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Abstract. The relations between linear system theory and mathemat-
ical morphology are mainly understood on a pure convolution / dila-
tion level. A formal connection on the level of differential or pseudo-
differential equations is still missing. In our paper we close this gap. We
establish the sought relation by means of infinitesimal generators, explor-
ing essential properties of the slope and a modified Cramér transform. As
an application of our general theory, we derive the morphological coun-
terparts of relativistic scale-spaces and of α-scale-spaces for α ∈ [ 1

2
,∞).

Our findings are illustrated by experiments.
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1 Introduction

Linear system theory and mathematical morphology are two successful and
widely-used concepts in signal and image processing. It is well-known that any
shift-invariant linear system can be described as a convolution that can be el-
egantly computed as multiplication in the Fourier domain [14]. On the other
hand, morphological systems are based on dilations with a concave structur-
ing function, which comes down to additions in the slope domain [15, 7]. First
insights into the quasi-logarithmic connection between both worlds have been
obtained by Burgeth and Weickert [5]: While linear system theory uses the clas-
sical algebra (R, ·,+), they showed that mathematical morphology is a system
theory in the max-plus algebra (R ∪ {−∞},+,max). Moreover, they described
this relation by means of the Cramér transform. So far, this formal connection
is restricted to the level of convolutions on the linear system theory side and
dilations on the morphological side.
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Continuous-scale interpretations of both frameworks allow to describe linear
and morphological systems in terms of partial differential equations (PDEs) or
pseudo-differential equations. For example, Gaussian convolution comes down to
a homogeneous diffusion equation, whose evolution in time creates the so-called
Gaussian scale-space [11, 21, 12]. More recently, scale-spaces based on pseudo-
differential operators have attracted attention, such as the Poisson scale-space
[9], its embedding into the family of α-scale-spaces [8], and relativistic scale-
spaces [4]. On the morphological side, continuous-scale versions of dilations are
given by hyperbolic PDEs [2, 19].

An interesting equivalence between Gaussian scale-space and morphologi-
cal dilation with a quadratic structuring function has been discovered by van
den Boomgaard [17]: While Gaussians are the only separable and rotationally
invariant convolution kernels, quadratic functions are the only separable and
rotationally invariant structuring functions. Other formal equivalences between
the (pseudo-)differential operators governing linear shift-invariant scale-spaces
and morphological scale-spaces are not known so far.

The goal of our paper is to address this problem. We establish a general
theory that allows to transform a scale-scale evolution from one of these worlds
to the other world. This framework extends the results of Burgeth and Weickert
[5] to differential and pseudo-differential operators. In particular, it enables us
to derive the morphological counterparts of α-scale-spaces for α ∈ [ 12 ,∞), and
of relativistic scale-spaces.

Organisation of the Paper. Sections 2 and 3 review relevant concepts for
linear shift-invariant scale-spaces and morphological scale-spaces, respectively.
These facts allow us to derive our general framework in Section 4. The fifth
Section applies our theory to α-scale-spaces and relativistic scale-spaces. Exper-
iments in Section 6 illustrate the behaviour of their morphological counterparts.
Our paper is concluded with a summary in Section 7.

2 Convolution Scale-Spaces

Let us consider some bounded greyscale image f : R2 → R. A scale-space rep-
resentation of f embeds this image into a family u(., t) of gradually smoother
versions, where the scale parameter (“time”) t determines the amount of smooth-
ing or image simplification: t = 0 yields u(., 0) = f , and larger values for t
correspond to simpler versions of f with less structure. Reasonable scale-spaces
have to satisfy a number of architectural properties, simplification qualities, and
invariances [1]. Typically their evolutions w.r.t. the scale-parameter t can be
expressed in terms of differential or pseudo-differential equations. In our paper
we focus on scale-space evolutions that are both linear and shift-invariant. More
specifically, we consider the following processes:
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– Gaussian Scale-Space. It computes smoothed versions u(x, t) of f(x) as
solutions of the initial value problem

∂tu = ∆u on R2 × (0,∞), (1)

u(x, 0) = f(x) on R2, (2)

where ∆ denotes the spatial Laplace operator. It goes back to Iijima [11,
20] and became popular in the western world by the work of Witkin [21],
Koenderink [12], Lindeberg [13], and Florack [10] and many others.

– α-Scale-Spaces. They replace the homogeneous diffusion equation (1) by
the pseudo-differential equation

∂tu = −(−∆)αu (3)

with some parameter α ∈ (0,∞). While these processes can already be found
implicitly in Iijima’s work [11], they became popular as scale-spaces due to
a paper by Duits et al. [8]. Gaussian scale-space is recovered for α = 1,
while α = 1

2 gives the so-called Poisson scale-space [9]. If one renounces a
maximum–minimum principle, one can also study scale-spaces for α > 1,
comprising e.g. the biharmonic scale-space for α = 2 [6].

– Relativistic Scale-Spaces. Burgeth et al. [4] have advocated a generalisa-
tion of the Poisson scale-space by considering the evolution equation

∂tu = −
(√
−∆+m2 −m

)
u, (4)

with m ≥ 0.

Since all these processes are linear and shift-invariant, they can be expressed by
convolutions with a suitable kernel kt:

u(., t) = kt ∗ f. (5)

Thus, we can call such a linear, shift-invariant scale-space also a convolution
scale-space. For some of the beforementioned convolution scale-spaces, however,
the kernel does not have a closed form representation in the spatial domain. One
exception is Gaussian scale-space, for which the kernel is given by the Gaussian

gt(x) =
1

4πt
exp

(
−|x|

2

4t

)
. (6)

For kernels that do not have a closed form representation in the spatial domain,
it can be convenient to use a closed form description in the Fourier domain: We
define the Fourier transform by

û(ν) := F [u](ν) :=

∫
R2

u(x) e−2πi〈ν,x〉 dx (7)
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Table 1. Linear shift-invariant scale-spaces and the Fourier transform of their convo-
lution kernels [8, 4, 3].

scale-space Fourier transform of convolution kernel

Gaussian scale-space ĝt(ν) = exp
(
−t |2πν|2

)
α-scale-spaces âα,t(ν) = exp

(
−t |2πν|2α

)
relativistic scale-spaces r̂m,t(ν) = exp

(
− t
(√
|2πν|2 +m2 −m

))

where i2 = −1 and 〈., .〉 denotes the Euclidean inner product. Then the Fourier
transforms of the convolution kernels of the individual scale-spaces are sum-
marised in Table 1.

Knowing such a kernel representation k̂t(ν) allows to compute the scale-space
image u(x, t) from its Fourier transform

û(ν, t) = k̂t(ν) · f̂(ν). (8)

3 Morphological Scale-Spaces

Mathematical morphology is based on the concepts of dilation and erosion. The
dilation ⊕ resp. erosion 	 of an image f with some structuring function s : R2 →
R ∪ {−∞} is defined as

(f ⊕ s)(x) := sup
y∈R2

{f(y) + s(x−y)} , (9)

(f 	 s)(x) := inf
y∈R2

{f(y)− s(y−x)} . (10)

In the following, we only focus on dilation for our derivations.
In order to create scale-space, one performs a so-called umbral scaling of the

structuring function s(x), resulting in

st(x) := t s
(x
t

)
. (11)

With u(., 0) := f , the (dilation) scale-space evolution {u(., t) | t ≥ 0} of f is
given by

u(., t) = f ⊕ st. (12)

It is possible to derive PDE formulations for such scale-space evolutions, if one
considers the slope transform of s [15, 7]:

S [ s ] (w) := stat
x∈R2

{s(x)− 〈w,x〉} , (13)

where the stationary values statx {h(x)} denote the set of function values for
which the gradient is zero:

stat
x∈R2

{h(x)} := {h(x) | ∇h(x) = 0}. (14)
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With these definitions, Dorst and van den Boomgaard [18] have shown that
u(x, t) from (12) is the solution of

∂tu = S [ s ] (∇u) on R2 × (0,∞), (15)

u(x, 0) = f(x) on R2. (16)

For instance, choosing s(x) = − 1
4 |x|

2 as structuring function gives
S [ s ] (w) = w2. Thus, (15) becomes

∂tu = |∇u|2. (17)

Van den Boomgaard has shown that quadratic structuring functions are the only
structuring functions that are rotationally invariant and separable [17]. This has
motivated him to regard (17) as the morphological equivalent of the Gaussian
scale-space, since the latter one is the only scale-space with a rotationally in-
variant and separable convolution kernel.
If one uses as structuring function a flat disc

s(x) =

{
0 (|x| ≤ 1),

−∞ (else),
(18)

it has been shown in [2] that one arrives at

∂tu = |∇u|. (19)

So far, it was an open question if this equation has a corresponding convolution
scale-space. We will answer this later on.
In our following discussion, we will also need the inverse slope transform. It is
given by (see e.g. [7])

S−1 [h ] (x) = stat
y∈R2

{h(y) + 〈x,y〉} . (20)

4 Morphological Equivalents of Convolution Scale-Spaces

In order to establish a connection between linear system theory and mathemat-
ical morphology, we follow [5]. However, instead of using the Laplace transform

L [ f ] (x) =

∫
R2

f(x)e〈x,y〉 dy, (21)

we base our computations on the Fourier transform. This has the advantage that
we do not require f to decay fast enough at infinity. We introduce a modified
version of the Cramér transform which we call Cramér-Fourier transform:

CF [ f ] (x) :=
(
− log(F [ f ] ( .

2π ))
)∗

(x) . (22)



6 The Morphological Equivalents of Relativistic and Alpha-Scale-Spaces

Here, logF [ f ] is assumed to be concave, and h∗ denotes the convex conjugate
of a function h:

h∗(x∗) := sup
x∈R2

{〈x,x∗〉 − h(x)}. (23)

The key property of the Cramér transform is that it allows to convert a con-
volution in the usual algebra (R, ·,+) into a dilation in the max-plus algebra
(R ∪ {−∞},+,max). This was proven by Burgeth and Weickert [5]. In the fol-
lowing lemma we prove the same result for the Cramér-Fourier transform.

Lemma 1. For two functions f and g with concave logarithmic Fourier trans-
form, it holds

−CF [ f ∗ g ] = (−CF [ f ])⊕ (−CF [ g ]). (24)

Proof. Since convolution in the Fourier domain becomes multiplication, we have

logF [ f ∗ g ] = log(F [ f ]F [ g ]) = logF [ f ] + logF [ g ] . (25)

Together with a well-known property of convex conjugation (see e.g [16]),

(f + g)∗(x) = inf
y∈R2

(f∗(y) + g∗(x− y)), (26)

it follows that

−CF [u ∗ kt ] (x) = −
(
− log(F [u ] ( .

2π ))− log(F [ kt ] ( .
2π ))

)∗
(x) (27)

= − inf
y∈R2

(CF [u ] (y) + CF [ kt ] (x− y)) (28)

= sup
y∈R2

(−CF [u ] (y)− CF [ kt ] (x− y)) (29)

= (−CF [u ])⊕ (−CF [ kt ])(x). (30)

�

In the following we say that a morphological scale-space is equivalent to a con-
volution scale-space, if they result from each other by exchanging the above two
algebras. With these definitions and results we can state our main theorem.

Theorem 1. (Morphological Equivalents of Convolution Scale-Spaces).
The morphological equivalents of a convolution scale-space u(t, ·) = f ∗kt are so-
lutions of

∂tu = logF [ k1 ]( 1
2π∇u), (31)

u(., 0) = f, (32)

where the bar notation describes h̄(x) := −h(−x).
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Proof. As a first step we note that for some strictly convex function h we have

h∗ = S−1 [−h ] . (33)

This can be seen with the definition (20) of the inverse slope transform:

S−1 [−h ] (x) = stat
y∈R2

{−h(y) + 〈x,y〉} (34)

= sup
y∈R2

{〈x,y〉 − h(y)} = h∗(x), (35)

since 〈x,y〉−h(y) is strictly concave in y. Therefore, it has a unique stationary
value which is a supremum. This proves (33).
With (24), it follows that −CF [ kt ] creates a morphological scale-space as given
in (15)–(16): We obtain

S [−CF [ k1 ] ] = S [ CF [ k1 ] ] (definition of S) (36)

= S
[

(− logF [ k1 ] ( .
2π ))∗

]
(definition (22)) (37)

= S
[
S−1

[
logF [ k1 ] ( .

2π )
] ]

(equation (33)) (38)

= logF [ k1 ] ( .
2π ). (39)

This implies the announced equations. �

It should be noted that Theorem 1 is also applicable in those cases where
one does not have a closed form representation of the kernel kt: It is sufficient
to know a closed form representation of the Fourier transformed kernel k̂t.

5 Application to Specific Scale-Spaces

Now we are in a position to apply our theory to a number of convolution scale-
spaces in order to derive their morphological counterparts.

5.1 Gaussian Scale-Space

Table 1 specifies the Fourier transform of the convolution kernel for Gaussian
scale-space as

F [ gt ] (ν) = exp
(
−t |2πν|2

)
. (40)

Thus,
F [ gt ] ( 1

2πx) = exp
(
−t |x|2

)
(41)

and Theorem 1 gives the morphological evolution equation

∂tu = logF [ g1 ]( 1
2π∇u) = |∇u|2. (42)

As expected, this coincides with van den Boomgaard’s result [17]. The corre-
sponding structuring function is known to be

st(x) = − 1
4t |x|

2. (43)
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5.2 α-Scale-Spaces

In the same way as above, one can show that the morphological equivalents for
the α-scale-spaces are given by

∂tu = |∇u|2α. (44)

Interestingly, this proves that for α = 1
2 , the convolution counterpart of the

widely-used morphological scale-space

∂tu = |∇u|, (45)

which describe dilation with a flat disc of radius t, is given by the Poisson scale-
space

∂tu = −
√
−∆u . (46)

This is a scenario where the morphological process looks simpler and has been
discovered nine years before its convolution pendant that involves a pseudo-
differential operator [2, 9].
It is also instructive to use our framework for deriving the structuring functions
sα,t for the family of morphological α-scale-spaces. Using (15) we know that the
dilation α-scale-spaces have to satisfy

S [ sα,1 ] (∇u) = ∂tu = |∇u|2α. (47)

Thus, we can compute sα with the help of the inverse slope transform and some
properties of the convex conjugate (see e.g. [16]):

sα,t = S−1
[
t|x|2α

]
= −(t|x|2α)∗ (48)

where we have used S−1 [h ] = −h∗ for a strictly convex h. Since(
1
2α |x|

2α
)∗

= 2α−1
2α |x|

2α
2α−1 , (49)

we get an explicit representation of the structuring function:

sα,t(x) = −
(
2 t α 1

2α |x|
2α
)∗

= −t (2α−1)
∣∣∣ x
t2α

∣∣∣ 2α
2α−1

. (50)

Although this formula only holds for α > 1
2 , where strictly concave of the struc-

turing function is guaranteed, we can compute the pointwise limit

lim
α→ 1

2
+
sα,t(x) =

{
0 |x| ≤ t,
−∞ (else)

(51)

and obtain a flat disc of radius t.
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5.3 Relativistic Scale-Spaces

From Table 1 we know that

F [ rm,t ] (ν) = exp
(
− t
(√
|2πν|2 +m2 −m

))
. (52)

This gives
logF [ rm,t ]( 1

2πx) = t
(√
|x|2 +m2 −m

)
, (53)

and applying Theorem 1 yields the evolution equation of the morphological coun-
terpart for the the relativistic space-spaces:

∂tu =
√
|∇u|2 +m2 −m. (54)

The structuring function can be computed as before as the negative of the convex
conjugate of (53):

sm,t(x) = −(t
(√
|x|2 +m2 −m

)
)∗ (55)

= − sup
y∈R2

(
−t
(√
|x|2 +m2 −m

)
+ 〈x,y〉

)
. (56)

With the solution for y given by

y =
xm

t2 − |x|2
(57)

for |x| ≤ t, it follows that

sm,t(x) =

mt

(√
1−

(
|x|
t

)2
− 1

)
|x| ≤ t

−∞ (else).

(58)

For m → 0 sm,t converges to a flat disc of radius t. This is expected from
the results from the last section since the relativistic scale-spaces converge to
the Poisson scale-space for m → 0 and we identified the flat disc of radius t as
the structuring function corresponding to the morphological Poisson scale-space.
Table 2 summarises the results of this section.

6 Experiments

Figure 1 shows a comparison of the structuring functions for all discussed scale-
spaces. In these examples, t was chosen to be 1 since umbral scaling can be used
to obtain structuring functions for smaller or larger values of t.

To give a visual impression of the morphological counterpart of convolution
scale-spaces, Figure 2 and 3 show evolutions of the Mona Lisa image. Whereas the
convolution scale-spaces converge to the average greyvalue, their morphological
counterparts converge to the brightest greyvalue. For Figure 3, the similarity to
a disc-like structuring function is clearly visible for the morphological relativistic
scale space with m = 0.1.

For the implementation we used a multiplication in the Fourier domain for
the convolution scale-spaces. For the morphological scale-spaces, we solved for
the maximum over the image domain in Equation (9).
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Table 2. Equations for linear scale-spaces and their morphological equivalents.

scale-space linear (pseudo-)PDE morphological PDE

Gaussian ∂tu = ∆u ∂tu = |∇u|2

Poisson ∂tu = −
√
−∆u ∂tu = |∇u|

α ∂tu = −(−∆)αu ∂tu = |∇u|2α

relativistic ∂tu = −
(√
−∆+m2 −m

)
u ∂tu =

√
|∇u|2 +m2 −m

(a) α-scale-space (b) relativistic scale-space (c) comparison of Gaussian
and relativistic space-space

Fig. 1. Structuring functions for morphological scale-spaces.

7 Conclusions and Future Work

We have established a mathematical dictionary that allows to translate a con-
volution scale-space to a morphological scale-space and vice versa. In contrast
to previous work on structural similarities between linear and morphological
systems, we have achieved these equivalences in the terminology of differential
or pseudo-differential operators. We have shown that there exist hitherto un-
explored relations between known scale-spaces, such as the Poisson scale-space
and morphology with a disc-shaped structuring element. Moreover, we have in-
troduced new morphological scale-spaces that serve as nonlinear counterparts
of α-scale-spaces beyond Poisson and Gaussian scale-space, and of relativistic
scale-spaces. Their PDE formulations reveal striking structural similarities to
their linear pendants.

There are numerous ways to extend these findings in interesting directions.
Obviously, these new scale-spaces should be explored further in order to identify
promising applications. On the other hand, it is also challenging to generalise
this dictionary to other scale-spaces that are not covered within a classical convo-
lution setting, for instance nonlinear diffusion scale-spaces. In this case, Fourier
reasonings can no longer be used, and different mathematical techniques are
required.
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(a) t = 0 (b) t = 5 (c) t = 50 (d) t = 500

(e) t = 0 (f) t = 1 (g) t = 10 (h) t = 100

Fig. 2. Top: α-scale-space for α = 0.75,
Bottom: Morphological α-scale-space for α = 0.75
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