points for which the functional derivatives of the Lagrangian vanish. This
comes down to solving a system of equations, which in this case can be achieved
by iterating between optical flow computation and fundamental matrix estima-
tion. In the first iteration, we can simply use a zero matrix as initialisation for the
fundamental matrix. This corresponds to switching off the epipolar constraint
such that the fundamental matrix is recovered from pure optical flow in the first
iteration.

3.2 Enforcing Scale Consistency

After processing all subsequent image pairs of the sequence as discussed in the
previous subsection, we obtain fundamental matrices that describe the epipolar
geometry for each image pair along with dense point correspondences (flow field).
From each estimated fundamental matrix the relative pose of a canonical camera
pair can be extracted [5]. Since we assume that the cameras are calibrated, i.e.
their intrinsic parameters are known, the main problem at this stage is merely
the remaining scale ambiguity for each pairwise estimate.

To find a mutually consistent scale we have to enforce a set of constraints
that connects the whole image sequence. Each constraint has to span at least
three images to contribute to a consistent scale. To build such constraints, we
construct point trajectories by simply adding up flow vectors. Displacement vec-
tors between the flow field’s grid positions are estimated by bilinear interpola-
tion. We test the validity of the resulting trajectories with a forward-backward
flow consistency check. Regions of large flow gradients can originate from flow
boundaries, where the estimates are less reliable. They are excluded from our
computation, as proposed by Sundaram et al. [14].

However, unlike Sundaram et al., we do not limit the sampling of trajectory
starting points to well textured regions. Since the idea of dense optical flow is
to provide meaningful displacements even in less textured regions, we propose
to spare this additional filtering effort. In our experiments, we show that a sim-
ple uniform subsampling can be used to decrease the computational effort and
that this can even lead to slightly more accurate results when compared to the
texture based sampling. The trajectory points should just lie on the scene ob-
ject. Background regions are filtered out by given masks, which typically can be
obtained by image segmentation approaches.
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Even with highly accurate optical flow and despite the mentioned consistency
checks, estimation and interpolation errors add up at some point. Therefore,
we propose to limit the length of trajectories to a fixed value. However, short
trajectories that connect only two frames may still help to improve or preserve
the initially estimated relative scene geometry, even if it does not contribute to
obtaining a unified scale directly.

After processing all subsequent image pairs of the sequence, we concatenate
the pair-wise poses one by one to form an initial scene model. Furthermore,
we triangulate the depth of one 3D point for each point trajectory to serve
as an initialization. This initial scene model is then refined by enforcing the
constraints imposed by the point trajectories. To this end, we minimize the
reprojection error at each trajectory point by adjusting the triangulated scene
point coordinates and the camera poses. This optimization procedure is known as
bundle adjustment. For a detailed discussion of the theoretical concept we refer
to the work of Triggs et al. [15]. We employ the implementation by Zach [20],
which uses Levenberg-Marquardt steps to update the camera poses and initially
estimated scene points. Since the intrinsic camera parameters are assumed to be
fixed, we leave them unchanged during the optimization. We stop when either a
gradient threshold or a fixed number of maximum iterations is reached. In all of
our experiments we used 60 as the maximum number of iterations.

To estimate initial 3D scene points, we use the first two frames containing a
trajectory thus adopting their local scale. Since badly triangulated scene points
resulting from very small baselines or difficult object geometry may harm the
optimization, we propose to exclude points that are triangulated to implausible
depths by using a threshold. However, it is also possible to choose a different
camera pair instead, in order to perform the triangulation.

3.3 Anisotropic Range Image Integration

From the optimization with bundle adjustment explained in the previous section,
we have obtained a globally consistent estimation of camera motion. In return,
we can now use this knowledge to compute fundamental matrices that are in
accordance with the global estimation for each image pair. Then we minimize
the energy from Equation 1 again, but this time we keep the fundamental matrix
fixed, i.e. we only minimize w.r.t. the flow w. By putting a high weight on
the epipolar term, we can elegantly make use of the fact that stereo matching
constitutes a 1D search problem only. This high weight allows to constrain the
correspondences to closely obey the epipolar constraint. These correspondences
define registered depth maps, which can be merged using variational range image
integration techniques. To this end we define a 3D bounding box of interest Ω3

and compute a signed distance field g within it for each input depth map. In
the second step we find a cumulative signed distance function u : Ω3 → R as a
minimizer of the energy

E(u) =

∫

Ω3

( N
∑

i=1

ci Ψ((u− gi)
2) + α S(∇u)

)

dx, (5)
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Fig. 1. Sequences used for the experiments, from left to right: (a) Monkey. (b) Indy.
(c) Plant. (d) Middlebury DinoRing. The Indy and Plant models are available on the
blendswap.com platform.

where ci are confidence weights. The unknown surface is then given by the zero
level set of u. We employ the anisotropic range image integration algorithm of
Schroers et al. [12]. It incorporates a direction dependent smoothing behaviour
that is capable of creating smooth surfaces while preserving ridges and corners.

4 Experiments

To evaluate our approach, we compare the accuracy and stability of our esti-
mated camera motion to a sparse feature tracker. We have selected the popular
Voodoo Camera (VCT) for comparison [17]. It uses the Kanade-Lucas-Tomasi
(KLT) tracker [13] and monitors the tracked image windows to detect outliers.
Furthermore, it allows to perform a global refinement via bundle adjustment.
Again we treat the intrinsic camera calibration as a fixed parameter for all cam-
eras.

We test both approaches on four image sequences, which are shown in Fig-
ure 1. Three of the sequences are synthetic ones, where the camera moves around
an object. The Monkey and Indy dataset consist of 112 images. The plant dataset
contains 91 images. The baseline lengths between two poses vary by a factor of
2 to 3. The last sequence is the DinoRing dataset of the Middlebury multi-view
stereo benchmark, containing 48 images.

To judge the quality of the final model one needs to overcome the gauge free-
dom that is basically inherent to all 3D reconstructions. Therefore, the cameras
are aligned with the ground truth model before computing the individual pose
errors. Each pose error consists of the Euclidean distance of the estimated cam-
era center to its ground truth counterpart and also the difference in orientation
in radians. For the orientation we do not only consider the heading but also pitch
and roll.

Accuracy. Table 1 shows the errors in position and orientation of the final
globally aligned model estimate for the evaluation sequences. They are being
compared with the errors of the VCT. Our dense method turns out to yield
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Fig. 2. Two different views of each 3D reconstruction obtained with our dense pipeline.
Each view is shown with and without texture
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Model
Monkey Indy Plant Dino

ec eR ec eR ec eR ec eR

Initialization 0.304 0.055 1.582 0.255 2.124 0.278 0.230 0.335

Refined 0.012 0.004 0.341 0.038 0.705 0.095 0.007 0.014

VCT (KLT) 0.013 0.005 0.437 0.054 0.809 0.105 0.010 0.019

Table 1. Quality comparison to the Voodoo Camera Tracker (VCT). The first row is
the error of our initial model, showing the result when relying only on pair-wise optical
flow computation. The second row is the error after the trajectory constraints have been
enforced by bundle adjustment. Note that the errors in position ec are not comparable
between different sequences because every sequence has its own scale. Errors in rotation
eR are in radians.

Max
Monkey Indy Plant Dino

ec eR ec eR ec eR ec eR

2 0.310 0.055 1.501 0.285 1.701 0.246 0.194 0.344

3 0.055 0.015 1.228 0.179 1.915 0.266 0.094 0.184

8 0.012 0.005 0.436 0.052 1.121 0.151 0.008 0.017

16 0.012 0.004 0.341 0.038 0.705 0.095 0.007 0.014

32 0.037 0.009 0.272 0.029 0.427 0.058 0.229 0.335

Table 2. Errors of recovered camera poses for different maximum trajectory lengths.

(a) Sampling Strategies

Sequence

Sampling

nonuniform uniform

ec eR ec eR

Monkey 0.015 0.005 0.012 0.004

Indy 0.379 0.041 0.363 0.040

Plant 0.753 0.097 0.737 0.098

Dino 0.007 0.014 0.007 0.014

(b) Impact of Gridsize

Grid size ec eR K

2 0.307 0.035 209k

4 0.306 0.034 43k

8 0.341 0.038 10k

16 0.363 0.040 2.5k

32 0.415 0.050 0.6k

64 0.423 0.051 0.1k

Table 3. (a) Comparison of the errors of the recovered camera poses for the nonuniform
sampling strategy of Sundaram et al. [14] and our uniform sampling. The best results
are depicted in bold face. For uniform sampling the grid size was adjusted such that
both approaches use roughly the same number of trajectories: 8k/2k/4k/9k for the
respective sequence. (b) Results for different grid sizes using the “Indy” sequence. The
number of trajectories K is given in thousands. Experiments with a grid size of 1 failed
due to technical problems in simple sparse bundle adjustment (SSBA).
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(a) structure based (b) uniform (c) trajectories

Fig. 3. (a) Trajectory starting points located where λ2 of the structure tensor is above
half of the average of all λ2. (b) Trajectory starting points uniformly spaced on the
grid. (c) Subset of trajectories depicted over many frames blended with the current
dense flow field. Our dense flow field is accurate everywhere, which is the reason why we
could show that a simple uniform sampling for trajectory starting points is preferable.

competitive results compared to VCT which relies on sparse features. Figure 2
shows the resulting 3D reconstructions for the used datasets with our dense
pipeline. To obtain the textured reconstructions, we estimated the color of a
point on the surface by projecting it into all cameras and then averaging the
individual color values from all cameras where the corresponding surface point
is visible.

4.1 Maximum Length

To find the optimal limit for trajectory lengths we list the errors of the recovered
camera poses for different maximum lengths in Table 2. Basically we see that
the additional information in longer trajectories improves the result, but at some
point the accumulated errors can start degrading quality.

4.2 Sampling

As mentioned previously, Sundaram et al. [14] use a texture based sampling
strategy for determining trajectory starting points, cf. Figure 3 (a). We employ
a uniform sampling strategy instead (Figure 3 (b)). In Table 3 (a) we compare
their approach to ours. The results show that ignoring the local texture measure
does not decrease the accuracy of the recovered camera poses. Our more dense
approach gives even slightly better results. This also holds if the grid size is
adjusted such that both methods use roughly the same amount of trajectories.
Table 3 (b) compares the results for different sampling grid sizes. It shows that
our approach is very robust with respect to the chosen degree of density. There-
fore, one may choose a coarser grid to speed up the computations. A subsampling
by a factor 4 even improved the accuracy very slightly.
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5 Limitations and Discussion

Bundle adjustment can lead to an undesired local minimum for an erroneous
initialization. Since the main source of error in our initial model is the varying
scaling between scene points triangulated from different camera pairs, it might
be beneficial to only optimize for the baseline scales in a first step. This can
help guiding a subsequent full bundle adjustment into a preferable minimum. A
similar approach is taken in the odometry method of Fraundorfer et al. [4].

Loop closure is not directly included into our pipeline since the trajectories
are initially computed over neighboring frames of an image sequence. However,
after computing camera poses and the 3D reconstruction with our pipeline, it is
possible to identify new frame correspondences to extend existing trajectories.
This could help to solve the problem of closing loops when iterating the pipeline
a second time.

Errors in the optical flow are not corrected by the bundle adjustment step,
since the trajectory constraints build upon the flow field. Furthermore, the flow
fields are interpolated between grid points when computing trajectories, which
can introduce additional errors. However, usually this constitutes a rather small
error and it is possible to limit the maximum length of trajectories. In terms of
variational methods one could estimate the flow over multiple frames simultane-
ously. It is well-known that one can increase the flow quality by using temporal
regularization; see e.g. [19].

6 Conclusions and Future Work

We have presented a novel pipeline for 3D reconstruction that completely relies
on dense methods. From an image sequence of a static scene, optical flow fields
and stereo geometry are jointly estimated for each consecutive image pair with
a variational approach. Subsequently, the pairwise estimates are connected and
globally refined through bundle adjustment. After this step, we obtain a refined
model of the scene camera positions. Using these, depth maps are computed and
fused by anisotropic range image integration.

Even for bad initializations our optical flow based trajectories prove to be
sufficiently robust constraints, enabling the bundle adjustment to recover the
correct global model. This and our comparisons to VCT show that dense ap-
proaches are an interesting alternative to sparse methods.

To be able to integrate our approach into a tracking framework for navigation
purposes, future work could be based on an incremental optical flow approach,
as for example discussed by Black [3]. This may speed up the estimation due to
good initializations for new frames and may additionally improve the accuracy
of the flow by temporal regularization.
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